
AI in Space for Scientific Missions: Strategies for
Minimizing Neural-Network Model Upload

Jonah Ekelund1, Ricardo Vinuesa1, Yuri Khotyaintsev2, Pierre Henri3, Gian Luca Delzanno4, Stefano Markidis1
1 KTH Royal Institute of Technology, Stockholm, Sweden
2 Swedish Institute of Space Physics, Uppsala, Sweden

3 CNRS Researcher, Lagrange, OCA, Nice & LPC2E, Orléans, France
4 Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract—Artificial Intelligence (AI) has the potential to rev-
olutionize space exploration by delegating several spacecraft
decisions to an onboard AI instead of relying on ground control
and predefined procedures. It is likely that there will be an AI/ML
Processing Unit onboard the spacecraft running an inference
engine. The neural-network will have pre-installed parameters
that can be updated onboard by uploading, by telecommands,
parameters obtained by training on the ground. However, satellite
uplinks have limited bandwidth and transmissions can be costly.
Furthermore, a mission operating with a suboptimal neural net-
work will miss out on valuable scientific data. Smaller networks
can thereby decrease the uplink cost, while increasing the value
of the scientific data that is downloaded. In this work, we evaluate
and discuss the use of reduced-precision and bare-minimum
neural networks to reduce the time for upload. As an example of
an AI use case, we focus on the NASA’s Magnetosperic MultiScale
(MMS) mission. We show how an AI onboard could be used in
the Earth’s magnetosphere to classify data to selectively downlink
higher value data or to recognize a region-of-interest to trigger a
burst-mode, collecting data at a high-rate. Using a simple filtering
scheme and algorithm, we show how the start and end of a region-
of-interest can be detected in on a stream of classifications. To
provide the classifications, we use an established Convolutional
Neural Network (CNN) trained to an accuracy >94%. We also
show how the network can be reduced to a single linear layer and
trained to the same accuracy as the established CNN. Thereby,
reducing the overall size of the model by up to 98.9%. We further
show how each network can be reduced by up to 75% of its
original size, by using lower-precision formats to represent the
network parameters, with a change in accuracy of less than 0.6
percentage points.

Index Terms—Space Exploration, Artificial Intelligence in
Space, Compressed Neural Networks, Neural Network Parameter
Upload

I. INTRODUCTION

Artificial-intelligence (AI) and Machine-learning (ML)
methodologies and tools are changing and will change space
exploration by offloading several spacecraft decisions to an
onboard AI instead of solely relying on ground control and
predefined procedures [1].

An early example of the use of neural-networks in space is
the CNES DEMETER (Detection of Electro-Magnetic Emis-
sions Transmitted from Earthquake Regions) satellite (2004-
2010), devoted to the investigation of the ionospheric dis-
turbances due to seismic and volcanic activities. DEMETER

This work is supported by the European Commission, with Automatics in
Space Exploration (ASAP), project no. 101082633.

implemented a TDNN (Time Delay Neural Network) in the
onboard software for the automatic and systematic detection
and characterization of all whistle-like signals [2] encountered
by DEMETER along its orbit [3]. To our knowledge, this is
the first on-board neural network dedicated to the scientific
processing of wave data.

A spacecraft equipped with an AI processing unit could
detect which part of space is traversing. Using this information,
the measurement sampling rate could be increased in areas
of strong scientific interest while, conversely, neglecting data
that might not be of interest. In the case of space exploration
of the Earth’s magnetosphere, for instance, a so-called burst
mode, an increased sampling rate of on-board instruments [4–
6], can be triggered by in-situ data analysis using an on-board
AI engine. For instance, an onboard AI module can identify
transition regions in the Earth’s magnetosphere, such as the
magnetopause, where day-side magnetic reconnection might
occur, the bow-shock region and turbulence generated by ion-
foreshock and in general, anomaly detection to measure rare
events. All these events might interest space scientists on the
ground. Automatic detection will increase the value of the
data received by the scientists, since high-interest areas will
be prioritized for collection and downlink.

In the first implementation, the onboard spacecraft AI will
likely execute in a separate computing unit, radiation-hardened
or replicated for redundancy and fault tolerance, here called
ML/AI Processing Unit (MAP), running an inference engine
(a neural network model with only prediction capabilities).
The MAP will contain an accelerator to accelerate tensorial
or vector operations, which are key calculations for inference:
Nvidia tensor cores [7], Google Tensor Processing Units [8]
and Intel Movidius Myriad Vision Processing Units [9] are
a few commercial examples. The MAP comes with pre-
installed neural-network architecture, weights and biases (the
so-called model) in a standardized format, such as Open
Neural Network Exchange (ONNX) [10]. During the space
mission, the availability of new space observations from the
instruments and re-calibration of onboard instruments will
allow new extensive training of the neural networks on the
ground and preparation of new neural network architecture,
weights and biases. The new model can be uploaded from the
ground by uploading weights and biases obtained by training
on the ground. However, the upload time largely depends on

ar
X

iv
:2

40
6.

14
29

7v
1

 [
cs

.A
I]

 2
0

Ju
n

20
24

the amount of data transmitted to the spacecraft. In fact, the
bandwidth upload is limited and overall, communication with
the spacecraft is costly in terms of resources and time. As will
be shown in this work, the neural network parameter upload
time might vary from minutes to hours and it is therefore
critical to minimize the amount of data that needs to be
transmitted when updating the model.

The main challenge for neural-network model upload is that
satellite uplinks have limited bandwidth and communication.
Furthermore, a mission operating with a sub-optimal neural
network will not be accurate, potentially missing valuable
scientific data, or wasting resources on uninteresting data.
Smaller networks, in terms of architecture and parameter pre-
cision, can thereby decrease the uplink cost while increasing
the value of the downloaded scientific data. There are many
existing techniques for reducing the size of a network, for
example pruning and quantization.

