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Abstract

In this paper, we study the long-term (time scale of several years) orbital
evolution of lunar satellites under the sole action of natural forces. In par-
ticular, we focus on secular resonances, caused either by the influence of the
multipole moments of the lunar potential and/or by the Earth’s and Sun’s
third-body effect on the satellite’s long-term orbital evolution. Our study is
based on a simplified secular model obtained in ‘closed form’ using the same
methodology proposed in the recently published report on the semi-analytical
propagator of lunar satellite orbits, SELENA [1]. Contrary to the case of
artificial Earth satellites, in which many secular resonances compete in dy-
namical impact, we give numerical evidence that for lunar satellites only the
2g−resonance (ω̇ = 0) affects significantly the orbits at secular timescales.
We interpret this as a consequence of the strong effect of lunar mascons.
We show that the lifetime of lunar satellites is, in particular, nearly exclu-
sively dictated by the 2g resonance. By deriving a simple analytic model, we
propose a theoretical framework which allows for both qualitative and quan-
titative interpretation of the structures seen in numerically obtained lifetime
maps. This involves explaining the main mechanisms driving eccentricity
growth in the orbits of lunar satellites. In fact, we argue that the re-entry
process for lunar satellites is not necessarily a chaotic process (as is the case
for Earth satellites), but rather due to a sequence of bifurcations leading to a
dramatic variation in the structure of the separatrices in the 2g resonance’s
phase portrait, as we move from the lowest to the highest limit in inclination
(at each altitude) where the 2g resonance is manifested.
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1. Introduction

The exploration of the lunar space and the deployment of satellites around
the Moon represent critical steps in space exploration. These endeavors are
emphasized in the Global Exploration Roadmap [2], a document outlining
the collaborative efforts of international space agencies to set milestones for
expanding human presence from Earth’s orbit to that of the Moon or Mars.

From a theoretical standpoint, the study of artificial satellites’ motion
around non-spherical primaries has evolved from considering only the per-
turbation due to the body’s oblateness (the J2 term) ([3], [4], [5], [6]) to
progressively including more complex gravitational models to accurately de-
scribe the satellites’ dynamics. Many studies ([7], [8], [9], [10], [11]) have fo-
cused on zonal harmonics. This is because the problem’s Hamiltonian, when
averaged over the mean motion of the satellite, reduces to a one-degree-of-
freedom system (see [12]), which allows for the identification of frozen orbits
that maintain constant the argument of pericenter and eccentricity. These
orbits, particularly near-polar frozen ones, are crucial for the planning and
success of lunar mapping missions ([13], [14]).

However, the Moon’s gravitational field is quite complex due to the pres-
ence of lunar mascons ([15], [16], [17]). According to the recently published
report on the semi-analytical propagator of lunar satellites SELENA (see [1]),
the accumulation of several high-degree (n > 10) harmonics of the multipole
expansion of the lunar potential implies that a reasonable secular model,
eliminating all important short-period effects, is hard to obtain at altitudes
≲ 100 km above the Moon’s surface. As a rough guide to comparative force
estimates, from Figure 7 of [1], we deduce that the force due to lunar poten-
tial harmonics at a multipole degree as high as n = 10 becomes equal to or
smaller than the force due to the Earth’s tide on the satellite only at altitudes
exceeding ∼ 500 km. Based on this information, we roughly distinguish three
zones where the dynamics can be called essentially secular, i.e., where models
averaged with respect to the satellite’s mean anomaly represent fairly well
the true dynamics:

• The Low-Altitude zone (altitudes between 100 - 500 km), where the dy-
namics is dominated by several important zonal and tesseral harmonics
of degree n ≤ 10, while the Earth’s tide is negligible.
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• The Middle-Altitude zone (altitudes between 500 - 5000 km), where
the forces produced on the satellite by some particular low-degree har-
monics compete in size with the force due to the Earth.

• The High-Altitude zone (beyond 5000 km and up to about one third of
the size of the Moon’s Hill sphere, ∼ 20000 km), where the force due
to the Earth is dominant. Our analysis in the present paper applies
to all three zones above, but most results of practical interest refer
to the middle-altitude zone. At any rate, the overall conclusion is
that gravitational models substantially more comprehensive than J2 +
C22 are required for accurately recovering the long-term dynamics of
satellite orbits in the Moon’s environment.

In many problems within celestial mechanics, resonances resulting from a
commensurability relationship between the fundamental orbital frequencies
play a key role in the system’s dynamics. In the case of Earth satellites, par-
ticularly in the Middle Earth orbit (MEO) zone, it is well known that several
so-called ’secular’ resonances, i.e., resonances between the frequencies of pre-
cession of the satellite’s argument of perigee g, longitude of the ascending
node h, and the Moon’s node with respect to the ecliptic plane—lead to sig-
nificant effects with many potential applications (e.g., in satellite end-of-life
disposal): the eccentricity growth effect. In short, the separatrices of these
resonances are such that orbits moving near them exhibit a growth in eccen-
tricity driven solely by natural forces, most importantly, the lunisolar tidal
forces. In the case of the so-called 2g+h and 2g resonances, this growth can
eventually lead to an eccentricity value large enough that the orbit’s perigee
reaches atmospheric re-entry ([18], [19], [20], [21], [22], [23], [24]). Addi-
tionally, the overlap of such resonances gives rise to large domains of chaotic
motion in which diffusive phenomena occur ([25], [26], [27]). Analytical stud-
ies have provided insights into the mechanisms driving these phenomena for
Earth satellites ([28], [29], [30], [31], [32], and [33]).

In the present paper, we explore the effects of secular resonances on the
long-term dynamics of a lunar satellite. The emphasis is, again, on possible
applications of such a study to understanding re-entry through the eccentric-
ity growth mechanism. Here, re-entry simply means collision with the Moon’s
surface, that is, a perigee lunicentric distance smaller than the Moon’s radius
rL. By numerical experiments (see below), one can easily see that this con-
dition can be fulfilled even if the (constant in time, under secular dynamics)
satellite’s semi-major axis a is given a value substantially larger than rL.
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To this end, in our study, we first compute numerical lifetime maps. These
maps show in color scale the time up to which the satellite survives in or-
bit above the Moon’s surface for a suitably chosen grid of initial conditions
in element space. The numerical maps are obtained with a highly accurate
force model (see section 2), but we then attempt to understand their main
features using a much simpler analytical secular model of the equations of
motion. Notwithstanding its simplicity, we find that our simple analytical
secular model is sufficient for most practical purposes to interpret the life-
time maps obtained by the far more complex numerical model. In fact, the
analytical secular model allows to build a theory, based on the structure of
the separatrices of the 2g-resonance, which reproduces quite accurately the
borders of the domains in element space separating initial conditions leading
to re-entry from those which do not.

The structure of the paper is as follows: Section 2 describes the force
model, equations of motion, as well as the numerical lifetime maps obtained
with the above model. Section 3 describes the analytical secular model used
to interpret theoretically the lifetime maps. Section 4 summarizes our main
conclusions from the present study.

2. Force Model and numerical lifetime maps

2.1. Force model

We adopt as a reference frame the Principal Axis Lunar Reference Frame
(PALRF). This is a solidal frame with its origin at the barycenter of the
Moon, the z-axis coinciding with the Moon’s mean axis of revolution, and
the x-axis normal to the z-axis, pointing towards the Moon’s meridian with
the largest equatorial radius. Owing to the Moon-Earth synchronous spin-
orbit resonance, the PALRF’s x-axis practically points, also, towards the
average lunicentric position of the Earth in the same frame.

