
MNRAS 000, 1–20 (2022) Preprint 21 June 2024 Compiled using MNRAS LATEX style file v3.0

Matter Power Spectra in Modified Gravity: A Comparative Study of
Approximations and 𝑁-Body Simulations

B. Bose1,2★, A. Sen Gupta3,4 B. Fiorini4, G. Brando5, F. Hassani6, T. Baker4,
L. Lombriser7, B. Li8, C. Ruan6, C. Hernández-Aguayo9,10, L. Atayde11, N. Frusciante12

1Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK
2Basic Research Community for Physics e.V., Mariannenstraße 89, Leipzig, Germany
3Astronomy Unit, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
4Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, Portsmouth PO1 3FX, UK
5Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
6Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, 0315 Oslo, Norway
7Département de Physique Théorique, Université de Genève, 24 quai Ernest Ansermet, 1211 Genève 4, Switzerland
8Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
9Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748, Garching, Germany

10Excellence Cluster ORIGINS, Boltzmannstrasse 2, D-85748 Garching, Germany
11Instituto de Astrofisíca e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Edificio C8, Campo Grande, P-1749016, Lisboa, Portugal
12Dipartimento di Fisica “E. Pancini", Università degli Studi di Napoli “Federico II", Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli, Italy

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
Testing gravity and the concordance model of cosmology, ΛCDM, at large scales is a key goal of this decade’s largest galaxy
surveys. Here we present a comparative study of dark matter power spectrum predictions from different numerical codes in the
context of three popular theories of gravity that induce scale-independent modifications to the linear growth of structure: nDGP,
Cubic Galileon and K-mouflage. In particular, we compare the predictions from full 𝑁-body simulations, two 𝑁-body codes with
approximate time integration schemes, a parametrised modified 𝑁-body implementation and the analytic halo model reaction
approach. We find the modification to the ΛCDM spectrum is in 2% agreement for 𝑧 ≤ 1 and 𝑘 ≤ 1 ℎ/Mpc over all gravitational
models and codes, in accordance with many previous studies, indicating these modelling approaches are robust enough to be used
in forthcoming survey analyses under appropriate scale cuts. We further make public the new code implementations presented,
specifically the halo model reaction K-mouflage implementation and the relativistic Cubic Galileon implementation.
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1 INTRODUCTION

Observations of cosmological large-scale structure (LSS) offer a
unique laboratory in which to test the concordance cosmological
model, ΛCDM, which assumes General Relativity (GR). Such ex-
periments are highly motivated. Indeed, the nature of the cold dark
matter (CDM) and the constant dark energy (Λ) components, con-
stituting 95% of the Universe’s total energy density (see for example
Riess et al. 1998; Perlmutter et al. 1999; Alam et al. 2021; Aghanim
et al. 2020), remains elusive. Moreover, ΛCDM’s inability to recon-
cile principles of GR with quantum mechanics points to the need for
a more unified theory (see Bernardo et al. 2022, for a recent review
on gravitational approaches to the cosmological constant problem).
These gaps in our understanding motivate the investigation into alter-
native theories beyond ΛCDM. By exploring these new frontiers, we
hope to uncover a more comprehensive picture of the Universe, po-
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tentially leading to groundbreaking insights into its origin, evolution,
and ultimate fate.

This decade will provide an immense opportunity for such insights
through the efforts of some of the biggest scientific collaborations
to date. These include the European Space Agency’s Euclid mis-
sion (Barroso et al. 2024), the Vera Rubin Observatory (LSST Dark
Energy Science Collaboration 2012; Ivezić et al. 2019) (LSST)1,
the Dark Energy Survey (Albrecht et al. 2006; Abbott et al. 2016),
the Nancy Grace Roman Space Telescope (Akeson et al. 2019) and
the Dark Energy Spectroscopic Instrument (Levi et al. 2019). For
instance, Euclid and LSST will be measuring up to order 1 billion
galaxy shapes (Barroso et al. 2024; Ivezić et al. 2019), 2 orders of
magnitude more than previous surveys (see for example Hildebrandt
et al. 2017). This means the statistical precision of its resulting weak
lensing measurements, such as cosmic shear, will be roughly the

1 Vera Rubin was formerly known as the Large Synoptic Survey Telescope.
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same order of magnitude better than previous observations, provid-
ing a potentially brilliant probe for new physics.

Consistency tests of ΛCDM are a primary goal, but these missions
are also charged with investigating if there is any statistical preference
for new physics. Such beyond-consistency tests require theoretical
modelling of any new physics we wish to test. In particular, a key task
is to theoretically model key statistical cosmological quantities over a
very wide range of physical scales. The 2-point correlation function,
or its Fourier analog, the power spectrum, of the cosmological matter
distribution is one such summary statistic. At small physical scales,
where we have many more galaxy pairs, the measured statistics will
be far more precise, potentially providing a heightened signal of any
new physics. It should be kept in mind that this work only considers
the matter power spectrum, which is a key ingredient for cosmic
shear weak lensing analyses.

The small scale precision measurements of forthcoming surveys
has forced ambitious accuracy demands on such theoretical pre-
dictions (for example O(1%) accuracy on the matter power spec-
trum Hearin et al. 2012; Ivezić et al. 2019; Martinelli et al. 2021).
This requires careful consideration of scale cuts. Most Euclid fore-
casts (Blanchard et al. 2020; Bonici et al. 2023; Frusciante et al.
2023; Casas et al. 2023) consider a ‘pessimistic’ and ‘optimistic’
scale cut in harmonic space, corresponding to a maximum angular
multipole of ℓ = 1500 and ℓ = 5000, with the precise value of these
cuts in Fourier mode, or 𝑘-space, varying with redshift. In contrast,
LSST applies scale cuts in real space. While percent-level accuracy
remains a desirable goal, definitive accuracy up to a specific 𝑘-cut
is only achievable through full parameter inference. This nuanced
approach is essential to fully harness the power of these surveys for
an exquisite and reliable test of gravity and cosmology.

For these reasons, the community has sought to accurately model
these small, nonlinear scales in the matter power spectrum, for
beyond-ΛCDM scenarios. To this end, many methods have been de-
veloped to provide such predictions. 𝑁-body simulations provide our
most accurate predictions, and have been extended to many models
beyond-ΛCDM (see for example Li et al. 2012, 2013a,b; Puchwein
et al. 2013; Llinares et al. 2014; Ruan et al. 2022; Hernández-Aguayo
et al. 2022; Hassani et al. 2019, 2020; Christiansen et al. 2023). This
accuracy comes at a large computational cost, making this method in-
appropriate for expensive data-theory comparisons where we wish to
sample a large cosmological and gravitational parameter space. One
can alleviate this cost to some extent through approximate methods.
For example, Comoving Lagrangian Acceleration (COLA) (Tassev
et al. 2013; Howlett et al. 2015) is an 𝑁-body method that provides
a balance between accuracy and speed by reducing the time steps in
particle evolution through the perturbative modelling of large scale
physics. This method has also been extended to many alternatives to
ΛCDM (Winther et al. 2017; Wright et al. 2023; Brando et al. 2023).

While being faster, COLA methods are still too slow to use directly
in data analyses. Despite the computational cost, simulation meth-
ods are essential in bench-marking or constructing faster predictive
pipelines, such as emulators (Arnold et al. 2021; Harnois-Déraps
et al. 2022; Ramachandra et al. 2021; Fiorini et al. 2023; Nouri-
Zonoz et al. 2024) or analytic models (Zhao 2014; Mead et al. 2016).
The halo model reaction (Cataneo et al. 2019) is one such analytic
method, which can provide a high accuracy at a fraction of the time
cost and is theoretically general, allowing its extension to many mod-
els of cosmology.

This paper is dedicated to assessing the consistency of these
different methods for a few representative beyond-ΛCDM mod-
els of cosmological relevance. The models we consider are the
DGP braneworld model (Dvali et al. 2000), the Cubic Galileon

model (Nicolis et al. 2009) and the K-mouflage model (Babichev
et al. 2009). This work runs in a similar vein to the code compar-
ison project of Ref. Winther et al. (2015), updating the exercise,
nearly a decade later, to account for improvements in the codes and
methods, as well as approximations and new theoretical models and
phenomenology. Such an assessment is vital in modelling the theo-
retical uncertainty or delimiting the scales of validity of the method
under consideration, which will play an important role in forthcom-
ing surveys (Audren et al. 2013; Baldauf et al. 2016). We also present
an extension of the halo model reaction code, ReACT, which includes
the specific K-mouflage model of gravity considered in this paper.

We outline the paper as follows: In section 2 we briefly intro-
duce the different beyond-ΛCDM models we consider. In section 3
we outline the different methods we will compare, highlighting the
key differences between them and the various approximations they
employ. In section 4 we present matter power spectrum boost com-
parisons of the different methods. We present our conclusions in
section 5.

1.1 Notation and conventions

In this work we will use the following definitions and conventions:

(i) We use a metric signature of (−, +, +, +).
(ii) We work in units where 𝑐 = ℏ = 1.
(iii) Jordan frame quantities appear with a hat, e.g. 𝑞.
(iv) The Planck mass is denoted as 𝑀pl = (8𝜋𝐺N)−1, where 𝐺N

is Newton’s constant.
(v) Overdots denote derivatives with respect to cosmic time 𝑡.
(vi) Primes denote derivatives with respect to the natural loga-

rithm of the scale factor, ln 𝑎, unless otherwise stated.
(vii) Quantities with a ‘0’ subscript denote their value at 𝑧 = 0.
(viii) The canonical scalar field kinetic energy is 𝑋 ≡ −(𝜕𝜙)2/2.

2 GRAVITY BEYOND GENERAL RELATIVITY

The simplest, viable class of alternatives to ΛCDM can be found by
adding a single extra scalar degree of freedom, 𝜙, to GR. Under some
basic constraints, such as second-order equations of motion (a generic
condition to avoid unbounded negative energies) and four spacetime
dimensions, the well-studied Horndeski Lagrangian encompasses
all possible scalar-tensor theories with minimally coupled matter
(Horndeski 1974; Deffayet et al. 2011; Kobayashi 2019). If we accept
the speed of light to be the same as gravitational wave propagation, in
accordance with the observation of gamma ray burst GRB 170817A
(Goldstein et al. 2017) and merger signal of GW170817 (Abbott
et al. 2017), the Horndeski Lagrangian reduces to 2 (Lombriser &
Taylor 2016; Lombriser & Lima 2017; Creminelli & Vernizzi 2017;
Ezquiaga & Zumalacárregui 2017; Baker et al. 2017; Sakstein & Jain
2017; Battye et al. 2018; de Rham & Melville 2018; Creminelli et al.
2018; Quartin et al. 2023)

LH = 𝐺4 (𝜙) 𝑅 + 𝐺2 (𝜙, 𝑋) − 𝐺3 (𝜙, 𝑋)□𝜙 , (1)

where 𝑅 is the Ricci curvature scalar, □ is the D’Alembert operator
and each 𝐺𝑖 (𝜙, 𝑋), 𝑖 = 2, 3, 4 is a free function of the scalar field
𝜙 and its canonical kinetic term 𝑋 . Note that the 𝐺4 operator is a
function of 𝜙 only.

2 This condition may not hold below the frequency band of terrestrial grav-
itational wave detectors (de Rham & Melville 2018; de Rham et al. 2021;
Baker et al. 2022, 2023; Harry & Noller 2022).
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Besides modifying the expansion history of the Universe, mod-
ified gravity theories also leave an impact on the growth of struc-
ture (see Hou et al. 2023, for a review). This is generally understood
by considering linear perturbations on top of a homogeneous and
isotropic Friedmann-Lemaître-Robertson-Walker background given
by the following line element

d𝑠2 = − (1 + 2Ψ) d𝑡2 + 𝑎2 (𝑡) (1 − 2Φ) 𝛿𝑖 𝑗d𝑥𝑖d𝑥 𝑗 , (2)

where Φ is the usual Poisson potential in Newtonian gravity that
captures perturbations in the spatial sector of the metric, while Ψ is a
gravitational potential corresponding to perturbations in the time-like
sector of the line element.

The linear evolution of perturbations of modified gravity theories
given by Equation 1 has been thoroughly studied by many different
works in the literature (see for example Hu et al. 2014; Zumalacár-
regui et al. 2017; Frusciante & Perenon 2020). Within the quasi-
static approximation (Sawicki & Bellini 2015; Winther & Ferreira
2015b; Pace et al. 2021), the effects of modified gravity on the lin-
ear growth of structure in the Universe are encoded in a time- and
scale-dependent effective gravitational constant

𝐺eff,L (𝑘, 𝑎) = 𝐺N

[
1 +

Δ𝐺eff,L (𝑘, 𝑎)
𝐺𝑁

]
, (3)

where 𝑘 is the Fourier mode. In this work, we only consider theories
where the linear modification is scale-independent and so we drop
the dependency on 𝑘 for 𝐺eff,L, where L refers to a linear theory
prediction. The Poisson equation at large scales is then written in
Fourier space as

𝑘2Φ(𝑘, 𝑎) = 4𝜋𝐺eff,L (𝑎)𝑎2 �̄�m (𝑎)𝛿m (𝑘, 𝑎), (4)

where �̄�m is the background matter density, and 𝛿m is the corre-
sponding linear matter perturbation.