When pruning a network, a trained model is examined for
neurons and parameters which are redundant or have little
effect on the final output [11]. These can be removed to
decrease the size of the network in the case of neurons or allow
for more compact storage formats to be used if parameters are
unnecessary and set to zero.

Another approach to reduce the size of a neural-network is
quantization. For neural-networks, quantization involves using
lower-precision representations for the parameters which, in
addition to reducing the storage size, have been shown to
increase the inference speed. Commonly, the networks are
quantized from 32-bit float to 16-bit or 8-bit representa-
tions [11]; however, even 1-bit networks are possible [12].
Depending on the level of quantization, this also has the
possibility to reduce the power usage, both through the use
of less power intensive operations, but also by requiring fewer
memory accesses [13].

In this work, we evaluate and discuss two main approaches
for neural-network size reduction in the context of reducing the
amount of data that needs to be transferred to the spacecraft.
First, the network size can be reduced by using fewer and
smaller layers. Second, quantizing the network’s parameters
from the standard 32-bit to 16-bit, standard IEEE format or
new emerging brain floating point (BFloat16), or basic 8-bit
format.

The goal of this work is to evaluate strategies to minimize
the communication cost while retaining accuracy and perfor-
mance of the on-board neural-network engine. These strategies
include the usage of bare-minimum neural architectures with
just a few layers and neural units and the usage of low-
precision format for encoding the neural network weights
and biases. To assess the communication costs and neural
network performance, we take the current NASA Magne-
tosperic MultiScale (MMS) mission, exploring the multi-scale
nature of magnetic reconnection at electron scales in the
Earth magnetosphere, as an example of mission for which AI-
on board can enable burst modes automatically and increase
instrument measurement rates [6]. As a use case, we employ
the automatic recognition of a region of interest in the day-

side Earth magnetosphere using data from one of the on-
board instruments, called FPI (Fast Plasma Investigation),
for the observation of ion distributions at different energy
levels [14]. Different models are trained, then file sizes and
inference accuracy are evaluated for different neural network
architectures and precisions. The main contributions of this
work are the following:

1) We present two practical uses of machine learning and
neural networks onboard spacecraft, prioritization of
data for downlinking and identifying region of interests.

2) We present a simple way of filtering classification output
from a region classifier (in this work, neural-networks)
and using the classification to detect a region of interest.

3) We show two reduced networks with similar perfor-
mance to an existing network on the same dateset,
decreasing the overall size and thereby the time required
to upload the models to a satellite by up to 98.9%.

4) We show how the precision of the network parameters
can be reduced, to 16- and 8-bit formats, with minimal
change in the accuracy of the network predictions;
Further decreasing the model size by up to 75%.

II. BACKGROUND

In this work, we use the MMS mission as a use-case
for our study. MMS was launched on March 15th, 2015,
with the mission of investigating magnetic reconnection in
the Earth’s magnetosphere boundary regions and enlightening
the processes at electron and ion scales. MMS consists of
four spacecrafts flying in tetrahedral formation: this allows
to obtain the gradient of the various plasma and field mea-
surements [6]. There are two phases of the MMS mission.
In Phase 1, the orbits are designed to maximize the time
spent in the magnetopause on the Earth’s day side. For Phase
2, the orbits are designed to fly the spacecraft through the
magnetotail on the Earths night side [15]. In this work, for
sake of simplicity, we focus on Phase 1, as well as on data
and techniques designed to automatically detect day-side Earth
Magnetosphere.

The scientific instruments onboard spacecraft today are ca-
pable of generating large amounts of data, which often exceeds
the amount that can be efficiently downloaded. In the MMS
mission, only ∼2% of the high-rate data can be downloaded
while using 75% of the available downlink bandwidth [6].
Furthermore, due to the location of ground stations, orbital
dynamics and onboard resource limitations such as thermal
generation and power consumption, the communication with
the spacecraft is often further limited to different communica-
tion windows. In MMS Phase 1 these were between 15 and
80 minutes, in different parts of the orbits [15].

Note that, deep-space missions, like ESA’s Solar Orbiter,
have the added difficulty that the downlink rate changed
significantly depending on the distance of the spacecraft from
Earth. This had to be considered when designing the mission
orbit for the Solar Orbiter, minimizing the risk of overflowing
the onboard mass memory and loosing valuable scientific
data [5].

A common approach to deal with this limitation, is to only
collect low-rate survey data for most of the orbit and limit the
collection of high-rate (often called ”burst”) data to specific
regions of interest (ROI). These bursts of high-rate data
collections can be triggered by onboard algorithms or events,
like in the case of the FAST satellite and the Solar Orbiter [4,
5]. Alternatively, like for the MMS mission, the ROI can
be specified as a longer part of the orbit, then the collected
data can be sorted into a prioritized download queue based
on the likelihood of containing interesting events. For MMS,
this is a complicated process involving downloading onboard
calculated quality indicator values from all four spacecraft,
to then processing these on ground to produce the download
prioritization which is then uploaded to the spacecraft during a
following communication window. In addition to this, survey
data is downloaded for a scientist to evaluate and change the
prioritization [6].

As scientific missions are often more concerned with op-
timizing the amount of data that can be downlinked from
the spacecraft, a limitation which is often not discussed in
literature is the uplink. In the case of MMS the uplink data
rate is only 2 kbps [16] and with communications windows
between 15 and 80 minutes only 225 kB to 1.2 MB can be
uploaded depending on the window; Larger files will have
to be split between multiple windows. This does not account
for any protocol headers that need to be added. In general,
as frequency bandwidth is a limited resource, it needs to be
utilized efficiently [17] and the spacecraft uplink rates are
often significantly lower than the downlink rates [18, 19].

