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ABSTRACT

More than 300 supermassive black holes have been detected at redshifts larger than 6, and they are abundant in the centers of local
galaxies. Their formation mechanisms, however, are still rather unconstrained. A possible origin of these supermassive black holes
could be through mergers in dense black hole clusters, forming as a result of mass segregation within nuclear star clusters in the center
of galaxies. In this study, we present the first systematic investigation of the evolution of such black hole clusters where the effect of
an external potential is taken into account. Such a potential could be the result of gas inflows into the central region, for example as
a result of galaxy mergers. We show here that the efficiency for the formation of a massive central object is mostly regulated by the
ratio of cluster velocity dispersion divided by the speed of light, potentially reaching efficiencies of 0.05 − 0.08 in realistic systems.
Our results show that this scenario is potentially feasible and may provide seeds black hole of at least 103 M⊙. We conclude that the
formation of seed black holes via this channel should be taken into account in statistical assessments of the black hole population.

Key words. Black hole physics - Gravitation - Methods: numerical - Stars: black holes - quasars: supermassive black holes

1. Introduction

The existence of supermassive black holes (SMBHs) and their
physical nature has been confirmed through different inde-
pendent observations, including the orbits of the S2 stars
near the center of Milky Way with the GRAVITY instrument
(GRAVITY Collaboration et al. 2018), as well as the observa-
tion of their shadows at the centers of M87 and Sagitarius A*
(Event Horizon Telescope Collaboration et al. 2019, 2022). Ob-
served through the detection of Active Galactic Nuclei (AGN)
at high redshift (e.g. Shankar et al. 2010), even at redshifts
larger than z > 6, more than 300 quasars have been detected
(e.g. Bañados et al. 2016; Inayoshi et al. 2020; Fan et al. 2023).
These objects are very rare with number densities of ∼ 1 Gpc−3

and have been found so far in optical/infrared(IR) surveys that
cover a large portion of the sky, such as The Sloan Digital
Sky Survey (SDSS), the first survey to discover a high-redshift
quasar (Fan et al. 2001). They are common in the centers of
local galaxies (e.g. Ferrarese & Merritt 2000; Tremaine et al.
2002; Gültekin et al. 2009) and their masses are in the range of
106 − 1010M⊙.

The most distant quasar detected so far was discovered by
the James Webb Space Telescope (JWST) at redshift z ≈ 10.3
magnified by the cluster Abel 2744, the SMBH has a mass
of ≈ 107 − 108M⊙ assuming accretion at the Eddington limit
(Bogdán et al. 2024).

In the local Universe the rarest SMBHs are the so-called
ultra-massive ones; over the last decade observations have es-

tablished the existence of a few of these with masses & 1010M⊙
in some bright cluster galaxies (e.g. McConnell et al. 2011;
Hlavacek-Larrondo et al. 2012; Wu et al. 2015; Schindler et al.
2020).

In the local Universe, galaxies were also found to host
nuclear star cluster (NSCs) at their centers (Neumayer et al.
2020). The most massive NSCs are the densest known stellar
systems and can reach mass surface densities of ≈ 106 M⊙/pc2

or higher. Some important features of these objects and an
important topic to study are their correlations with prop-
erties of their host galaxies, such as the tight correlations
with the masses of their host galaxy (Wehner & Harris 2006;
Rossa et al. 2006; Ferrarese et al. 2006). The correlation
between the mass of the spheroidal component of the host
galaxy and the mass of the SMBH, as well as that with the
bulge velocity dispersion, is another crucial aspect to consider
(Gültekin et al. 2009; Magorrian et al. 1998).There are a num-
ber of cases where NSCs and SMBHs were found to co-exist
(Filippenko & Ho 2003; Seth et al. 2008; Graham & Spitler
2009; Neumayer & Walcher 2012; Nguyen et al. 2019).
Other nearby examples of SMBH detections within NSCs
are M31 (Bender et al. 2005), M32 (Verolme et al. 2002;
Nguyen et al. 2018), NGC 3115 and the Milky Way (Tonry
1984; Dressler & Richstone 1988; Richstone et al. 1990;
Kormendy & Richstone 1992; van der Marel et al. 1994).
The co-existence suggests that the build-up of NSCs and the
growth of SMBHs are closely related (see also Escala 2021;
Vergara et al. 2022). The high masses of the SMBHs at an
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early age of the Universe where we observe these objects are
a real challenge for theories of their formation. If we assume
a constant accretion at the Eddington limit with only 10% of
the matter falling into the black hole (BH) being radiated away,
a stellar-mass black hole with a mass of = 10 M⊙ requires
a timescale of taccr ≈ 1 Gyr to reach the masses of SMBHs
observed in the most massive AGN (Shapiro 2005). However,
it is unlikely to grow so much because of the removal of the
gas reservoir by UV radiation and supernova (SN) explosions
of the Pop III stars in the shallow gravitational potential wells
of minihalos (Johnson & Bromm 2007; Whalen et al. 2008;
Milosavljević et al. 2009). This suggests that the seed black hole
must have formed at redshift z ≥ 15 with a mass of ≈ 105 M⊙,
or the black hole seed had a lower mass but accreted very
efficiently, or a combination of both.