Another requirement for this class of theories is the inclusion of a
theoretical mechanism that prevents large modifications in environ-
ments where GR-like physics has been well confirmed by experiment
(see Will 2014; Belgacem et al. 2019, for example). Such mechanisms
are known as screening mechanisms (see Brax et al. 2021, for a recent
review and experimental tests). The screened environments are thus
small scale, dense environments. This means that the modification
to Newton’s constant, more generally written as

𝐺eff (𝑘, 𝑎) = 𝐺N

[
1 + Δ𝐺eff (𝑘, 𝑎)

𝐺𝑁

]
, (5)

requires the condition that lim𝑘→∞ 𝐺eff (𝑘, 𝑎) → 𝐺N. In this case
𝐺eff (𝑘, 𝑎) is the effective gravitational constant valid at all scales -
both linear and nonlinear - and it necessarily depends on scale as
well as time. In this work we will meet two such screening mech-
anisms which satisfy this condition: the Vainshtein mechanism and
K-mouflage screening.

Returning to Equation 1, we will consider three choices for the
Lagrangian functions, each having very particular phenomenological
features, including different screening mechanisms and cosmological
backgrounds. Where a choice exists, we will give their Lagrangians
in the Einstein frame where𝐺4 (𝜙) = 𝑀2

pl/2, with metric 𝑔𝜇𝜈 . In this
frame the ‘pure gravity’ part of the action resembles the Einstein-
Hilbert action for GR, simplifying some computations. However, this
frame choice also results in non-minimal coupling of matter to the
metric, ensuring the theory behaves very differently to GR.

The Einstein frame is obtained by performing a conformal trans-
formation of the Jordan frame. The Jordan frame prioritises use
of a metric, �̂�𝜇𝜈 , which couples minimally to the matter fields but
contains the non-trivial 𝐺4 function. In this frame the gravitational

Lagrangian is modified from the the Einstein-Hilbert action. The
Jordan-frame metric is related to the Einstein-frame metric, 𝑔𝜇𝜈 , via
a conformal factor 𝐴 that is a function of the Horndeski scalar:

�̂�𝜇𝜈 = 𝐴2 (𝜙)𝑔𝜇𝜈 . (6)

In what follows, specifically in the case of K-mouflage theories, we
will see that some quantities differ between the Jordan and Einstein
frame. Though these quantities may be ‘physical’ in nature, they
are not directly observable. General coordinate invariance – a key
property shared with GR by nearly all modified gravity theories –
ensures that observable quantities must be independent of frame
choices (see for example Catena et al. 2007; Chiba & Yamaguchi
2013; Francfort et al. 2019).

We summarise the models considered in this paper, their as-
sociated additional parameters and some selected constraints in
Table 1.

2.1 nDGP

The first model we consider is the Dvali-Gabadadze-Porrati
model (Dvali et al. 2000), which does not strictly fall into the Horn-
deski class, being a five-dimensional braneworld model. It is given
by the following action

𝑆 =
1

16𝜋𝐺5

∫
M

d5𝑥
√−𝛾𝑅5 +

∫
𝜕M

d4𝑥
√−𝑔


𝑀2

pl
2
𝑅 + Lm

 , (7)

where 𝛾 is the five-dimensional metric and 𝑅5 its Ricci curvature
scalar. 𝐺5 is the five-dimensional gravitational constant. The mat-
ter Lagrangian is restricted to a four-dimensional brane in a five-
dimensional Minkowski spacetime. The induced gravity given by
the four-dimensional Einstein-Hilbert action is responsible for the
recovery of four-dimensional gravity on the brane. The parameter
𝑟c = 𝐺5/(2𝐺N) is called the cross-over scale and is the only free
parameter of the model, with its GR limit being 𝑟c → ∞.

DGP also exhibits screening coming from higher order deriva-
tive terms in the effective 4-dimensional action. Such screening is
known as Vainshtein screening (Vainshtein 1972; Babichev & Def-
fayet 2013). The so-called decoupling limit of DGP has the effective
action given by (Luty et al. 2003; Gabadadze & Iglesias 2006)

LDGP =
𝑀2

pl
2
𝑅 +

(
3𝜙 − 1

Λ3
DGP

(𝜕𝜙)2
)
□𝜙 + 1

2𝑀2
pl
𝜙𝑇 , (8)

where 𝑇 is the trace of the energy momentum tensor and Λ3
DGP =

𝑀2
pl/𝑟

2
𝑐 . Note that although Equation 7 is not a Horndeski La-

grangian, Equation 8 is (compare to Equation 1). In this case we
have

𝐺3 (𝜙, 𝑋) = 3𝜙 + 2
Λ3

DGP
𝑋 , (9)

with 𝐺2 (𝜙, 𝑋) = 0 and 𝐺4 (𝜙) = 𝑀2
pl/2.

The literature typically assumes a ΛCDM background expansion,
which is accommodated by introducing an appropriate dark energy
contribution (see for example Schmidt 2009b; Bag et al. 2018) on
the stable ‘normal’ branch solution of the Friedmann equations. We
follow this here (see Lue 2006, for more details) and refer to this
normal branch as nDGP. We also parametrize the modification to
gravity using the energy density fraction Ωrc ≡ 1/(4𝑟2

c𝐻
2
0 ), where

𝐻0 is the Hubble constant. The GR-limit is then Ωrc → 0.

MNRAS 000, 1–20 (2022)
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Table 1. Overview of gravity models considered in this work. Note the K-mouflage kinetic term in Equation 14 does not pass Solar System tests without running
into fine-tuning issues (Barreira et al. 2015b). Note the CG has no free parameters with the tracker solution. We have included constraints for the more general
GCCG (see subsection 2.2).

model screening method free parameters selected data constraints

nDGP Vainshtein {Ωrc} Ωrc ≤ 0.235 (2𝜎) (LSS) (Barreira et al. 2016)
CG Vainshtein {𝑠 = 2, 𝑞 = 0.5} 𝑠 = 0.05+0.08

−0.05, 𝑞 > 0.8 (2𝜎) (Various LSS, GCCG) (Frusciante et al. 2020)
K-mouflage K-mouflage {𝑛, 𝛽K , 𝐾0, 𝜆} 𝛽K ≤ 0.1 (Lunar laser ranging) (Barreira et al. 2015b)

Although nDGP is now quite strongly constrained by observa-
tions (see for example Lombriser et al. 2009; Barreira et al. 2016;
Piga et al. 2023), its appeal as a modified gravity model stems from
the simplicity of its 4D effective action relative to the new phe-
nomenology it introduces. It is one of the simplest examples of
a gravity model that produces Vainshtein screening effects, whilst
maintaining scale-independent growth of matter perturbations, and
having only one additional parameter relative to ΛCDM. This has
made it a favourite testbed for simulations (Schmidt 2009a; Khoury
& Wyman 2009; Li et al. 2013a; Winther et al. 2017) and analyses
with galaxy surveys (Barreira et al. 2016; Piga et al. 2023; Frusciante
et al. 2023). We refer the reader to Refs. Koyama & Maartens (2006);
Li et al. (2013a) and section B for details on the modification to the
Poisson equation (Equation 4) in linear and nonlinear regimes.

2.2 Cubic Galileon

The Cubic Galileon (CG) model was first derived by Nicolis
et al. (2009) as a generalisation of the effective DGP action in 4-
dimensions. The Lagrangian is given by (see for example Deffayet
et al. 2009; Kobayashi et al. 2010)

LCG = 𝑅
𝑀2

pl
2

+ 𝑐2𝑋 + 1
Λ3

3
𝑐3𝑋□𝜙 , (10)

where 𝑐2 and 𝑐3 are dimensionless constants parametrizing the
modification to gravity, and the canonical choice for Λ3 being
Λ3

3 = 𝑀pl𝐻
2
0 , made to give the scalar field non-trivial dynamics

on cosmological scales. Comparing with Equation 1 we have

𝐺2 (𝜙, 𝑋) = 𝑐2𝑋 , 𝐺3 (𝜙, 𝑋) = − 1
𝑀pl𝐻

2
0
𝑐3𝑋 . (11)

This model also exhibits the Vainshtein mechanism due to the pres-
ence of the higher-order derivative terms (see Barreira et al. 2013a,
for a derivation in the case of spherical symmetry). In this model,
𝐺4 (𝜙) = 𝐴(𝜙)−2/2 = 1, and hence there is no difference between
Jordan and Einstein frames (see Equation 6). We note that the absence
of 𝐺4 and conformal coupling allows one to interpret this model as
a dark energy model with a non-trivial kinetic term.

The Cubic Galileon model is one member of a broader family, the
Galileons, which added further derivative terms to Equation 10 (Def-
fayet et al. 2009). The Galileon family received intense interest from
the theoretical physics community due to their shift symmetry prop-
erties (the actions are invariant under a shift 𝜙(𝑥) → 𝜙(𝑥)+𝑐+𝑏𝜇𝑥𝜇 ,
𝑐 and 𝑏𝜇 constants); this leads to special properties of the S-matrix.
Cosmologically, their impact has been studied on the CMB (for ex-
ample Barreira et al. 2014; Peirone et al. 2019; Frusciante et al. 2020;
Albuquerque et al. 2022), linear matter power spectrum (for example
Barreira et al. 2012) and gravitational lensing by voids (for example
Baker et al. 2018). See also Refs. Renk et al. (2017); Peirone et al.
(2018); Frusciante & Pace (2020) for other observational implica-
tions.

The more complex Galileon siblings have been virtually elimi-
nated by their inability to have luminal gravitational waves, leaving
behind only the Cubic Galileon (see for example Ezquiaga & Zu-
malacárregui 2017; Baker et al. 2017). The Cubic Galileon model
can be constrained by considering the integrated Sachs-Wolfe effect
cross-correlated with a galaxy sample, as was done in Refs. Renk
et al. (2017); Kable et al. (2022). The resulting cross-correlation,
however, is shown to be anti-correlated with the expected ΛCDM
signal, which severely constrains this model. It is worth noting, nev-
ertheless, that a broader class of cubic Horndeski theories does not
show this anti-correlation (Brando et al. 2019). Similarly to nDGP,
it remains a useful testbed displaying Vainshtein screening, with a
larger degree of flexbility due to its additional parameters and energy
scales. It is a useful starting point from which to investigate the more
general model space of the Horndeski Lagrangian (Equation 1).

We also note that the non-zero 𝐺2 term makes this model phe-
nomenologically distinct from nDGP. Further, in this paper we do not
assume a ΛCDM background as with nDGP, but rather the solution
to the Friedmann equations which include the effects of the scalar
field (see for example Barreira et al. 2013a). A cosmology with this
background evolution but with no further gravitational modification
(so the Poisson equation remains as in GR), will be referred to as
QCDM as in Ref. Barreira et al. (2013a).

The more general Generalised Covariant Cubic Galileon (GCCG)
was recently considered in Ref. Frusciante et al. (2020), which pro-
motes the𝐺𝑖 functions to be power law functions of 𝑋 , i.e.𝐺𝑖 ∝ 𝑋 𝑝𝑖 .
This model permits a tracker solution at the background level which
is given by (De Felice & Tsujikawa 2012)

𝐻2𝑞+1𝜓2𝑞 = 𝜁𝐻
2𝑞+1
0 , (12)

where 𝑞 ≡ (𝑝3 − 𝑝2) + 1/2 and 𝜓 = 𝜙′/𝑀pl. We also have the
parameter 𝑠 = 𝑝2/𝑞, leaving only 2 additional degrees of freedom
for this model over ΛCDM. The GCCG reverts to the Cubic Galileon
model when 𝑞 = 0.5 and 𝑠 = 2.

The GCCG model has not been ruled out by data, with CMB
experiments giving the 2𝜎 bounds of 𝑞 > 0 and 𝑠 = 0.6+1.7

−0.6, with a
slight preference for the model over ΛCDM (Frusciante et al. 2020).
When combined with SN1a and redshift space distortion data sets,
the bounds improve to 𝑞 > 0.8 and 𝑠 = 0.05+0.08

−0.05. We note that
theoretical stability conditions require both parameters to be positive.