The Hamiltonian describing the motion of a lunar satellite in the PALRF
frame is

H =
1

2
p⃗ 2 − ω⃗L · ( r⃗ × p⃗ ) + V (r⃗, t) (1)

where r⃗(t) is the lunicentric PALRF radius vector of the satellite, p⃗(t) is the
velocity vector of the satellite in a fictitious rest frame whose axes instanta-
neously coincide with the axes of the PALRF at time t, ω⃗L(t) is the Moon’s
angular velocity vector and V is the potential

V (r⃗, t) = VL(r⃗) + VE(r⃗, t) + VS(r⃗, t) , (2)
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where VL, VE, VS are respectively the potential of the Moon, the Earth and
the Sun (in this study, we do not consider the influence of the solar radiation
pressure). The time t = 0 corresponds to the Julian day JD2000 at 12.00
Noon (UTC). From Hamilton’s equations we obtain

˙⃗r(t) = p⃗(t)− ω⃗L(t)× r⃗(t), (3)

¨⃗r(t) = −∇V (r⃗, t)− ˙⃗ωL × r⃗ − 2ω⃗ × ˙⃗r − ω⃗L × ( ω⃗L × r⃗ ) .

The lunar potential can be written as

VL( r⃗ ) = −GML

r

∞∑
n=0

(rL
r

)n n∑
m=0

Pnm(sinϕ)[Cnm cos(mλ) + Snm sin(mλ)] (4)

where G is Newton’s gravity constant, ML is the Moon’s mass and rL its
radius. The angles ϕ and λ are the satellite’s longitude and latitude and
r is the lunicentric satellite’s distance. The functions Pnm are normalized
Legendre polynomials of degree n and order m, and Cnm, Snm are the zonal
(m = 0) and tesseral (m ̸= 0) coefficients of the lunar gravity potential. We
consider the numerical values of these parameters as provided by the GRAIL
mission [17].
The Earth’s tidal potential is given by

VE(r⃗, t) = −GME

(
1√

r2 + r2E − 2r⃗ · r⃗E
− r⃗ · r⃗E

r3E

)
, (5)

where r⃗E(t) is the lunicentric PALRF radius vector of the Earth. Multipole
expansion yields:

VE(r⃗, t) = V P0
E (r⃗E(t)) + V P2

E (r⃗, r⃗E(t)) + V P3
E (r⃗, r⃗E(t)) (6)

with

V P0
E (r⃗E(t)) = −GME

rE(t)
, (7)

V P2
E (r⃗, r⃗E(t)) =

GME

rE(t)

(
1

2

r2

r2E(t)
− 3

2

(r⃗ · r⃗E(t))2

r4E(t)

)
, (8)

V P3
E (r⃗, r⃗E(t)) =

GME

rE(t)

(
3

2

r2(r⃗ · r⃗E(t))
r4E(t)

− 5

2

(r⃗ · r⃗E(t))3

r6E(t)

)
. (9)
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The term V P0
E can be omitted from the Hamiltonian since it does not depend

on the satellite’s radius vector r⃗ and, therefore, does not contribute to the
equations of motion. The terms V P2

E , V P3
E are hereafter referred to as the

quadrupolar and octopolar Earth’s tidal terms respectively.
The contribution due to the Sun is

VS(r⃗, t) = −GMS

(
1√

r2 + r2S(t)− 2r⃗ · r⃗S(t)
− r⃗ · r⃗S(t)

r3S(t)

)
(10)

where r⃗S(t) is the lunicentric PALRF radius vector of the Sun. This can be
expanded in multipoles analogously to the Earth’s tidal potential.

It is possible to estimate the relative strength in acceleration of these
forces with respect to the keplerian one aKep using the formulas proposed in
[1]. Regarding the Moon’s potential, we can estimate the acceleration ∆a(n)
generated by the sum of all n-th degree harmonics through the formula

∆a(n)

aKep

∼
n∑

m=0

(n+ 1)rnL
rn

(
C2

nm + S2
nm

)1/2
. (11)

For perturbations due to the Earth’s and Sun’s tides (∆aE, ∆aS), as well as
non-inertial forces (∆aNI) we have

∆aE
aKep

∼ MEr
3

MLa3E
,

∆aS
aKep

∼ MSr
3

MLa3S
,

∆aNI

aKep

∼ n2
Lr

3

GML

=
(ME +ML)r

3

MLa3E
. (12)

Notice that, as explained in [1], the synchronous rotation of the Moon
implies that the apparent forces due to the Moon’s rotation are of a similar
size to the Earth’s tidal force at all possible lunicentric distances r that can
be reached by a satellite.

With these formulas, we get Figure 1, from which we can see that for
low-altitude orbits many harmonics compete in size. Actually, it has been
suggested that zonal terms up to n = 30 still influence the secular behavior of
orbits such as the low-altitude high-inclination ones ([34]). Also, notice that
the Earth’s tidal acceleration (and correspondingly apparent accelerations)
becomes more prominent than second-degree lunar potential terms after an
altitude of 2065 km, while the Sun’s contribution becomes important only at
very high altitudes.

Based on the information provided in Figure 1, we distinguish four zones
in altitude, with somewhat arbitrary limits, corresponding to different dy-
namical regimes regarding the effects and relative importance of the various
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Figure 1: An estimate of the relative strength of the acceleration due to the lunar har-
monics, the Earth and Sun with respect to the Keplerian acceleration as a function of the
altitude (see Eq. (11), (12)). The vertical red dashed lines (100 km, 500 km and 5000 km)
indicate the limits of the various zones defined in the text according to altitude.
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force perturbations determining a satellite’s long-term orbital dynamics.

Zone of essentially non-secular dynamics (altitude a − rL < 100 km): this
is the zone where lunar mascons dominate, implying that any secular force
model, i.e., based on averaging of the equations of motion with respect to the
satellite’s mean anomaly, would require canonical transformations including
a large number of Lunar potential harmonics of degree higher than n = 10.
In practice, this means that, in osculating elements, the accumulation of
the effects of all these harmonics would lead to a substantial (and possibly
chaotic) long-term evolution of the satellite’s semi-major axis, an effect not
consistent with the definition of ‘secular’ orbital behavior.

Low Altitude Zone of essentially secular dynamics (altitude 100km ≤ a−rL <
500 km): the low limit of this zone is somewhat arbitrary, but motivated by
the work [35], as well as by figures 14 and 15 of ref.[1], which show that
the semi-major axis variations become of order < 10−3, i.e, two orders of
magnitude smaller than those required for re-entry. On the other hand, in
this zone we have an accumulation of the contribution of many harmonics
of degree n ≤ 10, a fact leading to a total force perturbation of about two
orders of magnitude larger than the one due to the Earth’s tide.

Middle Altitude Zone of essentially secular dynamics (altitude 500km ≤
a − rL ≤ 5000 km): near the lower limit of this zone the lunar multipoles
produce a force perturbation superior by more than one order of magnitude
to the Earth’s tidal perturbation. However, this is reversed at the higher
limit, where the problem becomes essentially one perturbed by the Earth
plus few harmonics n = 2 and n = 3.

