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Abstract

The purpose of this paper is to present the first ever systematic theoretical formulation to

address the long-standing issue of regularization of the singularity associated with the Parker

sonic critical point in the linear perturbation problem for Parker’s unsteady solar wind model.

This is predicated on the necessity to go outside the framework of the linear perturbation prob-

lem and incorporate the dominant nonlinearities in this dynamical system. For this purpose, a

whole new theoretical formulation of Parker’s unsteady solar wind model based on the potential

flow theory in ideal gas dynamics is given, which provides an appropriate optimal theoretical

framework to accomplish this task. The stability of Parker’s steady solar wind solution is

shown to extend also to the neighborhood of the Parker sonic critical point by going to the

concomitant nonlinear problem.
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1 Introduction

The solar wind is a hot tenuous magnetized plasma outflowing continually from the sun which
carries off a huge amount of angular momentum from the sun while causing only a negligible mass
loss. The bulk of the solar wind is known to emerge from coronal holes (Sakao et al. [1]) and to fill
the heliosphere (Dialynas et al. [2]). Coronal heating along with high thermal conduction is believed
to be the cause of weak to moderate-speed solar wind. But some additional acceleration mechanism
operating beyond the coronal base seems to be needed for high-speed solar wind (Parker [3] [4]).
Parker [3] gave an ingenious model to accomplish this by continually converting the thermal energy
into kinetic energy of the wind and accelerating the latter from subsonic to supersonic speeds.
The various physical properties in the solar wind have been confirmed by in situ observations
(Meyer-Vernet [5]). The Parker Solar Probe (Shivamoggi [6]) has been collecting a lot of significant
information on the conditions in the solar corona (Fisk and Casper [7], Bowen et al. [8], and
others) some of which were at variance with previous belief (like the coupling of the solar wind with
solar rotation (Kasper et al. [9]), which was shown (Shivamoggi [10]) to cause enhanced angular
momentum loss from the sun).

Parker’s steady-solar wind solution is peculiar,

• in being the one solution that describes a smooth acceleration of the solar wind through the
sonic conditions at the Parker sonic critical point, given by r = r∗ = GMS/2a

2, G being the
gravitational constant, MS is the mass of the sun, and a is the speed of sound;

• in corresponding to a special boundary condition prescribing the pressure to decrease away
from the sun to zero at infinity in the interstellar space.

On the other hand, solar wind observations (Schrijver [11]) indicated that the large-scale behavior
of the solar wind, on the average, its local noisiness (Feldman et al. [12]) notwithstanding, is
apparently close to Parker’s solar wind solution. This indicates that Parker’s solar wind solution
exhibits a certain robustness and an ability to sustain itself against any small perturbations acting
on this system. Parker [13] therefore proposed that his solution possesses an intrinsic stability like
a ”stable attractor” of this dynamical system (Cranmer and Winebarger [14]). So, any deviations
in flow variables from Parker’s solar wind solution, Parker [13] argued, would be convected out by
the wind flow and damped out.

This poses the stability of Parker’s solar wind solution as an important issue, though still not
completely resolved. This issue was investigated by Parker [15] via formal considerations of the dy-
namical equations governing the solar wind flow. Parker [15] advocated that the stability of the flow
in the subcritical region inside the Parker sonic critical point may be considered by approximating
the solar corona in this region by a static atmosphere on the grounds that no intrinsic shear-flow
instabilities may be generated in the corona during its expansion in this region1. Shivamoggi [17]
followed up on Parker’s proposition for the subcritical region, and gave a systematic analytical de-
velopment of this issue, by posing a Sturm-Liouville problem for the linearized perturbations about
Parker’s solar wind solution, to demonstrate its intrinsic stability.

On the other hand, Parker [15], Carovillano and King [18], and Jockers [19] initiated the in-
vestigation of stability of Parker’s solar wind solution with respect to linearized perturbations by

1This is compatible with the absence of coronal-flow shear in the spherically symmetric flow situation posited in
Parker’s solar wind model [3], which would otherwise become a free-energy source of these shear-flow instabilities
(Shivamoggi [16]).
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including solar wind flow in the basic state and found that the singularity at the Parker sonic critical
point makes this linear perturbation problem ill-posed. This precludes well-behaved solutions of
the linear perturbation problem in the transonic flow region (where the wind flow-speed is near the
speed of sound in the gas) near the Parker sonic critical point.