For traditional space missions this is not an issue since
mainly commands are sent to the spacecraft. However, sci-
entific missions are designed to study new phenomena where
there is a lack of existing data usable for training neural
networks. Therefore, missions which utilize pretrained AI
models will have to update the models when real data becomes
available. As we will see in this work, the upload time can be
substantial even for small networks, when the uplink data rate
is limited.

A. Onboard ML/AI Acceleration

Current scientific space missions do not include AI-based
modules for on-board data analysis for automatic or assisted
decision. However, we envision the use of an overall architec-
ture, similar to the one shown in Fig. 1, for a multi-instrument
scientific mission. This architecture would adopt a separa-
tion of concern in the design, dividing the science payload,
the management of the scientific instrumentation, from the
spacecraft platform in charge of the management/control of
the spacecraft. The Science Control Module (SCM) contains
the processor unit for controlling the science payload, the
Mass Memory Unit (MMU) for storing the science data and
the ML/AI Processing Unit (MAP) for running the Inference
Engine and supporting software. Depending on the use case,
the Instruments will either store data to the MMU for the
MAP to read and process, or stream data directly to the
MAP, for a live processing pipeline. The MAP will create

Fig. 1: Schematic view of an ML/AI acceleration onboard a
spacecraft for scientific-missions.

a number of key-values which can be used for prioritizing
data or triggering burst modes. Depending on the level of
instrument autonomy, the key-values can either be broadcast
to anyone listening or read by the Processor Unit for use in
controlling the instruments.

The implementation of the SCM can be either as a single
board or as multiple boards with a backplane (motherboard)
connecting them. This second variant could be used for a more
modular design where multiple MMUs or MAPs can be added
or removed depending on the mission needs.

In the first implementations the MAP will only run an
Inference Engine, while the training will be performed on-
ground and new models will be uploaded to the spacecraft
when needed as shown in Fig. 1.

B. AI-Based Methods & Reduced Precision

In this work, we focus on the usage of Convolutional
Neural Networks (CNN), which are neural-networks often
used for image analysis and have been proven to provide
high accuracy in classifying different plasma regions in Earth’s
magnetosphere [20]. They have one or more convolutional
layers at the beginning of the network, which are used to
extract key features from the images before they are fed into
the network layers. This is then followed by one or more
network layers.

For the communication to the spacecraft and upload, it
is likely that a standardized data, such as ONNX, will be
used. ONNX is an open-source format for representing AI
and ML models. It is designed to provide a common model
representation to facilitate exchange between different AI/ML
frameworks. This enables developers and researchers to choose
the best tool for each stage of a project [10].

An important way to reduce the amount of data to be
uploaded is to use reduced-precision formats. A common way

Fig. 2: IEEE 32- and 16-bit floating-point formats.

of representing numbers in computers today is floating-point,
which takes any real number splits it into a sign, exponent and
fractional part, as shown in Fig 2. This way of representing
the number allows for storage of both very large numbers,
such as the mass of stars and very small numbers, like the
charge of an electron. A common standard for floating-point
is the IEEE [21] floating-point standard, the 32-bit and 16-bit
precisions are depicted in Fig. 2. An alternative to the IEEE
16-bit floating-point representation is BFloat16. BFloat16 uses
the same number of bits for the exponent as IEEE 32-bit, but
reduces the fractional part to 7-bits. Note that this keeps the
dynamic range of the IEEE 32-bit numbers [22] and has been
shown to be beneficial when training neural-networks using
16-bit number representations [23].

III. METHODOLOGY

Based on the limitations in downlink capabilities of
scientific missions, we can identify two use-cases where a
CNN similar to the one presented in Ref. [20] can be used:
1. Selective downlink of scientific data onboard the
spacecraft. To selectively downlink data with high-value
first, the classification output from the CNN could be used
as an input to a prioritization algorithm, similar to how
burst-data segments are selected in the MMS mission. The
algorithm could put all the data in a prioritized download
queue, where the lower-priority data could also be overwritten
if the memory is full. The simplest example of this would
be to prioritize all the data from one region. However, the
algorithm could also be more complex, considering other data
quality indicators or orbit information. For an Earth-orbiting
mission, such as MMS, unless you want near real-time data,
it might not make sense to put the CNN on the spacecraft
itself because the time between two consecutive ground
contacts is relatively short. Instead, for these missions the
CNN could be used in on survey data downloaded to ground
at a lower time resolution, similar to the Scientist in the Loop
(SITL) strategy used in MMS. However, for missions outside
near-Earth orbits, such as missions to Mars or Jupiter, the
communication delay can be large and the orbital dynamics
can cause long periods without ground contact. Therefore,
it may be preferable that the spacecraft starts transmitting
the most relevant data as soon as ground contact has been
established and not download survey data for evaluation on
the ground.

2. Identifying region of interest (ROI) for high-rate and
high-precision data collection. Identifying the ROI to trigger
a burst mode could be done for different reasons. First, similar

to the data prioritization, identification of ROI could be done
to limit the data collection due to storage and downlink
limitations, only collecting data of high value. ROI could also
be used to limit the use of expendable resources required
for the data collection, such as the Indium in MMS ASPOC
instrument [24]. Both involve detecting the boundary between
two plasma regions.

A. Classification and ROI detection

For the first use-case (data download prioritization) the
classification output from the CNN could be used as a way to
determine how much of the data in a given data segment is
from each region. Then data containing a larger percentage of
data from a plasma region of interest can then be prioritized
higher. The classification could also be used in more advanced
segmentation algorithms to create segments of data containing
only one classification.