In this paper we will only consider the CG limit of GCCG.
We note that we employ the GCCG patch to the ReACT code (Atayde
et al. 2024) for those specific predictions. For details on how the
Poisson equation is modified in the CG limit, we refer the reader to
Refs. Barreira et al. (2013a); Atayde et al. (2024).
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2.3 K-mouflage

2.3.1 Lagrangian

The last model we consider is the K-mouflage model (Babichev et al.
2009). This model has the Lagrangian (in the Einstein frame)

LK = 𝑅
𝑀2

pl
2

+M4𝐾 (𝑋) , (13)

where 𝐾 (𝑋) is a function of the canonical kinetic term, equivalent to
a restricted 𝐺2 (𝜙, 𝑋), and M4 is an energy scale of the theory3. We
will set M4 = 𝜆2𝐻2

0𝑀
2
pl as in Ref. Hernández-Aguayo et al. (2022),

𝜆 being an order 1 dimensionless constant which can be tuned to
give the current accelerated expansion of the Universe today. In
this work we will consider a form which has been well studied in
the literature (Brax & Valageas 2014a,b; Barreira et al. 2015a,b;
Hernández-Aguayo et al. 2022)

𝐾 (𝑋) = −1 + 1
𝐻2

0𝜆
2𝑀2

pl
𝑋 + 𝐾0

1
𝐻2𝑛

0 𝜆2𝑛𝑀2𝑛
pl
𝑋𝑛 , (14)

where 𝐾0 is another dimensionless model parameter and 𝑛 ≥ 2 is an
integer. For the conformal function, we assume an exponential form

𝐴(𝜙) = exp
(
𝛽K𝜙

𝑀pl

)
, (15)

where 𝛽K is another dimensionless model parameter. In total we then
have 4 parameters for this particular model: {𝜆, 𝐾0, 𝑛, 𝛽K}.

Unlike the other two models considered, the Jordan and Einstein
frames are not set to be identical (𝐴(𝜙) ≠ 1) which distinguishes this
model from 𝑘-essence theories (Armendariz-Picon et al. 1999) where
a universal coupling to matter is not present. In this work we will
develop predictions for both frames. We provide the transformations
of key quantities in the next subsection.

This model exhibits a similar screening mechanism to Vainshtein
screening, although quantitatively different due to the absence of the
higher-order𝐺3 (𝜙, 𝑋)□𝜙 term, giving it a unique phenomenology. In
particular, in dense environments of mass 𝑚, the K-mouflage radius
– the scale below which GR is recovered – goes as 𝑚1/2, whereas
in Vainshtein theories this screening occurs at smaller scales, with
a dependence of the Vainshtein radius on the environmental mass
being 𝑚1/3 (Brax & Valageas 2014a). Vainshtein is also capable
of screening large cosmological structures, while K-mouflage is not
(Brax et al. 2015).

K-mouflage has been confronted with a number of cosmological
data sets in Refs. Barreira et al. (2015b); Benevento et al. (2019),
with a review of current constraints given in Ref. Brax et al. (2021)
and forecasts using spectroscopic and photometric primary probes
by Euclid given in Ref. Frusciante et al. (2023). In particular, in
Ref. Barreira et al. (2015b), the authors place a Solar System con-
straint on the coupling parameter 𝛽K ≤ 0.1, and argue that the power
law form for 𝐾 (𝑋) as chosen here will necessarily require a degree of
fine tuning to avoid constraints. Despite this, this model is a good test
case for implementation as it has been well studied in the literature
and there are available 𝑁-body simulations with which to compare to
(Hernández-Aguayo et al. 2022). More viable non-canonical kinetic
terms can easily be implemented following the current implementa-
tions.

We alert the reader that we have made public a Mathematica
notebook with some key Einstein frame quantities and derivations
for the model along with this work. This contains useful expressions

3 Not to be confused with the manifold M in Equation 7.

such as the exact solutions for the Einstein frame background 𝐻 (𝑎)
in the 𝑛 = 2 and 𝑛 = 3 cases.

2.3.2 Transformation to Jordan Frame

In this section we provide some basic translations between Einstein
and Jordan frames which will be useful for our comparisons of the
K-mouflage model. We follow Ref. Francfort et al. (2019) for these
expressions. We use subscripts ‘J’ and ‘E’ to denote Jordan and
Einstein frame quantities respectively.

The scale factor transforms as

𝑎J = �̄� 𝑎E , (16)

where �̄� is the conformal factor evaluated at the background level
(see Equation 15). The Hubble rate transforms as

𝐻J (𝑎) =
𝐻E
�̄�

[
1 + 𝛽K

𝑀pl

d𝜙
d ln 𝑎E

]
. (17)

The matter power spectrum transforms as (Francfort et al. 2019)

(2𝜋)3𝛿D (𝒌1 + 𝒌2)𝑃J (𝑘1) = ⟨𝛿J (𝒌1)𝛿J (𝒌2)⟩
= ⟨𝛿E (𝒌1)𝛿E (𝒌2)⟩

− 4
�̄�𝜙

�̄�
⟨𝛿E (𝒌1)𝛿𝜙(𝒌2)⟩

− 4
�̄�𝜙

�̄�
⟨𝛿𝜙(𝒌1)𝛿E (𝒌2)⟩

+ 16

(
�̄�𝜙

�̄�

)2

⟨𝛿𝜙(𝒌1)𝛿𝜙(𝒌2)⟩ , (18)

where and we used 𝛿J = 𝛿E − 4𝛿𝜙�̄�𝜙/�̄�, with �̄�𝜙 = d�̄�(𝜙)/d𝜙, 𝛿
is shorthand for the matter density field perturbation 𝛿m, 𝛿𝜙 is the
scalar field perturbation, 𝜙 = 𝜙 + 𝛿𝜙, and 𝑘 is the comoving Fourier
mode in ℎ/Mpc. Angular brackets denote an ensemble average. The
linear order Klein-Gordan equation for the scalar field perturbation
in Fourier space under the quasi-static approximation is (Brax &
Valageas 2014b)

𝛿𝜙(𝒌) = − �̄�𝛽K𝑎
2

𝑀pl𝐾𝑋𝑘2 �̄�m𝛿E (𝒌) , (19)

where 𝐾𝑋 = d𝐾 (𝑋)/d𝑋 . Substituting 𝛿𝜙 into Equation 18 gives
us the following relationship between linear matter power spectra
predictions

𝑃L,J (𝑘) = 𝑃L,E (𝑘)
[
1 + 2J (𝑘, 𝑎) + J (𝑘, 𝑎)2

]
, (20)

where

J (𝑘, 𝑎) =
12�̄�𝜙𝛽K𝐻

2
0𝑀plΩm,0

𝑎𝑘2𝐾𝑋
, (21)

where we have used the relation �̄�m = 3𝐻2
0𝑀

2
plΩm,0𝑎

−3. We see
that the linear matter power spectra in both frames are identical up
to corrections that are suppressed by powers of ∼ 𝐻2

0/𝑘
2.

It was argued in Ref. Francfort et al. (2019) that this correction
to the matter power spectrum at nonlinear scales continues to go
as ∼ 𝐻4/𝑘4, and so becomes negligible on all sub-horizon scales.
This argument hinged on a number of assumptions, including 𝐴𝜙 ∼
−𝐴(𝜙)/(2𝜙). We will show in section 4 that the corrections are
indeed small at nonlinear scales for the K-mouflage model, using a
conformal factor given in Equation 15.
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3 TOOLS & METHODS

In this section we give an overview of the methods developed to
give predictions for the large-scale structure in all modified gravity
scenarios considered. After explaining details of how we compute
matter power spectra, we describe the methods we will compare in
this work. Most of these are 𝑁-body simulation-based approaches
with various degrees of approximation. The halo model reaction
(Cataneo et al. 2019) is also considered, which is an analytic method
based on the halo model and perturbation theory. Table 2 gives an
overview of these methods.

3.1 𝑃(𝑘) estimation

𝑁-body simulations track the time-evolution of the matter distribu-
tion in the simulation box (of side 𝐿box) by means of a number of
𝑁-body particles (𝑁P). To estimate the matter power spectrum from
these sort of discrete distributions it is necessary to deal with some
subtleties. The number of particles used in 𝑁-body simulations is
often large (i.e. 108 − 1012) so that it would be computationally im-
practical to estimate the matter power spectrum by computing the
distances between each pair of particles. Hence, the particles are nor-
mally interpolated on a regular grid using mass assignment schemes
(MAS). Then the matter power spectrum is estimated exploiting the
Fast Fourier Transform (FFT) algorithm. However, the modes close
to the Nyquist frequency of the FFT grid can be significantly affected
by aliasing (Jing 2005; Sefusatti et al. 2016). To avoid this problem we
use the interlacing technique with the triangular-shaped-cloud MAS
(Sefusatti et al. 2016) to compute the matter power spectra from the
simulations. Aiming to compare our matter power spectra deep in the
nonlinear regime but mindful of the limited mass-resolution of our
simulations, we use a FFT grid of size 𝑁mesh,1D = 𝐿box/(d𝑥) where
d𝑥 is the domain grid resolution of the simulation, and use a simple
linear binning with 𝑘min = 𝑘f/2 and Δ𝑘 = 𝑘f , where 𝑘f ≡ 2𝜋

𝐿box
is the

fundamental frequency of the box.

3.2 Full 𝑁-body

Our reference predictions will come from numerical simulations that
solve the nonlinear Klein-Gordon equation with multi-grid relaxation
to get the precise modified force law. They also employ a large
number of time steps over which the particles are evolved, ensuring
the accuracy of the resulting predictions. We consider two variants
of these codes.

3.2.1 ECOSMOG

The ECOSMOG simulation code (Li et al. 2012, 2013a) is a modi-
fied gravity extension of the adaptive mesh refinement (AMR) code
Ramses (Teyssier 2002). ECOSMOG relies on multigrid relaxation tech-
niques to solve the nonlinear Klein-Gordon equations for the addi-
tional scalar fields that appear in some modified gravity theories
(such as those considered here). This code was used to simulate
several gravity models in the literature:

• f(R) (Li et al. 2012);
• nDGP (Li et al. 2013a);
• symmetron (Davis et al. 2012; Brax et al. 2013);
• dilaton (Brax et al. 2011);
• galileon (cubic, quartic, cubic vector) (Barreira et al. 2013b,a;

Becker et al. 2020).

The accuracy of this code for predictions of 𝑓 (𝑅) (Hu & Sawicki
2007) effects on the matter power spectrum has been estimated to
be of ∼ 1% up to 𝑘 ∼ 7ℎ/Mpc in the code comparison paper
Ref. Winther et al. (2015). This code constitutes the highest pre-
cision predictive tool to be considered in this work.

3.2.2 MG-GLAM

MG-GLAM (Hernández-Aguayo et al. 2022; Ruan et al. 2022) extends
the Particle Mesh (PM) code GLAM (Klypin & Prada 2018) to a general
class of modified gravity theories (including the K-mouflage model)
by adding extra modules for solving the Klein-Gordon equations,
using the multigrid relaxation algorithm. It uses a regularly spaced 3D
mesh covering the cubic simulation box, solves the Poisson equation
for the Newtonian potential using the Fast Fourier Transform (FFT)
algorithm, and adopts the Cloud-In-Cell (CIC) scheme to implement
the matter density assignment and force interpolation.
MG-GLAM has been tested with the results from other high-precision

modified gravity codes, such as ECOSMOG (Li et al. 2012, 2013a),
MG-GADGET (Puchwein et al. 2013), and MG-AREPO (Arnold et al.
2019; Hernández-Aguayo et al. 2021). For example, using 10243

particles in a box of size 512 Mpc/ℎ, MG-GLAM simulations can accu-
rately predict the matter power boost, 𝑃MG/𝑃ΛCDM at 𝑘 ≲ 3 ℎ/Mpc,
with about 1% of the computational costs of the high-fidelity code
ECOSMOG. Being the only code that has been used in the literature
to simulate K-mouflage cosmologies, an estimate of its accuracy for
the K-mouflage boost factor is not available. However it has been
compared to the tree-PM code MG-Arepo for another derivative cou-
pling model (nDGP) where it showed an agreement of ∼ 2% up to
𝑘 = 3 ℎ/Mpc, with deviations of ∼ 1% from MG-Arepo (and theory
predictions) already present on linear scales.

3.3 MG-evolution

We further consider the relativistic 𝑁-body code, MG-evolution (�
Hassani & Lombriser 2020). This code is based on gevolution
(Adamek et al. 2016b), integrating parametrised modifications of
gravity for various dark energy scenarios. MG-evolution is imple-
mented based on a parametrisation framework that includes both
linear and deeply nonlinear scales, where the nonlinear parametri-
sation is based on modified spherical collapse computations and a
parametrised post-Friedmannian expression.
MG-evolution has been tested for a number of well-studied mod-

ified gravity models encompassing 𝑓 (𝑅) and nDGP gravity that
include large-field value and derivative screening effects (Hassani &
Lombriser 2020). Unlike most modified gravity 𝑁-body implemen-
tations, MG-evolution is as fast as theΛCDM simulations as it does
not need to deal with solving computationally expensive scalar field
equations.