We wish to point out that a regularization of this singularity necessitates going outside of the
framework of the linear perturbation problem and incorporating the dominant nonlinearities in
this dynamical system (akin to the situation in transonic aerodynamics (Shivamoggi [20])). The
straightforward unsteady version of Parker’s solar wind model used so far for stability considerations
lends a rather cumbersome mathematical approach toward this objective. The purpose of this paper
is to present a whole new theoretical formulation of Parker’s unsteady solar wind model based on
the potential flow theory in ideal gas dynamics, which provides an optimal theoretical framework
to analyze various aspects of Parker’s unsteady solar wind model in general, and regularization of
the singularity at the Parker sonic critical point by going to the concomitant nonlinear problem.

2 Potential-Flow Formulation of Parker’s Unsteady Solar

Wind Model

Consider an ideal gas flow in the presence of a central gravitating point mass representing the sun.
The solar wind is represented by a spherically symmetric flow so the flow variables depend only
on the distance r from the sun and time t, and the flow velocity is taken to be only in the radial
direction.

The equations expressing the conservation of mass and momentum balance for the ideal gas flow
constituting the solar wind are (in usual notations),

∂ρ

∂t
+

1

r2
∂

∂r

(

ρr2v
)

= 0 (1)

ρ

(

∂v

∂t
+ v

∂v

∂r

)

= −
∂p

∂r
−
dU

dr
(2)

where U is the gravitational potential associated with the sun (of mass MS),

U = −
GMS

r
(3)

We assume the ideal gas flow under consideration to be modeled by a potential flow, so we have

v =
∂Φ

∂r
(4)

Furthermore, we assume for analytical simplicity that the gas flow occurs under isothermal condi-
tions, so

p = a2ρ (5)

where a is the constant speed of sound in the gas2. In the same vein, we assume that the flow
variables as well as their derivatives vary continuously so there are no shocks occurring anywhere
in the region under consideration.

2SOHO observations (Cho et al. [21]) indicated that the solar wind expands isothermally to considerable distances.
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Using (4) and (5), equations (1) and (2) become

1

ρ

∂ρ

∂t
+

(

∂2Φ

∂r2
+

2

r

∂Φ

∂r

)

+
1

ρ

∂Φ

∂r

∂ρ

∂r
= 0 (6)

∂

∂t

(

∂Φ

∂r

)

+
∂Φ

∂r

∂2Φ

∂r2
= −

a2

ρ

∂ρ

∂r
−
dU

dr
. (7)

Equation (7) may be rewritten as

−
1

a2
∂Φ

∂r

(

∂2Φ

∂t∂r
+
∂Φ

∂r

∂2Φ

∂r2

)

−
1

a2
∂Φ

∂r

∂U

∂r
=

1

ρ

∂Φ

∂r

∂ρ

∂r
. (8)

On the other hand, the Bernoulli integral of equation (7),

∂Φ

∂t
+

1

2

(

∂Φ

∂r

)2

+

∫

dp

ρ
+ U = const (9)

gives,
1

ρ

∂ρ

∂t
= −

1

a2

(

∂2Φ

∂t2
+
∂Φ

∂r

∂2Φ

∂t∂r

)

(10)

Using equations (8) and (10), equation (6) leads to the equation governing the potential flows of
an ideal gas constituting the solar wind,

[

a2 −

(

∂Φ

∂r

)2
]

∂2Φ

∂r2
+

2a2

r

∂Φ

∂r
=
∂2Φ

∂t2
+ 2

∂Φ

∂r

∂2Φ

∂t∂r
+
∂Φ

∂r

dU

dr
. (11)

Equation (11) provides an optimal theoretical framework to extrapolate the Parker solar wind
model to unsteady situations and investigate the long-standing issue of stability of the Parker steady
solar wind solution.

3 Parker Steady Solar Wind Model

For a steady wind flow, equation (11) describes Parker’s solar wind model [3],

[

a2 −

(

dΦ

dr

)2
]

d2Φ

dr2
+

2a2

r2
(r − r∗)

dΦ

dr
= 0 (12)

where r = r∗ ≡ GMS/2a
2 locates the Parker sonic critical point.

Equation (12) gives a physically acceptable smooth solution (Parker [3]),

[

dΦ/dr

a

]2

− log

[

dΦ/dr

a

]2

= 4 log

(

r

r∗

)

+ 4

(

r

r∗

)

− 3 (13)

which complies with the smoothness condition at the Parker sonic critical point,

r = r∗ : v = a. (14)
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4 Linear Perturbation Problem for Parker’s Solar WindModel

We assume solutions of time-dependent perturbations (denoted by subscript 0) to be of the form,

Φ(r, t) = φ0(r) + ǫφ1(r, t), ǫ≪ 1 (15)

and assume the perturbations characterized by the small parameter ǫ to be small. Equation (11)
then yields for the basic state,