High Altitude Zone of essentially non-secular dynamics (altitude a−rL > 5000
km): any perturbation other than the Earth’s tidal becomes negligible.

2.2. Equations of motion

Consider Delaunay variables

L =
√
µEa, G = L

√
1− e2, H = G cos i, ℓ = M, g = ω, h = Ω, (13)

where (ℓ, g, h) = (M,ω,Ω) are the satellite’s mean anomaly, argument of
perilune and longitude of the nodes. In view of the analysis done in the
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previous section, we compute secular equations of motion equivalent to those
reported in [1] for the semi-analytical propagator of lunar satellites SELENA,
but without the use of the normalizing transformation switching back and
forth from mean to osculating elements. As explained in subsection 5.5 of
[1], a continuous transformation from mean to osculating elements along the
orbital integration is not really necessary unless very high precision levels
(better than one part in a million) are required, which is not the case in our
present study. For orbits of relative error ∼ 10−6, in [1] it is shown that the
crucial step is to make the canonical transformation from osculating to mean
elements only as regards the initial datum. Then, propagating the orbit us-
ing the averaged equations of motion, and simply equating thereafter mean
with osculating elements yields results equal up to six significant figures with
the far more cumbersome approach of back-transforming from mean to oscu-
lating elements at every time step. This leads to a propagation model called
‘SELENA-mean’ propagator in [1]. Here, we ignore even the initial trans-
formation, which leads to orbits precise at about three significant figures,
but with the advantage that one can simply reproduce the averaged equa-
tions of motion for all the terms included in the SELENA-mean model using
just the basic formulas for first-order averaging of the Hamiltonian function
in closed form. In addition, we ignore the SELENA terms due to the so-
lar radiation pressure, which are orders of magnitude smaller than all other
perturbations. This leads to the secular Hamiltonian model HSM , hereafter
called the ‘SELENA-Model’ (SM):

HSM(a, e, i, g, h) = −GML

2a
− ωL,z(t)H

−
(
ωL,x(t) sin i sin(h)− ωL,y(t) sin i cos(h)

)
G

+
1

2π

∫ 2π

0

a2

r2η
V n≤10
L df (14)

+
1

2π

∫ 2π

0

(1− e cosu)(V P2
E + V P3

E + V P2
S )du

where η =
√
1− e2 is the ‘eccentricity function’ and G and H the Delaunay

actions defined above. To obtain the integrals over the truncated multipole
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lunar potential in closed form, we use the formulas

V n≤10
L (a, e, i, f, g, h; t) =

− µL

r

10∑
n=2

(rL
r

)n n∑
m=0

Pnm(sinϕ)[Cnm cos(mλ) + Snm sin(mλ)]

with µL = GML (the gravitational parameter of the Moon), setting

sinϕ = z/r

cos(mλ) =
1

rm

[m/2]∑
s=0

(−1)s
(
m

2s

)
xm−2sy2s,

sin(mλ) =
1

rm

[(m−1)/2]∑
s=0

(−1)s
(

m

2s+ 1

)
xm−2s−1y2s+1

and then substituting (x, y, z) by the equations (30) of [1]. Similarly, to
obtain the integrals over the multipole Earth and Sun potential terms V P2

E ,
V P3
E and V P2

S , we use the formulas

r = a(1− e cosu)
r⃗ · r⃗E(t) = x xE(t) + y yE(t) + z zE(t)
r⃗ · r⃗S(t) = x xS(t) + y yS(t) + z zS(t)

(15)

with (x, y, z) given by Eq. (37) of [1]. The Hamiltonian depends explicitly
on time through the quantities

ω⃗L(t) = (ωL,x(t), ωL,y(t), ωL,z(t))
r⃗E(t) = (xE(t), yE(t), zE(t)),
r⃗S(t) = (xS(t), yS(t), zS(t)),

(16)

which are respectively the Moon’s angular velocity and the Earth and Sun
vector radii in the PALRF system. The vectors ω⃗L(t), r⃗E(t) and r⃗S(t) are
coded using the equations (2), (10) and (13) of [1] with the accompanying
tables of coefficients.

While the Hamiltonian (14) is formally expressed in Keplerian elements,
in reality it is a function of the canonical Delaunay action-angle variables
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(L, ℓ), (G, g), and (H, h), which are related to the Keplerian elements through
the inverse of Eqs.(13). The equations of motion are then:

ℓ̇ =
∂HSM

∂L
, ġ =

∂HSM

∂G
, ḣ =

∂HSM

∂H
,

L̇ = −∂HSM

∂ℓ
= 0, Ġ = −∂HSM

∂g
, Ḣ = −∂HSM

∂h
. (17)

For numerical orbits, the above equations are integrated using the integrator
proposed in [36], yielding the evolution of all six canonical variables, then
transformed in the values of the six osculating Kaplerian elements. We call
the orbits obtained in this way the ‘SELENA-Model’ (SM) orbits.

An important remark in what follows stems from the fact that, in the
canonical formalism, the position-momenta variables correspond to orbital
elements in a rest frame whose axes instantaneously coincide with the orienta-
tion of the PALRF axes at time t. This implies that even for a pure Keplerian
ellipse, i.e., had we set all perturbations VL, VE, VS equal to zero in Eq.(14),
the centrifugal term −ωzH has the effect that the line of nodes, which is fixed
in the rest frame, would rotate clockwise at a rate ḣ = ∂HSM/∂H = −ωz. In
reality, ḣ is slightly different from minus the angular frequency of the Moon’s
revolution (≃ ωz) because of the secular effects on the orbit caused by all
three perturbations VL, VE, VS. On the other hand, ġ is not influenced by
considering the motion in a rotating frame, since the angle g = ω is always
relative to the position of the line of nodes. This means that ġ = 0 for a
fixed Keplerian ellipse, implying that, when all the perturbations are taken
into account, the correct secular frequencies to compare in the PALRF frame
are ġ and ḣ+ ωz. The fact that the obliquity of the Moon is small, together
with the presence of strong forces due to the lunar potential’s zonal multi-
pole harmonics, leads to a radically different structure of the web of secular
resonances for the Moon’s satellites compared to the case of Earth satellites,
as discussed in detail in the next section.

2.3. Numerical lifetime maps

We define a satellite’s orbital lifetime as the time up to which a satellite,
subject to secular variations of its orbital eccentricity, remains with a perigee
satisfying the condition a(1 − e) > rL. Lifetime cartography at various
‘altitudes’ (fixed values of the semi-major axis a > rL) is obtained as follows:
we consider a Ng × Ng rectangular grid of initial conditions for prograde
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Figure 2: Four different realizations of the lifetime map for orbits with a = rL + 500km.
The cartography parameters are: (top left) ng = 9, Ng = 100, Ω0 = 0◦, ω0 = 90◦,
Trun = 15 yr. (top right) ng = 9, Ng = 100, Ω0 = 20◦, ω0 = 70◦, Trun = 15 yr. (bottom
left) ng = 10, Ng = 100, Ω0 = 0◦, ω0 = 0◦, Trun = 10 yr. (bottom right) ng = 9,
Ng = 300, Ω0 = 0◦, ω0 = 90◦, Trun = 20 yr.

