
ar
X

iv
:2

40
6.

13
08

2v
1 

 [
gr

-q
c]

  1
8 

Ju
n 

20
24

The Hanbury-Brown and Twiss effect in inflationary cosmological

perturbations

Gustavo Matheus Gauy, Flavia Sobreira, Giorgio Torrieri

Universidade Estadual de Campinas - Instituto de Fisica ”Gleb Wataghin”

Rua Sérgio Buarque de Holanda, 777

CEP 13083-859 - Campinas SP

The simplest model of inflation is based around an inflaton field that starts in a

coherent false vacuum state with a positive cosmological constant, rolls slowly to the

true vacuum and relaxes to it via reheating. We examine whether the scale of the

transition from coherence to chaoticity can be examined via the Hanbury-Brown and

Twiss (HBT) effect, in parallel with analogous problems of heavy ion physics (the

“pion laser” and the thermalizing glasma). We develop an ansatz which contains

a definition of ”chaoticity” which parallels that of the usual setups where HBT is

used. However, we also discuss the differences between the inflationary setup and

more mainstream uses of HBT and conclude that these are more significant than the

similarities, making the use of the developed methodology uncertain.
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I. INTRODUCTION

Inflation is the leading paradigm to understand the early evolution of the universe [1].

The current universe’s homogeneity, flatness and large-scale structure can be thought of aris-

ing out of an “inflaton” field which transitions from a coherent false vacuum with a positive

cosmological constant to the true vacuum it currently occupies via a “roll” semiclassical evo-

lution followed by rapid oscillations quenched by interactions with standard model particles

(“reheating”). The quantum fluctuations around this classical evolution are the simplest

explanation of the observed perturbations in the Cosmic Microwave background. If the roll

is sufficiently slow fluctuations can be assumed to be both Gaussian and scale-invariant [1].

However, this picture is still largely theoretical. We do not know the nature of the

inflation and the details, or even the qualitative scales, of the stages of the above evolution,

bar a very rough estimate.

In this work, we will examine the question of whether the HBT effect, long used as a

source to understand issues of coherence and configuration space length scales in heavy ion

collisions [2–8], can be used to probe these issues further. We note that the Hanburgy-Brown

Twiss effect has been has been proposed before as a probe [9–13] but not of the Inflaton

field and not in the manner explored in this work. Our main motivation is that the general

dynamics of inflation-reheating has some similarity with the Glasma thermalization of a

heavy ion collision [14], and the latter has been examined via HBT correlations [15].

While a detailed introduction of the HBT effect, including a disquisition over its relation-

ship with fundamental quantum mechanics, is left for the appendix, we shall comment that

its basic idea is a direct consequence of Bose-Einstein statistics. A classical coherent field

producing spin 0 bosons is governed by the Klein-Gordon equation with a source

(

∂2 +m2 + V (φ(x), x)
)

φ(x) = J(x) ⇔
(

k2 +m2 + F
({

Ṽk, φ̃k

}))

φ̃k = Jk (1)

For a coherent source, Jks are all in the same phase. If, however, interactions between φks

are strong and non-linear, a de-phasing occurs. In the limit of local thermalization [5–7]

one can model this by giving Jk a “random” phase, Jk → exp[iφ̂k]Jk, where φ̂ is a random

operator. Such random phase is a picture of both Statistical mechanics and quantum-chaotic

evolution [16]. For the limit of an extended source (a star, or a heavy ion collision) emitting

on-shell free bosons which then reach a pair of detectors, the coherent and chaotic limits can
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be distinguished by 2-particle correlations (or equivalently
〈

a+k aka
+
k′ak′

〉

, the creation and

annihillation operators), the probability of finding two particles with momenta k1,2 w.r.t. a

randomized background. This will be

P (k1, k2)

P (k1)P (k2)
∝ 1 + α

∣

∣

∫

d4xS(x, k1 + k2)e
i(k1−k2).x

∣

∣

2

∫

d4xS(x, k1)
∫

d4xS(x, k2)
, α =

0 coherent

1 chaotic
(2)

Where S(x, k) is a classical probability density function to emit a particle of momentum k

from a point of position x. In the intermediate regime, between coherent and chaotic, α

will be a function of k1 ± k2. In astronomy this has been used as a method to measure the

size of stars (its original post-war application [17] which had a recent resurgence [18–20]),

in hadronic collisions it is likewise used as a probe of the spacetime scale of the system [7],

as well as a probe of coherence of the underlying fields [21].

Hence, in principle the equivalent of the HBT effect in inflation could be used to un-

derstand its structure in ”configuration space” (ie the causal scale of the universe when

reheating occurs and its duration) as well as the change in coherence during the reheating.

The equivalent of Eq. 2 in the absence of an on-shell inflaton would be the ”trispectrum”,

the 4-point function of curvature perturbations 〈φ(x1)φ(x2)φ(x3)φ(x4)〉. The set-up related

to astronomy and heavy ion physics, with two sources and two detectors, is really a 4-point

function with two sides stretched to large space distances and respectively, in the past for

the sources and the future for the detectors. In the rest of this work we shall assess the

conceptual and technical appropriateness of this idea.

II. AN HBT LIKE ANSATZ

Not a lot is known on how the process of reheating affects primordial curvature perturba-

tions. A crucial feature of these perturbations is they are constant on superhorizon scales.

In fact, one can show that is true up to all loop corrections when these perturbations are

generated by the quantum fluctuations of a single inflaton field[22, 23]. This could lead

one to conclude there couldn’t be an observable effect of reheating over superhorizon modes

and, therefore, no consequence to the formation of cosmological structure. But that’s not

necessarily the case. During reheating, the inflaton will have to decay into fields of the

standard model otherwise, without this transfer of energy, the universe would be empty of

standard model particles after inflation. The point is these interactions of the inflaton with
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other fields will come in non-linear corrections and could result in non-constant superhori-

zon modes even if these interactions are primarily on subhorizon scales. So, it’s possible

the process of reheating could have some effect over the correlations of the perturbations

generated by the inflaton.

The quantum fluctuations of the inflaton classicalize upon horizon exit, hence loop cor-

rections due to interactions of the inflaton with other fields can be thought of as quantum

corrections over these classical configurations. The usual assumption is, then, that these

corrections should be small and perturbation theory is employed. Under this assumption,

observable effect should only be a small correction over the standard prediction of inflation.

However, it’s possible this isn’t the case for interactions during reheating. The coupling

between the inflaton and other fields should be dressed by the growing mode functions of

the inflaton[24]. If reheating lasts long enough, these coupling could become very large.

This would lead the inflaton to exhibit strong mode-mode coupling and highly non-linear

behavior. As it is known, strongly coupled harmonic oscillators behave in a very chaotic

way[25, 26]. So, we expect the same to happen with the inflaton modes: they should exhibit

some chaotic behavior. This is the assumption we will be working with in this work.

There is some parallel with the interplay of a coherent field into a thermalized gas which

was thought to occur in chiral condensates [5, 21] as well as in the “Glasma” [14]. In both

these cases it was assumed that the thermalized part is chaotic, and the signal would be

encoded in the coherence of HBT-type identical particle correlations.

In this work, we will attempt to model this effect reheating could have on superhorizon

modes. The idea is to propose an ansatz to take the conjectured chaoticity of the modes

into account. Then, look for constraints imposed by observations and if, even after that,

there are any new predictions.

A. Chaotic ansatz

There are two ways in which chance could come into the theory: out of the initial condi-

tions or the dynamics. In the standard lore of inflation, the initial conditions for inflationary

perturbations are random, since they originate from quantum fluctuations, but their time

evolution is linear and deterministic. Reheating could introduce a new source of randomness

of the dynamical kind. As argued before, interactions of the inflaton with other fields dur-



5

ing reheating could lead to some chaoticity to be developed over the superhorizon modes.

It’s unlikely one could show that analytically. So, we attempt to introduce this effect by

proposing an ansatz.

Comoving curvature perturbations can be expanded, up to first order in the slow-roll

parameters, as

R(x, τ) =

∫

d3keik·x
[

g (k, τ) a (k) + g∗ (k, τ) a† (−k)
]

; (3)

where g (k, τ) = f(k,τ)

z(τ)(2π)3
√
2k
. The above expression is for the free theory, without taking

into account the interactions during reheating. These perturbations are solutions of the free

classical field equation and have very specified trajectories in phase-space. We will call them

coherent perturbations. A chaotic or incoherent field, on the other hand, won’t have well

determined trajectories in phase-space. They are the result of very non-linear dynamics,

developing a chaotic behavior to their trajectories. We attempt to model that with the

following ansatz :

g(k, τ) 7→ γ(k, τ)g(k, τ); (4)

where γ (k, τ) is some complex Gaussian random function. Meaning, the trajectories are,

now, determined by the classical equations of motion and an ensemble of the kind:

〈F (γ, γ∗)〉γ =

∫

Dγe−γ∗·M−1·γF (γ, γ∗) ,

∫

Dγe−γ∗·M−1·γ = 1. (5)

Because it’s Gaussian, the ensemble is completely determined by the 2-point function

〈γ∗(k, τ)γ(p, τ ′)〉 =M(p, k, τ ′, τ).

Given the ansatz (4), it’s straightforward to calculate the chaotic equal time correlation

functions. Now, the idea is to see which constraints observations impose over the ansatz. As

we argued in the introduction, the fluctuations in the temperature of the CMB and the large

scale structure of the early universe can be directly connected to the perturbations produced

during inflation. As we saw, they indicate these fluctuations are Gaussian random functions

with an almost scale invariant spectrum. Starting from the lowest order, it’s simple to see

the ansatz won’t change the 1-point correlation function.