One promising formation scenario is the Direct Collapse
(DC) (Latif et al. 2013; Latif et al. 2015), which involves the
gravitational collapse of massive gas clouds in atomic cooling
haloes (Tvir > 104 K, M ≈ 108 M⊙) at high redshift (Wise et al.
2019). This process was suggested to form SMBH seeds with
masses around 103−5 M⊙. However, the presence of molecu-
lar hydrogen could lead to cloud fragmentation (Omukai et al.
2008; Suazo et al. 2019), preventing the formation of massive
objects. Another scenario is associated with the dynamics within
stellar clusters. Fragmentation at high density may give rise
to the formation of ultra dense clusters (Omukai et al. 2008;
Devecchi & Volonteri 2009). Due to its high stellar density, this
cluster can undergo runaway core collapse in a short time, form-
ing a central intermediate-mass black hole (IMBH) with a mass
of approximately 102−4 M⊙ (e.g. Portegies Zwart et al. 2004;
Sakurai et al. 2017; Reinoso et al. 2018, 2020; Vergara et al.
2021, 2023). In this scenario, a newly born dense star cluster
could still be embedded in gas, aiding in the formation of a mas-
sive black hole seed through the inflow of gas into the cluster
(Tagawa et al. 2020). This process increases the gravitational po-
tential of the cluster, reduces the escapers, which we define as
BHs with more kinetic than potential energy, and deepens the po-
tential well of the cluster. Furthermore, in this scenario, the pro-
tostar may accrete gas, increasing its radius and, consequently,
its cross section. Gas dynamical friction can drive a more ef-
ficient core collapse (e.g. Tagawa et al. 2020; Schleicher et al.
2022).

Dynamical friction can also cause massive objects to sink
to the center of a star cluster, where at the end of their life-
time the massive objects will evolve into stellar mass black
holes or neutron stars, forming a dark core. The dynami-
cal evolution of such black hole clusters has been exam-
ined by Quinlan & Shapiro (1987, 1989), finding that for typ-
ical parameters these clusters will dissolve due to the ejec-
tion of black holes as a result of three-body interactions (see
also Chassonnery & Capuzzo-Dolcetta 2021). A solution to this
problem has been proposed by Davies et al. (2011), showing
that gas inflows after galaxy mergers could steepen the poten-
tial of the cluster, increase the velocity dispersion, and reduce
the timescale for contraction due to gravitational wave emission
in comparison to the three-body ejection timescale. Lupi et al.
(2014) investigated the statistical implications of such a scenario
by implementing it into a semi-analytic model of galaxy evolu-
tion, showing that this formation channel may contribute a sub-
stantial amount of seed black holes. In an independent investi-
gation, Kroupa et al. (2020) found that the steepening of black
hole clusters through inflows of gas could explain the presence
of supermassive black holes in high-redshift quasars.

In this paper, we investigate this scenario in more detail, ex-
ploring the evolution of a black hole cluster in an external poten-
tial to determine under which conditions it can lead to the forma-
tion of an IMBH, as well as the efficiency of that process. In Sec-
tion (2), we describe the model that forms the basis of our sim-
ulations. Section (3) outlines the methodology employed, along
with the initial conditions for the simulations. In Section( 4), we
present the results of the evolution of the clusters, detailing the
influence of the external potential and the post-Newtonian ef-
fects on the formation of massive objects. We explore mergers
via gravitational waves, the influence of escapers, and various
properties of the binaries formed within the cluster. In Section
(5) we provide a discussion of neglected effects including possi-
ble considerations for future research. Finally, in Section (6), we
present our conclusions.

2. Model

The theoretical framework of this project is a variation of the
model introduced in the previous section on runaway mergers in
dense star clusters. The model considers mergers in dense black
hole clusters, following the framework of Davies et al. (2011).
Due to mass segregation, the stellar mass BHs are assumed to
have sunken to the center of the core of a nuclear star cluster.
In stellar systems there is a tendency towards equipartition of
kinetic energies, so the most massive objects will tend to move
more slowly on average and then massive objects fall deep into
the potential well, while light objects tend to move fast and move
out, and may reach the velocity necessary to escape. This insta-
bility is known as the equipartition instability or Spitzer instabil-
ity causing mass segregation, leading to the formation of a dark
core.

We assume that the stars and other remnants in the core of
the cluster can be ignored as their individual masses are much
smaller than those of the stellar mass BHs and thus they will
be absorbed by the BHs or they may be pushed outside of the ra-
dius of the dark core (Banerjee & Kroupa 2011; Breen & Heggie
2013). The cluster which is more than 50 Myr old is assumed
to consist of N equal mass stellar BHs each with mass mBH.
Some BH - BH interactions can lead to escapers but a signifi-
cant fraction of the initial stellar mass BHs remains in the clus-
ter (Mackey et al. 2007). For simplicity we assume here that the
BHs formed in the cluster do not grow during the initial 50 Myrs
because of stellar feedback (radiation, winds, and SNe).