The CNN networks presented in Section III-C are evalu-
ating each instance of the input data by itself and do not
consider the previous input. However, when a network is
running onboard a spacecraft with a continuous stream of data
from the instrument, there is a dependency on the previous
classification. For example, the spacecraft will not pass directly
from the magnetosphere into the solar wind. We can add this
dependency on previous data to the classification output by
applying an exponentially weighed moving average to the
classification output

yi = (1− α)yi−1 + α · Ci (1)

then to obtain the classification we round to the nearest integer:
Ci = ⌊yi⌉.

With the filtered classification, we can use a simple algo-
rithm, Algorithm 1, to detect the start and end of a region of
interest. The algorithm detects if the given classification (c) is
one of the regions of interest and returns True if it is. This is
a quick response to ensure that we mark a ROI quickly for any
associated actions to be performed. It relies on the previous
filtering to remove any spurious classifications.

The algorithm has an indicator value that is set to one when
entering a region of interest. It will then decay according to
a configured value if a classification is not in our region of
interest and when the indicator reaches a configured threshold
value the classification will be marked as not in ROI. If the
indicator has not decreased below the threshold and a classi-
fication is in the region of interest, the indicator will increase
with the same decay term. This part of the algorithm ensures
that transition regions with rapidly changing classifications are
still captured.

B. Data & Pre-Processing

The Data for this work is ion energy distribution data from
the MMS Fast Plasma Investigation instrument (FPI) [14] and
was obtained from MMS Science Data Center [25]. The ion
distribution data from FPI is collected in 32 energy levels with
coverage from 10eV to 30keV. Spatially the data is collected
in 16 polar angle bins and 32 azimuthal bins giving a sky map

Algorithm 1 Algorithm for detecting a region of interest.

1: threshold← THRESHOLD
2: decay ← DECAY
3: regions← REGIONS
4: indicator ← 0
5: in roi← False
6: function CHECK ROI(c)
7: if in roi then
8: if c in regions then
9: indicator ← indicator · (1− decay)−1

10: if indicator ≥ 1.0 then
11: indicator ← 1.0
12: end if
13: else
14: indicator ← indicator · (1− decay)
15: if indicator ≤ threshold then
16: indicator ← 0.0
17: in roi← False
18: end if
19: end if
20: else
21: if c in regions then
22: indicator ← 1.0
23: in roi← True
24: end if
25: end if
26: return in roi
27: end function

of the ion distribution around the spacecraft [14]. Fig 3 show
a subset of the available energy-levels for Solar Wind data.

Olshevsky et al. [20] labeled the MMS data from Novem-
ber 2017 and December 2017 as one of four categories:

-1. Undefined/Unknown
0. Solar Wind (SW)
1. Ion foreshock (IF)
2. Magnetosheath (MSH)
3. Magnetosphere (MSP)
Using these labels, together with the corresponding MMS

data, we generated two datasets, one for MMS data collected
in November 2017 and one for December 2017. For each set,
10,000 samples were randomly selected from each of the four
categories, SW, IF, MSH and MSP, generating a total 40,000
samples for each dataset. Samples labelled as Unknown were
not included in the datasets. The November data set, was used
as a training-set and the December set was used as a test-set.

The pre-processing of the ion distribution data was done in
four steps:

1) Limit the values in each sample to a given range
2) Take log10 of all values in each sample
3) Normalize each sample
4) Perform a roll along ϕ-axis in the data matrix

which is slightly different from what was done in Ref. [20].
In the first step, any value in the data outside a range

defined by a low and high threshold value was replaced

Fig. 3: Example of skymaps for four energy levels from the
Solar Wind region, data from MMS1. In the top most plots,
we can see how the particle distribution for the Solar Wind
appears as a Maxwell-Boltzmann distribution in the middle of
the plot due to the rotation of the data along the ϕ-axis.

with a corresponding threshold value. The range was chosen
to be [10−28, 10−17] (s3/cm6) based on the maximum and
minimum values of the input data in the training set. This
is done for two reasons, firstly to not have any zero values for
the logarithm operation in the next step. Secondly, to ensure
that all values will be between 0 and 1 after the normalization
step. The logarithm step is the same as in [20]. In the third
step, we normalize each sample between the logarithm of the
threshold values. In practice, this will mean subtracting −28
and dividing with 11 (the difference between the logarithm of
the high and low threshold values.) The fourth and last step
are the same as in Ref. [20] and is done to put the solar wind
beam in the center of the measurement box, as can be seen in
Fig. 3.

C. CNN Architectures

We use a CNN with the network topology presented by
Olshevsky et al. [20] as the basis in this work. It classifies the
different regions in the Earth’s plasma environment into one
of four categories: SW, IF, MSH or MSP.

This is a small CNN, see Fig. 4, consisting of two convo-
lution layers and a max pool layer which reduces the initial
16,384 inputs to 6912. This is followed by two fully connected
(linear) layers, the first with a ReLU activation function and
the second with a soft max activation. A full summary of the
network configuration is presented in Tab. I. The output from
the network is the likelihood that the input data is from one
of the four plasma regions. We implement this network in
PyTorch and train it to identify the four different regions.

To reduce the size of the final model, we also consider
a reduced network, which removes the second convolutional
layer and changes the output channels for the first convolu-
tional layer from 32 to one. This reduction in output channels
reduces the number of inputs to the first linear layer from 6912

Fig. 4: CNN architectures evaluated in this study.