For the 2-point function or spectrum, we get

〈Rγ (x, τ)Rγ (y, τ)〉 =
∫

d3keik·(x−y)
〈

|γ(k, τ)|2
〉

γ
|g (k, τ)|2 . (6)



6

As seen in the introduction, the spectrum obtained with coherent perturbations, as we

have defined them, has the precise qualitative properties to explain observations, since they

result in an almost scale-invariant power spectrum for superhorizon scales. Our ansatz is

potentially adding a new source of momentum or scale dependence. Hence, in order to be

compatible with observations, one must assume for superhorizon scales:

〈

|γ(k, τ)|2
〉

γ
= 1. (7)

The other option would be to evaluate an unequal time correlation function and see what

changes could result from a chaotic perturbation. That has already been considered in the

context of perturbations due to cosmic strings[27–29]. The behavior of chaotic perturbations

would be the same as active perturbations in the string situation[30]. That is, incoherence

in the time component of perturbations lead to the destruction of secondary acoustic peaks.

So, this possibility has already been discarded by observations, the perturbations should be

coherent in the time component at least up to the scales observed so far. A fully chaotic

spectrum in the time component is incompatible with that. This implies the constraint

M(k, p, τ ′, τ) =M(k, p), or γ(k, τ) = γ(k) (8)

over the ensemble.

We haven’t been able to find any new prediction of the ansatz up to second order correla-

tion functions. Hence, let’s look at higher order. The equal time 3-point correlation function

or bispectrum will also remain unchanged by symmetry, in accordance with observations[31].

Thus the first non-trivial result will come from the equal time 4-point correlation function

or trispectrum, which is given by:

〈Rγ (x, τ)Rγ (y, τ)Rγ (w, τ)Rγ (z, τ)〉 = 〈Kγ (x− y, τ)Kγ (w− z, τ)〉
γ

+ 〈Kγ (x−w, τ)Kγ (y− z, τ)〉
γ

+ 〈Kγ (x− z, τ)Kγ (y−w, τ)〉
γ
;

(9)

could still me modified non-trivially by the ansatz, as long as M(k, p, τ, τ) is not a constant
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for k 6= p. To see that, all one has to do is calculate explicitly the ensemble average:

〈Kγ (x− y, τ)Kγ (w− z, τ)〉
γ
=

∫

d3kd3peik·(x−y)eik·(w−z)
〈

|γ(k, τ)|2 |γ(p, τ)|2
〉

γ
|g(k, τ)|2 |g(p, τ)|2

=

∫

d3kd3peik·(x−y)eik·(w−z) |g(k, τ)|2 |g(p, τ)|2

×
(

〈

|γ(k, τ)|2
〉

γ

〈

|γ(p, τ)|2
〉

γ
+ |〈γ∗(k, τ)γ(p, τ)〉|2

)

(10)

So, after imposing the constraint obtained from the power spectrum, it will be given by

〈Kγ (x− y, τ)Kγ (w− z, τ)〉
γ
= K(x− y, τ)K(w− z, τ)

+

∫

d3kd3peik·(x−y)eik·(w−z) |g(k, τ)|2 |g(p, τ)|2 |〈γ∗(k, τ)γ(p, τ)〉|2

(11)

where the first term is the component already present in the coherent trispectrum and the

second one is the correction predicted by the ansatz. Then, with the previous result, the

chaotic trispectrum is given by

〈Rγ (x, τ)Rγ (y, τ)Rγ (w, τ)Rγ (z, τ)〉 = 〈0|R (x, τ)R (y, τ)R (w, τ)R (z, τ) |0〉

+

∫

d3kd3p
(

eik·(x−y)eik·(w−z) + eik·(x−w)eik·(y−z) + eik·(x−z)eik·(y−w)
)

×

× |g(k, τ)|2 |g(p, τ)|2 |〈γ∗(k, τ)γ(p, τ)〉|2 ,

(12)

whereR denotes coherent perturbations. Because of the assumption of a Gaussian ensemble,

there are no new predictions for unequal time correlation functions beyond the constraints

imposed by the power spectrum. Meaning, there is no need to look into the unequal time

4-point correlation function. Considering both constraints imposed by the power spectrum

over the ensemble and the central limit theorem, one possible choice for M is

M (k, p) = e−
τ2rh
2

(k−p)2, (13)

where τrh is some time scale related to reheating. Therefore, under these assumptions the

trispectrum would be modified to

〈Rγ (x, τ)Rγ (y, τ)Rγ (w, τ)Rγ (z, τ)〉γ = 〈0| R (x, τ)R (y, τ)R (w, τ)R (z, τ) |0〉

+

∫ Λ

τ1r

k2dkdΩk

∫ Λ

τ1r

p2dpdΩp

(

eik·(x−y)eik·(w−z) + eik·(x−w)eik·(y−z) + eik·(x−z)eik·(y−w)
)

×

(14)
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× |g(k, τ)|2 |g(p, τ)|2 e−τ2rh(k−p)2 .

This is not an analytic integral, but it is finite since it has physical higher and lower limits,

. The lower limit will be the infrared 1/τr corresponding to the horizon scale at reheating.

The upper limit Λ will be the scale at which the phase randomizes (the “coherence domain”

of the inflaton). If this model is to be developed phenomenologically, trispectrum features

need to be fitted to τr,Λ, this would be a subject of an evnetual further work.

B. Partially coherent perturbations

One can define partially chaotic perturbations by the same ansatz with just a different

ensemble. On this situation, the ensemble will have a coherent component defined by the

1-point function

〈γ(k, τ)〉γ = γ0(k, τ) 6= 0, (15)

So, to impose a partially chaotic ensemble, all one must do is to assume that the ensemble

is defined by

〈· · ·〉γ =

∫

Dγ exp
[

− (γ − γ0)
∗ ·M−1 · (γ − γ0)

]

(· · ·) . (16)

Given the above ensemble, we must calculate averages such as

〈γ∗(k1, τ1)γ(k2, τ2)〉γ , 〈γ∗(k1, τ1)γ∗(k2, τ2)γ(k3, τ3)γ(k4, τ4)〉γ , · · · (17)

Hence, in order to do that, we work out the generating functional for such terms:

Z(f, f ∗) =
〈

eγ
∗·feγ·f

∗〉

γ
=

∫

Dγ exp
[

− (γ − γ0)
∗ ·M−1 · (γ − γ0)

]

eγ
∗·feγ·f

∗

=

∫

Dγ exp
[

−γ∗ ·M−1 · γ∗
]

e(γ+γ0)
∗·fe(γ+γ0)·f∗

= exp (γ0 · f ∗ + γ∗0 · f + f ∗ ·M · f)Z(0),

(18)

where Z(0) is just a normalization. Therefore, the generating functional can be rewritten as

Z(f, f ∗) = eW (f,f∗)Z(0), (19)

where all the information is stored in

W = γ0 · f ∗ + γ∗0 · f + f ∗ ·M · f, (20)
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and the normalization Z(0) can be taken to be one.

With the generating functional Z(f, f ∗), we can finally calculate the γ ensemble averages.

We only need two terms: the 2-point function

〈γ∗(k, τ)γ(p, τ ′)〉γ , (21)

and the four point function

〈

|γ(k, τ)|2 |γ(p, τ ′)|2
〉

, (22)

since these are the only terms that will be relevant for the calculations of the spectrum and

trispectrum of cosmological perturbations. For the 2-point function

〈γ∗(k, τ)γ(p, τ ′)〉γ =
δ2Z

δf(k, τ)δf ∗(p, τ ′)
(0)

=
δ2W

δf(k, τ)δf ∗(p, τ ′)
(0) +

δW

δf(k, τ)
(0)

δW

δf ∗(p, τ ′)
(0),

(23)

resulting in

〈γ∗(k, τ)γ(p, τ ′)〉γ =M(p, k, τ ′, τ) + γ0(p, τ
′)γ∗0(k, τ). (24)

While the four-point function in question gives

〈

|γ(k, τ)|2 |γ(p, τ ′)|2
〉

γ
=

δ4Z

δf(k)f(p)f ∗(p)f ∗(k)
(0)

=
δ2W

δf(k)δf ∗(k)
(0)

δ2W

δf(p)δf ∗(p)
(0) +

δ2W

δf(k)δf ∗(p)
(0)

δ2W

δf(p)δf ∗(k)
(0)

+
δ2W

δf(k)δf ∗(k)
(0)

∣

∣

∣

∣

δW

δf ∗(p)
(0)

∣

∣

∣

∣

2

+
δ2W

δf(p)δf ∗(p)
(0)

∣

∣

∣

∣

δW

δf ∗(k)
(0)

∣

∣

∣

∣

2

+
δ2W

δf(p)δf ∗(k)
(0)

δW

δf ∗(p)
(0)

δW

δf(k)
(0) +

δ2W

δf(k)δf ∗(p)
(0)

δW

δf ∗(k)
(0)

δW

δf(p)
(0)

+

∣

∣

∣

∣

δW

δf ∗(k)
(0)

∣

∣

∣

∣

2 ∣
∣

∣

∣

δW

δf ∗(p)
(0)

∣

∣

∣

∣

2

.