Binaries within the dark core stabilize the cluster against core
collapse as the binaries are a heating source (Hills 1975; Heggie
1975; Miller & Hamilton 2002). Thus the dark core evolves as
the BH population self-depletes through the dynamical forma-
tion of BH binaries in triple encounters which, after their for-
mation, may exchange energy with a third BH. Some of these
interactions could lead to BH escapers, though due the deep po-
tential well, the cluster retains most of its BHs. According to the
Hénon principle (Hénon 1961, 1975), the energy generation rate
in the cluster core from encounters between single BHs/binaries
with hard binaries is regulated by the mass of the system. Such
encounters transform binding energy into kinetic energy, which
supports the cluster against core collapse. While soft binaries
will be split by interactions in binary-single encounters, hard bi-
naries tend to harden in binary-single encounters. We introduce
here the critical value of the semi-major axis describing the tran-
sition between soft and hard binary systems,

ah/s =
Gm1m2

< m > σ2
, (1)
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where m1 and m2 are the masses of the primary and sec-
ondary of the binary system, 〈m〉 describes the average black
hole mass in the cluster core and σ the velocity dispersion. Bi-
naries with a semi-major axes a > ah/s are then referred to as soft
binaries and will be disrupted due to gravitationally encounters,
while only hard binaries with a < ah/s can survive. The timescale
of a binary within a cluster to gravitational interact with another
object is given by (Binney & Tremaine 2008)

τ2+1 ≃ 6 × 108x
M2

c,6

v3
∞,10

yr, (2)

where Mc,6 is the total mass of the cluster in units of
106 M⊙, x is the ratio of binary binding energy to kinetic en-
ergy, and v∞,10 is the relative velocity at infinity in units of
10 km/s. In virial equilibrium we have v∞,10 ≈ 4.36

√
GMc/rh

(Binney & Tremaine 2008), with rh is the cluster half-mass ra-
dius. Once the dark core reaches enough velocity dispersion
(corresponding to very large density), the dynamical binaries
formed in the cluster will be sufficiently tight will quickly merge
via gravitational wave (GW) emission, as then the time scale of
GW emission will be equal to or shorter than the time scale of
binary-single encounters. As the binding energy stored in the bi-
naries is lost via GW emission, the binaries cease to be a source
of heating for the cluster and core collapse takes place. The de-
cay time of a BH binary with an initial separation a and eccen-
tricity e is (Peters 1964),

τgw ≃ 5 × 10−3c5G
mbh

v8
∞,10

x−4(1 − e2)7/2 yr. (3)

The gravitational binary-single interactions will leave the
binaries with a thermal distribution of the orbital eccentrici-
ties, where the median eccentricity is emed = 1/

√
2. This ef-

fect reduces the typical binary merger time by a factor ≈ 10.
If τgr < τ2+1 binaries will merge avoiding the transfer of their
binding energy to kinetic energy via gravitational interactions,
lose the energy that is stored in the binaries and thus the bina-
ries will not keep heating the cluster as a result. Then the energy
equilibrium breaks and core collapse is expected to happen.

This scenario thus requires a mechanism to shrink the radius
of the cluster and/or increase its mass. The dark core thus needs
to become more dense, so that the black holes may merge via
runaway processes and stay within the cluster. In the scenario
proposed by Mayer et al. (2010), the self-gravitating gas is sub-
ject to instabilities that funnel much of the low angular momen-
tum gas to the center to scales of 0.2 pc or less. It is thus very
efficient in contracting the core of the cluster, to increase the cen-
tral densities and enhance the mass segregation, leading to fast
interactions between stellar mass black holes that could lead to
a quick coalescence and the formation of a massive BH seed.
High resolution cosmological simulations of galaxy formation
by Bellovary et al. (2011) show a gaseous inflow due to a com-
bination of accretion of matter from the cosmic web-filaments
and mergers of galaxies, providing a significant inflow of gas
comparable to or greater than the stellar mass in the cluster at
high redshift (z > 10).

Independent of the primordial mass segregation the inflow
of gas into the cluster will make the black hole cluster shrink
given the steepening of the potential. This increases the interac-
tions between the BHs, while the initial fraction of hard bina-
ries also affects the re-expansion of the cluster due to their heat-
ing effect. In this scenario the gas only contributes to deepening

the potential well, while we neglect here the dynamical friction
that could make the cluster even more dissipative and further en-
hance the probability to form a very massive object, as well as
the formation of the gas itself (cooling, fragmentation, star for-
mation) Kroupa et al. (2020) have further investigated this sce-
nario, defining the gas mass that falls into the black hole clus-
ter Mg = ηgNmBH. They find this scenario to be feasible for
0.1 < ηg < 1.0 with Rvir . 1.5− 4 pc and a total BH mass in the
cluster MBH & 104 M⊙, where the cluster could reach a relativis-
tic state (1% speed of light) within much less than a Gyr , while
for ηg < 0.06 the BH cluster expands because the binary heating
dominates over the gas drag. For large values such as ηg > 6 the
black hole cluster may even be in the relativistic regime from the
beginning.

3. Simulations

To resolve the gravitational dynamics in the cluster, including
post-Newtonian corrections, we use the Nbody6++GPU code
(Wang et al. 2015). Nbody6++GPU uses a Hermite 4th order in-
tegrator method (Makino 1991). It also includes a set of routines
to speed up the calculations such as using spatial and individ-
ual time steps and a spatial hierarchy which considers a list of
neighbor particles inside a given radius to distinguish between
the regular force and the irregular force (Ahmad & Cohen 1973).
In this version the gravitational forces are computed by Graphics
Processing Units (GPUs) (Wang et al. 2015; Nitadori & Aarseth
2012). It further uses an algorithm to regulate close encoun-
ters (Kustaanheimo et al. 1965). Finally, the code includes post-
Newtonian effects as described below (Kupi et al. 2006).

As we saw above, Nbody6++GPU includes KS regulariza-
tion (Kustaanheimo et al. 1965), and this algorithm starts to op-
erate when 2 particles are tightly bound, replacing them with
one particle and treating their orbit internally. This scheme is
modified to allow for relativistic corrections to the Newtonian
forces by expanding the accelerations in a series of powers of
1/c (Soffel 1989):

a = a0
︸︷︷︸

Newt.