TABLE I: Layer configuration for the CNNs

Layer Configuration Baseline CNN Reduced CNN
(Type)

In Channels 1 1
1 Out Channels 32 1

(Conv3D) Kernel size (5,3,5) (5,3,5)
Stride (2,1,2) (2,1,2)

Padding 0 0
In Channels 32

2 Out Channels 32
(Conv3D) Kernel size (3,3,3) Layer not used

Stride (1,1,1)
Padding 0

3 Kernel size 2 2
(MaxPool3D)

4 (Nothing set)
(Flatten)

5 Input size 6912 343
(Linear) Output size 128 128

Activation ReLU ReLU
6 Input size 128 128

(Linear) Output size 4 4
Activation SoftMax SoftMax

to 343, reducing the number of weights needed to be stored
by 95%.

We also create a model with only a MaxPool3D followed
by one linear layer with a SoftMax activation function. This
reduces the network to the equivalent of four instances to
logistic regression, followed by a SoftMax to compare the
outputs.

For training of the network models, we use the Cross
Entropy loss and the ADAM optimizer, with 10−6 as the
learning-rate. For the reduced network and Logistic regression,
the learning-rate was increased to 10−5 in order for it to
converge to a solution. For each network, four different models
were trained using four different seeds for the initiation of the
parameters. Each model was trained until the accuracy on the
test-set had not increased for 10 consecutive training epochs.

D. Reduced-Precision Neural-Network Parameters

As discussed before, the available uplink data rates are
small, while it is likely that the parameters for the neural

network present on the spacecraft will have to be updated after
launch. This could be due to lack of original training data, or
due to shifts in the input data from aging instruments.

One way to decrease the amount of data to transfer is to
store the network weights in a lower precision format. We
therefore investigate the effect on the network if the weights
are cast to Float16 and BFloat16. We do not put any constraints
on the inference, which can still be performed using Float32.
Reducing the weights to 16-bit from the original 32-bit should
reduce the overall network size by half. To measure the size
of the final model, we export the models to ONNX-files and
measure the file sizes.

To reduce the network weights even further, we make use of
a simple reduction scheme where each parameter is encoded
as an 8-bit integer according to:

f(x) =


127 , if x · 100 > 127

−127 , if x · 100 < −127
⌊x · 100⌉ , otherwise

(2)

Then, before inference, the parameters are then converted back
to floating point by dividing by 100. This reduces the range
of the parameters to [1.27,−1.27] and the precision to two
decimals.

E. Experimental Setup

Both training and evaluation for the networks were per-
formed on a system with an AMD EPIC 7302P CPU and
an NVIDIA A100 GPU, running CentOS Linux 8 (Kernel:
4.18.0) with CUDA 12.3. The network, training and testing
software was implemented and run using python 3.11.6 with
PyTorch 2.2.1.

IV. RESULTS

A. Filtering and Region-of-interest detection

In Fig. 5, we present the results for the region of interest
(ROI) detection algorithm, for the configuration in Table II,
when the CNN and ROI detection algorithm is running in
our setup on ground. The CNN output and filtering does not
categorize any data as Undefined. An example of this can be
seen in Fig. 5 at the transition from MSP to MSH before
06:46:40, where the region labeled as undefined is either
classified as MSP or MSH. Between 08:10:00 and 09:33:20
we can see how the ROI indicator, the bottom plot in Fig. 5,
starts to decrease when the data is classified as SW following
a continuous time when it has been classified as either MSH or
IF. Then the data is again classified as IF followed by MSH and
the ROI indicator increases until it reaches the max value (1.0).
At the end of the marked ROI, the ROI indicator is slowly
decaying with small increases when the data is classified as
IF. Once the threshold (0.5) is reached, the ROI indicator is
set to zero and the region is not marked as part of ROI.

Table III shows how much of each region, based on the
labels, falls within the ROI detected by the algorithm for fast
survey data from between 2017-12-04 05:31:27 and 2017-12-
06 16:22:50. Fig. 5 shows a smaller region of this data. We

Fig. 5: Region of interest detection with baseline Float32
CNN (seed 42). The top most plot is showing the Ion energy
spectrum from the FPI data. The second and third plot show
the human and CNN classification labels and the bottom plot
show the ROI Indicator value from the Algorithm 1.

TABLE II: ROI filter and detection configuration.

Parameter α Threshold Regions Decay
Value 0.1 0.5 [1,2] 0.001

can see that the algorithm performs well at encapsulating the
Magnetosheath (MSH) and Ion foreshock (IF), which were the
regions specified to the algorithm. It also includes parts of the
Solar Wind (SW) and Magnetosphere (MSP) in the ROI, this
is mainly due to the decay term extending the ROI when the
spacecraft exits the specified regions. As for the Undefined
regions, as the classification and filtering does not specify a
region as Undefined, whether this is included in ROI depends
on how the CNN classifies the data.

B. Classification Accuracy

Table IV shows a summary of the accuracy on the test
set of the four models for each of the three networks. The
classification is done according to the output with the highest
value and with no further filtering performed. All models were
trained to an accuracy higher than 90% before the accuracy
stopped increasing for 10 training epochs. The high accuracy
of the smaller Reduced and Logistic models highlights the im-
portance of considering simpler models for any given problem.

Investigating the confusion matrices for the baseline Float32
models in Fig. 6 we can see that the models have a hard time

TABLE III: The percentage of each human labeled data that
falls within the ROI marked by the algorithm for data classi-
fied between 2017-12-04 05:31:27 and 2017-12-06 16:22:50
(approximately one orbit.)

Network Label In ROI Outside of ROI Total samples
Undefined 35.21% 64.79% 4027

Baseline SW 16.07% 83.93% 5596
Float32 IF 93.84% 6.16% 406

(seed 42) MSH 100% 0.0% 5410
MSP 31.2% 68.8% 2032

TABLE IV: Accuracy on the test set after training for the
baseline and reduced Float32 models.