(25)

Therefore, this 4-point function can be written in terms of the 2-point and 1-point functions

as:

〈

|γ(k)|2 |γ(p)|2
〉

γ
=
〈

|γ(k)|2
〉

γ

〈

|γ(p)|2
〉

γ
+
∣

∣

∣
〈γ∗(k)γ(p)〉γ

∣

∣

∣

2

−
∣

∣

∣
〈γ(k)〉γ

∣

∣

∣

2 ∣
∣

∣
〈γ(p)〉γ

∣

∣

∣

2

. (26)
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With these results, we have everything needed to calculate the correlation functions of

partially chaotic cosmological perturbations.

As observations tell us, the perturbations are random and we know their spectrum. So,

again, we must impose these constraints. The first one, is that perturbations are random:

〈Rγ〉 = 0. (27)

That is immediately true, even for a partially chaotic ensemble. With this choice of ansatz,

this is true for any ensemble since

〈0| ak |0〉 = 〈0| a†k |0〉 = 0. (28)

This means there are no constraints imposed at this order. Similarly to the fully chaotic

situation, the constraints will come from the second order. The equal time 2-point correlation

function once again imposes

〈

|γ(k, τ)|2
〉

= 1, (29)

in order for the ansatz not to be in conflict with observations. The level of coherence is

not determined at this order. But, this time, we can’t immediately disconsider the time

dependence of the ensemble. It’s possible for the perturbations to be coherent on the time

variable at large scales, the ones we observe, but incoherent on smaller scales. That would

have implications for the spectrum, resulting in the lack of multiple peak structure in those

smaller scales, but preserving it on higher scales. This would be a new prediction, but is

yet to be observed. So, for simplicity, we will assume to be working only with high enough

scales in order to impose, once again, the constraint:

γ(k, τ) = γ(k). (30)

With this assumption, new predictions are only possible on higher orders. Once again, the

bispectrum is not affected as shown from symmetry considerations.

The trispectrum, on the other hand, will have some new implications. As we know from

the previous section, the trispectrum can be expressed as

〈Rγ (x, τ)Rγ (y, τ)Rγ (w, τ)Rγ (z, τ)〉 = 〈Kγ (x− y, τ)Kγ (w− z, τ)〉
γ

+ 〈Kγ (x−w, τ)Kγ (y− z, τ)〉
γ

+ 〈Kγ (x− z, τ)Kγ (y−w, τ)〉
γ
.

(31)
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Considering a partially chaotic ensemble, one gets

〈Kγ (x− y, τ)Kγ (w− z, τ)〉
γ
=

∫

d3kd3peik·(x−y)eik·(w−z)
〈

|γ(k, τ)|2 |γ(p, τ)|2
〉

γ
|g(k, τ)|2 |g(p, τ)|2

=

∫

d3kd3peik·(x−y)eik·(w−z) |g(k, τ)|2 |g(p, τ)|2

×
(〈

|γ(k, τ)|2
〉 〈

|γ(p, τ)|2
〉

+ |〈γ∗(k, τ)γ(p, τ)〉|2 − |〈γ(k, τ)〉|2 |〈γ(p, τ)〉|2
)

.

(32)

With the constraints imposed by the spectrum, one can simplify the trispectrum to

〈Kγ (x− y, τ)Kγ (w− z, τ)〉
γ
= K (x− y, τ)K (w− z, τ)

+

∫

d3kd3peik·(x−y)eik·(w−z) |g(k, τ)|2 |g(p, τ)|2
(

|〈γ∗(k)γ(p)〉|2 − |〈γ(k)〉|2 |〈γ(p)〉|2
)

,
(33)

where the second term is the correction due to the partially chaotic ensemble. Since there

is a coherent component, a choice for the ensemble, that is compatible with the spectrum

constraints, is a little more involved in this situation. Following [32], we will assume it can

be written as

〈γ∗(k)γ(p)〉γ = γ∗0(k)γ0(p) + γ∗ch(k)γch(p)ρ(k − p), (34)

where ρ is a real number and ρ(0) = 1. Hence, the spectrum constraints imply

〈

|γ(k)|2
〉

= 1 ⇐⇒ |γ0(k)|2 + |γch(k)|2 = 1. (35)

With this assumption, we can express

|〈γ∗(k)γ(p)〉|2 − |〈γ(k)〉|2 |〈γ(p)〉|2 = |γch(k)|2 |γch(p)|2 ρ2(k − p)

+ (γ∗0(k)γ0(p)γ
∗
ch(p)γch(k) + γ0(k)γ

∗
0(p)γch(p)γ

∗
ch(k)) ρ(k − p).

(36)

Assuming γ0 and γch are real functions, one can rewrite

|〈γ∗(k)γ(p)〉|2 − |〈γ(k)〉|2 |〈γ(p)〉|2 = 2γ0(k)γ0(p)
√

1− γ20(k)
√

1− γ20(p)ρ(k − p)

+
(

1− γ20(k)
) (

1− γ20(p)
)

ρ2(k − p).
(37)

Defining the degree of coherence as

D(k) = |γ0(k)|2 . (38)
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With this definition, one gets

〈Kγ (x− y, τ)Kγ (w− z, τ)〉
γ
= K (x− y, τ)K (w− z, τ)

+

∫

d3kd3peik·(x−y)eik·(w−z) |g(k, τ)|2 |g(p, τ)|2

×
[

2
√

D(k)D(p) (1−D(k)) (1−D(p))ρ(k − p) + (1−D(k)) (1−D(p)) ρ2(k − p)
]

.

(39)

Assuming again the chaotic part is described by a Gaussian:

ρ(k − p) = e−
τ2rh
2

(k−p)2 ; (40)

the partially chaotic trispectrum can, therefore, be written as

〈Rγ (x, τ)Rγ (y, τ)Rγ (w, τ)Rγ (z, τ)〉γ = 〈0|R (x, τ)R (y, τ)R (w, τ)R (z, τ) |0〉

+

∫

d3kd3p
(

eik·(x−y)eik·(w−z) + eik·(x−w)eik·(y−z) + eik·(x−z)eik·(y−w)
)

|g(k, τ)|2 |g(p, τ)|2

×
[

2
√

D(k)D(p) (1−D(k)) (1−D(p))e−
τ2rh
2

(k−p)2 + (1−D(k)) (1−D(p)) e−τ2rh(k−p)2
]

.

(41)

From the above expression, we see that for D(k) = 1 full coherence is recovered, while for

D(k) = 0 one gets the chaotic case. The above formalism allows a few possibilities. Every

scales could be partially chaotic, that is the degree of coherence being independent of scale:

D(k) = D. Or only some scales could exhibit chaoticity. For example D(k) = Θ(k − k0),

where only scales larger than some k0 would be chaotic. This is once again not an integral

one can do analytically. Given a choice for the degree of coherence and cutoffs for the

integral, one needs to numerically integrate it in order to compare with observations.

III. DISCUSSION: IS THIS REALLY AN HBT EFFECT?

A. Virtuality and coherence of inflaton perturbations

Initially we thought there would be some connection between the formalism described in

[2] with the ansatz and results obtained in the last section. There are two perspectives one

could take for the HBT effect, we will call them HBT correlations and Bose-Einstein correla-

tions. In the first one, the HBT effect is just the presence of correlations in the measurements

of two particle detectors. So, for this approach, one must build an HBT interferometer for



13

inflatons. The first problem one faces when trying to study inflationary perturbations from

this perspective is that we don’t have inflaton detectors. Every measurement we supposedly

make of the inflaton is an indirect one, where the inflaton is in a sense virtual, a 2-point

correlator in configuration space, classicalized by evolution. In addition, the measurement

erases any time-ordering (it is not two sources and two detectors but rather a 4-point func-

tion). There is no obvious relationship between the space-like 4-point function in the sky

related to the trispectrum and the 4-point function connecting sources in the infinite past

to detectors in the infinite future relevant for interferometry of on-shell photons and pions.

Still, we did find a non-Gaussianity in the trispectrum which explicitly depends on the

chaoticity. Is this HBT? A further problem with interpreting our result this way is, the in-

flaton is not coherent in the HBT sense. So it’s meaningless to say it gained some chaoticity

or incoherence from reheating, at least in the HBT sense. To prove it isn’t coherent, we

only need to show the second order correlation function doesn’t factorize. For inflaton per-

turbations, due to the expansion of spacetime, the evolution operator acts as a Bogolyubov

transformation

a (k, τ) = U †(−∞, τ)a (k)U(−∞, τ)

= α(k, τ)a (k) + β∗(k, τ)a† (−k) .
(42)

The correlation function for two detectors, at time τ , results in

〈

a† (k) a† (p) a (p) a (k)
〉

(τ) = 〈0|U †(−∞, τ)a† (k) a† (p) a (p) a (k)U(−∞, τ) |0〉

= 〈0|U †(−∞, τ)a† (k)U(−∞, τ)U †(−∞, τ)a† (p)U(−∞, τ)

× U †(−∞, τ)a (p)U(−∞, τ)U †(−∞, τ)a (k)U(−∞, τ) |0〉

= 〈0| a† (k, τ) a† (p, τ) a (p, τ) a (k, τ) |0〉 .
(43)

Then, applying the Bogolyubov transformation, one gets after some algebra

〈

a† (k) a† (p) a (p) a (k)
〉

(τ) = |β (k, τ)|2 |β (p, τ)|2 〈0| a (−k) a (−p) a† (−p) a† (−k) |0〉

+ |β (k, τ)| |α (p, τ)|2 〈0| a (−k) a† (p) a (p) a† (−k) |0〉 .
(44)

To show the non-factorization of the second order correlation function, all we need to do is

normal order the above expected values. The first term results in

〈0| a (−k) a (−p) a† (−p) a† (−k) |0〉 = (2π)6 (δ(0)δ(0) + δ (k− p) δ (k− p)) , (45)
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while the last one

〈0| a (−k) a† (p) a (p) a† (−k) |0〉 = (2π)6 δ (k+ p) δ (k+ p) . (46)

Now, using the relations

〈

a† (k) a (p)
〉

(τ) = (2π)3 β (k, τ) β∗ (p, τ) δ (k− p) , (47)

〈a (k) a (p)〉 (τ) = (2π)3 α (k, τ) β∗ (p, τ) δ (k+ p) , (48)

we can rewrite the correlation function in question as

〈

a† (k) a† (p) a (p) a (k)
〉

(τ) =
〈

a† (k) a (k)
〉

(τ)
〈

a† (p) a (p)
〉

(τ)

+
∣

∣

〈

a† (k) a (p)
〉

(τ)
∣

∣

2
+ |〈a (k) a (k)〉 (τ)|2 .