Figure 3: Lifetime cartography maps with a = rL + 1000km with Ng = 300, Ω0 = 0◦,
ω0 = 0◦, Trun = 20 yr and ng = 7 (left), ng = 10 (right).
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Figure 4: Each panel shows nine different realizations of the integration of one orbit with
the lunar potential truncated at different maximum degrees varying from ng = 2 to ng = 10
(the resulting orbits are shown with different colors). In all six panels we have the same
initial conditions for the five Keplerian elements e0 = 0, i0 = 63.5◦,Ω0 = ω0 = m0 = 0,
and semi-major axes corresponding to the altitudes of 300 km, 500 km, 700 km, 900 km,
2000 km and 3000 km. In all computed trajectories the perturbations due to the Earth
and the Sun are included.
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Figure 5: Lifetime maps with ng = 10, Ng = 100, ω0 = Ω0 = 0, Trun as indicated in the
top of the color bar in each panel, and various values of the altitude, as indicated in the
legend above each panel.
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orbits in the square 0 ≤ i(0) < 90◦, 0 ≤ e(0) < ere(a) where the re-entry
eccentricity is:

ere = 1− rL/a . (18)

We consider a fixed value of the angles ℓ(0) = M0, g(0) = ω0, h(0) = Ω0,
same for all the points i(0), e(0) in the grid, and run the numerical orbits
as specified in the previous subsection up to a maximum time Trun. The
orbital lifetime of a satellite is defined as the time Tre of first occurence
of its eccentricity becoming equal to ere. If no re-entry takes place up to
the end of the integration we set Tre = Trun. We then show in color map
the function Tre(i(0), e(0)) as computed at all the points of the grid. In the
numerical integration we test how the lifetime map is altered by including the
lunar potential harmonics starting from degree n = 2 and up to a maximum
degree ng, for various choices of ng.

Figure 2 shows lifetime maps computed for a = rL + 500 km. The
four panels represent four different choices of the cartography parameters
(Ng, ng,M0, ω0,Ω0) as indicated in the caption. We notice that the struc-
ture of the lifetime maps varies marginally with the choice of degree ng close
to the limiting value ng = 10, while no substantial detail is added to the
map also when passing from a resolution Ng = 100 to Ng = 300. The only
noticeable difference refers to orbits near the upper limit in both the initial
inclination and the initial eccentricity (top right corner in the lifetime maps).
We find that several orbits in this domain are protected from re-entry when
ω0 is close to zero, while they evolve towards re-entry if ω0 is substantially
larger than zero. This tendency will be explained in section 3 below.

As the altitude is increased, in accordance with Figure 1 we find that the
lifetime map stabilizes after the inclusion of harmonics of lower maximum
degree ng. This is exemplified in Figure 3, where we see that truncating the
force model at ng = 7 or ng = 9 yields practically equivalent lifetime maps.
This is confirmed also by Figure 4, where a single orbit, with the same
initial condition, is propagated using nine different truncations of the lunar
potential, i.e., at ng = 2, . . . , 10. We see that the maximum degree ng after
which the integration stabilizes to practically the same orbit decreases as the
altitude increases, so that ng = 10 is required at the altitude a−rL = 300 km,
while ng = 2 is sufficient at a− rL = 3000 km.

Following these numerical tests, Figure 5 focuses on the main information
obtained through the above-realized numerical lifetime cartography. The
figure shows the lifetime maps obtained with the cartography parameters as
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indicated in the caption, for six different altitudes, namely a = rL + 300,
500, 700, 900, 2000, and 3000 km. At lower altitudes (a− rL < 1000 km) we
observe some sub-structure in the lifetime maps appearing in the form of some
local minima of the border curve e(i) separating initial conditions leading to
re-entry from those which do not. In the next section, we will argue that such
minima are connected to some low-order secular resonances besides the ‘2g’
resonance (see next section). However, their presence in the lifetime maps is
no longer distinguished at altitudes a − rL > 1000 km. Instead, from those
altitudes on, we observe the presence of a nearly connected domain of initial
conditions leading to re-entry, which has a nearly vertical right border and
a nearly smooth concave left border. At the base of each map (for e(0) = 0)
both borders terminate at two limiting values of the inclination (imin, imax).
The left limit imin shows little variation with the altitude, around values
55◦ < imin < 60◦, while the right limit imax increases with the altitude,
reaching imax = 90◦ at about the altitude a− rL = 1300 km.

3. Analytic Model

In the present section, we demonstrate that most features observed in
the numerical lifetime maps, as exposed in the previous section, can be re-
produced qualitatively, and to a large extent also quantitatively, through a
simple model of the most important secular resonance of the problem, namely
the 2g resonance. We first give some general account of the structure of sec-
ular resonances for lunar satellites, and then proceed to the interpretation of
the lifetime maps through the phase portraits of the 2g resonance.

3.1. The web of secular resonances

The secular model HSM involves five different frequencies whose com-
mensurabilities potentially lead to resonance effects: ġ (precession of the
satellite’s perilune), ḣ + ωz (precession of the satellite’s line of nodes in a
fixed frame coinciding with the PALRF frame at t = 0) νL, ġL (precessions
of the Moon ’s line of nodes in the ecliptic plane, and the Moon’s argu-
ment of the perigee). These frequencies enter into the Earth’s radius vector
r⃗E(t), and λ̇S (the Sun’s orbital frequency, which enters in the Sun’s radius
vector r⃗S(t)). Up to five significant figures we have that ωz(t) = const =
2.64 × 10−6 rad/sec (corresponding to the Moon’s siderial lunar day equal
to 27.55 days), νL = 1.07 × 10−8 rad/sec (corresponding to a period of
18.6 yr), ġL = 2.25 × 10−8 rad/sec (corresponding to a period of 8.85 yr),
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λ̇S = 1.99 × 10−7 rad/sec. However, from Fig.1 we deduce that the solar
force is very small at all altitudes here considered, while the frequency ġL
only involves terms of small size depending on the eccentricity of the Moon’s
geocentric orbit (eL = 0.054) and can also be ignored. On the other hand, in
secular theory the frequencies ġ and ḣ are functions of the elements (a, e, i)
and can be computed as follows: first, from the tables provided in [1], we
keep the most important terms in the trigonometric representation of the
Earth and Sun PALRF vectors, assuming i) circular orbits for both bodies,
and ii) a zero obliquity of the Moon with respect to the ecliptic (the true
obliquity is equal to 1.5◦). Finally, we set the Earth’s position to depend
only on one angle τE = ωzt with period the sidereal lunar day

xE(t)[km] = 382470 + 14800(cos τE + sin τE),

yE(t)[km] = 29750(cos τE − sin τE), (19)

zE(t)[km] = −44650 cos τE,

and analogously the Sun’s position to depend only on one angle τS = (ωz −
λ̇S)t with period the synodic lunar day (29.53 days)

xS(t)[km] = −6.9917× 107 cos τS − 1.322× 108 sin τS,

yS(t)[km] = −1.322× 108 cos τS + 6.9917× 107 sin τS, (20)

zS(t)[km] = 0 .