Network Seed Accuracy (%) Training Epochs

Baseline

42 94.15 96
84 94.31 91

168 94.41 118
336 94.91 135

Reduced

42 94.7 145
84 94.7 154

168 93.8 75
336 94.3 82

Logistic

42 90.3 145
84 95.0 167

168 90.2 104
336 95.0 172

separating the solar wind from the ion foreshock. For more
than 10% of the samples, the model is classifying data labeled
as Solar Wind as Ion Foreshock.

Fig. 6: Confusion matrices for the baseline Float32 network.

The Logistic models appear to have fallen into two different
local minima: one with 90% accuracy and another one with
95%. Looking at the confusion matrices for these models in
Fig. 7, we find results very similar to the Baseline models in
two of the seeds, 84 and 336. However, the seeds 42 and 168
have a lower overall accuracy and tend to mislabel solar wind
or ion foreshock as magnetosphere. Where more than 17% of
the data classified as MSP by the model is actually labeled as
SW or IF.

C. Reduced-Precision Neural-Network Parameters

Converting the data to lower precision implies that we
lose some information due to round-off error. It is therefore
important to evaluate how this affects the final classification of
the network. As can be seen in Fig. 8 the change in accuracy
is less than 0.6 percentage point for all formats. What is
interesting to note is that the smaller the network, the smaller

Fig. 7: Confusion matrices for the logistic Float32 network.

the effects of the Int8 format on the accuracy. The y-axis of
Fig. 8 is scaled logarithmically to make the accuracy changes
for Float16 visible.

There is a loose coupling between the round-off error and
the change in accuracy. This can be seen when Fig. 8 with the
Round-off error in Table V. We can see that for the Baseline
Int8 model, we have the largest change in accuracy and the
largest worst case round-off error. However, as the classifi-
cation is defined by the highest output from the network,
we can have changes in output that does not affect the final
classification. This can be seen in that when comparing the
different seeds for the same data type, the seed with the largest
round-off error does not always have the largest change in
accuracy.

Fig. 8: The absolute change in accuracy between the reduced
precision parameters and full precision Float32 parameters.

D. Neural Network Sizes

In Table V, we have the file sizes when the network
is exported to ONNX files. As PyTorch does not support

TABLE V: Euclidean norm of the round-off error for the
different number formats. Only the worst models for each
network and format are presented.

Network Data type Seeds Round-off error
Euclidean norm

Baseline
Float16 42,84,168,336 0.0019

BFloat16 336 0.0156
Int8 336 2.7245

Reduced
Float16 84 0.0027

BFloat16 84 0.0218
Int8 168 0.6128

Logistic
Float16 336 0.0024

BFloat16 42, 336 0.0181
Int8 336 0.2633

TABLE VI: Size of ONNX file. (∗Int8 calculated based on
Float32 and Float16 sizes.)

Approx.
Network Data format Size (MB) Relative Upload time

(2kbit/s)

Baseline

Float32 3.668 1 4h
Float16 1.847 0.5 2h

BFloat16 1.847 0.5 2h
Int8 0.937∗ 0.26 1h

Reduced

Float32 0.193 0.05 13 min
Float16 0.103 0.03 7 min

BFloat16 0.103 0.03 7 min
Int8 0.058∗ 0.016 4 min

Logistic

Float32 0.042 0.011 3 min
Float16 0.025 0.007 2 min

BFloat16 0.025 0.007 2 min
Int8 0.017∗ 0.005 1 min

converting models to Int81, the Int8 file sizes are calculated
based on the Float32 and Float16 sizes. In the table, we can
see that the change in format for the parameters can have a
large impact on the file size and thereby the upload times,
especially for larger networks. As expected, reducing number
representation from Float32 to Float16 decreases file sizes by
half for the Baseline network. Reducing the parameters even
further to an 8-bit representation would reduce the network to
approximately a fourth of the original size.

The size reductions for the reduced and logistic network,
compared to their Float32 variants, are not as large. This is
due to the lower number of network parameters, which thereby
constitute a smaller part of the overall size of the file. However,
the network parameters are still the major factor for the file
sizes.

V. RELATED WORK

Caballero et al. [26] and Stäcker et al. [27] show that neural
networks can be quantized to Float16 and Int8 for deployment
of object detection networks on edge devices. They show that
by quantizing the weights, they decrease the inference time
without significant loss in accuracy.

Gupta et al. [28] show that neural networks can be trained
to the same performance as 32-bit Float, using a 16-bit fixed-
point format if stochastic rounding is used. Kalamkar et al.

1Not counting the quantization framework, https://pytorch.org/docs/stable/
quantization.html

https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/quantization.html

[23] show that BFloat16 can be used to train different types
of neural networks, CNN among those, to the same accuracy
as Float32.

Giuffrida et al. [29] showcased the use of neural network
onboard ϕ-Sat 1 for cloud detection in earth observation data.

Similarly, Mateo-Garcia et al. [30] demonstrated the use of
neural network in space for detection of flooding. They showed
how a model could be updated in orbit after launch to improve
the performance.

VI. DISCUSSION AND CONCLUSIONS

The classification filtering and algorithm for ROI detec-
tion presented here is basic and therefore robust for space
applications. As can be seen in Sec. IV-A it works well to
detect the specified region of interest. In addition to this, its
responsiveness can be updated by changing three parameters
and it can be set to detect any combination of the regions
by changing a fourth parameter. This number of parameters
is significantly lower than the thousands needed to update
the entire network models. In addition to this, the algorithm
is independent of what the data classification represents and
can be used for any time series of classified data points.
However, if the area of interest is not in one of the regions,
but at the edge as in the case of magnetic reconnection in the
magnetopause, there is a risk that it will miss it when entering
the ROI. The decay of the indicator value will, on the other
hand, ensure that once a region has been detected the ROI
will remain even if there are some spurious classifications not
specified as interesting. It will thereby capture the edge region
at the end of a ROI.