(49)

Hence, as claimed, the second order correlation function doesn’t factorize:

〈

a† (k) a† (p) a (p) a (k)
〉

(τ) 6=
〈

a† (k) a (k)
〉

(τ)
〈

a† (p) a (p)
〉

(τ) . (50)

By following the exact same procedure, one can also show that

〈

ϕ† (x)ϕ† (y)ϕ (y)ϕ (x)
〉

(τ) =
〈

ϕ† (x)ϕ (x)
〉

(τ)
〈

ϕ† (y)ϕ (y)
〉

(τ)

+
∣

∣

〈

ϕ† (x)ϕ (y)
〉

(τ)
∣

∣

2
+ |〈ϕ (x)ϕ (y)〉 (τ)|2 ,

(51)

where

ϕ(x, τ) =

∫

d3k

(2π)3
eik·x

(

α (k, τ) a (k) + β∗ (k, τ) a† (−k)
)

. (52)

Meaning, there would be a correlation, at the time τ , between two detectors at positions x

and y:

〈

ϕ† (x)ϕ† (y)ϕ (y)ϕ (x)
〉

(τ)

〈ϕ† (x)ϕ (x)〉 (τ) 〈ϕ† (y)ϕ (y)〉 (τ) = 1 +

∣

∣

〈

ϕ† (x)ϕ (y)
〉

(τ)
∣

∣

2
+ |〈ϕ (x)ϕ (y)〉 (τ)|2

〈ϕ† (x)ϕ (x)〉 (τ) 〈ϕ† (y)ϕ (y)〉 (τ)
(53)

and, therefore, the HBT effect, in the sense of HBT correlations, for primordial perturba-

tions, without any need for reheating to introduce chaoticity. Physically, the expansion of

spacetime ”changes the vacuum” of spacetime, and this is equivalent, in a quantum field the-

ory, to changing the definition of the coherent state. In heavy ion physics this decoherence

by change in the vacuum state was actually already proposed as a probe of chiral symmetry

restoration [33].
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This means that the chaoticity proposed in the ansatz is not necessarily related to the

one used for external classical sources in standard HBT. As formulated by Glauber[2], in-

coherence is defined by the presence of HBT correlations in an intensity interferometer.

Therefore, under the standard quantum optics formalism, inflaton perturbations are already

incoherent or chaotic, and an α > 0 (Eq. 2 ) will be present also before reheating and a

quantitative model-dependent analysis will have to be used to isolate each contribution.

B. The role of Bose-Einstein statistics

The other perspective one could approach this problems is based on Bose-Einstein cor-

relations. We thought there wouldn’t be Bose-Einstein correlations after horizon crossing,

since the inflaton classicalizes and classical particles are distinguishable. There are a number

of problems with this idea. There is no such thing as a classical particle in quantum field

theory, what classicalizes is the field itself. But, nonetheless, one could expect Bose-Einstein

correlations to disappear in the classical limit. Unfortunately, that is also not true. We

show that now. Consider a state with two sets of particles: n particles with momentum k

and another set of m particles with momentum p, assume k 6= p. That is, the state

|nk, mp〉 =
1√
n!





a†(k)
√

(2π)3 δ(0)





n

1√
m!





a†(p)
√

(2π)3 δ(0)





m

|0〉 (54)

where each creation operator carries a factor 1√
(2π)3δ(0)

for normalization purposes, δ(0)

should just be interpreted as the volume of space. The amplitude for two particles to be

absorbed by two detectors at x and y is:

ϕ(x)ϕ(y) |nk, mp〉 =
√
nm

eik·x√
2k

eip·y√
2p





1
√

(2π)3 δ(0)





n+m
(

a†(k)
)n−1

√

(n− 1)!

(

a†(p)
)m−1

√

(m− 1)!
|0〉

+
√
nm

eip·x√
2p

eik·y√
2k





1
√

(2π)3 δ(0)





n+m
(

a†(k)
)n−1

√

(n− 1)!

(

a†(p)
)m−1

√

(m− 1)!
|0〉

+
√

n (n− 1)
eik·x√
2k

eik·y√
2k





1
√

(2π)3 δ(0)





n+m
(

a†(k)
)n−2

√

(n− 2)!

(

a†(p)
)m

√
m!

|0〉

+
√

m (m− 1)
eip·x√
2p

eip·y√
2p





1
√

(2π)3 δ(0)





n+m
(

a†(k)
)n

√
n!

(

a†(p)
)m−2

√

(m− 2)!
|0〉 ,

(55)
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where we have used:

[

ϕ(x),
(

a†(k)
)n]

=

[
∫

d3q√
2q (2π)3

eiq·xa (q) ,
(

a†(k)
)n

]

= n
eik·x√
2k

(

a† (k)
)n−1

. (56)

As an example, consider the situation when n = m = 1:

ϕ(x)ϕ(y) |1k, 1p〉 =
eik·xeip·y + eip·xeik·y

2
√
kp

1

(2π)3 δ(0)
|0〉 . (57)

So, as expected, we see the Bose-Einstein symmetry in the above amplitude. Going back to

the general case, the probability of simultaneous detections is then

〈nk, mp|ϕ†(y)ϕ†(x)ϕ(x)ϕ(y) |nk, mp〉 =
nm

4kp

∣

∣eik·xeip·y + eip·xeik·y
∣

∣

2
(

1

(2π)3 δ(0)

)2

+
n (n− 1)

4k2

(

1

(2π)3 δ(0)

)2

+
m (m− 1)

4p2

(

1

(2π)3 δ(0)

)2

=

(

1

(2π)3 2δ(0)

)2 [

2
nm

kp
(1 + cos((k− p) (x− y))) +

n (n− 1)

k2
+
m (m− 1)

p2

]

.

(58)

If n = m = 1, we get

〈1k, 1p|ϕ†(y)ϕ†(x)ϕ(x)ϕ(y) |1k, 1p〉 =
(

1

(2π)3
√
2kpδ(0)

)2

[1 + cos((k− p) (x− y))] (59)

which, aside from the normalization, is just the standard result of the Bose-Einstein corre-

lation of two measurements. Now, in the classical limit, n ≈ m≫ 1, one can show:

〈nk, mp|ϕ†(y)ϕ†(x)ϕ(x)ϕ(y) |nk, mp〉

≈
(

n

(2π)3 kδ(0)

)2 [

1 +
1

2
cos((k− p) (x− y))

]

,
(60)

where we have assumed for simplicity that k = p. Then, we recover the result for two

localized classical sources. We see here there is still a correlation due to the Bose-Einstein

symmetry, even after the classical limit. Perhaps this is a reflection of the fact that clas-

sicalization is in realty a semi-classicalization (the effective ~ → 0 where however multiple

extrema of the action retain superposition) and, as explained in the appendix, HBT is a

semi-classical field theory effect.

As a final point, we haven’t found any reason to believe the correlations calculated in

the last section are a result of Bose-Einstein symmetry in the same way they were for the

chaotic source. Therefore, our conclusion is the previous analysis in section II is unrelated
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to the ones made in quantum optics, meaning we aren’t sure any of the techniques employed

there could be used in the inflationary setup.

In conclusion, we have examined the relationship of the optical HBT effect to the dy-

namics of inflation. We have found that while there are similarities between inflation and

situations where HBT has been proposed, and indeed used, the differences between the two

situations seem to preclude any use for the technique. In particular, the classicalization of

the quantum perturbations already at the pre-reheating stage and the off-shellness of the

perturbations seem to mean that a ”chaotic” ansatz derived here might be of limited use

without a detailed assessment of how α in Eq. 2 varies in the slow roll phase as well as

the reheating phase. However, we hope that the attempt illustrated here will stimulate

cosmologists to explore this topic further.
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Appendix A: A coincise review of the formalism and interpretation of HBT

interferometry

1. Classical amplitude interferometry

Despite the classical description we are about to give, a more detailed analysis of the

measurement procedure of the field points to it’s quantum nature[2–4, 8]. What one finds is

that the detector doesn’t react to the actual field, but rather to a complex field given by the

positive frequency part of the field. So, we must expand the field through a Fourier transform

and identify it’s positive frequency component. Suppose a Fourier transform provides the

following separation of the field

φ = ϕ+ ϕ∗, (A1)

such that the first term describes the positive frequency part of the field, that is contains

the Fourier modes which vary with time as e−iωt with ω being the energy of the mode. The

complex conjugate of ϕ is called the negative frequency component of the field. Either can
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be used as the amplitude or complex signal for the field. As we will argue later, a detector

for the field reacts to the product

ϕ∗ϕ = |ϕ|2 = I, (A2)

which we will just call the field intensity from now on. Given a source, the field at position

x, ϕ(x), is the superposition of the sub-fields generated by each sub-source. Denoting by ϕi

the contribution from the i’th sub-field, then the full field can be written as

ϕ =
∑

i

ϕi. (A3)