Substituting the above expressions in the Hamiltonian HSM , setting xE(t) =
aL +∆xE(t), with aL = 382470 km, expanding up to first order in the three
small quantities ∆xE(t), yE(t), zE(t), noticing that only the constant Sun’s
distance r3S = (xS(t)

2+yS(t)
2)3/2 appears in the denominator of the VS, and,

finally, making all trigonometric reductions, we obtain an approximate model
for the Hamiltonian which takes the form:

HSM = HSM,0(a, e, i) +HSM,1(a, e, i, g, h, τE, τS) . (21)

Then, we compute:

ġ(a, e, i) =
∂HSM,0

∂G
=

1
√
µLa

(
η

e

∂HSM,0

∂e
− cos i

η sin i

∂HSM,0

∂i

)
(22)

ḣ(a, e, i) =
∂HSM,0

∂H
=

1
√
µLa

(
1

η sin i

∂HSM,0

∂i

)
.
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Note that, besides (g, h, τE, τS), in the complete SM the Hamiltonian HSM,1

depends also on the angles νLt and ġLt, the latter dependence being, however,
through terms of negligible size.

We then define the ‘k1g+k2(h+λL)+k3ΩL resonance’, with k⃗ = (k1, k2, k3)
∈ Z3 as the two dimensional surface Rk⃗ in the 3D space of elements (a, e, i)
where the commensurability

Sk⃗ :=
{
(a, e, i) : k1ġ(a, e, i) + k2(ḣ(a, e, i) + ωz) + k3νL = 0

}
(23)

holds. Here, the angle λL is defined as λL = λ0 + τE, and it indicates the
angle of the PALRF x−axis with respect to a chosen fixed frame. The value
of λ0 depends on the choice of fixed frame and on the initial epoch.

Figure 6 shows the curves corresponding to the most important (low-
order) resonant surfaces Rk⃗ in the (i, e) plane for fixed a and at the bottom
in the (i, a) one for fixed e = 0. Opposing Fig.6 to Fig.5, we can observe that,
at all altitudes, the domains where re-entry takes place are crossed by several
of the resonances shown in Fig.6. However, a quick analysis can show that,
at both low and high altitudes, not all of these resonances are important for
eccentricity growth. Deferring a detailed analysis to a separate paper, we
may summarize the way resonances act in this problem as follows. Recalling
basic symmetries (the so-called ‘D’Alembert’ rules) of the Hamiltonian, it
follows that:

1. The Hamiltonian HSM,0 contains contributions only from the even de-
gree zonal harmonics (J2, J4, . . .) of the lunar multipole potential ex-
pansion VL, as well as a negligible contribution from the Earth’s po-
tential term VE (of relative importance O((µE/µL)(a/RL)

2 (a/aL)
3)

with respect to the J2 term, see Fig.1). Thus, the locations of all res-
onances are determined, practically, by the even zonal harmonics J2j,
j = 1, 2, . . .. We refer to this property in short as that ‘the even zonal
harmonics define the centers of the resonances’.

2. The J2 term contributes no trigonometric term of first order in J2 to
the Hamiltonian term HSM,1, while it contributes a (here neglected)
term O(J2

2 ) cos(2g) after second order normalization in closed form.
The remaining even zonal harmonics 2j > 2 all contribute a first order
O(J2jR

2j
L e2/a2j+1) cos(2g) term to HSM,1. On the other hand, the odd

zonal harmonics J2j+1, j = 1, 2, . . . contribute to odd trigonometric
terms e sin(g), e3 sin(3g), etc, with amplitudes following a similar scal-
ing as for the odd zonal terms. The Earth’s potential contributes a
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Figure 6: The curves corresponding to the intersection of the resonant surfaces Rk⃗ with
the plane a = const, with the constant value of the semi-major axis as indicated in each
panel, for the most important secular resonances of the problem. The altitudes are the
same as in the corresponding lifetime maps of Fig.5.
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O(e2µE(a/aL)
3) cos(2g) to HSM,1. We shortly refer to the above set of

properties as that ‘the exact position of the fixed points, and the form of
the separatrices of the 2g-resonance, are determined by both the zonal
harmonics Jn, n = 2, 3, . . . and the Earth’s tidal term VE’. As seen in
Fig.1, owing to their large value (due to the lunar mascons), the zonal
harmonics are the main terms to determine the position of the fixed
points and form of the separatrices of the 2g−resonance, at least up to
the end of the middle-altitude zone.

3. No zonal harmonic contributes to any other secular resonance of the
ensemble (23). Tesseral harmonics Cn,m, Sn,m, with n ≥ 2, 1 ≤ m ≤ n,
do not contribute any term to HSM,0, while they contribute cosine and
sine trigonometric terms to HSM,1. The latter terms necessarily con-
tain the satellite’s longitude of the nodes h, but not h + λL, which is
the argument of interest for secular resonances. On the other hand,
trigonometric terms involving the argument h + λL are due to the
Earth’s potential VE, of relative importance proportional to the sine
of the Moon’s obliquity εL ≃ 0.12 rad. We shortly refer to this prop-
erty as that ‘the form of the separatrices of all secular resonances of the
form k1g + k2(h + λL) with k2 ̸= 0 is determined only by terms in VE

proportional to sin(εL)’. Since such terms are one order of magnitude
smaller than the respective Earth’s contribution to zonal harmonics,
their impact on the structure of the resonance web is negligible even
for high-altitude orbits.

4. Trigonometric terms in HSM,1 depending on the angle ΩL are produced
only by the Earth potential VE, and they are of order O(e2µE(a/aL)

3)
sin(εL) sin(ip), where iL is the inclination of the Moon’s orbit with
respect to the ecliptic, iL ≃ 0.09 rad.

3.2. Simplified Hamiltonian model

Figure 7, in conjunction with what was exposed in the previous subsec-
tion, allows now to construct a ‘simplified SELENA-mean’ secular Hamilto-
nian model (hereafter HSSM), which contains only a small subset of terms
of HSM , while, yielding essentially the same long-term behavior of the or-
bits. The left panel of Fig.7 shows the values of all the normalized GRAIL
coefficients C̄nm (blue) and S̄nm (red) as a function of the degree n, with
2 ≤ n ≤ 10. These values are reported in Appendix I. The horizontal line
corresponds to an arbitrary threshold value 5 × 10−6. We find twelve har-

20



Figure 7: Left: The values of the normalized coefficients C̄nm (blue) and S̄nm (red) as a
function of the order n. The horizontal line corresponds to the threshold value 5× 10−6.
Numerical values are reported in Appendix A. Right: Comparison between the evolution
of the eccentricity of an orbit with initial conditions a = rL + 500 km, e = 0.01, i = 60◦,
Ω = 0◦, ω = 0◦, M = 0◦ using the complete Hamiltonian HSM (red), or the simplified
model HSSM (black).

monics whose normalized value is above such threshold, namely the set

CSSSM = {C20, C22, C30, C31, S31, C40, C41, C60, C70, C71, C80, C90} . (24)

Using i) only the harmonics of Eq.(24), ii) the simplified form of the PALRF
Earth vector, given in Eq.(19) (expanding again up to first order with respect
to the small quantities ∆xE(t), yE(t), zE(t), iii) ignoring the negligible contri-
bution of the Sun and iv) setting ωz = const = ωL = 2.64× 10−6rad/sec, as
well as ωx = ωy = 0, leads to the simplified model HSSM . The right panel of
Fig.7 shows an orbit leading to re-entry, as integrated with the full Hamilto-
nian HSM of the SELENA-mean model, or with the simplified Hamiltonian
HSSM , showing that the orbital evolution is nearly identical with the two
models all the way up to the re-entry.