+ c−2a2
︸︷︷︸

1PN

+ c−4a4
︸︷︷︸

2PN

+ c−5a5
︸︷︷︸

2.5PN

+ c−6a6
︸︷︷︸

3PN

+ c−7a7
︸︷︷︸

3.5PN

+O(c−8), (4)

where a is the acceleration of particle 1, a0 = −Gm2n/r2 is its
Newtonian acceleration, and 1 PN , 2 PN and 2.5 PN are
the Post-Newtonian corrections to the Newtonian acceleration,
where 1PN and 2 PN correspond to the pericenter shift , 2.5
PN , 3 PN and 3.5 PN to the quadrupole gravitational radi-
ation. The corrections are integrated into the KS regularization
scheme as perturbations, similarly to what is done to account for
passing stars influencing the KS pair (Brem et al. 2013).

Finally the criterion for particle mergers is calculated from
their Schwarzschild radii as

|Ri, j| < 10
G

c2
(mi + m j), (5)

where G is the gravitational constant, c is the speed of light, mi

and m j the mass of particles i and j, with |Ri, j| the distance be-
tween the particles in the binary system. This equation shows
that the two BHs can merge only when their separation is smaller
than 5 times the sum of their Schwarzchild radii. The mass of the
new BH that forms is then given by the sum of the masses of the
two merging black holes, considering a ideal case where we ne-
glect the mass loss due to GW radiation.
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In this project, we use the model introduced in Sec. (2) to
explore the evolution and the formation of an SMBH seed in
the dark core of a NSC. We perform a range of simulations
to study how the presence of an external gas potential affects
a dark core, the contraction of the dark core and the growth
of a SMBH seed via runaway mergers. The configurations that
we consider to model the dark core of a NSC is a spherical
cluster of N = 104 stellar mass black holes with identical BH
masses of mBH = 10 M⊙ at the beginning of the simulations. The
spatial distribution is an isotropic Plummer sphere (Plummer
1911) in virial equilibrium with virial radius of Rv = 1.7Ra with
Ra = 0.59. The analytic potential is given by a Plummer distri-
bution with a mass Mgas = ηg MBH and the same virial radius of
the cluster, where we vary the gas mass fraction of the cluster as
ηg = 0.0, 0.1, 0.3, 0.5, 1.0.

Modeling such a cluster employing the physical velocity of
light c = 3 × 105 km/s is computationally unfeasible as too
many iterations would be required until the binaries evolve into a
state where the relativistic effects become important enough for
the BH mergers to occur. Mergers via gravitational radiation are
strongly dependent on the speed of light, as seen in Eq. (3), and
the time scale for gravitational wave emission is proportional to
c5. Besides increasing the time for mergers, it also increases the
time to solve the equation of motion, because as we see above
in the Hermite scheme we need to compute not only the accel-
eration but also the derivative, and we need to do this for every
factor of the post-Newtonian corrections 1PN ,2PN , 2.5PN , 3
PN and 3.5 PN . Simulations considering the real speed of light
could take years to model the systems considered here. Although
a simulation employing the real speed of light may not be fea-
sible. However, one can employ a reduce speed of light, which
makes the calculations computationally affordable and allows to
explore the behavior of the system. By exploring the dependence
of the speed of light, we can then extrapolate the simulations
outcome to the real value of c. We vary the speed of light as
c = 103; 3 × 103; 6 × 103; 104, 3 × 104 km/s, which also affects
the radii of the BHs in the cluster via the Schwarzschild radii
and the criterion for the mergers. As we will see in our results,
for values of the speed of light sufficiently high the dependence
on this parameter in fact becomes relatively weak. The time evo-
lution of all clusters is considered over a time of T = 1.4 Gyr.
All configurations are given in Table (1). We conducted 4 sim-
ulations with different random seeds to ensure diverse initial
conditions at the start of each simulation, thus corresponding to
a total of 100 simulations. For these initial condition we esti-
mate the range of root mean square (rms) velocities necessary
for binary systems to efficiently merge via gravitational radia-
tion before being ejected as a result of 2+1 encounters in Fig.
(1). For the range of rms velocities in our simulations, the figure
indeed shows that the timescale for gravitational wave emission
becomes less than the timescale for 2+1 encounters for a speed
of light of c = 3000 km/s, thus potentially enhancing the for-
mation of a very massive object in this regime, while for larger
values of the speed of light the mergers will be delayed, and es-
capers due to 2+1 interactions could play a certain role.

4. Results

In this section, we present the results of the simulations in which
we explore the behavior of the black hole clusters, taking into
account the influence of an external gas potential as well as vari-
ations in the ratio of gas mass over the total mass in BHs. Ad-
ditionally, we consider the effects of varying the speed of light
and how it affects the evolution and growth of the central object.

Table 1. Initial conditions of the simulations presented here. The ini-
tial amount of black holes in the cluster is N, the total BH mass in the
cluster is MBH , the fraction of gas mass in the cluster is given by ηg, the
virial radius is denoted as Rv and the speed of light that we use in the
simulation is given by c.