The intensity measure at some detector at position x will be just

I(x) =

∣

∣

∣

∣

∣

∑

i

ϕi(x)

∣

∣

∣

∣

∣

2

. (A4)

Of course that’s not the whole story, in general sources produce fields subject to some

statistical uncertainty. This means what one detector sees is the averaged intensity:

〈I(x)〉 =
〈∣

∣

∣

∣

∣

∑

i

ϕi(x)

∣

∣

∣

∣

∣

2〉

. (A5)

In practice this is usually an average over time, to simplify calculations and the formalism

we will work throughout this text assuming the ergodic hypothesis. So, all averages will

be over some ensemble that should represent the corresponding time average. To see the

interference phenomenon, we expand the averaged intensity as

〈I(x)〉 =
∑

i

〈

|ϕi(x)|2
〉

+
∑

i 6=j

〈

ϕ∗
j(x)ϕi(x)

〉

, (A6)

where 〈· · ·〉 denotes the ensemble average of the source. The first term in (A6) is just

the sum of the averaged intensity due to each of the sub-sources, while the second term

contains the interference between each pair of sub-sources at the detector as a result of their

superposition at the location of the detector. So, this last term contains the information

of the phase difference between each pair of sub-sources. Assuming the source is chaotic,

that is its sub-sources are uncorrelated and random. We implement that by supposing each

sub-source has an independent random phase:

ϕi = |ϕi| eiαieiθi . (A7)
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where θi is a random phase. This means

〈ϕi(x)〉 = 〈ϕi(x)ϕj(y)〉 = 0 (A8)

and

〈

ϕi(x)ϕ
∗
j (y)

〉

=
〈

|ϕi(x)| eiαj(x)eiθi |ϕj(y)| e−iαj(y)e−iθj
〉

= |ϕi(x)| eiαj(x) |ϕj(y)| e−iαj(y)
〈

ei(θi−θj)
〉

= |ϕi(x)| |ϕj(y)| ei(αi(x)−αj (y))δij ,

(A9)

where, to obtain the above expression, we used the result for random phases

〈

ei(θi−θj)
〉

=

2π
∫

0

dθi
2π

2π
∫

0

dθj
2π

ei(θi−θj) = δij . (A10)

Then, the intensity measured at the detector after the average will be

〈I(x)〉 =
〈∣

∣

∣

∣

∣

∑

i

ϕi(x)

∣

∣

∣

∣

∣

2〉

=
∑

i,j

〈

ϕi(x)ϕ
∗
j(x)

〉

=
∑

i,j

|ϕi(x)| |ϕj(x)| ei(αi(x)−αj(x))
〈

ei(θi−θj)
〉

.

(A11)

Since the phases are random, we get

〈I(x)〉 =
∑

i,j

|ϕi(x)| |ϕj(x)| δij =
∑

i

|ϕi(x)|2 =
∑

i

Ii(x), (A12)

where Ii is the intensity due to one of the sub-sources. All the relative phase information

between pairs of sub-sources has been lost, which is usually where the spacetime information

of the source is extracted from.

2. Classical intensity interferometry

The discussion on the previous section justifies why simple field measurements might

present some difficulties for extracting spacetime information from a chaotic distribution of

sources, since detectors will only resolve the intensities of these sources, losing the relative

phase information between them. Fortunately, the phase information can be recovered, even

for completely chaotic sources, by considering the correlation between the detection events
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at two different spacetime points or, equivalently, the correlation between the intensities of

the field in two spacetime points:

〈I (x1) I (x2)〉 =
〈∣

∣

∣

∣

∣

∑

i

ϕi(x1)

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

∑

j

ϕj(x2)

∣

∣

∣

∣

∣

2〉

=
∑

i,j,m,n

|ϕi(x1)| |ϕj(x1)| |ϕm(x2)| |ϕn(x2)| × ei(αi(x1)−αj(x1)+αm(x2)−αn(x2))
〈

ei(θi−θj+θm−θn)
〉

.

(A13)

Again, because the phases are random

〈

ei(θi−θj+θm−θn)
〉

= δijδmn + δinδjm − δijδmnδim, (A14)

where the last is present to prevent double counting of the situation when i = j = m = n.

Using the above result for the phase average, we get

〈I (x1) I (x2)〉 =
∑

i

|ϕi(x1)|2
∑

j

|ϕj(x2)|2

+
∑

i 6=j

|ϕi(x1)| |ϕj(x1)| |ϕi(x2)| |ϕj(x2)| ei(αi(x1)−αi(x2))e−i(αj(x1)−αj(x2)).
(A15)

Which can be simplified to

〈I (x1) I (x2)〉 = 〈I (x1)〉 〈I (x2)〉 −
∑

i

|ϕi (x1)|2 |ϕi (x2)|2 + |〈ϕ (x1)ϕ
∗ (x2)〉|2 . (A16)

Appealing to the central limit theorem[34], one can neglect the term
∑

i |ϕi (x1)|2 |ϕi (x2)|2

for a very large number of sub-sources[8, 35]. The resulting intensity correlation is, then,

just a Gaussian random process:

〈I (x1) I (x2)〉 = 〈I (x1)〉 〈I (x2)〉+ |〈ϕ (x1)ϕ
∗ (x2)〉|2 . (A17)

The last term contains the relative phase information between sub-sources. From the above,

to know the correlation between the two detections, that is the measured intensity correlation

independent of the individual measurements, we divide by the measured intensities in each

detector:

C(x1, x2) =
〈I (x1) I (x2)〉
〈I (x1)〉 〈I (x2)〉

= 1 +
|〈ϕ (x1)ϕ

∗ (x2)〉|2
〈I (x1)〉 〈I (x2)〉

. (A18)

The last term, then, contains the correlation between the two detectors. A correlation

between measurements just means that the measurement at one detector is not independent
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of the other one. In the classical sense, it can be seen as a consequence of the superposition

principle for the fields. We will come back to this later. This correlation between intensities

or detections is usually called the Hanbury Brown-Twiss(HBT) effect. If the source was

coherent, that is its sub-sources didn’t have random phases, then there wouldn’t have been

a correlation: C(x1, x2) = 1 or 〈I (x1) I (x2)〉 = 〈I (x1)〉 〈I (x2)〉; which would just mean the

two measurements are completely independent in this case.

Given very localized sub-sources, the interference seen in amplitude interferometry is not

the same as an interference between the field at the locations of the two sub-sources. The

detection happens at a single point and not at the location of the two sub-sources, the

interference in this situation is a result of the superposition of the fields produced by each

pair of sub-sources at the point of detection. So, what about intensity correlations? Where

do they come from? To get a better grasp of that, consider the following rewrite of the

correlation function

〈I (x1) I (x2)〉 =
〈∣

∣

∣

∣

∣

∑

i

ϕi(x1)

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

∑

j

ϕj(x2)

∣

∣

∣

∣

∣

2〉

=

〈∣

∣

∣

∣

∣

∑

ij

1

2
[ϕi(x1)ϕj(x2) + ϕi(x2)ϕj(x1)]

∣

∣

∣

∣

∣

2〉

.

(A19)

For chaotic sources, this results in

〈I (x1) I (x2)〉 =
∑

i 6=j

∣

∣

∣

∣

1√
2
[ϕi(x1)ϕj(x2) + ϕj(x1)ϕi(x2)]

∣

∣

∣

∣

2

. (A20)

The above correlation is a result of the superposition of joint fields ϕi (x1)ϕj (x2) and

ϕj (x1)ϕi (x2). The first term in this superposition corresponds to the situation in which the

field at x1 is excited by the i’th sub-source, while at x2 it’s the j’th sub-source that does the

job. The second term in this superposition corresponds to the different yet indistinguishable

situation where the opposite happens, x1 excited by the j’th sub-source and x2 by the i’th

source. So, the interference phenomenon is concealed in the non-local joint measurements at

x1 and x2 of a pair of sub-sources: |ϕi (x1)ϕj (x2) + ϕj (x1)ϕi (x2)|2. It’s this superposition
that survives the destructive interference originating from the chaotic nature of the source,

implying a non-local interference of the field. This raises some physical questions: How

can two independent detections influence one another in a classical theory? Shouldn’t the

superpositions at the two detectors be independent? This interference seems to be beyond
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classical physics because of the apparent non-locality of the effect[36, 37]. Although a bit

controversial, a good explanation can be provided in the far-field limit[38] but not for near-

field[36, 37]. Perhaps the best explanation for the HBT effect relies on quantum mechanics,

as we are about to see.

On the other hand, in the continuous limit

〈I (x1) I (x2)〉 =
∫

d4y1d
4y2

∣

∣

∣

∣

1√
2
[ϕ(y1, x1)ϕ(y2, x2) + ϕ(y2, x1)ϕ(y1, x2)]

∣

∣

∣

∣

2

. (A21)

Under the assumption that |ϕi(x)| = |ϕi|, we can write it as

〈I (x1) I (x2)〉 =
1

2

〈∣

∣

∣

∣

∣

∑

ij

|ϕi| |ϕj| ei(θi+θj)ψi,j(x1, x2)

∣

∣

∣

∣

∣

2〉

(A22)

This can be simplified to

〈I (x1) I (x2)〉 =
∑

i 6=j

|ϕi|2 |ϕj|2 |ψi,j(x1, x2)|2 +
∑

i

(

|ϕi|2
)2
. (A23)

Which is the same result as before. For the continuous limit, on the other hand, we can

rewrite the correlation between the intensities as

〈I (x1) I (x2)〉 =
∫

d4y1d
4y2 |ϕ (y1)|2 |ϕ (y2)|2 |ψ (y1, y2, x1, x2)|2 , (A24)

where

ψ (y1, y2, x1, x2)
1√
2

[

eiα(y1,x1)eiα(y2,x2) + eiα(y2,x1)eiα(y1,x2)
]

. (A25)

These expressions will come in handy when we talk about the quantum interpretation.