In section B we discuss the nDGP and CG implementations in
MG-evolution through a parametrisation with one screening tran-
sition, 𝑘∗, which is treated as a free parameter (see section B). The
effective gravitational constant is expressed as

Δ𝐺eff (𝑘, 𝑎)
𝐺N

=
Δ𝐺eff, L (𝑎)

𝐺N
×
Δ𝐺eff, NL (𝑘, 𝑎)

𝐺N
, (22)

where we recall 𝐺eff (𝑘, 𝑎) = 𝐺N [1 + Δ𝐺eff (𝑘, 𝑎)/𝐺N], 𝐺eff, L de-
noting the linear regime parametrisation and 𝐺eff, NL refers to the
parametrisation of the nonlinear regime that includes the screening
or other suppression effects. The expressions for 𝐺eff, NL are given
in section B. MG-evolution then solves the modified Poisson equa-
tion (Equation 4) based on 𝐺eff obtained from Equation 22. It is
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Table 2. Overview of the numerical codes employed in this comparison. For more information on screening approximations see main text. PPF: parametrised
post-Friedmannian; PM: particle mesh; AMR: adaptive mesh refinement; 2LPT: 2nd order Lagrangian perturbation theory; K-G: Klein-Gordon.

code type screening approximation reference(s)

ECOSMOG 𝑁 -body (AMR) full K-G solution Li et al. (2012)
MG-GLAM 𝑁 -body (uniform PM) full K-G solution Hernández-Aguayo et al. (2022)
MG-evolution 𝑁 -body (uniform PM) PPF with free parameter 𝑘∗ Hassani & Lombriser (2020); Adamek et al. (2016b,a)
Hi-COLA 𝑁 -body (PM in the 2LPT frame) screening factor Wright et al. (2023), Sen Gupta et al. (in prep.)
COLA-FML 𝑁 -body (PM in the 2LPT frame) linear K-G equation in Fourier space Winther et al. (2017); Brando et al. (2023); Scoccimarro (2009)
ReACT Halo model and perturbation theory spherical collapse Bose et al. (2022); Atayde et al. (2024)

worth noting that this parametrization of gravitational modification
is done in Fourier space. As detailed in Ref. Hassani & Lombriser
(2020), this transformation yields an effective screening wavenumber
𝑘∗, which can be modeled (Lombriser 2016) for different screening
types. Currently, as mentioned, we treat 𝑘∗ as a free parameter to be
set by the user. In this work we tune the values of 𝑘∗ in order to opti-
mize the agreement with the reference predictions in each model and
at each redshift considered. The resulting values of 𝑘∗ are presented
in section 4.

3.4 COmoving Lagrangian Acceleration

The COmoving Lagrangian Acceleration (COLA) method (Tassev
et al. 2013) is a hybrid 𝑁-body approach to performing dark matter
simulations to study the effects of gravity on the formation of large-
scale structure. It leverages the fact that the growth of structure
on large scales can be computed analytically through Lagrangian
Perturbation Theory (LPT). This informs the small-scale 𝑁-body
part of COLA codes, thereby allowing for a significant speedup in
the production of results at the cost of a modest loss of accuracy at
small scales. In short, the COLA approach is a method well-suited
for producing large-scale structure results on mildly nonlinear scales
much faster than traditional 𝑁-body codes.

The COLA method introduced by Tassev et al. (2013) was orig-
inally developed for use with GR 𝑁-body codes. However, being
able to probe nonlinear scales is particularly useful in the study of
modified gravity theories, as key phenomenology, such as the effects
of screening mechanisms, become apparent on these scales. Since
Tassev et al., implementations of COLA codes for modified grav-
ity theories have followed for specific theories, such as 𝑓 (R) and
nDGP (Winther et al. 2017; Valogiannis & Bean 2017). Below we
describe two branches of work that extend the COLA method to more
general families of gravity models.

3.4.1 Hi-COLA

Horndeski-in-COLA (Hi-COLA) (� Wright et al. 2023) is an imple-
mentation of the COLA methodology for a broad Horndeski class
of scalar-tensor theories. Hi-COLA aims not to carry hard-coded
theory-specific implementations, but instead receives as input the La-
grangian functions for a given theory of interest, making it generic.
The action of the new scalar degree of freedom, 𝜙, is included as a
fifth force in the COLA simulation. The class of theories Hi-COLA is
designed to work with are reduced-Horndeski theories, where gravi-
tational waves travel at the speed of light. Such theories are described

by Equation 1. This restriction follows the constraints on the theory
space suggested by the analysis of GW1708174.

After receiving inputs for the forms of the Horndeski functions,
𝐺2, 𝐺3 and 𝐺4, the symbolic manipulation modules of Hi-COLA
construct the appropriate background equations of motion and
background-dependent fifth force expressions and solves them. These
are used to handle the expansion of the simulation box, compute 2nd-
order LPT factors (2LPT) and construct the total force experienced
by dark matter particles. This force can be schematically written as

𝐹total = 𝐺eff𝐹N , (23)

where

𝐺eff =
𝐺G4
𝐺N

{
1 + 𝛽HC (𝑧)𝑆HC (𝑧, 𝛿𝑚)

}
. (24)

𝐹N is the regular Newtonian force which is present in GR, and the
multiplicative factor in braces represents the extra force contributions
from 𝜙. 𝐺𝐺4 is the effective gravitational constant, which can differ
from 𝐺N in a time-dependent manner if 𝐺4 in Equation 1 is non-
trivial. This term will play a role in the results of subsubsection 4.2.3.
𝛽HC is a background-dependent function known as the coupling

factor; it controls the total possible strength of the fifth force at a given
point in time. 𝑆HC is a background and density-dependent function
called the screening factor. On linear scales 𝑆HC → 1, whilst in
screened regimes 𝑆HC → 0. Hence this factor is responsible for the
suppression of the fifth force in on small scales, returning the theory’s
behaviour to GR.
𝑆HC is derived under a quasi-linear perturbative treatment, where

the metric perturbations are considered to first order, whilst the scalar
field derivative perturbations are kept up to third order, following
Ref. Kimura et al. (2012). Combined with the assumptions that the
quasi-static approximation holds and that the matter over-density is
distributed spherically in space leads to the analytic form of 𝑆HC
(see Equation 3.15 in Wright et al. 2023). These assumptions in the
derivation of 𝑆HC lead to a caveat: that in its current public state,
Hi-COLA is designed to work with theories that exhibit Vainshtein
screening. However, recent development of Hi-COLA has focused
on extending the formalism to other screening mechanisms like K-
mouflage, and these results are presented in subsubsection 4.2.3.
The full details of K-mouflage in Hi-COLA will be the subject of an
upcoming publication, Sen Gupta et al. (in prep.).

3.4.2 COLA-FML

In this subsection we describe another approximate simulation
method to modified gravity theories endowed with the Vainshtein

4 Though it should be noted that Equation 1 is not the most general action
describing theories that do not violate the results of GW170817. Some Gauss-
Bonet theories are excluded, for example; see Ref. Clifton et al. (2020).
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mechanism, such as nDGP and the Galileon theory family. This
method was initially proposed in Ref. Scoccimarro (2009), and later
revisited in Ref. Brando et al. (2023). It consists of linearizing the
Klein-Gordon equation in Fourier space, and implementing a resum-
mation scheme to find a function, 𝐺eff (𝑘, 𝑎), defined in the same
way as Equation 22, that approximately captures the nonlinear cor-
rections introduced by the Vainshtein mechanism on small scales.
Specifically, this function transitions between an unscreened regime
at large scales, where 𝐺eff (𝑘, 𝑎) → 𝐺eff,L (𝑎), to the small scale
regime where GR is recovered, 𝐺eff (𝑘, 𝑎) → 𝐺N.

Consequently, in order to do so, in Refs. Scoccimarro (2009);
Brando et al. (2023) the authors require the nonlinear function,
Δ𝐺eff, NL (𝑘, 𝑎)/𝐺N

5, has the screening property, i.e.

Δ𝐺eff, NL (𝑘, 𝑎)
𝐺N

(𝑘/𝑘∗ ≪ 1) → 1,

Δ𝐺eff, NL (𝑘, 𝑎)
𝐺N

(𝑘/𝑘∗ ≫ 1) → 0 , (25)

where 𝑘∗ is the wavenumber associated with the Vainshtein radius,
defined in Eq. B3. The specifics behind the computation of the func-
tion Δ𝐺eff, NL (𝑘, 𝑎)/𝐺N is explicitly shown in Ref. Brando et al.
(2023). This screening approximation scheme has the advantage of
not introducing additional screening parameters used to tune the
approximate results with results from N-body simulations that con-
sistently solve the full Klein-Gordon equation at each timestep of the
simulation. The whole dependence of the gravity theory is encoded
in the Δ𝐺eff, NL (𝑘, 𝑎)/𝐺N function.

The methodology of this approximate method for Vainshtein
screening is computed using an external Python notebook, where
one can follow the steps outlined in Ref. Brando et al. (2023) to com-
pute𝐺eff (𝑘, 𝑎) externally. With the tabulated function computed, the
results are then implemented in the COLA-FML (�) N-body solver,
that implements the COLA method in a parallelised manner, ideal
for fast and approximate simulations. The COLA-FML library also
has different screening approximations for theories other than the
ones considered here, and are presented in Ref. Winther & Ferreira
(2015a). Importantly for this paper, our results for the 𝐺eff (𝑘, 𝑎)
screening case will be different than the ones of Hi-COLA at nonlin-
ear scales, however, at linear scales the two codes are identical.

3.5 Halo Model Reaction

The halo model reaction (Cataneo et al. 2019) is a flexible, accurate
and fast means to model the nonlinear matter power spectrum. This
model has been demonstrated to align with 𝑁-body simulations at the
2% level down to 𝑘 = 3 ℎ/Mpc, with minor variations depending on
redshift, the extent of modification to GR, and the mass of neutrinos
(Cataneo et al. 2020; Bose et al. 2021). The method aims to model
nonlinear corrections to the matter power spectrum resulting from
modified gravity through the reaction R(𝑘, 𝑧), which incorporates
both 1-loop perturbation theory and the halo model (see Bernardeau
et al. 2002; Cooray & Sheth 2002, for reviews). In this framework,
the nonlinear matter power spectrum is expressed as the product

𝑃NL (𝑘, 𝑧) = R(𝑘, 𝑧) 𝑃pseudo
NL (𝑘, 𝑧) , (26)

where the pseudo power spectrum is defined such that all nonlinear
physics are modeled using GR but the initial conditions are adjusted
to mimic the modified linear clustering at the target redshift.

5 We note that in Ref. Brando et al. (2023) this function is called 𝑀 (𝑘, 𝑎) .

The halo model reaction without massive neutrinos, R(𝑘, 𝑧), is
given as a corrected ratio of target-to-pseudo halo model spectra

R(𝑘, 𝑧) = {[1 − E(𝑧)] 𝑒−𝑘/𝑘★ (𝑧) + E(𝑧)} 𝑃2H (𝑘, 𝑧) + 𝑃1H (𝑘, 𝑧)
𝑃

pseudo
hm (𝑘, 𝑧)

.

(27)

The components are explicitly given as

𝑃
pseudo
hm (𝑘, 𝑧) =𝑃2H (𝑘, 𝑧) + 𝑃pseudo

1H (𝑘, 𝑧), (28)

E(𝑧) = lim
𝑘→0

𝑃1H (𝑘, 𝑧)

𝑃
pseudo
1H (𝑘, 𝑧)

, (29)

𝑘★(𝑧) = − �̄�
{
ln

[
𝐴( �̄� , 𝑧)
𝑃2H ( �̄� , 𝑧)

− E(𝑧)
]
− ln [1 − E(𝑧)]

}−1
,

(30)

with

𝐴(𝑘, 𝑧) =
𝑃1−loop (𝑘, 𝑧) + 𝑃1H (𝑘, 𝑧)

𝑃
pseudo
1−loop (𝑘, 𝑧) + 𝑃

pseudo
1H (𝑘, 𝑧)

𝑃
pseudo
hm (𝑘, 𝑧) − 𝑃1H (𝑘, 𝑧) .

(31)

𝑃2H (𝑘, 𝑧) is the 2-halo term which we approximate with the lin-
ear matter power spectrum, 𝑃L (𝑘, 𝑧). 𝑃1H (𝑘, 𝑧) and 𝑃

pseudo
1H (𝑘, 𝑧)

are the 1-halo terms as predicted by the halo model, with and
without modifications to the standard spherical collapse equations,
respectively. Recall that by definition, the pseudo cosmology has
no nonlinear beyond-ΛCDM modifications. Similarly, 𝑃1−loop (𝑘, 𝑧)
and 𝑃pseudo

1−loop (𝑘, 𝑧) are the standard perturbation theory 1-loop matter
power spectra with and without nonlinear modifications to ΛCDM,
respectively. As in the literature, Equation 29’s limit is taken to be at
𝑘 = 0.01 ℎ/Mpc and 𝑘★ is computed using �̄� = 0.06 ℎ/Mpc.