IDs N MBH [M⊙] Rv [pc] ηg c [km/s]

1 104 105 1.0 0.0 103

2 104 105 1.0 0.1 103

3 104 105 1.0 0.3 103

4 104 105 1.0 0.5 103

5 104 105 1.0 1.0 103

6 104 105 1.0 0.0 3×103

7 104 105 1.0 0.1 3×103

8 104 105 1.0 0.3 3×103

9 104 105 1.0 0.5 3×103

10 104 105 1.0 1.0 3×103

11 104 105 1.0 0.0 6×103

12 104 105 1.0 0.1 6×103

13 104 105 1.0 0.3 6×103

14 104 105 1.0 0.5 6×103

15 104 105 1.0 1.0 6×103

16 104 105 1.0 0.0 104

17 104 105 1.0 0.1 104

18 104 105 1.0 0.3 104

19 104 105 1.0 0.5 104

20 104 105 1.0 1.0 104

21 104 105 1.0 0.0 3×104

22 104 105 1.0 0.1 3×104

23 104 105 1.0 0.3 3×104

24 104 105 1.0 0.5 3×104

25 104 105 1.0 1.0 3×104

The setups we consider are detailed in Table (1). In the next sub-
section, we will focus on three specific clusters with IDs 1, 5,
and 25 as indicated in Table (1), corresponding to clusters with
low speed of light and no external potential, low speed of light
and high external potential and a high speed of light with a high
external potential.

4.1. Evolution of black hole clusters

The evolution of a BH cluster from birth to the moment of core
collapse is described by Spitzer (1987), where the cluster evolves
toward the collapse via two-body relaxations at the half mass
radius. This time tends to increase when the cluster is affected
by a background potential (Reinoso et al. 2020) and is given by

trh,ext = 0.138
N(1 + ηg)4

ln(γN)
tcross,ext, (6)

where N is the number of particles in the cluster, ηg is the
fraction of gas mass, γ is equal to 0.4 for equal mass clusters,
and tcross,ext is the time necessary for a BH to cross the cluster in
the presence of an external potential.

In Fig. (2), we illustrate the evolution of the dark cluster
without an external potential (i.e., ηg = 0.0) while considering
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Fig. 1. We show different time scales in years. The time scale for binary-
single encounters given by Eq. 2 (dashed lines) and gravitational radia-
tion inspiral given by Eq. 3 (solid lines), considering a variation of the
gas mass fraction between ηg = 0.0, 0.1, 0.3, 0.5, 1.0, 10.0, with the low-
est value in the blue dashed line and the highest value in the violet. We
also employ different values of the speed of light, from c = 103 km/s
(brown dashed line) to the real value of c = 3 × 105 km/s (dark solid
line). The vertical lines show the velocity dispersion given by v∞ for
different gas mass fractions.

a speed of light of 103 km/s. The crossing time of the cluster,
assuming no external potential, is calculated to be 0.0482 Myr.
Additionally, the half-mass relaxation time as given by Eq. (6) is
166.38tcross. The cluster reaches its highest density at 85.194Myr
or, in terms of the half-mass relaxation time, at 10.61 trh. The
inner parts of the cluster as measured via the 10% Lagrangian
radius reach the highest density, 3.3 × 106 M⊙/pc3 at 0.144 pc.

In the left first panel we show the evolution of the core den-
sity and in the second panel we show the core radius evolution
with time. The method used to obtain this results is explained in
the next section. We note that before the core collapse the density
of the core of the cluster has a steep increase reaching the maxi-
mum at ≈ 109 M⊙/pc3. At the same time the core radius reaches
the minimum ≈ 0.01 pc when the core collapse occurs (vertical
line), after that the cluster begins to expand decreasing its den-
sity and increasing its core radius slowly. We can also note that
the core density and core radius exhibit high dispersion in their
trends probably because almost all the mass in the core is within
the massive BH seed at the center of the cluster. In the bottom
left panel we show the Lagrangian radius, we observe that the
1% Lagrangian radius post core collapse experiences the motion
of the central object because the central object has more than 1%
of the total mass of the cluster, the 5% Lagrangian radius shows
a rebound, and approximately 50 Myr later, also shows a similar
behavior like 1% Lagrangian radius. A similar phenomenon oc-
curs with the 10% Lagrangian radius but with a longer delay in
the collapse and subsequently the motion of the central object.
Lagrangian radii greater than 10% are affected by the expansion
of the cluster. The middle right panel depicts the growth of the
mass of the central object and the beginning of massive black

hole formation. At the time when the highest density is reached,
the growth becomes exponential, occurring in a short span of ap-
proximately 10 Myr, eventually reaching a mass of 10770 M⊙ by
the end of the simulation.

In the third panel, we show the evolution of BH escapers
from the cluster with a similar peak when the highest density
is reached, resulting in a total mass loss of 21% from the clus-
ter. The fourth panel illustrates the evolution of mergers, with a
peak of approximately ≈ 80 mergers in 5 Myr. There is a second
peak occurring approximately ≈ 50 Myr later, with about ≈ 30
mergers, coinciding with the contraction of the 5% Lagrangian
radius.

In Fig. (3), we show the evolution of the cluster considering
an external potential of ηg = 1.0 and a speed of light of 103 km/s,
The crossing time is 0.0241 Myr, and the half-mass relaxation
time is 2662.149 tcross. The cluster experiences a high increase
of the central density at 450 Myr or, in terms of the half-mass
relaxation time, 7.010 trh. The density reached at the 10% La-
grangian radius is 1.23 × 106 M⊙/pc3, with a radius of 0.2 pc.
The behavior of the cluster is remarkably similar to that of the
cluster without an external potential, one of the differences is the
delay in the contraction of the inner regions in the cluster and the
lower contraction in the 10% Lagrangian radius; also at the time
of core collapse, the density and radius of the core exhibit even
more abrupt changes considering a higher external potential with
a steep increase in the density of the core and the core radius, we
have a higher merger rate and spread over a larger time interval,
implying that the forming object becomes more massive. The
amount of escapers is reduced by almost a 5% compared to the
cluster without external potential.