3. Quantum theory of interferometry

A detector is a quantum system that interacts with the field and performs a transition,

usually it ejects an electron with some probability into some circuitry. When this interaction

is small enough one can use perturbation theory. To first order in perturbations, one can

show that the rate of transition amplitude is given by[4, 39, 40] D(x) 〈f |ϕ (x) |i〉.
for an ideal detection localized at spacetime point x. On this expression |i〉 is the state

of the field before detection, |f〉 is the state of the field after detection and D is a complex

number containing all the information from the detector transition. The only term from the
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field present is its annihilation part, since the detector is assumed to be in its ground state

and so the absorption term is dominant. Now, all we measure is the total counting rate on

the detector and not the final state of the field. So, we must trace out the final state of the

field to calculate the probability for the rate of transition[4, 39, 40]:

P1(x) = |D(x)|2
∑

f

〈i|ϕ† (x) |f〉 〈f |ϕ (x) |i〉 = |D(x)|2 〈i|ϕ† (x)ϕ (x) |i〉 . (A26)

The counting rate P1(x) is simply the probability per unit time that the ideal detector in

question absorbs a particle at the spacetime point x. Also, the initial state doesn’t need to

be pure. For a generic state, we suppose the field is in the state described by some density

matrix ρi. Then, the counting rate becomes

P1(x) = |D (x)|2Tr
(

ρiϕ
† (x)ϕ (x)

)

, (A27)

where Tr denotes the trace over the state space. The above is the kind of observable

amplitude interferometers use, since they involve a single detector, measuring the intensity

of the field 〈I〉 =
〈

ϕ†ϕ
〉

.

Intensity or HBT interferometers contain two detectors. In this situation, then we stop at

second order in perturbation theory to get, for two ideal detection events at x and y[4, 39, 40]

is D(y)D(x) 〈f |ϕ(y)ϕ(x) |i〉 .
One could then assume the above is time ordered, x0 < y0. Following the same procedure

as before, we find the probability of joint transition rate to be[4, 39, 40]

P2(x, y) = |D (x)|2 |D (y)|2Tr
(

ρiϕ
† (x)ϕ† (y)ϕ (y)ϕ (x)

)

. (A28)

This is the observable used in intensity or HBT interferometry. From (A28), we can already

get a good grasp on how quantum mechanics naturally supports correlations between two

detections.

Consider the effect the measurement of a particle at spacetime point x has in the state of

the field:ϕ (x) ρiϕ
†(x).: The resulting state after the measurement is given by the reduced

density matrix[41]

ρi,red(x) =
ϕ (x) ρiϕ

†(x)

Tr (ρiϕ†(x)ϕ(x))
. (A29)

So, if x0 < y0, we can interpret Tr
(

ρiϕ
†(x)ϕ†(y)ϕ(y)ϕ(x)

)

as the measurement of a particle

at spacetime point y conditioned by the detection of a particle at x:

Tr
(

ρiϕ
†(x)ϕ†(y)ϕ(y)ϕ(x)

)

= Tr
(

ϕ(y)ρi,redϕ
†(y)

)

Tr
(

ϕ(x)ρiϕ
†(x)

)

; (A30)
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where in the first line we used the cyclic property of the trace. Therefore, if

ρi,red(x) 6= ρi, (A31)

then a detection of another particle at y will be influenced by the first measurement at

x, since the first detection has changed the state of the field. As we will see, this is the

reason for the correlations encountered when performing a HBT type of measurement with

a chaotic source. Of course one could also stack up more measurements and build whatever

order of correlation they want[2]. For our purposes, since we only want to talk about HBT

kind of measurements, it’s enough to stop at second order.

4. Coherent states and quantum fields interacting with a classical source

A very important kind of state for quantum optics and interferometry are coherent states

|α〉. They are defined by the property of being eigenstates of the annihilation operator[2,

39, 40, 42]:

a (k) |α〉 = α (k) |α〉 ; (A32)

where the eigenvalue α (k) is a complex number. We can solve (A32) by assuming it can be

created from the vacuum and treating formally the action of an annihilation operator as a

derivative with respect to the creation operator. That is, we rewrite (A32) as

δ

δa† (k)
D
(

α, a†
)

|0〉 = α (k)D
(

α, a†
)

|0〉 . (A33)

Which has the solution

D
(

α, a†
)

= e−
(2π)3

2

∫
d3k|α(k)|2e

∫
d3kα(k)a†(k) |0〉 , (A34)

where the normalization was obtained by assuming

〈α|α〉 = 1 (A35)

and using the Baker-Hausdorff-Campbell formula[43]. Coherent states are extremely im-

portant for a variety of reasons. One of them is that they form an over-complete set of

states[4, 40, 44]
∫

Dα |α〉 〈α| , 〈β|α〉 = e−
1
2

∫
d3k(|α(k)|2+|β(k)|2+β∗(k)α(k)), (A36)
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where

Dα =
∏

k∈R3

d2α (k)

π
. (A37)

They are also the states that best describe classical fields[4, 40, 44, 45], with the classical

field identified as

φα(x) = 〈α|φ(x) |α〉

=

∫

d3k

(2π)3
eik·x

√

2ω (k)
α (k) +

∫

d3k

(2π)3
e−ik·x
√

2ω (k)
α∗ (k) .

(A38)

We see the above gets the same shape of a classical field if we identify its complex signal

or amplitude with ϕα. More importantly than that, they can be used to define what are

classical and non-classical states. By a classical state, we mean a state with a direct classical

field analog, such as (A38). To establish this criterion, one first need the fact that any state

can be expanded as[3, 40, 46–48]

ρ =

∫

DαP (α) |α〉 〈α| . (A39)

Called the Glauber-Sudarshan representation or just the P-representation of ρ. From this

representation, one can say a state ρ is classical if P (α) is a classical probability distribution,

meaning it’s non-negative[47, 49]. Otherwise the state is said to be non-classical, since there

is no classical analog to the observables of this quantum field. From the above discussion,

it follows we must be able to represent the sources in the classical context, described in

the previous section, as a classical density matrix. We will see that is very natural in the

following.

Interestingly there is a very simple way to generate coherent states. The state produced

from the vacuum by the interaction of a classical source with a quantum field is a coherent

state. This interaction is described by the Lagrangian[50–52]

L = −1

2
∂φ(x) · ∂φ(x) + J(x)φ(x), (A40)

where J is the classical source assumed to be a well behaved spacetime function which goes

to zero in spacelike and timelike directions. With this Lagrangian, the field satisfies

∂2φ = −J. (A41)
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The solution, under causal boundary conditions, should be1

φ(x) = φ0 + iDR · J(x) = φ0 + i

∫

d4yDR(x− y)J(y), (A42)

where φ0 is the free solution to the Klein-Gordon equation andDR is the retarded propagator,

i.e. the inverse of ∂2:

∂2(x)DR(x− y) = iδ(x− y); (A43)

with causal boundary conditions

DR(x− y) = 0, when x0 < y0. (A44)

As a function it can be written

DR(x− y) = Θ(x0 − y0) (K(x− y)−K(y − x)) , (A45)

where K is the kernel or Wightman function of ∂2, that is the on-shell function

K(x− y) =

∫

d3k

(2π)3
eik·(x−y)

2k
. (A46)

If we assume the source is in the past of the point we want to evaluate the field in, x0 > y0,

then the full solution of the field can be expressed as

φ(x) = φ0(x) + iK · J(x) + (iK · J(x))∗ = φ0(x) + ϕJ(x) + ϕ∗
J(x). (A47)

This is the full solution in the Heisenberg picture.

We could just identify the complex signal of classical field produced by the source with

ϕJ , since

〈0|φ(x) |0〉 = ϕJ(x) + ϕ∗
J(x), (A48)

and work from there in the Heisenberg picture. But, a more useful approach for inter-

ferometry is the one derived in the interaction picture[50, 51, 53]. Denoting the field in

the interaction picture as φI and treating LI = φI(x)J(x) as an interaction, the evolution

operator in the interaction picture takes the form[50–53]

UI = T

[

exp

(

i

∫

d4xLI

)]

= T

[

exp

(

i

∫

d4xJ(x)φI(x).

)]

(A49)

1 We will sometimes use A ·B to represent a volume integral over the space A and B are functions of. An

example is φ · J =
∫

d4xφ(x)J(x).
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By assuming the field starts out in the vacuum state, we calculate the evolved state using

Wick’s theorem. In it’s most general form in the interaction picture, it states that[52, 54]

T (O(φI)) =: exp

(

1

2

∫

d4xd4y
δ

δφI(x)
DF (x, y)

δ

δφI(y)

)

O(φI) :, (A50)

where : O : denotes normal ordering of some operator O and DF is the Feynman propagator.

Applying (A50) to the evolution operator (A49), one gets

UI =: exp

(

1

2

∫

d4xd4y
δ

δφI(x)
DF (x, y)

δ

δφI(y)

)

exp

(

i

∫

dτd3xJ(x)φI(x)

)

:

= exp

[

−1

2

∫

d4xd4yJ(x)DF (x, y)J(y)

]

: exp

(

i

∫

dτd3xJ(x)φI(x)

)

: .