[

a2 −

(

dφ0
dr

)2
]

d2φ0
dr2

+
2a2

r2
(r − r∗)

dφ0
dr

= 0 (16)

which represents Parker’s steady solar wind model given by equation (12), and for the linearized
perturbations,

[

a2 −

(

dφ0
dr

)2
]

∂2φ1
∂r2

+

[

−2
dφ0
dr

d2φ0
dr2

+ 2a2(r − r∗)

]

∂φ1
∂r

= 2
dφ0
dr

∂2φ1
∂t∂r

+
∂2φ1
∂t2

. (17)

We consider the subcritical region, where

[

a2 −

(

dφ0
dr

)2
]

> 0, r < r∗ (18)

and assume normal-mode solutions of the form,

φ1(r, t) = φ̂1(r)e
−iωt. (19)

Equation (17) then gives

d2φ̂1
dr2

+

[

−
d2φ0/dr

2

dφ0/dr
− 2

(dφ0/dr)(d
2φ0/dr

2)

a2 − (dφ0/dr)2
+ 2iω

dφ0/dr

a2 − (dφ0/dr)2

]

dφ̂1
dr

+ ω2

[

1

a2 − (dφ0/dr)2

]

φ1 = 0. (20)

Equation (20) may be written as the Sturm-Liouville equation,

d

dr

[

f(r)
dφ̂1
dr

]

+ ω2g(r)φ̂1 = 0, rS < r < r∗ (21)

where

f(r) ≡

[

a2 − (dφ0/dr)
2

dφ0/dr

]

e
2iω

∫ r
rS

dφ0/dr

a2
−(dφ0/dr)2

dr

g(r) ≡
1

dφ0/dr
e
2iω

∫
r
rS

dφ0/dr

a2
−(dφ0/dr)2

dr

rS being sun’s radius.
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Taking the complex conjugate of equation (21) we have

d

dr

[

f̄(r)
d
¯̂
φ1
dr

]

+ ω2(̂g)(r)
¯̂
φ1 = 0, rS < r < r∗ (22)

If ω is pure imaginary, ω = iΩ, we obtain from equations (21) and (22),

−

∫ r

rS

f(r)

∣

∣

∣

∣

∣

dφ̂1
dr

∣

∣

∣

∣

∣

2

dr − Ω2

∫ r

rS

g(r)
∣

∣

∣
φ̂1

∣

∣

∣

2

dr = 0, rS < r < r∗ (23)

where we have taken the perturbations or their gradients to vanish at the coronal base r = rS , and
f(r) and g(r) now become

f(r) =

[

a2 − (dφ0/dr)
2

dφ0/dr

]

e
−2Ω

∫
r
rS

dφ0/dr

a2
−(dφ0/dr)2

dr
> 0

g(r) =
1

dφ0/dr
e
−2Ω

∫
r
rS

dφ0/dr

a2
−(dφ0/dr)2

dr
> 0.

Equation (23) is impossible to satisfy, so ω is real3, and the Parker solar wind solution is linearly
stable in the subcritical region.

It is to be noted, as previously mentioned by Parker [15], Carovillano and King [18] and Jockers
[19], that the linearized perturbation problem, described by equation (20), exhibits a singularity
at the Parker sonic critical point given by (14)4. Consequently, the above linearized development,
which is valid in the subcritical region, becomes ill-posed and breaks down near the Parker sonic
critical point. This drawback may be remedied via a proper treatment of the transonic flow region
around the Parker sonic critical point. This necessitates going outside the linearized framework and
adopting the nonlinear formulation (akin to the situation in transonic aerodynamics (Shivamoggi
[20])). This task can be accomplished in an expeditious way by using the potential-flow formulation,
namely equation (11), given in this paper.

5 Nonlinear Perturbation Problem for the Parker Solar Wind

Model

Equation (11) governing the potential flows of an ideal gas constituting the solar wind may be
rewritten as,

[

a2 −

(

∂Φ

∂r

)2
]

∂2Φ

∂r2
+

2a2

r2
(r − r∗)

∂Φ

∂r
=
∂2Φ

∂t2
+ 2

∂Φ

∂r

∂2Φ

∂t∂r
(24)

In order to treat the region near the Parker sonic critical point, described by ∂Φ/∂r ≈ a, we follow
the treatment of thin airfoil in transonic flows (Cole and Messiter [24]), and put, following method

of multiple scales (Shivamoggi [25]),

3In non-dissipative systems (like the one under consideration) the transition from stability to instability may be
expected to occur via a marginal state exhibiting oscillatory motions (Eddington [22], see also Chandrasekhar [23]).