As an additional test, Fig.8 shows the value of the inclination i(a) where
the 2g−resonance (plane S2,0,0) intersects the plane e = 0, as a function of
the altitude a − rL. The black curve shows the computation with the inte-
grable part of the complete model HSM,0 plus the J2

2 terms of the SELENA
model. The remaining curves show the same curve as obtained under vari-
ous truncations in the Moon’s zonal harmonics. Note that the J2 term alone
yields icritical = 63.4◦, which holds as well for any value of e ̸= 0. Since the J2
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Figure 8: The inclination at which ω̇ = 0 for circular orbits as a function of the altitude.

term is dominant over all other lunar harmonics at high altitude, the location
of the resonance converges towards the value icrit as a − rL increases, and
the critical value is essentially reached at a − rL ≈ 5000 km. As concluded
from the convergence of the curves, the correct dependence of the location
of the 2g−resonance on the altitude is essentially recovered for all altitudes
a−rL > 100 km, by the addition of the first three important zonal harmonics,
i.e., adding J2, J4 and J6.

Having checked that the terms of the ensemble SSSM are the only im-
portant ones as regards the behavior of secular resonances, we proceed to
check which of the resonances have well developed separatrices as a function
of the altitude a − rL. By property 2 above, all the zonal terms within the
set SSSM (even or odd) contribute only to the separatrices of the 2g reso-
nances. On the other hand, by D’Alembert rules the tesseral harmonics C22,
C31, S31 C41 and C71 generate trigonometric terms according to the rule that
the Cnm or Snm harmonic generates terms with arguments m1g±mh, where
0 ≤ m1 ≤ n − 2. None of these terms involve the angle h + λL, thus the
tesseral terms do not create separatrices for any of the secular resonances
of the problem. Finally, the Earth’s term contributes to the separatrices
of all the secular resonances involving the angle m(h + λL) through terms
O(µEa

2/a3L sin(mεL), where εL ≃ 0.1 is the obliquity of the Moon. We have
already seen that the coefficient µEa

2/a3L yields a negligible contribution to
the 2g resonance compared with the zonal harmonics of the lunar potential.
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Figure 9: (left) FLI maps, and (right) lifetime maps in a grid of initial conditions in
the (i, e) plane for orbits with Ω = ω = 0◦ at the altitudes a − rL = 500km (top row),
a−rL = 1000km (middle row), a−rL = 1500km (bottom row). The numerical trajectories
are computed in the complete Hamiltonian HSM , while the FLI is computed by calculating
the associated variational equations of motion. The thick points in the lifetime maps
correspond to theoretical predictions of the borders of the domains of re-entry obtained
through the model of the 2g−resonance discussed in subsection 3.3. The dashed curves
indicate the ‘planes of fast drift’ defined in the same subsection.

23



Since the tesseral harmonics do not contribute to other resonances, and the
Earth yields a negligible contribution, we conclude that no resonance other
than 2g has developed separatrices in all three zones of altitude considered in
the present study, i.e. up to a− rL = 10000 km.

The above conclusion can be substantiated with numerical experiments
in the complete model HSM , obtaining an indirect indication of the separa-
trix width of each of the resonances of Fig.6 by computing Fast Lyapunov
Indicator (FLI) maps ([37]), as in the left column of Fig.9 for three differ-
ent altitudes. The right column in the same figure shows the lifetime maps
for the same grids of initial conditions, as indicated in the caption. The
FLI maps reveal the existence of separatrix structures associated with the
2g resonance, but give no hint of important secular resonances other than
2g. Comparing with the lifetime maps, however, reveals that the domains of
initial conditions leading to eccentricity growth and re-entry are way more
extended than the chaotic separatrix layers of the 2g resonance indicated
through the FLI maps. We now theoretically interpret this effect, following
an analysis of the structure of the separatrices of the 2g resonance in the
simplified model HSSM .

3.3. Integrable model and the separatrices of the 2g-resonance

A resonant Hamiltonian model for the 2g resonance can be obtained start-
ing from the simplified model HSSM , by following the same procedure as in
[32] for the case of Earth satellites. We here summarize only the main steps
leading to this model. First, we consider Modified Delaunay variables

Λ = L =
√
µLa, λ = l + g + h = M + ω + Ω,

P = L−G = L
(
1−

√
1− e2

)
, p = −g − h = −ω − Ω,

Q = G−H = L
√
1− e2(1− cos i), q = −h = −Ω.

(25)
We fix a value of the semimajor axis, which, in turn, gives the location i⋆ of
the 2g resonance, according to the procedure discussed in the previous sub-
section. Next, we perform a series expansion in powers of the Hamiltonian
HSSM in powers of the small quantities P (which is O(e2)) and Q−Q∗ (which
is of the order O(i− i∗), with Q∗ = Q(e = 0, i = i∗)). This leads to a trun-
cated polynomial representation of the Hamiltonian HSSM in the variables
(P,∆Q = Q−Q∗). We then introduce resonant action-angle variables

JR = P, JF = P + (Q−Q∗), uR = p− q, uF = q, (26)
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and, finally, the Poincaré canonical variables

X =
√

2JR sinuR, Y =
√

2JR cosuR . (27)

The Hamiltonian becomes now a function of the resonant variables

HSSM = HSSM(X, Y, JF , uF , τE; a). (28)

To get an integrable model of the 2g resonance, we compute the average
of HSSM(X, Y, JF , uF , τE; a) over the ‘fast’ angles (uF , τE) (faster than the
resonant angle g). This is a polynomial in X and Y , with JF and a as
parameters:

HI(X,Y ; JF , a) =
1

(2π)2

∫ 2π

0
duF

∫ 2π

0
dτE HSSM (X,Y, JF , uF , τE ; a) =

ωFJF + α2J2
F+

R10X +M110JFX +M120J
2
FX+

R20X
2 +M120JFX

2 +M220J
2
FX

2 +R02Y
2 +M102JFY

2 +M022J
2
FY

2+

R30X
3 +M130JFX

3 +M230J
2
FX

3 +R12XY 2 +M112JFXY 2 +M212J
2
FXY 2+

R40X
4 +R04Y

4 +M140JFX
4 +M104JFY

4 +R22X
2Y 2 +M122JFX

2Y 2+

R50X
5 +R32X

3Y 2 ++M132JFX
3Y 2 +R14XY 4 +M114JFXY 4+

R60Y
6 +R42X

4Y 2 +R24X
2Y 4 +R52X

5Y 2 + . . .

(29)

where ωF = −ḣ(a, e = 0, i = i∗).
The above Hamiltonian is integrable, since JF is a second integral of mo-

tion in addition to the energy. From HI it is possible to plot phase portraits
in the (X, Y ) plane, which can then be transformed to plots in the plane
(e sin(uR), e cos(uR)) through the relations e =

√
1− (1− (P/

√
µLa))2, with

P = (X2 + Y 2)1/2, and uR = −g = arctan(X, Y ). Figures 10, 11 and 12
show a set of phase portraits obtained in the above way. Each portrait is
parameterized by a constant value of JF . The locus of points in the surface
(i, e) where √

µLa(1−
√
1− e2 cos i)−Q∗ = JF (30)

is called fast drift plane, and allows to map each point of the phase portrait
to a point in the plane (i, e), as explained in detail in [31]. The inclinations
shown as labels in each phase portrait in the above pictures, correpond to
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Figure 10: Phase portraits of the integrable Hamiltonian HI at an altitude of a−rL = 500
km at the inclinations i0 = 50◦, 55◦, 57◦, 57.25◦, 60◦, 60.5◦, 62◦, 66◦, 66.25◦, 67◦, 70◦,
75◦. The blue curve shows the separatrix passing through the central fixed point, whenever
this point is unstable. Light-blue curves are tangent and entirely contained within the disc
e = ere end define the borders of initial conditions of orbits protected from collision. Frozen
orbits are plotted in red.
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Figure 11: Same as in Fig.10, but for the altitude of 1000 km at the inclinations i0 = 50◦,
55◦, 57◦, 58◦, 59◦, 62◦, 69◦, 70◦, 72◦, 74◦, 76◦, 77◦.
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Figure 12: Same as in Fig.10, but for the altitude of 1500 km at the inclinations i0 = 45◦,
50◦, 53◦, 56◦, 60◦, 65◦, 70◦, 75◦, 77◦, 78◦, 79◦, 85◦.
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the inclination of a circular orbit with parameter equal to the label value JF ,
i0 = cos−1

(
1− ((JF +Q∗)/

√
µLa)

)
.