(A51)

Expanding the field in annihilation and creation operators, we have

: exp

(

i

∫

d4xJ(x)φI(x)

)

: = exp

(
∫

d3k

(2π)3
J̃(k)a†k

)

exp

(
∫

d3k

(2π)3
J̃∗(k)ak

)

, (A52)

Finally, the evolution of the vacuum state will be

|J〉 = UI |0〉 = exp

[

−1

2

∫

d4xd4yJ(x)DF (x, y)J(y)

]

exp

(
∫

d3k

(2π)3
J̃(k)a†k

)

|0〉 . (A53)

Since UI is unitary,
∣

∣

∣
J̃
〉

must be normalized to one. So, it’s just a coherent state up to some

irrelevant phase. From the normalization and the Baker-Campbell-Hausdorff formula[43],

one can show

Real

(
∫

d4xd4yJ(x)DF (x, y)J(y)

)

=

∫

d3k

(2π)3

∣

∣

∣
J̃(k)

∣

∣

∣

2

, (A54)

that isn’t hard to do[52]. Therefore, up to an irrelevant phase, the coherent state produced

by a classical source can be written as

∣

∣

∣
J̃
〉

= exp

(

−1

2

∫

d3k

(2π)3

∣

∣

∣
J̃(k)

∣

∣

∣

2
)

exp

(
∫

d3k

(2π)3
J̃(k)a†k

)

|0〉 , (A55)

where J̃ (k) is the on-shell Fourier transform of the source.

5. Quantum state and density matrix of Chaotic sources

The same construction of the classical theory can be made for a source in the quantum

theory. Let’s assume our source can be split into many sub-sources

J(x) =
∑

i

Ji(x). (A56)
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To make the source chaotic, just add a random phase to each J̃i:

J̃ (k) =
∑

i

J̃i (k) e
iθi . (A57)

As we saw before, a very large number of sources just makes this system into a Gaussian

random process. These are completely determined by their two point function:

〈

J̃∗(k)J̃(p)
〉

=
∑

i

J̃∗
i (k) J̃i (p) . (A58)

So, our chaotic source can be described by the following density matrix

ρch =

∫

DJ̃ exp
(

−J̃∗ ·M−1 · J̃
) ∣

∣

∣
J̃
〉〈

J̃
∣

∣

∣ , (A59)

where

M(k,p) =
〈

J̃∗(k)J̃(p)
〉

=
∑

i

J̃∗
i (k) J̃i (p) . (A60)

To check that, just consider the generating functional for normally ordered products of

annihilation and creation operators

Z (f, f ∗) = Tr
(

ρche
f ·ϕ†

ef
∗·ϕ
)

=

∫

DJ̃ exp
(

−J̃∗ ·M−1 · J̃
)

exp
(

f̃ ∗ · J̃ + f̃ · J̃∗
)

, (A61)

where f̃ is again just the on-shell Fourier transform of the auxiliary function f . One can

solve the Gaussian integral (A61) exactly as

Z (f, f ∗) = exp
(

f̃ ·M · f̃ ∗
)

, (A62)

where we have assumed that Z(0, 0) = 1. Hence, any average of products of J̃∗ and J̃ can

be determined by derivatives with respect to f̃ and f̃ ∗:

Tr

(

ρch
∏

i

a† (ki)
∏

j

a
(

pj

)

)

=

〈

∏

i

J̃∗ (ki)
∏

j

J̃
(

pj

)

〉

(A63)

∫

DJ̃ exp
(

−J̃∗ ·M−1 · J̃
)

∏

i

J̃∗ (ki)
∏

j

J̃
(

pj

)

=
∏

i

δ

δf̃ (ki)

∏

j

δ

δf̃ ∗ (kj)
Z(f, f ∗)

∣

∣

∣

∣

∣

f,f∗=0

.

in configuration space, using the Fourier transform properties of the Gaussian

Tr

(

ρch
∏

i

ϕ† (xi)
∏

j

ϕ (yj)

)

=

〈

∏

i

ϕ∗
J (xi)

∏

j

ϕJ (yj)

〉

(A64)
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=

∫

DJ̃ exp
(

−J̃∗ ·M−1 · J̃
)

∏

i

ϕ∗
J (xi)

∏

j

ϕJ (yj) =
∏

i

δ

δf (xi)

∏

j

δ

δf ∗ (yj)
Z(f, f ∗)

∣

∣

∣

∣

∣

f,f∗=0

.

These relations make it easy to calculate all the correlation functions. For example, the

correlation function for two particle detections can be readily calculated

Tr
(

ρchϕ
†(x)ϕ†(y)ϕ(y)ϕ(x)

)

=
〈

|ϕJ(x)|2
〉 〈

|ϕJ(y)|2
〉

+ |〈ϕJ(x)ϕ
∗
J(y)〉|2

= Tr
(

ρchϕ
†(x)ϕ(x)

)

Tr
(

ρchϕ
†(y)ϕ(y)

)

+
∣

∣Tr
(

ρchϕ
†(y)ϕ(x)

)∣

∣

2
.

(A65)

Which is just the same result obtained in the classical theory.

A few points are in order. If the source wasn’t chaotic, then it would simply be a coherent

state: ρco =
∣

∣

∣
J̃
〉〈

J̃
∣

∣

∣
. This implies that the correlation functions are all factorisable

Tr

(

ρco :
∏

i

ϕ† (xi)ϕ (xi) :

)

=
∏

i

|ϕJ (xi)|2 =
∏

i

Tr
(

ρcoϕ
† (xi)ϕ (xi)

)

, (A66)

simply because of the fact that coherent states are eigenstates of the annihilation operators.

Immediately we know all the normalized correlation functions C(x1, · · · , xn) are equal to

one. For coherent states, therefore, all the measurements made are completely independent

from the others. That can be easily seen by considering the effect of a measurement of a

field observable ϕ(x) on the state

ρco,red(x) =
ϕ(x)ρcoϕ

†(x)

Tr (ρϕ†(x)ϕ(x))
=

ϕ(x)
∣

∣

∣
J̃
〉〈

J̃
∣

∣

∣
ϕ†(x)

Tr
(∣

∣

∣
J̃
〉〈

J̃
∣

∣

∣
ϕ†(x)ϕ(x)

) . =
∣

∣

∣
J̃
〉〈

J̃
∣

∣

∣ , (A67)

where we have used in the last line that trace is linear and that coherent states are normalized

to one: Tr
(∣

∣

∣
J̃
〉〈

J̃
∣

∣

∣

)

= 1. As expected, a measurement didn’t change the density matrix,

proving the previous statement on coherent states.

The same won’t be true for a chaotic source. The density matrix changes after a mea-

surement

ρred,ch(x) =
1

〈

|ϕJ(x)|2
〉

∫

DJ̃ exp
(

−J̃∗ ·M−1 · J̃
)

|ϕJ(x)|2
∣

∣

∣
J̃
〉〈

J̃
∣

∣

∣
6= ρch. (A68)

That can also be seen from the fact that the correlation function doesn’t factorize

Tr
(

ρchϕ
†(x)ϕ†(y)ϕ(y)ϕ(x)

)

6= Tr
(

ρchϕ
†(x)ϕ(x)

)

Tr
(

ρchϕ
†(y)ϕ(y)

)

. (A69)
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While in a sense this is a trivial consequence of the coherent state being an Eigenstate of

the field operator and the chaotic state not being one, these results may still seem coun-

terintuitive: how can a coherent source with no fluctuations in their amplitudes lead to

uncorrelated measurements? Coherent states, being the least random states of the field,

emit particles at regular intervals. A chaotic source, on the other hand, emits more particles

when its amplitude is high and fewer when low. This bunching of particles as the amplitude

is at a high point is the reason for the correlations observed for a chaotic source. There-

fore, statistical dependence is a characteristic of incoherence in this context while coherence

results in statistical independence.

This also clarifies the relation of interferometry to statistical mechanics, of which random

phases are an expected feature [16]. In Global equilibrium, the density matrix is ”chaotic”

with random phases, as expected from maximal mixing. However, in the thermodynamic

limit the amplitude for emitting particles is uniform across the (large) volume of the system

and constant in time because of the KMS state[55]. It is therefore understandable that there

is no interferometry, as clear from the fact that in the Gaussian approximation [6, 7] the

HBT radii and emission times are infinite, hence correlation radii are zero. The gradient in

bunchings reflects the fact that local equilibrium is not full equilibrium, since gradients will

relax in the long run.

HBT-type correlations are however more general than chaotic, coherent or thermal

sources. As long as the correlation function does or doesn’t factorize the system won’t or

will have the HBT effect, in the sense of detections not being independent. Finally, in the

final subsection we will go into more detail on the quantum mechanical reason for the HBT

effect.

6. Quantum interpretation of the HBT effect

The original HBT experiment[17, 38, 56, 57] worked by correlating the fluctuations of the

currents from two photon detectors illuminated by a chaotic source of light. If one represents

each current by[38]

ij(t) = īj +∆ij(t) (A70)
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where īj is the stationary average of the current and ∆ij is the fluctuation, then the corre-

lation between the two currents can be expressed as

C =
〈i1(t1)i2(t2)〉

ī1ī2
= 1 +

〈∆i1(t1)∆i2(t2)〉
ī1ī2

. (A71)

The brackets 〈· · ·〉 represents an average over time. Their result was simply that

〈∆i1(t1)∆i2(t2)〉
ī1ī2

> 0, (A72)

demonstrating the two signals were correlated. This result surprised the physics community

at the time. The original version of the experiment wasn’t necessarily controversial, it can

be explained through classical electromagnetism[36–38], but rather a variation of it. If the

source is sufficiently weak one could count the detected particles and look for correlations in

their arrivals. The HBT result seemed to imply there would be correlations on this version of

the experiment as well. The controversy comes from the implication that correlated arrivals

of two different photons, emitted randomly from the source, was impossible since these two

photons propagating freely in empty space couldn’t possibly interfere with one another.