The classification approach in this work is reactive, classi-
fying data when it has been collected and using the classifi-
cation in an algorithm. However, for future work it would be
interesting to investigate a more proactive approach where, for
example, transformers could be used to predict events where
collection of data at a higher-rate is desirable.

The MMS FPI data used for training and classification is
intended for scientific investigations. It is therefore highly
post processed after downloaded to ground and is not fully
representative of what would be available on the spacecraft.
It is possible that with less post-processed data containing
more artifacts, the simpler models presented here will not be
as robust. To continue this work, we would need to consider
rawer, less post-processed, data from the instruments.

We did not consider any compression of the final ONNX-
file, this is one way that could be used to further reduce the file
sizes. However, the reduction of the parameters to Float16 and
Int8 representations can be considered lossy compressions. By
reducing the number of bits used to represent the parameters,
we can reduce the size of the file to transfer without needing
any decompression step on the spacecraft. Furthermore, by
using a smaller network, we reduce the overall number of
parameters and the file size even further. As we have shown
here, this does not need to come at any loss of accuracy. This
highlights the importance of considering smaller networks for

solving problems where resources are limited and not just
using techniques to reduce the model sizes of large networks.

A smaller network also has the added benefit of requiring
fewer calculations, which can speed up the inference and
reduce power consumption. This is a very desirable trait, as
the onboard power is a limited resource, especially further
out from the sun. However, quantifying the power usage of
a given model will be dependent on the hardware and has to
be investigated for different alternatives of MA/AI Processing
Units together with network topologies and quantization levels.

For compression of the parameters to an 8-bit format, we
used a simple conversion method in this work. This indicated
that the parameters can be compressed to 8-bits for transfer
to the spacecraft, without significant loss of performance
during inference. Although, the actual inference step was still
performed in Float32. There are, however, more sophisticated
quantization schemes where also the inference steps can be
performed using the quantized parameters. These have been
shown to increase the inference performance on edge devices.
This is an interesting option to evaluate for use onboard
spacecraft. It should also be noted that the reduction to the 8-
bit format introduces sparsity into the network parameters as
some parameters are rounded to zero, this could lend itself to
further compression by using for example Compressed Sparse
Row (CSR), or similar formats.

The change in accuracy observed for the different models
when the precision of the parameters are reduced is very low,
less than 0.6 percentage points, for all the models. However, as
can be seen in Fig. 8, the standard deviation compared to the
mean is large. To fully understand the effect of low precision
on the networks, a more extensive uncertainty analysis will
have to be performed. This could be done by training more
models to a given accuracy, either with different seeds, as has
been done here, or using different training-sets. This could
then be used to quantify the mean change in accuracy and the
standard deviation.

In this work, we have shown how you can detect a region
of interest in a series of data classifications using a simple
algorithm operating on a time series of data classifications.
Detecting over 99% of the regions specified as interesting,
as part of the region-of-interest. It also allows for tuning,
making it more or less reactive, using only three parameters
and allows for changing the regions of interest by using a
fourth parameter.

We have also shown how an existing model for classifying
Ion distribution data can be simplified to a reduced model with
only one convolutional layer or a logistic model, with only a
single linear layer. This implies reducing the size by 95.0% and
98.9%, respectively, compared to the original model, without
reducing the accuracy of the final predictions.

We have further shown that the sizes of all the models can
be reduced by quantizing the network parameters to lower
precision formats. By reducing the parameters to Float16 and
Int8 formats, the models can be reduced by up to 50% and
75% percent compared to their Float32 variant. The reduction
in precision for the storage of the parameters changes the

accuracy of the network by less than 0.6 percentage points.

REFERENCES

[1] V. Kothari et al., “The Final Frontier: Deep Learning
in Space,” in Proceedings of the 21st International
Workshop on Mobile Computing Systems and Appli-
cations, Association for Computing Machinery, Mar.
2020, pp. 45–49.

[2] F. Elie et al., “Neural network system for the analysis
of transient phenomena on board the demeter micro-
satellite,” vol. E82-A, pp. 1575–1581, 8 1999.

[3] M. Parrot et al., “Short-fractional hop whistler rate
observed by the low-altitude satellite DEMETER at the
end of the solar cycle 23,” Journal of Geophysical Re-
search: Space Physics, vol. 124, no. 5, pp. 3522–3531,
2019.

[4] R. Pfaff et al., “An Overview of the Fast Auroral Snap-
shot (FAST) Satellite,” in The FAST Mission, R. F. Pfaff,
Ed., Dordrecht: Springer Netherlands, 2001, pp. 1–32.

[5] D. T. Lakey et al., “Optimisation of Solar Orbiter Data
Return,” in SpaceOps 2016 Conference, Daejeon, Ko-
rea: American Institute of Aeronautics and Astronautics,
May 2016.

[6] D. N. Baker et al., “Magnetospheric Multiscale Instru-
ment Suite Operations and Data System,” Space Science
Reviews, vol. 199, no. 1-4, pp. 545–575, Mar. 2016.

[7] S. Markidis et al., “Nvidia tensor core programmability,
performance & precision,” in 2018 IEEE international
parallel and distributed processing symposium work-
shops (IPDPSW), IEEE, 2018, pp. 522–531.