The nDGP model was part of the initial release of the publicly
available halo model reaction code, ReACT (Bose et al. 2020). This
code has been updated to include massive neutrinos in Ref. Bose
et al. (2021) and model independent parametrisations in Ref. Bose
et al. (2022), which constituted version 2 of the code (�). The GCCG
model was recently implemented in this version of ReACT (Atayde
et al. 2024), which is employed in section 4 in the CG limit. The
K-mouflage patch is being made public with this work and we give
all the relevant expressions in section A.

For the pseudo spectrum appearing in Equation 26 we use
HMCode2020 (Mead et al. 2020). This is currently the most accu-
rate and flexible prescription for the pseudo spectrum and has been
tested in a number of works (see for example Cataneo et al. 2019;
Bose et al. 2021, 2022). It is more accurate than the halofit prescrip-
tion of Ref. Takahashi et al. (2012), quoting a 2.5 − 5% accuracy for
𝑘 ≤ 1 ℎ/Mpc. It can also accommodate modifications that induce an
additional scale dependence in the linear matter power spectrum. For
modifications that only introduce a scale-independent shift in the lin-
ear spectrum amplitude, more accurate emulators can be used, such as
the EuclidEmulator2 (Knabenhans et al. 2019), which are quoted
to be 1% accurate when compared to high fidelity 𝑁-body simu-
lations down to 𝑘 ≤ 10 ℎ/Mpc. Despite this, the reaction function
𝑅(𝑘, 𝑧) is only expected to be 1% accurate for 𝑘 ≤ 1 ℎ/Mpc (Cataneo
et al. 2019).

It is also worth noting that EuclidEmulator2’s internal accuracy
is restricted to a hyperspheroidal region of their parameter space.
Points outside this region might have considerable degradation in
accuracy. This is considerably important in the context of beyond-
ΛCDM scenarios as we need tools that work in extreme regions
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of the parameter space. For these reasons, work is currently being
undertaken to build a pseudo spectrum emulator based on appropriate
numerical simulations (Giblin et al. 2019).

The choice of HMCode2020 keeps in line with the halo model re-
action’s claim of generality, while maintaining competitive accuracy
within the reaction’s percent-level accuracy range, especially when
taking the ratio of modified to unmodified spectra, i.e. the matter
power spectrum boost (see Equation 32).

4 RESULTS

Our main results are the comparisons of the nonlinear matter power
spectrum between the different codes. Specifically, we consider the
models described in Table 3 for which we have full 𝑁-body simu-
lations available to use as benchmarks. We list the specifications of
each simulation ran for these comparisons below. These include: box
size (𝐿box), number of particles (𝑁P), particle mass (𝑚P), grid cells
(𝑁g), initial redshift (𝑧ini) and force resolution.

• ECOSMOG runs: 𝐿box = 1024 Mpc/ℎ, 𝑁P = 10243, 𝑚P ≃
7.8×1010 𝑀⊙/ℎ. The initial conditions are generated at 𝑧ini = 49 by
MPGrafic (Prunet et al. 2008) using the Zel’dovich approximation.
It uses a force resolution of ∼ 15.6kpc/ℎ.

• MG-GLAM runs: 𝐿box = 512 Mpc/ℎ, 𝑁P = 10243, 𝑁g =

20483, 𝑚P = 1.07 × 1010 𝑀⊙ , /ℎ, where 𝑁g is the number of grid
cells. Initial conditions are generated at 𝑧ini = 100 using GLAM’s
own initial condition generator. It uses a fixed force resolution of
250 kpc/ℎ with an adaptive time-stepping described in the original
GLAM paper (Klypin & Prada 2018).

• MG-evolution runs: The nDGP simulation runs use 𝐿box =

1000 Mpc/ℎ with 𝑁g = 𝑁p = 10243. The initial conditions are
generated at 𝑧ini = 49. For the CG case, the initial conditions are
the same as in the COLA runs. These runs use 𝐿box = 400 Mpc/ℎ,
𝑁P = 𝑁g = 5123.
• COLA runs: 𝐿box = 400 Mpc/ℎ and 𝑁P = 5123 with initial

conditions generated using 2LPT for all simulations. For K-mouflage:
𝑚P ≃ 4.1× 1010 M⊙/ℎ. Initial conditions are generated at 𝑧ini = 19.
For nDGP: 𝑚P ≃ 3.7 × 1010 𝑀⊙/ℎ. Initial conditions are generated
at 𝑧ini = 49. For CG and QCDM: 𝑚P ≃ 4.1 × 1010 M⊙/ℎ. Initial
conditions are generated at 𝑧ini = 49.

Before presenting the spectra comparisons, we take a look at how
each model presented in section 2 modifies the standard ΛCDM
background evolution. This background evolution is adopted for each
of the different codes and so differences seen in the following section
only arise from how the perturbations are treated.

4.1 Background Evolution

In Figure 1 we show the modification to the standard ΛCDM back-
ground expansion for the models described in Table 3. We remind the
reader that we assume a ΛCDM expansion for the nDGP models and
so this is not shown. We see that the QCDM and CG cases give a much
larger modification at late times than any of the K-mouflage models
in the Einstein frame. In all models, we see a slower expansion rate at
roughly 𝑎 > 0.2 which acts to enhance structure formation. Indeed,
the 𝜎8 is larger for the QCDM model than for both K-mouflage mod-
els B and C (see Table 3), despite having a lower 𝐴𝑠 (although the
QCDM cosmology has a slightly larger Ωm,0). In all cases, the max-
imum modification is ∼ 8% (QCDM), with the K-mouflage models
giving a maximum modification of 3% at 𝑎 = 0.5.

In the same figure we also show the modification in the Jordan

frame for the K-mouflage models (middle panel). We see here that
relative to ΛCDM, we have a significantly slower expansion at 𝑎 >
0.03, with a maxmimum modification of 11% at 𝑎 ∼ 0.4. Further, the
current day expansion is larger than the one expected fromΛCDM by
5% under the strongest modification considered here. We do remind
the reader that the free parameter 𝜆 has been tuned to match the
current day expansion rate in ΛCDM in the Einstein frame. These
panels show that relatively large differences can be observed at the
background level when switching frames, which we will see in the
next subsection are not evident at the level of the perturbations (also
see subsubsection 2.3.2).

4.2 Matter power spectrum boost

Next we take a look at the perturbations, specifically how the matter
power spectrum is modified over ΛCDM. For this, we consider the
modified gravity boost, defined as

𝐵(𝑘, 𝑧) ≡ 𝑃NL (𝑘, 𝑧)
𝑃ΛCDM

NL (𝑘, 𝑧)
. (32)

4.2.1 nDGP

In Figure 2 we show how the various predictions for the boost com-
pare, using the ECOSMOGmeasurements as a reference, for the nDGP
cosmologies found in Table 3. Boost comparisons for nDGP amongst
different codes have already been performed extensively in the liter-
ature, and so this case is shown mainly as a consistency check, but
also to compare the Hi-COLA implementation which has not yet been
tested before.

We find that for the low modification case, N5, all predictions
remain within 1% of each other for 𝑘 ≤ 3 ℎ/Mpc, including the
linear prediction, which for 𝑧 = 0 gives a modification of 𝐵(𝑘 →
0, 𝑧 = 0) = 1.033. For N1, 𝐵(𝑘 → 0, 𝑧 = 0) = 1.149%. In this case,
all predictions except the linear remain within 2% of the ECOSMOG
reference for 𝑘 ≤ 1 ℎ/Mpc. MG-evolution performs the best as
expected, having an additional free parameter giving the screening
transition, 𝑘∗. We have found 𝑘∗ = 2 ℎ/Mpc and 𝑘∗ = 1 ℎ/Mpc give
a good overall agreement with the ECOSMOG simulations for the N1
and N5 models respectively. Using these values the MG-evolution
boost remains within 1% up to 𝑘 ≤ 3 ℎ/Mpc except for the largest
modes at 𝑧 = 1 where it worsens to 2%, consistent with what was
found in Ref. Hassani & Lombriser (2020). Similarly, the halo model
reaction remains within 2% for 𝑘 ≤ 3 ℎ/Mpc except for the largest
modes at 𝑧 = 1, where it worsens to 3% agreement, in accordance
with Ref. Cataneo et al. (2019).

The two COLA methods show similar agreement, but deviate the
most on average from the reference boost measurements. COLA-FML
performs slightly better at 𝑧 = 0 while Hi-COLA does better at higher
𝑧, with deviations up to 4% at 𝑘 = 3 ℎ/Mpc. This is very consistent
with the results of Ref. Winther et al. (2017).

4.2.2 Cubic Galileon (CG)

Figure 3 shows the boost comparisons between the various codes
for the CG and QCDM cases, again using ECOSMOG as a reference.
These ECOSMOG simulations were ran using the same code as pre-
sented in Ref. Barreira et al. (2013a). We have changed the baseline
cosmology for these new runs, particularly lowering the value of 𝐴𝑠
and 𝐻0. We also run a ΛCDM counterpart with which to calculate
Equation 32. Previous works have compared the boost ratio of the
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Table 3. Models considered in this work. The ΛCDM 𝜎8 (𝑧 = 0) = 0.851, 0.805, 0.815 for nDGP, CG and K-mouflage cosmologies respectively. We remind
the reader that the values for {𝑠, 𝑞} are fixed in CG, while adopting the tracker solution for the scalar field imposes the values for 𝑐2 and 𝑐3 quoted in the table.

Parameter nDGP-N1 nDGP-N5 CG QCDM K-mouflage - A K-mouflage - B K-mouflage - C

Ωm,0 0.281 0.313 0.3089
Ωb,0 0.046 0.049 0.0486
𝐻0 69.7 67.32 67.74
𝑛𝑠 0.971 0.9655 0.9667
𝐴𝑠 2.297 × 10−9 2.010 × 10−9 2.064 × 10−9

𝜎8 (𝑧 = 0) 0.912 0.865 0.884 0.865 0.881 0.852 0.837

Ωrc 0.25 0.01 - - - - -

𝑐2/𝑐2/3
3 - - -5.378 - - - -

𝑐3 - - 10 - - - -
𝑠 - - 2.0 - - - -
𝑞 - - 0.5 - - - -

𝑛 - - - - 2 2 2
𝜆 - - - - 1.475 1.460 1.452
𝐾0 - - - - 1 10 1
𝛽K - - - - 0.2 0.2 0.1

Figure 1. The ratio of the normalised Hubble expansion rate (𝐸 (𝑎) = 𝐻 (𝑎)/𝐻0) between the modified gravity and GR models. The left panel shows the
K-mouflage models shown in Table 3 in the Einstein frame, while the middle panel shows the same models in the Jordan frame, with 𝑎 now being the Jordan
frame scale factor. The right panel shows the QCDM model, which has the same background expansion as the CG model. The model parameters for K-mouflage
are defined in subsection 2.3.

CG spectrum to that in QCDM (Wright et al. 2023), or have per-
formed direct spectra comparisons (Atayde et al. 2024). Further, in
Ref. Atayde et al. (2024) the authors found significant disagreement
when using an HMCode2020 prescription, which was outperformed
by the halofit pseudo spectrum prescription. This was being caused
by the 𝜎8-dependent damping introduced into HMCode2020 (Mead
et al. 2020), which was not calibrated for particularly high values of
𝜎8 as that of the simulations found in Ref. Barreira et al. (2013a). The
lower value of 𝜎8 in our simulations was found to greatly improve
the performance of HMCode2020 over halofit. For comparison with
previous work, we also show the comparisons for the ratio of CG to
QCDM power spectra, or QCDM-based boost, in the bottom panels
of Figure 3.

The MG-evolution predictions again give the best agreement,
remaining within 1% in the CG case for 𝑧 ≥ 0.5 down to 𝑘 =

3 ℎ/Mpc. For 𝑧 = 1, the linear implementation, or equivalently
𝑘∗ → ∞, provides the best match. However, in the figure, we have
plotted the case 𝑘∗ (𝑧 ≥ 0.5) = 6 ℎ/Mpc as it appears to work
well given the resolution of the simulation. Adopting the value 𝑘∗ =
6 ℎ/Mpc at 𝑧 = 0 causes a quick divergence of the predictions as
expected from the nature of 𝑘∗, amounting to a 8% disagreement

at 𝑘 = 1 ℎ/Mpc. Adopting 𝑘∗ = 0.4 ℎ/Mpc at 𝑧 = 0 brings the
predictions to within 2% agreement in the same range of scales.
Interestingly, in the QCDM-based boost case we can adopt the same
value of 𝑘∗ = 0.3 ℎ/Mpc for all redshifts considered while keeping a
good fit to the ECOSMOGmeasurements. This seems to indicate that 𝑘∗
is also degenerate to some extent with the background modification.