4It may be mentioned, as Parker [15] pointed out, that this coincidence will not hold for more general non-
isothermal cases.
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∂Φ

∂r
= a

(

1 + ǫ
∂φ1
∂r

)

,

r = r∗(1 + ǫx), t̃ = ǫt, ǫ≪ 1

(25)

where ǫ is a small parameter characterizing the deviation of the flow speed from the speed of sound
in the gas. The slow (or shrunken) time scale t̃ characterizes the slowly varying dynamics under
the influence of gravitational choking operational near the Parker sonic critical point. Equation
(24)then yields

1

r∗

∂φ1
∂x

∂2φ1
∂x2

− x
∂φ1
∂x

= −
r∗
a

∂2φ1

∂x∂t̃
. (26)

Putting further,

u1 ≡
∂φ1
∂x

, τ ≡
a

r2
∗

t̃ (27)

equation (26) becomes
∂u1
∂τ

+ u1
∂u1
∂x

= r∗xu1. (28)

In order to determine a solution of this nonlinear hyperbolic equation, note first that the char-
acteristics of equation (28) are given by

C :
dτ

dξ
= 1,

dx

dξ
= u1 (29)

Equation (28) then reduces to the following ordinary differential equation,

du1
dξ

= r∗x(ξ)u1(ξ), along C. (30)

Equation (29) yields the solution,

τ = ξ, x(x0, τ) = f(x0, τ) (31)

where,
x0 ≡ x(x0, 0).

Using (31), equation (30) yields the solution,

u1(x, τ) = u10e
r∗

∫ τ
0
f(x0,S)dS. (32)

where,
u10 ≡ u1(x, 0).

Introduce,

ψ(τ) ≡ r∗

∫ τ

0

f(x0, S)dS (33)

which yields, on using (31),
dψ

dτ
= r∗f(x0, τ) = r∗x. (34)
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(33) and (34) imply the initial conditions,

τ = 0 : ψ = 0,
dψ

dτ
= r∗x0. (35)

Furthermore, on using equations (29), (32), and (34), we have

d2ψ

dτ2
= r∗

dx

dτ
= r∗u1 = r∗u1e

ψ (36)

from which, we obtain
dψ

dτ
=

√

2r∗u10e
ψ/2. (37)

Equation (37) yields the solution,

e−ψ/2 = 1−
1

2
r∗x0τ. (38)

Using (38), (32) and (33) give

u1(x, τ) =
u10

(1− r∗x0τ/2)2
. (39)

Furthermore, (35) and (37) yield

u10 =
r∗x

2
0

2
(40)

and (39) becomes

u1(x, τ) =
r∗x

2
0/2

(1− r∗x0τ/2)2
. (41)

Using (41), equation (29) yields,

x(x0, τ) =
x0

1− r∗x0τ/2
(42)

from which, we obtain

x0 =
x

1 + r∗xτ/2
. (43)

Using (43), (41) becomes

u1(x, τ) =
1

2
r∗x

2. (44)

(44) implies that the dynamics in the nonlinear perturbation problem near the Parker sonic critical
point is essentially frozen in time. Physically this seems to be traceable to the gravitational choking
(described by the term on the right in equation (28)) operational in the nonlinear hyperbolic
dynamics near the Parker sonic critical point. Indeed, in the time-independent limit, equation (28)
becomes

u1(u1x − r∗x) = 0 (45)

from which, (ruling out the trivial solution u ≡ 0),

u1(x, τ) =
1

2
r∗x

2 (46)

in agreement with (44).
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6 Discussion

Contrary to the assumptions made in the theoretical models, the solar wind is, in reality, far from
being steady and structureless, as revealed by spatial and temporal variabilities apparent in in

situ observations of the solar wind. Nonetheless, Parker’s solar wind solution has been found to
provide an excellent first-order approximation to the large-scale behavior, on the average, of the
solar wind. This indicates it has a certain robustness and an ability to sustain itself against any
small perturbations acting on this system. This poses stability of Parker’s solar wind solution as
an important issue, though still not completely resolved. Previous investigations ([15], [18], [19])
of stability of Parker’s solar wind solution with respect to linearized perturbations were plagued
by the singularity at the Parker sonic critical point, where the wind flow equals the speed of
sound in the gas. This paper seeks to regularize this singularity by going outside the framework of
the linear perturbation problem, and incorporating the dominant nonlinearities in this dynamical
system. This is implemented by introducing a whole new theoretical formulation of Parker’s solar
wind model based on the potential flow theory in ideal gas dynamics, which provides an appropriate
optimal theoretical framework for this purpose. The stability of Parker’s solar wind solution is shown
to extend also to the neighborhood of the Parker sonic critical point by going to the concomitant
nonlinear problem.
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