One important remark regarding these figures is that, while the shown
portraits extend to eccentricities up to 0.9, in reality the computation is valid
only in the inner white disc domains whose border represents the collision
condition e = ere(a). In fact, points exterior to the discs correspond to
orbital radii smaller than rL, hence, where the multipole expansion of the
Moon’s potential is no longer valid. However, we here show how these phase
portraits formally look even ignoring the collision singularity of the multipole
expansion, since this allows to visualize the domains where the separatrices
formed by unstable fixed points within the discs separate bounded from un-
bounded motions as regards the evolution of the eccentricity e. Deferring
details to a separate study, we here report only the main phenomenon of
relevance for the re-entry mechanism, namely the fact that, at each altitude,
increasing the inclination leads to a Kozai-Lidov type bifurcation (similar in
nature as for the Earth satellites in the 2g resonance, see [33]), which turns
the central fixed point of the resonance from stable to unstable, generating a
figure-8 separatrix along with a pair of new stable fixed points corresponding
to frozen orbits of constant eccentricity. At even higher inclinations, addi-
tional frozen orbits can also be generated by a second (pitchfork) bifurcation,
which turns the central fixed point from unstable to stable.

3.4. Eccentricity growth and the re-entry mechanism

Based on the phase portraits of the integrable Hamiltonian HI , as shown
above, we can now obtain a theoretical prediction on the borders of initial
conditions in the plane (i, e), for fixed altitude, separating the initial condi-
tions of orbits leading to re-entry from those which do not. This prediction
is shown by the thick green dots in all three panels of Fig.9, and they are
computed as follows.

• For a given altitude (value of a), and for each fixed value of JF (or
i0), we first locate all the stable fixed points within the corresponding
phase portrait of HI which are inside the disc e = ere(a). Such can be
either the central fixed point of the resonance (see top row of Fig.14,
which corresponds to the value i0 = 55◦ for a − rL = 500 km), or
the stable fixed point of the frozen orbit generated after the Lidov-
Kozai bifurcation (see top row of Fig.14, which corresponds to the
value i0 = 56◦ for a − rL = 1500 km)). In either case, provided that
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the stable fixed point is within the disc e = ere(a), we compute the
outermost closed invariant curve C(e, g; JF ) around the point which
comes tangent to the circumference of the disc. The area inside this
curve corresponds, now, to orbits of bounded eccentricity e < ere.

• The curve C(e, g; JF ) intersects each of the the planes (i, e) of Figure 9
at one point. The initial choice of the angle ω determines a ‘scanning
direction’ (e.g. g = 0 in Figure 9 corresponds to a vertical scanning
direction). The intersection of such line with C(e, g; JF ) yields a unique
value of the eccentricity for each value of JF and this can be transformed
to a unique point in the plane (i, e) solving the fast drift plane equation
(Eq. (30)).

• Iterating the computation for different values of the parameter JF yields
the ensemble of points marking the theoretical borders of the re-entry
domain.

A visualization of the above process is shown in Figure 13. The closed
green curves are tangent to the circles e = ere and mark the border of motions
protected from re-entry. The thick points on these curves correspond to the
points of a chosen fixed argument of perilune ω0 = g = −uR. The distance
of this point from the origin (0, 0) yields the eccentricity of one point (i, e)
in the theoretical curve marking the border of re-entry in the lifetime maps.

In all three panels of Fig.9 we observe that the theoretical prediction for
the borders follows closely the limits of the numerical domain of re-entry
obtained with the full model HSM . This indicates that the chains of bi-
furcations generating new stable fixed points (and, hence, frozen orbits) as
predicted by the integrable model HI roughly corresponds to the sequence
of emergence of frozen orbits in the real problem. Figures 14 and 15 show
that this is essentially correct. The right panels in these figures provide FLI
maps for the same initial conditions as in the phase portraits of the integrable
approximation. These figures show that the stability character of the fixed
points in the integrable approximation is essentially reproduced by the FLI
maps made with the complete force model. However, in the FLI maps we
see several chaotic structures formed around the unstable fixed points, which
are not present in the phase portraits of the integrable model. Similarly
as exposed in [31], one can show that such structures represent the stable
manifolds of the normally hyperbolic invariant manifold of circular orbits at
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Figure 13: Visualization of the theoretical prediction of the borders of initial conditions
in the plane (i, e), for fixed altitude, separating the initial conditions of orbits leading
to re-entry from those which do not detailed in 3.4. Figure 9 shows such predictions for
ω0 = 0, which corresponds to the vertical scanning direction. Thus, we find a value of
the eccentricity for a given value of JF by intersecting C(e, g; JF ) (green curve) with the
vertical axis.
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Figure 14: Two phase portraits (left)of the integrable resonance model for the altitude
a − rL = 500 km, at the label values of the inclination i0 = 55◦ (top) and i0 = 65◦

(bottom). The middle panels show a zoom to the disc e < ere, and the right panels the
numerical FLI maps for the same initial conditions (see text).

Figure 15: Same as in Fig.14, but for the altitude a− rL = 1500 km. The label values of
the inclinations are i0 = 56◦ (top) and i0 = 78◦ (bottom).
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the resonance. In practical terms, such manifolds render fuzzy the border
separating bounded from re-entry orbits, as readily recognised in Figure 9.

4. Conclusions

In the sections above, we discussed the main features of secular dynamics
for lunar satellites, by constructing various models of secular equations of
motion, all stemming from simplifications of the secular model proposed in
the final report [1] on the semi-analytic propagator for lunar satellite orbits
SELENA. In particular, we discussed the emergence of secular resonances and
their role in the phenomenon of eccentricity growth and re-entry (collision
with the Moon) for lunar satellites. Our main conclusions can be summarized
as follows:

• As a result of the strong influence of lunar mascons, the character
of the orbits is what we call ‘essentially non-secular’ at altitudes a −
rL < 100 km. This is defined as the altitude where the short-period
variations in semi-major axis exceed a value of 1%. On the other hand,
based on the relative importance of the multipole harmonics of the
lunar potential or the tidal forces by third bodies (essentially only by
the Earth), we distinguish three zones of ‘essentially secular dynamics’:
the low, middle, and high altitude zone.

• A careful comparison of the contributions of all secular terms produced
either by the lunar potential, or by the Earth’s tidal potential, shows
that the only secular resonance with well developed separatrices present
in all three altitude zones is the 2g one. Most other resonances are
supressed, due to the high value of the coefficients of the Moon’s zonal
harmonics compared to the small value of the Moon’s obliquity angle.