In the QCDM case, the predictions are consistent within 1%
down to 𝑘 = 1 ℎ/Mpc. The disagreement for 𝑘 > 1 ℎ/Mpc arises
from resolution effects, as evidenced by the agreement between
MG-evolution and Hi-COLA. This suggests that the tuning of 𝑘∗
performed to match the reference boost factor in CG is compensat-
ing for the resolution-induced loss of boost due to the background by
suppressing the small-scale screening.

The halo model reaction remains within 1% for 𝑘 ≤ 1 ℎ/Mpc for
both QCDM and CG cases, with the exception of the CG at 𝑧 = 0.
Here we find up to 4% disagreement with ECOSMOG. This is an atyp-
ically large disagreement given the similarity of CG to nDGP, for
which the halo model reaction performs significantly better. To in-
vestigate this, we have tested different pseudo spectra prescriptions,
specifically halofit and EuclidEmulator2, neither offering signif-
icant improvement for the matter power spectrum boost. We have
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Figure 2. Comparing boost factors for the various codes listed in Table 2 for nDGP at 𝑧 = 0, 0.5, 1 (from left to right) with ECOSMOG as benchmark. The upper
panels show the results for the nDGP-N5 (low modification) model and the lower panels for the nDGP-N1 (high modification) model (see Table 3).

also tried omitting the 1-loop correction (see Equation 31) with little
change to the predictions as found in Ref. Bose et al. (2022). The
excellent agreement in the QCDM case at 𝑧 = 0, with 1% agreement
beyond 𝑘 = 3 ℎ/Mpc, indicates no issue in the background imple-
mentation. Further, the QCDM-based boost comparisons show the
same disagreement at 𝑧 = 0, but the same or better agreement at
higher redshifts, which is just a partial cancellation of inaccuracies
in the QCDM and CG ΛCDM-based boost cases.

Lastly, we also checked the behaviour of the reaction function
R for varying GCCG modification strengths by changing the value
of 𝑠. We compared these to corresponding nDGP predictions for R
such that the nDGP models gave the same linear enhancement of
structure as the GCCG cases, making their pseudo spectra identical.
We observed significantly more suppression coming from R in the
GCCG than nDGP, especially for large modifications (large 𝑠 or large
Ωrc), which may be due to the 𝐺2 term present in the GCCG. We do
note that the CG has a very large linear enhancement of clustering at
𝑧 = 0, equivalent to a nDGP model withΩrc = 0.6. This may indicate
a break down of the halo model reaction’s assumptions, specifically
the ΛCDM fits it assumes for the halo mass function and virial
concentration. The latter has been shown to significantly impact
its accuracy (Cataneo et al. 2019; Srinivasan et al. 2021, 2024),
especially when the modification to gravity is large. To further pin
the 𝑧 = 0 CG disagreement down, we would need to run a CG pseudo
cosmology simulation which would make it clear whether or not the
reaction modelling or ΛCDM-fits in the halo model components
are failing. GCCG simulations with a smaller modification will also
indicate this validity range. This will be the focus of future work.

Finally, both COLA implementations remain 2% consistent with
ECOSMOG in the CG case at scales 𝑘 ≤ 1 ℎ/Mpc. COLA-FML per-
forms slightly better at low 𝑧 while Hi-COLA shows better agreement
at higher 𝑧. The implementations differ only in their approach to
screening and so we only show the Hi-COLA results for QCDM,

where it is similarly consistent as in the CG case. We note that all
codes tend to under-predict the boost at small scales. Part of this
difference surely comes from the fact that while the ECOSMOG code
consistently solves the full Klein-Gordon equation, the other codes
implement the screening mechanism in an approximate way, making
use of the spherical approximation in one way or another. Therefore,
at smaller scales these approximate methods are not guaranteed to
be valid. A better test of the accuracy of screening is provided by the
QCDM-based boost in the bottom panels, where we see far better
agreement between the COLA methods and ECOSMOG.

On this note, we remark that both COLA and MG-evolution’s
disagreement with the benchmarks in both nDGP, CG and QCDM
cases is also partially due to a low force resolution which can lead to
a loss of power on small scales (see Brando et al. 2022, for example).
By increasing the force resolution, and time steps in the COLA
cases, we expect to find much better agreement above 𝑘 = 1 ℎ/Mpc,
particularly in the QCDM case which does not have screening. We
note that the limited force accuracy will affect all particle mesh
codes, including MG-GLAM, and the most efficient and sure way to go
to smaller scales would be to use Tree-particle mesh or AMR codes
like ECOSMOG.

4.2.3 K-mouflage

For K-mouflage, we restrict our comparisons to MG-GLAM, Hi-COLA
and ReACT with the MG-evolution implementation to be the focus
of an upcoming work. We expect the same level of accuracy as
exhibited in the CG and nDGP cases, especially given the freedom
imparted by 𝑘∗.

In Figure 4 we show the results for the K-mouflage model. As a
reference we use the MG-GLAM simulations, ran for the purpose of
this comparison. We compare the K-mouflage boost for the three
models listed in Table 3, all of which assume 𝑛 = 2 in Equation 14.
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Figure 3. Comparing boost factors for the various codes listed in Table 2 for the CG (upper) and QCDM (middle) and QCDM-based boost (bottom) at
𝑧 = 0, 0.5, 1 (from left to right) with ECOSMOG as the benchmark. Note COLA-FML and Hi-COLA’s results for QCDM are identical and so we only show the
Hi-COLA QCDM ratio in the middle panels.

Table 4. Maximal percent deviation of the nonlinear matter power spectrum boost under various modelling approaches against benchmarks, at different redshifts
for 𝑘 ≤ 1(3) ℎ/Mpc.

MG-evolution COLA-FML Hi-COLA ReACT
Model z=0 z=0.5 z=1 z=0 z=0.5 z=1 z=0 z=0.5 z=1 z=0 z=0.5 z=1

N1 1(1)% 1(1)% 1(2)% 1(2)% 1(4)% 1(4)% 2(4)% 1(4)% 1(3)% 2(2)% 2(2) % 2(3)%
N5 1(1)% 1(1)% 1(1)% 1(1)% 1(1)% 1(1)% 1(1)% 1(1)% 1(1)% 1(1)% 1(1)% 1(1)%
CG 1(1)% 1(1)% 1(2)% 1(6)% 1(5)% 1(5)% 1(10)% 2(6)% 1(3)% 4(8)% 2(5)% 1(3)%

QCDM 1(5)% 1(3)% 1(2)% - - - 2(6)% 1(3)% 1(3)% 1(1)% 1(4)% 1(5)%
K-mouflage A - - - - - - 1(4)% 1(3)% 1(3)% 2(17)% 1(8)% 1(4)%
K-mouflage B - - - - - - 1(2)% 1(1)% 1(1)% 2(10)% 1(5)% 1(2)%
K-mouflage C - - - - - - 1(1)% 1(1)% 1(1)% 1(4)% 1(3)% 1(1)%

We begin by noting that the coupling of matter to the scalar field is
proportional to 𝛽K/𝐾0 (see Equation. 81 of Brax & Valageas 2014b,
for example), and so large positive 𝐾0 decreases the fifth force while
large 𝛽K increases it. We find the larger the modification, the worse
the agreement between ReACT, Hi-COLA and MG-GLAM. We can see
this by moving from top to bottom panels in Figure 4. Further, we
note for the largest modification (top panels), there is a 1% offset
between MG-GLAM and linear theory (as well as the other codes).

This was also seen in Figure. 10 of Ref. Hernández-Aguayo et al.
(2022) but not seen in the linearised simulations presented in that
reference, suggesting this is a consequence of the nonlinear treatment
of MG-GLAM. We also note much smaller linear theory offsets at large
scales for the weaker modifications.

For the strongest modification, K-mouflage A in Table 3, at low 𝑧,
all codes are consistent within 2% for 𝑘 ≤ 1 ℎ/Mpc. This agreement
improves for the halo model reaction to 1% agreement for 𝑘 ≤
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Figure 4. Comparing boost factors for the various codes listed in Table 2 for the K-mouflage models listed in Table 3 with {𝐾0, 𝛽K } =

{1, 0.2}, {10, 0.2}, {1, 0.1} (from top to bottom) at 𝑧 = 0, 0.5, 1 (from left to right) with MG-GLAM as the benchmark. All models assume 𝑛 = 2.

3 ℎ/Mpc for 𝑧 = 1 and the weakest modification, K-mouflage C in
Table 3. Overall, Hi-COLA does not show significant improvement
or degradation with redshift or modification strength, consistently
remaining within 2% for 𝑘 ≤ 3 ℎ/Mpc. The exception is K-mouflage
A for 𝑧 = 0 (upper left panel), where it degrades to 4% discrepancy
at 𝑘 = 3 ℎ/Mpc. The Hi-COLA predictions are all made in the Jordan
frame while MG-GLAM and ReACT produce predictions in the Einstein
frame. It is here we note the consistency of the nonlinear matter power
spectrum in both frames, confirming the claim of Ref. Francfort et al.
(2019).

Before concluding we make some technical notes on the compar-
isons. In the case of the Jordan frame predictions from Hi-COLA,
the boost is taken with the K-mouflage spectrum measured at 𝑎J,
calculated using Equation 16. Finally, we note that ReACT has the
option to use the PPF screening formalism for K-mouflage as derived
in Ref. Lombriser (2016), and which we present in section B for
completeness. This framework comes with an additional degree of
freedom and so we have chosen not to use this in our comparisons.
The inclusion of K-mouflage theories in Hi-COLA will be the subject
of an upcoming publication, Sen Gupta et al. (in prep.).

5 CONCLUSIONS

High quality 𝑁-body codes for modified gravity are essential in or-
der to place reliable constraints on gravity using large-scale structure
(LSS) observations. Ongoing galaxy surveys such as Euclid or the
Dark Energy Survey will heighten their necessity by beating down
the statistical uncertainty on our measurements, making theoretical
accuracy essential. Benchmarking the accuracy of approximate but
computationally efficient numerical methods against these high qual-
ity simulations is an important step towards reliable constraints from
the forthcoming data.

In this paper we have performed comparisons of the matter power
spectrum modification induced by three distinct theories of modified
gravity, each of which induces a scale-independent enhancement
of the linear growth of structure: the normal branch of the DGP
braneworld model, the Cubic Galileon and K-mouflage. The former
two employ the Vainshtein screening mechanism, while the latter
employs the K-mouflage screening mechanism. For similar compar-
isons with scale-dependent modifications to the linear growth and
the chameleon (Khoury & Weltman 2004) or symmmetron (Hinter-
bichler & Khoury 2010) screening mechanisms, we refer the reader
to Refs. Winther et al. (2015, 2017); Cataneo et al. (2019); Hassani
& Lombriser (2020).
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We compare the matter power spectrum boost predicted by 6
different numerical codes, each of which has a varying approach
to the nonlinear gravitational coupling: full 𝑁-body (ECOSMOG and
MG-GLAM), Comoving Lagrangian Acceleration (COLA) of which we
compare two distinct codes, Hi-COLA and COLA-FML, the relativistic
parametrised 𝑁-body code, MG-evolution, and the semi-analytic
halo model reaction approach expressed by the ReACT code. We
summarise the distinctions of each code below:

• Full 𝑁-body: Solves the Klein-Gordan equation exactly to get
the force applied to particles in a box. Serves as an accuracy bench-
mark.

• Hi-COLA: Includes a fifth force in the COLA formalism via
a screening factor, as well as consistently solving the modified cos-
mological expansion history. Screening factors are derived using a
quasi-linear treatment of the metric and scalar field perturbations,
along with assuming the quasi-static approximation and spherically
distributed over-densities.

• COLA-FML: Introduces the Vainshtein mechanism by evalu-
ating a function, 𝐺eff (𝑘, 𝑎), that captures on average nonlinear cor-
rections from the screening mechanism. This method is performed
by linearizing the Klein-Gordon equation in Fourier space, and the
full function is found by an iterative process.

• MG-evolution: Employs a parametrised ansatz for the nonlinear
force law which comes with a screening parameter.

• ReACT: Uses spherical collapse, the halo model and 1-loop
perturbation theory to predict the matter power spectrum.

We summarize the overall accuracy exhibited by each approach in
Table 4 with respect to the full 𝑁-body benchmark. We remark that
𝑁-body codes solving the full Klein-Gordon equation in modified
gravity are 1% consistent (Winther et al. 2015) for 𝑘 ≲ 7 ℎ/Mpc in
their prediction for the boost.