Simulations with higher speed of light tend to decrease the
phase of oscillations in the inner regions of the clusters. Addi-
tionally, they tend to delay the core collapse even when con-
sidering the same external potential. Moreover, the number of
mergers decreases, resulting in lighter SMBH seeds. In Fig. (4),
we illustrate the evolution of a BH cluster with an external po-
tential of ηg = 1.0 and a speed of light of 3×104 km/s. The high-
est density we compute, considering the 10% Lagrangian radius
corresponding to a density peak of 1.92× 107 M⊙/pc3, occurs at
1137Myr or, in terms of relaxation time, 17.77 trh. As mentioned
previously, there is a delay in the core collapse compared to clus-
ters with the same external potential but a lower speed of light.
The core collapse appears to occur more smoothly compared to
the case with a lower speed of light and is not as abrupt. Follow-
ing the core collapse during the rebound process, the core den-
sity experiences a quick decrease. Additionally, the core radius
undergoes a rapid increase, indicating that the rebound process
is more prominent when the cluster has a higher speed of light.
The contractions occur at the same time in the inner regions of
the cluster, and prominent motion of the central object is only
observed in the 1% Lagrangian radius. The number of escapers
in the cluster is similar to the other clusters with the same exter-
nal potential, with only 17% of BHs escaping.

4.2. Time dependence of core collapse

The most common way to determine whether a core collapse oc-
curs in an N-body system is via the evolution of the core radius
and the core density. An additional possibility involves consider-
ing the binding energy of binaries within the core of the cluster.
During core collapse, binaries harden through three-body inter-
actions until they possess enough energy for the core to bounce
(Fujii & Portegies Zwart 2014). In the analysis presented here,
we focus on the first possibility, the bounce of density and ra-
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Fig. 2. Evolution of the cluster in a simulation with speed of light c = 103 km/s and an external potential of ηg = 0.0. The first two panels to the
left present the results of our fit considering a King’s model. In the top left panel, we display the density of the core, while in the left second panel,
we illustrate the core radius of the cluster. In the bottom left panel we show the Lagrangian radius for mass fractions between 1% and 90% of
the total mass of the cluster. The top right panel shows the mergers of BHs in the cluster in bins of 5 Myr, in the middle right panel we show the
growth of the mass of the most massive BH in the cluster. The bottom right panel shows the accumulative ejections in the cluster. The vertical line
in the panels corresponds to the moment when the highest central density is reached.

dius, as the density peak is significant enough to be visually ob-
served. This is well-justified as our model involves equal mass
BHs so implying low values of fmax = mmax/ < m >, while
core collapse becomes more ambiguous for larger values of fmax

(Fujii & Portegies Zwart 2014).
We estimate the core radius and core density by fitting a den-

sity profile according to King’s model (King 1962),

ρKing = ρ0



1 +

(

r

rc

)2


−3/2

. (7)

This fitting is considering the cluster without the central mas-
sive object at the moment of core collapse. The massive object is

not included as its increase in mass via collisions may contribute
to an increase in central mass density, though our interest here
is to determine whether there is a contraction of the central core.
We determine the time of core collapse via the evolution of the
peak density of the core.

As we increase the external potential, one of the significant
differences is the time it takes for the contraction of the inner
regions to occur. As observed in the previous sections, there is a
difference of more than 1 Gyr between the cluster without a gas
potential and the one with an equal mass fraction of gas and BHs,
considering a speed of light of 3 × 104 km/s. On the other hand,
at a lower speed of light of 103 km/s, this difference in the time
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Fig. 3. Evolution of the cluster in a simulation with speed of light c = 103 km/s and an external potential of ηg = 1.0. The first two panels to the
left present the results of our fit considering a King’s model. In the top left panel, we display the density of the core, while in the left second panel,
we illustrate the core radius of the cluster. In the bottom left panel we show the Lagrangian radius for mass fractions between 1% and 90% of
the total mass of the cluster. The top right panel shows the mergers of BHs in the cluster in bins of 5 Myr, in the middle right panel we show the
growth of the mass of the most massive BH in the cluster. The bottom right panel shows the accumulative ejections in the cluster. The vertical line
in the panels corresponds to the moment when the highest central density is reached.

delay between the simulations with the highest and the lowest
external potential corresponds to only about 450 Myr. For sim-
plicity and to adopt a uniform approach between the simulations,
we employ the 10% Lagrangian radius to determine the time of
maximum contraction corresponding to the central density peak.

In Fig. (5) we show the time of the core collapse in the clus-
ter in relaxation time given by Eq. (6) as a function of the ex-
ternal potential (ηg) at different speed of light. The maximum
central contraction is reached within 6-20 half-mass relaxation
times, as evident in Fig. (5). Assuming that core collapse is pro-
portional to the relaxation time (Spitzer 1987), we can infer that
the time of contraction of the inner regions is proportional to