[8] N. P. Jouppi et al., “In-datacenter performance analysis
of a tensor processing unit,” in Proceedings of the 44th
annual international symposium on computer architec-
ture, 2017, pp. 1–12.

[9] S. Rivas-Gomez et al., “Exploring the vision processing
unit as co-processor for inference,” in 2018 IEEE In-
ternational Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), IEEE, 2018, pp. 589–598.

[10] ONNX, Onnx, https://github.com/onnx/onnx [Accessed:
2024-05-12].

[11] T. Liang et al., “Pruning and quantization for deep neu-
ral network acceleration: A survey,” Neurocomputing,
vol. 461, pp. 370–403, 2021.

[12] C. S. Güntürk and W. Li, “Approximation of functions
with one-bit neural networks,” 2023. arXiv: 2112 .
09181.

[13] I. Hubara et al., “Quantized Neural Networks: Train-
ing Neural Networks with Low Precision Weights and
Activations,” Journal of Machine Learning Research,
vol. 18, no. 187, pp. 1–30, 2018.

[14] C. Pollock et al., “Fast Plasma Investigation for Magne-
tospheric Multiscale,” Space Science Reviews, vol. 199,
no. 1, pp. 331–406, Mar. 2016.

[15] S. A. Fuselier et al., “Magnetospheric Multiscale Sci-
ence Mission Profile and Operations,” Space Science
Reviews, vol. 199, no. 1, pp. 77–103, Mar. 2016.

[16] D. Raphael et al., “Command & Data Handling for
the magnetospheric multiscale mission,” in 2014 IEEE
Aerospace Conference, Big Sky, MT, USA: IEEE, Mar.
2014, pp. 1–12.

[17] ITU, “Collection of the basic texts of the International
Telecommunication Union adopted by the Plenipoten-
tiary Conference,” 2023, https : / / search . itu . int /
historyHistoryDigitalCollectionDocLibrary/5.23.61.en.
100.pdf [Accessed: 2024-05-28].

[18] M. Menzel et al., “The Design, Verification, and Perfor-
mance of the James Webb Space Telescope,” Publica-
tions of the Astronomical Society of the Pacific, vol. 135,
no. 1047, p. 058 002, Jun. 2023.

[19] M. M. Kobayashi, “Iris Deep-Space Transponder for
SLS EM-1 CubeSat Missions,” 2017.

[20] V. Olshevsky et al., “Automated Classification of
Plasma Regions Using 3D Particle Energy Distribu-
tions,” Journal of Geophysical Research: Space Physics,
vol. 126, no. 10, e2021JA029620, Oct. 2021.

[21] IEEE Std 754-2019 (Revision of IEEE 754-2008) : IEEE
Standard for Floating-Point Arithmetic, eng. IEEE,
2019, ISBN: 1-5044-5924-5.

[22] The BFloat16 numerical format, https://cloud.google.
com/tpu/docs/bfloat16 [Accessed: 2024-05-12].

[23] D. Kalamkar et al., A Study of BFLOAT16 for Deep
Learning Training, Jun. 2019. arXiv: 1905.12322 [cs,
stat].

[24] K. Torkar et al., “Active Spacecraft Potential Control
Investigation,” Space Science Reviews, vol. 199, no. 1,
pp. 515–544, Mar. 2016.

[25] MMS Science Data Center, MMS Science Data Center,
https : / / lasp . colorado . edu / mms / sdc / public / about/
[Accessed: 2024-05-09], 2024.

[26] J. Caballero et al., Inference of Recyclable Objects
with Convolutional Neural Networks, Apr. 2021. arXiv:
2104.00868 [cs].

[27] L. Stäcker et al., “Deployment of Deep Neural Net-
works for Object Detection on Edge AI Devices
With Runtime Optimization,” in Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, 2021, pp. 1015–1022.

[28] S. Gupta et al., “Deep Learning with Limited Numerical
Precision,” in Proceedings of the 32nd International
Conference on Machine Learning, PMLR, Jun. 2015,
pp. 1737–1746.

[29] G. Giuffrida et al., “The Φ-Sat-1 Mission: The First On-
Board Deep Neural Network Demonstrator for Satellite
Earth Observation,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 60, pp. 1–14, 2022.

[30] G. Mateo-Garcia et al., “In-orbit demonstration of a
re-trainable machine learning payload for processing
optical imagery,” Scientific Reports, vol. 13, no. 1,
p. 10 391, Jun. 2023.

https://github.com/onnx/onnx
https://arxiv.org/abs/2112.09181
https://arxiv.org/abs/2112.09181
https://search.itu.int/historyHistoryDigitalCollectionDocLibrary/5.23.61.en.100.pdf
https://search.itu.int/historyHistoryDigitalCollectionDocLibrary/5.23.61.en.100.pdf
https://search.itu.int/historyHistoryDigitalCollectionDocLibrary/5.23.61.en.100.pdf
https://cloud.google.com/tpu/docs/bfloat16
https://cloud.google.com/tpu/docs/bfloat16
https://arxiv.org/abs/1905.12322
https://arxiv.org/abs/1905.12322
https://lasp.colorado.edu/mms/sdc/public/about/
https://arxiv.org/abs/2104.00868

	Introduction
	Background
	Onboard ML/AI Acceleration
	AI-Based Methods & Reduced Precision

	Methodology
	Classification and ROI detection
	Data & Pre-Processing
	CNN Architectures
	Reduced-Precision Neural-Network Parameters
	Experimental Setup

	Results
	Filtering and Region-of-interest detection
	Classification Accuracy
	Reduced-Precision Neural-Network Parameters
	Neural Network Sizes

	Related Work
	Discussion and Conclusions