We find that all approaches considered here are overall 2% consis-
tent with the benchmark 𝑁-body boost at scales 𝑘 ≤ 1 ℎ/Mpc and for
𝑧 ≤ 1. The only exceptions are ReACT for the strongest modifications
to ΛCDM and at 𝑧 = 0. MG-evolution performs the best, with a
general accuracy of 1% at all scales considered (𝑘 ≤ 3 ℎ/Mpc), but
this accuracy comes at the cost of tuning the screening parameter de-
pending on the output redshift or modification strength, which might
undermine the predictivity of the code.

We thus can advocate the safe use of these codes, and any emula-
tors based upon them (see Tsedrik et al. 2024; Carrion et al. 2024;
Gordon et al. 2024, for example)6, at fairly nonlinear scales for scale-
independent models. We note the caveat that emulation error should
be quantified and appropriately accounted for.

For a more concrete estimate on the validity of these methods, we
can consider a Euclid-like survey whose weak lensing analysis will
have a signal to noise peaking at (conservatively) 𝑧 ≈ 0.7 (see Lepori
et al. 2022, for example). Imposing a 2% accuracy demand on the
matter power spectrum model, and assuming a ΛCDM fiducial back-
ground cosmology, we can arguably trust all method predictions for
ℓmax ≲ 1800. This roughly corresponds to the pessimistic scenario
described in Ref. Blanchard et al. (2020).

At scales 𝑘 > 1 ℎ/Mpc we find all codes begin to diverge by more
than 2% for the strongest modifications considered. They should thus
not be used to model the highly nonlinear scales of structure forma-
tion in the context of forthcoming LSS analyses without considering

6 The results of this work do not directly apply to the emulator produced in
Ref. Fiorini et al. (2023), nDGPemu, as the screening approximation used to
produced their training set is different from the ones adopted in this work.

an appropriate theoretical error contribution to the error budget (see
Audren et al. 2013, for example).

The goal of this work was to validate different methods to com-
pute the nonlinear matter power spectrum boost (see Equation 32).
This function inherently depends on the nonlinear matter power spec-
trum of ΛCDM. But further, the boost must be applied to an accurate
ΛCDM spectrum prediction in order to get a nonlinear modified mat-
ter power spectrum prediction. Therefore, the final modified gravity
prescription inherits a dependence on predictions of the standard
model. While we now have state-of-the-art high resolution tools to
evaluate 𝑃ΛCDM

NL (𝑘, 𝑧), the region in which these tools have internal
accuracy within 1%−2% may not be as broad as we need for extract-
ing unbiased constraints on cosmological parameters for Stage-IV
LSS surveys (see Gordon et al. 2024, for a more in depth discussion).
Furhtermore it is expected that in beyond-ΛCDM analysis, extreme
regions of the parameter space need to be sampled, which heightens
the need for the development of more comprehensive emulators in
ΛCDM, as these are also imperative for the study of beyond-ΛCDM
models.

In a similar vein, a further investigation of the impact of baryons
in a full parameter inference scenario remains imperative to per-
form using the codes validated in this work. It has been shown that
the interplay between baryonic physics and cosmology exhibit some
dependence at small scales (Elbers et al. 2024). However, it is un-
known to what extent in the nonlinear regime we can still extract
relevant cosmological information to improve our constraints, i.e., if
we need to model baryonic physics deep inside the nonlinear regime,
𝑘 ∼ 10 ℎ/Mpc or not. Alternatively to modelling baryonic physics
at the level of the power spectrum, it would be interesting to in-
vestigate the performance of procedures that mitigate the impact of
baryons in the parameter constrains, such as the methods described
in Refs. Eifler et al. (2015); Huang et al. (2019, 2021).

To conclude, let us highlight that the methods compared in this
work have been designed with an element of theoretical flexibility
in mind. There is a general shift to move beyond hard-coded codes
designed to run with only one gravity model, and instead build more
general tools that can be calibrated to a range of different models7.
This is an essential step forward to streamline the testing of new
theoretical ideas with data from Stage IV surveys.
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The halo model reaction software used in this article is publicly avail-
able in the ACTio-ReACTio repository at https://github.com/
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a Mathematica notebook, kmouflage.nb, which contains relevant
calculations for the K-mouflage model. 𝑁-body matter power spectra
measurements are available upon request.
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APPENDIX A: K-MOUFLAGE REACT PATCH

Here we present the expressions needed to calculate the halo model
reaction (see Equation 27) in the K-mouflage model. The halo model
reaction relies on both the halo model (see Cooray & Sheth 2002,
for a review) and 1-loop perturbation theory (see Bernardeau et al.
2002, for a review). In particular, besides the background expansion
𝐻 (𝑎), we require the modifications to the 1st, 2nd, 3rd order pertur-
bative and nonlinear Poisson equations, as well as contributions to
the potential energy of halos in order to solve the virial theorem (see
Cataneo et al. 2019; Bose et al. 2020, for more details). K-mouflage
also comes with a friction term correction to the Euler equation (Brax
& Valageas 2014b).

A1 Background

For the background expansion we must solve the Klein-Gordon
and Friedmann equations simultaneously. We do this numerically in
ReACT as done in Ref. Hernández-Aguayo et al. (2022). The Fried-
mann equations are

H2

𝐻2
0

[
1 − 𝜑′2

6

]
=
𝐴(𝜑)Ωm,0

𝑎
+ 1

3
𝜆2𝑎2

+ (2𝑛 − 1)
3

𝜆2𝑎2𝐾0

(
𝜑′2

2𝜆2𝑎2

)𝑛 H2𝑛

𝐻2𝑛
0

, (A1)

dH
d𝜏

1
𝐻2

0
= −

𝐴(𝜑)Ωm,0
2𝑎

+ 1
3
𝜆2𝑎2 − 1

3
𝜑′2

H2

𝐻2
0

− (𝑛 + 1)
3

𝜆2𝑎2𝐾0

(
𝜑′2

2𝜆2𝑎2

)𝑛 H2𝑛

𝐻2𝑛
0

, (A2)

while the Klein-Gordan equation is given as

(𝐾𝑋 + 2�̄�𝐾𝑋𝑋)
[
H2

𝐻2
0
𝜑′′ + dH

d𝜏
1
𝐻2

0
𝜑′

]
+ 2(𝐾𝑋 − �̄�𝐾𝑋𝑋)

H2

𝐻2
0
𝜑′ + 3

d𝐴(𝜑)
d𝜑

Ωm,0
𝑎

= 0 , (A3)

where𝐾𝑋𝑋 = d2𝐾/d𝑋2 and we recall primes denote derivatives with
respect to ln 𝑎. In these equations we have defined the normalised
scalar field 𝜑 ≡ 𝜙/𝑀pl and used the conformal Hubble rate H(𝑎) =
𝐻 (𝑎)𝑎. 𝜏 is conformal time. We indicate that a few typographical
errors did occur in Ref. Hernández-Aguayo et al. (2022) which have
been corrected in the above equations.

To solve these equations we first find the analytic solutions to
Equation A1 for a given value of 𝑛 8. For 𝑛 = 2 this is a quadratic
equation in H2/𝐻2

0 . Then, for a given value of 𝑎 (or ln 𝑎) we can
substitute H and Equation A2 in Equation A3, enabling us to solve
for the entire evolution of 𝜑 (and 𝜑′), and consequently 𝐻 (𝑎).

8 We provide a Mathematica notebook which computes the solutions for
𝑛 = 2, 3 and checks consistency of the equations.

A2 Perturbations

The linear modification to the Poisson equation is given by (Brax &
Valageas 2014b)

𝐺eff,L
𝐺N

= 𝐴(𝜑)
(
1 +

2𝛽2
K

𝐾𝑋

)
. (A4)

Here we have included the conformal factor 𝐴(𝜑), that comes along
with 𝜌m in the Poisson equation, Equation 4. Note that 𝐺eff,L/𝐺N =

𝜇(𝑘, 𝑎) in the ReACT standard notation of Refs. Bose & Koyama
(2016); Cataneo et al. (2019); Bose et al. (2020, 2022) for example.

The 2nd and 3rd order symmetrised modifications to the Poisson
equation, in the same notation of Ref. Bose & Koyama (2016); Bose
et al. (2020), are (Brax & Valageas 2014b)

𝛾2 (𝒌1, 𝒌2, 𝑎) =0 ,

𝛾3 (𝒌1, 𝒌2, 𝒌3, 𝑎) = − 9
2
𝐾𝑋𝑋

(
𝐴(𝜑)Ωm,0

𝑎

𝐻2
0

H2

)3 (
𝛽K
𝐾𝑋

)4 H4

𝐻2
0

1
𝑎2𝜆2

×
[
(𝜇12 + 2𝜇13𝜇23)

𝑘1𝑘2
+ (𝜇13 + 2𝜇23𝜇12)

𝑘1𝑘3

+ (𝜇23 + 2𝜇13𝜇12)
𝑘2𝑘3

]
, (A5)

where we have defined 𝜇𝑖 𝑗 ≡ �̂�𝑖 · �̂� 𝑗 and 𝑘𝑖 = |𝒌𝑖 |.
Lastly, we also have a modification to the Euler equation in the

form of a friction term (Brax & Valageas 2014b). Similar terms have
been included in ReACT in the context of interacting dark energy
models (Simpson 2010; Baldi & Simpson 2015; Bose et al. 2018;
Carrilho et al. 2022). In the K-mouflage model considered here, this
term is given as

𝐴friction = 𝛽K𝜑
′ . (A6)

This term enters the Euler equation as expressed in Equation. 2.10
of Ref. Bose et al. (2018) for example.

A3 Spherical collapse

The halo model reaction also requires us to solve for the spherical top-
hat overdensity. This involves solving the evolution equation for the
top-hat radius which requires specification of the nonlinear Poisson
equation. The modification to this equation is to a good approxima-
tion equal to the linear modification at extra galactic scales given the
smallness of the K-mouflage radius (Brax & Valageas 2014b)

𝐺eff (𝑘, 𝑎)
𝐺N

=
𝐺eff, L (𝑎)
𝐺N

. (A7)

We note in the notation of Ref. Cataneo et al. (2019), F = 𝐺eff/𝐺N−
1 = Δ𝐺eff/𝐺N. In ReACT F appears as 1+F in the Poisson equation.
This yields the correct conformal factor accounting for the Einstein-
frame transformation of the background density in the nonlinear
Poisson equation, as it is already explicit in Equation A4.

Lastly, we note that the top-hat radius evolution also must include
the friction term Equation A6.

A4 Virial theorem

Here we present the potential energy contributions to the virial theo-
rem in the K-mouflage model considered. This is needed to calculate
the virial mass in the halo model reaction calculations. The specific

MNRAS 000, 1–20 (2022)
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components we require are (Schmidt et al. 2010; Cataneo et al. 2019)

𝑊N
𝐸0

= −Ωm,0
𝑎−1

𝑎2
i
𝑦2 (1 + 𝛿) ; (A8)

𝑊𝜙

𝐸0
= −Ωm,0F

𝑎−1

𝑎2
i
𝑦2𝛿 ; (A9)

𝑊eff
𝐸0

= − 1
3𝑀2

pl𝐻
2
0
(1 + 3𝑤eff) �̄�eff

𝑎2

𝑎2
i
𝑦2 ; (A10)

𝑊fric
𝐸0

= −2𝐴friction
𝐻2

𝐻2
0

𝑎2

𝑎2
i
𝑦 𝑦′ , (A11)

where 𝑦 ≡ 𝑅TH
𝑅i

𝑎i
𝑎 , 𝑅TH being the comoving top-hat radius, 𝑅i the

initial top-hat radius and 𝐸0 is a normalisation. These represent the
Newtonian contribution, the scalar field contribution, the effective
dark energy contribution and a frictional force contribution as derived
in Ref. Carrilho et al. (2022). In the K-mouflage model the scalar field
affects both force enhancement and acts as an effective dark energy
component.