From Dirac’s Principles of quantum mechanics [58]: “Each photon interferes only with itself.

Interference between two different photons never occurs”. Two different photons interfering

was, as people believed, against the laws of quantum mechanics[57]. As was first realized

by Glauber[4, 35], that’s not the case at all, although one should talk about quantum field

theory (second quantization) rather than quantum mechanics. The HBT effect follows from

standard quantum formalism as will be shown below. The “classical” HBT will simply be

the semiclassical limit (It is sometimes said that ”there is no H in HBT”; What happens

is that Gaussian emission function exponents are divided by ~ to be dimensionless, rather

than multiples of ~).

The first observation one must make, strictly speaking, it’s not the photons that are

interfering, since they are not the fundamental objects, but the electromagnetic field. What

is interfering are the alternative “histories” of the whole system. To see how that follows from

the formalism established in the last section for a scalar field, consider a source composed

of only two sub-sources

J(x) = J1(x) + J2(x), (A73)
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then the field amplitude will also have only two contributions, one for each sub-source,

ϕ(x) = i

∫

d4y

∫

d3k

(2π)3
eik·(x−y)

2k
J1(y) + i

∫

d4y

∫

d3k

(2π)3
eik·(x−y)

2k
J2(y)

= ϕJ1(x) + ϕJ2(x),

(A74)

where ϕJi(x) can be interpreted as the amplitude for a particle to be emitted by the sub-

source Ji and be measured at the spacetime point x. So, the amplitude for joint detections

at x1 and x2 is then

〈f |ϕ(x2)ϕ(x1)
∣

∣

∣
J̃
〉

= (ϕJ1(x) + ϕJ2(x)) (ϕJ1(x) + ϕJ2(x))
〈

f |J̃
〉

. (A75)

There are four possible amplitudes:

(1) Both particles got emitted by sub-source J1.

(2) Both particles got emitted by sub-source J2.

(3) Each particle was emitted by a different sub-source. Because of the bosonic nature of

them, there are two indistinguishable possibilities:

(3.1) The particle emitted by J1 was detected at x1, while the one emitted by J2 got

detected at x2.

(3.2) The particle emitted by J1 was detected at x2, while the one emitted by J2 got

detected at x1.

The Bose-Einstein symmetry responsible for the last two amplitudes arises automatically in

the source formalism we are using here. These four amplitudes can be represented diagram-

matically as











J1 x1

J2 x2

+

J1 x1

J2 x2

+

J1 x1

J2 x2

+

J1 x1

J2 x2











〈

f |J̃
〉

, (A76)

where we are representing

ϕJi (xj) = Ji xj . (A77)
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To calculate the probability, we trace out the final state of the field and get

Tr
(

ρϕ†(x)ϕ†(y)ϕ(y)ϕ(x)
)

=

〈

∣

∣

∣

∣

∣

∣

∣

∣

∣

J1 x1

J2 x2

+

J1 x1

J2 x2

+

J1 x1

J2 x2

+

J1 x1

J2 x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

〉

.
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If the two sub-sources are statistically independent and random, then after the phase average

Tr
(

ρchϕ
†(x)ϕ†(y)ϕ(y)ϕ(x)

)

=

〈

∣

∣

∣

∣

∣

∣

∣

∣

∣

J1 x1

J2 x2

+

J1 x1

J2 x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

〉

+

〈

∣

∣

∣

∣

∣

∣

∣

∣

∣

J1 x1

J2 x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

〉

+

〈

∣

∣

∣

∣

∣

∣

∣

∣

∣

J1 x1

J2 x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

〉

.
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Therefore, the only interference come from the indistinguishable amplitudes

〈

∣

∣

∣

∣

∣

∣

∣

∣

∣

J1 x1

J2 x2

+

J1 x1

J2 x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

〉

=

〈

∣

∣

∣

∣

∣

∣

∣

∣

∣

J1 x1

J2 x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

〉

+

〈

∣

∣

∣
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∣

∣

∣

∣

∣

J1 x1

J2 x2
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∣

∣

∣

∣

∣

∣

∣

∣

2

〉

+











J1 x1

J2 x2





















J1 x1

J2 x2











∗

+











J1 x1

J2 x2











∗









J1 x1

J2 x2











,
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where the last two are the non-local interference terms[59]. The HBT effect or the correla-

tions for chaotic sources are a result of this constructive interference which resists the phase

average. That can easily be seen by expressing in the same diagrammatic way the expression
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for two independent measurements:

Tr
(

ρchϕ
†(x1)ϕ(x1)

)

Tr
(

ρchϕ
†(x2)ϕ(x2)

)

=

〈

∣

∣

∣

∣

∣

∣

∣

∣

J1

x2

+
J2 x2
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∣
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∣

∣

∣
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∣

2
〉〈

∣

∣

∣

∣

∣

∣

∣

∣

J1 x1 +

x1

J2

∣

∣

∣
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∣

∣
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∣
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∣
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∣

∣

∣
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∣
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∣

∣
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∣
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〉






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Using the relation

〈

∣

∣

∣ Ji xj

∣

∣

∣

2
〉〈

∣

∣

∣ Jm xn

∣

∣

∣

2
〉

=

〈
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∣

∣

∣
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∣

∣

∣

Ji xj

Jm xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

〉
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one can rewrite (A81) as

Tr
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ρchϕ
†(x1)ϕ(x1)

)

Tr
(

ρchϕ
†(x2)ϕ(x2)

)

=

〈

∣

∣

∣

∣

∣

∣

∣

∣

∣

J1 x1

J2 x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

〉

+

〈

∣

∣

∣

∣

∣

∣

∣

∣

∣

J1 x1

J2 x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

〉

+

〈

∣

∣

∣

∣

∣

∣

∣

∣

∣

J1 x1

J2 x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

〉

+

〈

∣

∣

∣

∣

∣

∣

∣

∣

∣

J1 x1

J2 x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

〉

.

(A83)

Therefore, the only distinction between the independent measurements and the correlated

one is the interference between the two indistinguishable amplitudes:

Tr
(

ρchϕ
†(x)ϕ†(y)ϕ(y)ϕ(x)

)

Tr (ρchϕ†(x)ϕ(x)) Tr (ρchϕ†(y)ϕ(y))

= 1 +


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
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
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
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Not only is the correlation a result of standard quantum mechanical wave function interfer-

ence, it’s also a result of a two particle amplitude interference. The coherent case, on the

other hand won’t have correlations because of the lack of destructive interference between

amplitudes. To see that, just note that the expression for independent measurements

Tr
(

ρcoϕ
† (x1)ϕ (x1)

)

Tr
(

ρcoϕ
† (x2)ϕ (x2)

)

=

∣
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∣

∣

∣

∣
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+
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∣
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∣

2 ∣
∣
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∣
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∣
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∣

∣
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∣

∣

∣

∣
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can be rewritten as

Tr
(

ρcoϕ
† (x1)ϕ (x1)

)

Tr
(

ρcoϕ
† (x2)ϕ (x2)

)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

J1 x1

J2 x2

+

J1 x1

J2 x2

+

J1 x1

J2 x2

+

J1 x1

J2 x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

.
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Which is the same as the joint measurements. What if we have a very large number of

sub-sources? As we saw before, in this situation the single sub-source double emissions

Ji x1

x2

(A87)

are negligible. In this situation, no two different pairs of emissions interfere, the correlation

comes from the constructive interference between each emission pair amplitude:

Tr
(

ρchϕ
†(x)ϕ†(y)ϕ(y)ϕ(x)

)

=
1

2

∑

i 6=j

〈
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∣

∣

∣

∣
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∣

Ji x1

Jj x2

+

Ji x1

Jj x2

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

〉
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There are no interferences between different pairs of sub-sources. That is,

〈











Ji x1

Jj x2

+

Ji x1

Jj x2





















Jm x1

Jn x2

+

Jm x1

Jn x2











∗
〉

= 0, (A89)

for any two different pairs {i, j} and {m,n} of sub-sources. Therefore, the HBT effect or

correlations is really the result of the symmetrization of the two particle wave function when
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we have chaotic sources. Correlations which are a result of the symmetrization of the wave

function are usually called Bose-Einstein correlations.

To answer the question of whether the HBT effect is a quantum effect or not, we will

take the position that it can be a quantum effect. There are certain situations such as the

classic HBT experiment where a classical explanation can be given, but that doesn’t seem to

be always possible[36, 37]. With that out of the way, one must also keep in mind, although

the effect is quantum mechanical for chaotic sources in our opinion, classical states of the

field can exhibit correlations, just take a stochastic classical field as an example. In spite

of the quantum interpretation we have given, for a very large number of sources, a classical

stochastic field would be able to explain the correlation resulting from a chaotic source.

So, it’s not clear whether one could deduce quantum properties of the field from positive

correlations such as the one we found for a chaotic field, these can always be explained by

classical fields[42, 60]. The only kind of correlations that can’t be explained by classical fields

are the negative ones[42, 47, 49]. In fact, HBT has recently been argued to be analogous to

these [61]
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