tcc ∝ (1 + ηg)4tcross, so the time of core contraction tends to
be higher when the external potential increases (Reinoso et al.
2020). The linear trend suggests that clusters are more affected
by gravitational radiation if the speed of light is reduced, thus
making them more relativistic. In simulations where the speed
of light is particularly low, i.e. less than 3 × 103 km/s, it is con-
ceivable that the contraction time is even enhanced due to ef-
ficient gravitational wave emission. This is supported by sim-
ulations with speed of light ≤ 3 × 103 km/s where the rms is
larger than 1% of the value of the speed of light used in the
simulation, implying that the BH cluster is in a relativistic state
(Kupi et al. 2006). For instances in the cluster with c = 103km/s,
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Fig. 4. Evolution of the cluster in a simulation with speed of light c = 3 × 104 km/s and an external potential of ηg = 1.0. The first two panels to
the left present the results of our fit considering a King’s model. In the top left panel, we display the density of the core, while in the left second
panel, we illustrate the core radius of the cluster. In the bottom left panel we show the Lagrangian radius for mass fractions between 1% and 90%
of the total mass of the cluster. The top right panel shows the mergers of BHs in the cluster in bins of 5 Myr, in the middle right panel we show
the growth of the mass of the most massive BH in the cluster. The bottom right panel shows the accumulative ejections in the cluster. The vertical
line in the panels corresponds to the moment when the highest central density is reached.

the rms velocity is higher than 1% of the speed of light that we
consider in the simulation IDs 1-5. Furthermore, the relativistic
state is more prolonged for higher external potentials, as the rms
speed increases with the external potential, affecting the cluster
via strong relativistic effects leading to the dissipation of kinetic
energy into gravitational waves. For speeds of light exceeding
c = 3 × 103 km/s, we observe that the rms speed is slightly
below 1% of the speed of light considered in this simulation
(30 km/s), but it is very close. Consequently, we might expect
that gravitational radiation is not exceptionally strong, but it is
still sufficient to reduce the time for contraction of the cluster. On
the other hand, the external potential increases the core collapse

timescale. This is evident when examining the orange curve in
Fig. (5). However, for higher speeds of light, gravitational radi-
ation is not strong enough, leading to a delay in the contraction
of the inner region.

4.3. Binary population

Our simulations indicate that with respect to both the binary pop-
ulation and the mass of the cluster, the population of binary sys-
tems decreases when the cluster experiences a deeper external
potential. This trend is primarily attributed to the disruption of
soft binaries resulting from the increase in the velocity disper-
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Fig. 5. We show the core collapse time relative to the half-mass relax-
ation time as a function of the gas mass fraction of the cluster, denoted
as ηg. Each curve represents a different value of the speed of light c.
The shadow zone is the error computed via the standard deviation from
simulations with different initial conditions.

sion within the cluster. In dense star clusters, binaries are influ-
enced by two-body encounters, leading to a drift due to mass
segregation. This is primarily because binaries possess a larger
mass relative to single stars. In denser regions, the semi-major
axis of binary systems tends to decrease over time, which leads
to an increase in their hardness or their disruption via encounters
with single BHs. To provide a clearer view of the trends in the
semi-major axis at different external potentials, we calculated
the standard deviation of the semi-major axis of all binaries that
are formed in the cluster via third-body BH interaction, finding
an increase in the semi-major axis up to ηg = 0.1 see Fig. (6).
As the external potential increases, it becomes evident that bina-
ries tend to become more tightly bound, resulting in a significant
reduction in the spread of the semi-major axis, nearly by one
magnitude, when ηg = 1.0. This trend is similar to the behavior
of the number of escapers in the cluster, and could be a result of
weak interactions increasing the kinetic energy enough to even-
tually escape from the cluster given the higher cross section of
the binaries of cluster with higher external potential. For larger
values of the speed of light, the semi-major axis tend to slightly
decrease, as the evolution of the binaries via gravitational wave
emission is decelerated.

4.4. IMBH seed formation

The mass of the most massive object formed in the simulations
is provided in Fig. (7) as a function of the ηg (left panel) and as a
function of the speed of light c (right panel). For speeds of light
of 6× 103 km/s or higher, the mass of the most massive object is
essentially independent of ηg and in the range of 500−1500 M⊙,

At least for ηg < 1.0, we can observe a slight decrease in the
trend of the mass in the central object. This occurs as the time of
contraction increases with higher external potential as we can see

0.0 0.2 0.4 0.6 0.8 1.0

g

104

105

s
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Fig. 6. We show the root-mean square dispersion of the semi-mayor
axes of the binaries in the cluster as a function of the external potential
(ηg). The different colors correspond to different speeds of light. The
shadow regions correspond to the error associated to the random initial
conditions.

Fig. (5), and the central object has lower time post core collapse
to increase its mass by mergers.

For lower speeds of light, the formation of the massive ob-
ject has been considerably enhanced by stimulated gravitational
wave emission, leading to masses of the most massive object of
the order 104 M⊙. A higher vale of ηg further stimulates gravi-
tational wave emission and enhances this effect. Looking at the
mass of the most massive object as a function of c, we note that
from the right panel of Fig. (7) that the relation considerably
flattens for speeds of light of 6 × 103 km/s or higher.