We recall that F = 𝐺eff/𝐺N − 1 which does not account for the
correct conformal factor to appear in Equation A9 in the K-mouflage
model. In this case we should have
𝑊𝜙

𝐸0
= −Ωm,0

[
𝐺eff,L/𝐺N − 𝐴(𝜑)

] 𝑎−1

𝑎2
i
𝑦2𝛿 ,

= −Ωm,0

[
𝐴(𝜑)

2𝛽2
K

𝐾𝑋

]
𝑎−1

𝑎2
i
𝑦2𝛿 , (A12)

where we used Equation A7 and Equation A4. 𝐴friction is given by
Equation A6. 𝑤eff = 𝑝eff/�̄�eff and �̄�eff are the equation of state and
energy density of the effective dark energy fluid component, with
𝑝eff being the fluid’s pressure. These are given in the Einstein frame
by (Brax & Valageas 2014a,b):

�̄�eff = −𝑀2
pl𝐻

2
0𝜆

2 (𝐾 − 𝑀2
pl𝐻

2𝜙′2𝐾𝑋) ; (A13)

𝑝eff = 𝑀2
pl𝐻

2
0𝜆

2𝐾 . (A14)

We then get

𝑤eff = − 𝐾

𝐾 − 𝑀2
pl𝐻

2𝜙′2𝐾𝑋
. (A15)

We can simplify Equation A10 further by noting that when adopting
the model in Equation 14 we have

𝐾𝑋 =
1

𝐻2
0𝜆

2𝑀2
pl

+ 𝐾0
1

𝐻2𝑛
0 𝜆2𝑛𝑀2𝑛

pl
𝑛 𝑋𝑛−1 . (A16)

Substituting this into Equation A15, we find the effective dark energy
contribution to the potential energy is given by

𝑊eff
𝐸0

= −𝜆
2

3

[
2𝐾 + 𝐻

2

𝐻2
0

𝜑′2

𝜆2

(
1 + 𝐾0𝑛𝑋

𝑛−1
)] 𝑎2

𝑎2
i
𝑦2 . (A17)

Finally, we should note that the Newtonian contribution also should
have a conformal factor along with Ωm,0

𝑊N
𝐸0

= −𝐴(𝜑)Ωm,0
𝑎−1

𝑎2
i
𝑦2 (1 + 𝛿) . (A18)

APPENDIX B: PARAMETRISED POST-FRIEDMANNIAN
EXPRESSIONS

Here we review expressions for the general parametrisation of the
effective gravitational constant appearing in the nonlinear Poisson

equation as described in Ref. Lombriser (2016). This is based on
the parametrised post-Friedmannian framework and is the means
of modelling modifications to nonlinear structure formation in the
MG-evolution code. This parametrisation has also been imple-
mented in the ReACT code (Bose et al. 2022).
MG-evolution adopts a generalised form of the Vainshtein

screening effect given by (Lombriser 2016)

Δ𝐺eff, NL
𝐺

= 𝑏

(
𝑘∗
𝑘

)𝑎 𝑓

{[
1 +

(
𝑘

𝑘∗

)𝑎 𝑓
]1/𝑏

− 1

}
, (B1)

where NL stands for nonlinear, and 𝑘∗ and 𝑏, respectively, charac-
terise the effective screening wavenumber and the interpolation rate
between the screened and unscreened regimes. This expression aug-
ments the linear theory prediction as given in Equation 22 to give the
full solution for 𝐺eff . We shall briefly provide the particular form of
this expression for the three models considered in this work and refer
the reader to Ref. Lombriser (2016) for more details.

B1 nDGP

To parametrise nDGP gravity we consider (see Lombriser 2016)

Δ𝐺nDGP,NL
𝐺N

=
1

3𝛽(𝑎)

(
𝑘∗
𝑘

)3 
[
1 +

(
𝑘

𝑘∗

)3
] 1

2

− 1
 , (B2)

where 𝑘∗ corresponds approximately to the Vainshtein radius:

𝑟∗ =
16𝜋𝐺N𝛿𝑀𝑟

2
𝑐

9𝛽2 , (B3)

where 𝛿𝑀 is the mass enclosed by a spherical region, 𝑟𝑐 is the
crossover scale in nDGP theories, and 𝛽(𝑎) is given below. The
Vainshtein radius effectively defines a region where the fifth force
introduced by the scalar field gets shielded. The effective screening
wavenumber 𝑘∗ can in principle be modelled. However, it is treated
as a free parameter in MG-evolution. The function 𝛽(𝑎) reads as

𝛽(𝑎) = 1 + 2𝐻𝑟𝑐
(
1 +

¤𝐻
3𝐻2

)
, (B4)

and the linear effective gravitational constant in nDGP is given by

𝐺eff, L
𝐺N

= 1 + 1
3𝛽(𝑎) . (B5)

We remind the reader that a cosmological background that matches
that of ΛCDM is assumed.

B2 Cubic Galileon

To parametrise the Cubic Galileon we adopt Equation 22, with the
nonlinear parametrisation

Δ𝐺CG, NL
𝐺N

=

(
𝑘∗
𝑘

)3 
[
1 +

(
𝑘

𝑘∗

)3
] 1

2

− 1
 . (B6)

To obtain the linear regime parametrisation we use the effective
gravitational potential in Cubic Galileon theory in the linear regime,
which reads as (Barreira et al. 2013a)

Δ𝐺CG, L
𝐺N

= −2
3

𝑐3 ¤𝜙2

𝑀plM3𝛽2
, (B7)
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where 𝜙 is the Galileon scalar field. 𝛽2 and M3 read,

𝛽2 ≡ 2
M3𝑀pl

¤𝜙2 𝛽1, (B8)

M3 ≡ 𝑀pl𝐻
2
0 , (B9)

where

𝛽1 ≡ 1
6𝑐3

−𝑐2 − 4𝑐3
M3 ( ¥𝜙 + 2𝐻 ¤𝜙) + 2

𝑐2
3

𝑀2
plM

6
¤𝜙4

 . (B10)

We consider 𝑐2 = −1 and we use the tracker solution (Bellini et al.
2018),

𝜉 ≡
¤𝜙𝐻

𝑀pl𝐻
2
0
, (B11)

where 𝜉 is a constant and can be written in terms of 𝑐2, 𝑐3,

𝜉 = − 𝑐2
6𝑐3

=
1

6𝑐3
. (B12)

As a result, we have the following solutions for ¤𝜙 and ¥𝜙

¤𝜙 =
𝜉𝑀pl𝐻

2
0

𝐻
, ¥𝜙 = −

𝜉𝑀pl𝐻
2
0
¤𝐻

𝐻2 . (B13)

Following the discussion presented in Ref. Barreira et al. (2013b) for
the background tracker solution, we can derive the Hubble expansion
rate as a function of scale factor

𝐻2

𝐻2
0
=

1
2

[ (
Ωm,0𝑎

−3 +Ωr,0𝑎
−4

)
(B14)

+
√︃(

Ωm,0𝑎−3 +Ωr,0𝑎−4)2 + 4
(
1 −Ωm,0 −Ωr,0

) ]
,

where 𝐻2
0 = 8𝜋𝐺

3 in MG-evolution units and Ωr,0 is the radiation
energy density fraction today. Computing the cosmic time derivative
results in,

¤𝐻 + 𝐻2

𝐻2
0

= −
(𝑎Ωm,0 + 2Ωr,0)

4𝑎2

−
(𝑎Ωm,0 +Ωr,0) (3𝑎Ωm,0 + 4Ωr,0)

4𝑎6
√︂

4(1 −Ωm,0 −Ωr,0) +
(𝑎Ωm,0+Ωr,0 )2

𝑎8

+ 𝑎
2

2

√︄
4(1 −Ωm,0 −Ωr,0) +

(𝑎Ωm,0 +Ωr,0)2

𝑎8 .

B3 K-mouflage

Here we derive the effective gravitational constant appearing in the
nonlinear Poisson equation for the K-mouflage model described in
subsection 2.3. We follow Ref. Lombriser (2016). We also note that
a conformal factor, 𝐴(𝜑), still needs to be applied to transform the
density appearing in the nonlinear Poisson equation which is not
included in the 𝐺KM,eff expressions below.

The effective modification assuming a spherically symmetric mat-
ter distribution is given as (Winther & Ferreira 2015a; Brax &
Valageas 2014b)

Δ𝐺KM,eff
𝐺N

=
2 𝛽2

K
𝐾𝑋𝐻

2
0𝜆

2𝑀2
pl
. (B15)

Using the Klein-Gordon equation for a spherically symmetric matter
distribution we can write 𝐾𝑋 as

𝐾2
𝑋𝑋 = −

2 𝛽2
K

𝐻4
0𝜆

4𝑀2
pl
𝐹2

N , (B16)

where the Newtonian force is just 𝐹N = 𝐺N𝑀 (< 𝑟)/𝑟2, 𝑟 being the
physical radial coordinate and 𝑀 (< 𝑟) being the mass enclosed in
radius 𝑟. Substituting for 𝐾𝑋 in Equation B15 gives

Δ𝐺KM,eff
𝐺N

=
𝛽K
𝑀pl

1
𝐹N

√
−2𝑋 . (B17)

Now to solve for 𝑋 we can adopt the model in Equation 14. By using
Equation A16 to solve Equation B16 we get

𝑋 =
𝐻2

0𝜆
2𝑀2

pl
6𝐾0

[1 − 𝑓 (𝑥)]2

𝑓 (𝑥) , (B18)

where

𝑓 (𝑥) =
(
1 + 𝑥 +

√︁
𝑥(𝑥 + 2)

) 1
3
, (B19)

and we have defined 𝑥 ≡ −𝐶𝐴/𝑟4,𝐶𝐴 being a parameter proportional
to 𝐾0, defined as

𝐶𝐴 ≡
54𝛽2

K𝐺
2
N𝑀

2

𝐻2
0𝜆

2
𝐾0 . (B20)

We have written 𝑀 = 𝑀 (< 𝑟) for compactness. It should be pointed
out that 𝑥 ∈ (−2, 0) yields no solution for 𝑋 which can be a problem
for for very large 𝑟 and 𝐾0 > 0. This will not generally be an issue
as we look for solutions in the nonlinear regime.

Substituting Equation B18 into Equation B17 gives

Δ𝐺KM,eff
𝐺N

= 𝐶𝐵
1 − 𝑓 (𝑥)√︁
𝑥 𝑓 (𝑥)

, (B21)

where

𝐶𝐵 ≡ 3
√

2𝛽2
K . (B22)

We note that in Ref. Lombriser (2016) there seems to be a missing
factor of 1/(2

√
2) in Equation. 3.26 in order to have the identification

𝐶𝐴 = 𝐶2
2 . We allow here the case when 𝑥 ≤ 0 which can occur for

𝐾0 > 0. Further, we note 𝐶1 = −𝐶𝐵, 𝐶1 and 𝐶2 being the equivalent
quantities for 𝐶𝐴 and 𝐶𝐵 in Ref. Lombriser (2016). We include a
Mathematica notebook with our derivations.

We now derive the PPF expression from the limits of Equation B21:

Δ𝐺KM,eff
𝐺N

→ 2𝛽2
K for |𝑥 | ≪ 1 (i.e. 𝑟4 ≫ |𝐶𝐴 |) ,

(B23)
Δ𝐺KM,eff
𝐺N

→ 𝐶𝐵𝑟
4/3

(−𝐶𝐴)1/3 for |𝑥 | ≫ 1 (i.e. 𝑟4 ≪ |𝐶𝐴 |) ,

(B24)

which are the same limits obtained by Ref. Lombriser (2016).
We now map these onto the (real space) PPF expression, Equa-

tion. 5.3 of Ref. Lombriser (2016)

Δ𝐺eff
𝐺N

= 𝑝1𝑝2
(1 + 𝑠𝑎 𝑓 )

1
𝑝1 − 1

𝑠𝑎 𝑓
, (B25)

where

𝑎 𝑓 =
𝑝1

𝑝1 − 1
𝑝3 , (B26)

MNRAS 000, 1–20 (2022)

https://github.com/nebblu/ACTio-ReACTio/tree/master/notebooks


20

and 𝑠 = 𝑦scr/𝑦h. 𝑦 is the normalised top-hat radius

𝑦 ≡ 𝑅TH/𝑎
𝑅𝑖/𝑎𝑖

. (B27)

𝑅TH and 𝑅𝑖 are the comoving halo top-hat radius and 𝑎𝑖 the initial
scale factor. The dimensionless screening scale is given by

𝑦scr = 𝑝4𝑎
𝑝5 (2𝐺N 𝐻0𝑀vir)𝑝6

(
𝑦env
𝑦h

) 𝑝7

. (B28)

𝑦env refers to the normalised radius of the environment and 𝑀vir is
the virial mass of the halo.

Comparing Equation B25 and Equation B28 with Equation B23
and Equation B24 we find, for a choice of 𝑝1,

𝑝2 =
2𝛽2

K
𝑝1

, 𝑝3 =
4
3
𝑝1 − 1
𝑝1

,

𝑝4 =

[
−
√

2𝐾0𝑝
3
1𝛽

2
K

𝜆2

] 1
4

Ω
1
3
m,0,

𝑝5 = −1, 𝑝6 = 1/6, 𝑝7 = 0 . (B29)

We note that whether there’s a 𝑝1 in 𝑝3 depends on whether 𝑝1 is
positive or negative (see Equation. 2.14 of Ref. Lombriser (2016)).
We have also used 𝑀vir ≈ 4𝜋Ωm,0𝜌crit𝑅

3
th/3.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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