• We create a simplified model (Hamiltonian HSSM ; see subsection 3.2),
with few harmonics (Eq.(24)) which accurately represents the secular
dynamics of the complete model and allows to study independently the
role of each potential term in it.

• We further construct an integrable model, whose sequences of bifur-
cations of frozen orbits allow to obtain theoretically the borders sepa-
rating domains of initial conditions leading to a satellite’s re-entry by
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eccentricity growth, from those which do not. These borders were com-
pared with numerical lifetime maps, obtained with the full equations
of motion, showing a very good agreement.
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Appendix A. GRAIL coefficients

Here, we report in the table below the numerical values of the Cnm and
Snm coefficients of the lunar potential expansion up to order 10, and their
respective normalized values C̄nm and S̄nm obtained by multiplying the co-
efficients with the factor√

s(1 + 2n)(n−m)!

(n+m)!
, s = 1 if n = 0, otherwise s = 2. (A.1)

The radius of the Moon is rL = 1738.0 km, and the gravitational parameter
of the Moon is µL = GML = 0.490280012616× 104 km3/s2.

n m Cnm Snm C̄nm S̄nm

1 0 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
1 1 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00

2 0 -9.0884e-05 0.0000e+00 -2.0322e-04 0.0000e+00
2 1 1.4664e-11 1.1733e-09 1.8931e-11 1.5147e-09
2 2 3.4673e-05 9.0792e-10 2.2381e-05 5.8606e-10

3 0 -3.1973e-06 0.0000e+00 -8.4593e-06 0.0000e+00
3 1 2.6368e-05 5.4545e-06 2.8481e-05 5.8916e-06
3 2 1.4172e-05 4.8780e-06 4.8405e-06 1.6662e-06
3 3 1.2275e-05 -1.7742e-06 1.7117e-06 -2.4740e-07

4 0 3.2348e-06 0.0000e+00 9.7043e-06 0.0000e+00
4 1 -6.0135e-06 1.6643e-06 -5.7049e-06 1.5789e-06
4 2 -7.1162e-06 -6.7770e-06 -1.5912e-06 -1.5154e-06
4 3 -1.3499e-06 -1.3445e-05 -8.0670e-08 -8.0349e-07
4 4 -6.0070e-06 3.9264e-06 -1.2692e-07 8.2961e-08

5 0 -2.2379e-07 0.0000e+00 -7.4221e-07 0.0000e+00
5 1 -1.0116e-06 -4.1189e-06 -8.6628e-07 -3.5272e-06
5 2 4.3995e-06 1.0571e-06 7.1200e-07 1.7108e-07
5 3 4.6614e-07 8.6989e-06 1.5399e-08 2.8736e-07
5 4 2.7543e-06 6.7678e-08 2.1445e-08 5.2696e-10
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n m Cnm Snm C̄nm S̄nm

5 5 3.1106e-06 -2.7544e-06 7.6589e-09 -6.7820e-09

6 0 3.8184e-06 0.0000e+00 1.3768e-05 0.0000e+00
6 1 1.5283e-06 -2.5996e-06 1.2024e-06 -2.0454e-06
6 2 -4.3973e-06 -2.1677e-06 -5.4704e-07 -2.6967e-07
6 3 -3.3175e-06 -3.4274e-06 -6.8785e-08 -7.1064e-08
6 4 3.4124e-07 -4.0581e-06 1.2917e-09 -1.5362e-08
6 5 1.4544e-06 -1.0342e-05 1.1738e-09 -8.3465e-09
6 6 -4.6842e-06 7.2299e-06 -1.0913e-09 1.6844e-09

7 0 5.5934e-06 0.0000e+00 2.1663e-05 0.0000e+00
7 1 7.4717e-06 -1.1973e-07 5.4687e-06 -8.7635e-08
7 2 -6.5015e-07 2.4111e-06 -6.4756e-08 2.4015e-07
7 3 5.9942e-07 2.3573e-06 8.4434e-09 3.3205e-08
7 4 -8.4367e-07 7.5653e-07 -1.7916e-09 1.6065e-09
7 5 -2.0686e-07 1.0693e-06 -7.3213e-11 3.7845e-10
7 6 -1.0652e-06 1.1005e-06 -7.3938e-11 7.6385e-11
7 7 -1.8204e-06 -1.6003e-06 -3.3770e-11 -2.9686e-11

8 0 2.3468e-06 0.0000e+00 9.6762e-06 0.0000e+00
8 1 4.1684e-09 1.0980e-06 2.8644e-09 7.5455e-07
8 2 3.0093e-06 1.9306e-06 2.4717e-07 1.5857e-07
8 3 -1.8890e-06 9.5448e-07 -1.9098e-08 9.6498e-09
8 4 3.4087e-06 -5.2825e-07 4.4490e-09 -6.8947e-10
8 5 -1.2481e-06 2.9186e-06 -2.2590e-10 5.2826e-10
8 6 -1.6604e-06 -2.1147e-06 -4.6373e-11 -5.9060e-11
8 7 -1.5097e-06 3.2689e-06 -7.6980e-12 1.6668e-11
8 8 -2.4857e-06 2.1163e-06 -3.1687e-12 2.6978e-12

9 0 -3.5309e-06 0.0000e+00 -1.5391e-05 0.0000e+00
9 1 1.8670e-06 8.1043e-08 1.2131e-06 5.2660e-08
9 2 1.9278e-06 -1.3876e-06 1.3353e-07 -9.6113e-08
9 3 -1.9924e-06 2.2018e-06 -1.5058e-08 1.6640e-08
9 4 -1.8844e-06 -1.4258e-06 -1.6126e-09 -1.2201e-09
9 5 -1.5625e-06 -3.5247e-06 -1.5982e-10 -3.6051e-10
9 6 -2.1272e-06 -3.0026e-06 -2.8088e-11 -3.9648e-11
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n m Cnm Snm C̄nm S̄nm

9 7 -3.9148e-06 -1.0688e-07 -7.4612e-12 -2.0371e-13
9 8 -1.3120e-06 -2.2035e-06 -4.2883e-13 -7.2021e-13
9 9 -9.3820e-07 2.4881e-06 -7.2280e-14 1.9169e-13

10 0 -1.0693e-06 0.0000e+00 -4.9001e-06 0.0000e+00
10 1 8.4160e-07 -9.5407e-07 5.2004e-07 -5.8953e-07
10 2 3.5724e-07 -2.6511e-07 2.1241e-08 -1.5763e-08
10 3 4.8420e-07 6.6884e-07 2.8231e-09 3.8996e-09
10 4 -3.5730e-06 1.5789e-06 -2.1043e-09 9.2992e-10
10 5 6.9970e-07 -3.1458e-07 4.3439e-11 -1.9530e-11
10 6 -1.2729e-07 -2.0953e-06 -8.8353e-13 -1.4543e-11
10 7 -3.9986e-06 -9.1075e-07 -3.3657e-12 -7.6659e-13
10 8 -3.5594e-06 2.8489e-06 -4.0771e-13 3.2632e-13
10 9 -4.7532e-06 -5.1547e-08 -8.8320e-14 -9.5782e-16
10 10 9.4793e-07 -1.7194e-06 3.9386e-15 -7.1439e-15
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