As observed in Fig. (2) and Fig. (4), mergers of black holes
can occur independently of the core contraction event. This sug-
gests that the conditions for these mergers are not exclusively
confined to the core contraction phase. Mergers can also occur
after this contraction event due to the high density in the inner
regions of the cluster. The presence of numerous binaries sur-
rounding the central region and recently formed massive objects
may enhance BH binary mergers via the Kozai-Lidov mecha-
nism (Aarseth 2007; Sedda 2020). This mechanism involves the
attainment of large eccentricities through third-body secular per-
turbations, and finally feeding the central object. Other specula-
tive mechanism that could enhance the eccentricity of binaries in
dense clusters is via perturbation of single objects passing near
the binary system driving the eccentricity to 1 (Reinoso et al.
2022),

Additionally, the external potential has a significant impact
on the binary population by reducing the number of binaries
available for mergers. This reduction of binaries could affect the
mass of the central massive black hole. Moreover, the external
potential also delays the timing of core contraction. However,
it is important to note that the density and velocity dispersion
within the cluster are essential factors for the formation of "hard"
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Fig. 7. In the top panels, we display the mass of the most massive black hole (BH) in the cluster at the end of the simulation as a function of the
external potential ηg (left) and as a function of the speed of light (right). In the bottom panels, we provide the parameter α as a function of the
external potential ηg (left) and as a function of the speed of light (right). This parameter is defined as the ratio of total mergers in the cluster and
the mass of the of the massive object, indicating how many merging objects contribute to the formation of the central object.

binaries, which are more likely to merge due to gravitational ra-
diation.

In Fig. (7), we further report the parameter α, which corre-
spond to the ratio between the number of mergers and the mass
of the most massive object, both as a function of ηg and c. For
speeds of light of 6 × 103 km/s or less, the ratio α has only a
weak dependence on ηg and is in the range of 0.85 − 1. In the
simulations with higher speeds of light, α decreases with ηg,
from values around 0.75 in the absence of an external potential
to α ∼ 0.45 for ηg = 1. When we considering the dependence on
the speed of light we find a weak dependence on ηg for speeds
of light below 3 × 103 km/s, as the efficient gravitational wave
emission leads to a rapid contraction of the system. When c in-
creases, there is more time for mergers among stellar mass BHs

to occur, with a more significant spread and dependence on ηg.
With further increasing values of c, α increases again for all val-
ues of ηg as larger values of c also suggest a longer timescale
for the merger of stellar mass BHs, while the timescale for the
central collapse remains very similar.

The efficiency for the formation of the most massive ob-
ject, defined as its final mass divided by the cluster mass in
BHs, is provided in Fig. (8) as a function of the ratio of the
root mean square velocity v∞ at the time of core collapse di-
vided by the speed of light adopted in the simulation. As a re-
sult, we find a clear relation, where the efficiencies are in the
range of 0.001 − 0.004 for values v∞/c < 0.0025. The efficien-
cies increase to 0.04 − 0.07 for v∞/c ∼ 0.005 and a further more
moderate increase occurs for v∞/c ∼ 0.015, reaching efficien-
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cies of 0.06 − 0.08. The dependence on the external potential is
however non-trivial; we saw already above that the mass of the
most massive object can either increase with ηg, stay constant or
slightly decrease, leading here to a complex relation as a function
of v∞/c. Fig. (8) nonetheless allows to pursue a tentative extrap-
olation towards real systems, assuming black hole clusters with
velocity dispersion of 1000 km/s and 3000 km/s together with
the physical speed of light. As indicated within the figure, the
latter corresponds to efficiencies of 0.004−0.05 and 0.05−0.07,
respectively.

10−3 10−2
v∞/c 
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ε
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km/s 
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 ηg  = 0.0
 ηg  = 0.1
 ηg  = 0.3
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Fig. 8. We present the BH formation efficiency of the clusters defined
as the mass of the most massive BH divided by the total BH mass of the
cluster, as a function of the ratio between the root mean square (rms)
velocity at the time of the core collapse and the speed of light (c) em-
ployed in the simulations. Different colors are used to denote varying
external potentials ηg. The vertical lines mark velocity ratios assuming
the real value of the speed of light for clusters with an rms velocity of
1000 km/s and 3000 km/s.

4.5. Extrapolation to NSC

After the tentative extrapolation of the efficiencies to real astro-
physical systems in the previous subsection, we here aim to as-
sess more quantitatively the masses of the most massive objects
that could be formed via mergers in dense black hole clusters as
a function of the physical conditions. We show in the previous
subsection that a central parameter is the ratio v∞/c, as it allows
to characterize the relativistic state of the cluster and provides
a good indication of the efficiency for the formation of a very
massive black hole.

As a first step, we thus aim to infer the rms velocities that
can be expected in different clusters as a function of their mass
and radius. For this purpose, we consider and distinguish two
different cases: The first scenario assumes that the black holes
in the cluster are in equipartition with their self-gravity and the
external potential, as intrinsically assumed in the simulations we
presented here. In this case, we have

v∞ ≈

√

0.4
GMBHs(1 + ηg)

Rvir

. (8)

v∞ however does not adequately account for the contraction
of the black hole cluster due to gas accretion. Therefore, the
cluster is less dense than considered in the model proposed by
Davies et al. (2011), where gas accretion affects the density of
the cluster and subsequently influences the root mean square ve-
locity. A more accurate velocity dispersion for a cluster affected
by gas accretion was derived by (Kroupa et al. 2020) as

σ =

(

fv
GMBHs(1 + ηg)2

Rvir

)1/2

, (9)

where MBHs is the mass of BH in the cluster, Rvir is the virial ra-
dius and fv ≈ 1 is a dimensionless factor that covers a departure
from the virial equilibrium or a particular shape of the potential
well. The corresponding velocity dispersion is given as a func-
tion of BH mass in the cluster and the cluster virial radius in
Fig. (9) both for the case where they are calculated via Eq. (8)
and Eq. (9). The behaviour in both cases is similar but the veloc-
ity dispersions is somewhat enhanced in the second case. Partic-
ularly high velocity dispersion occur when both the total mass
in the cluster is high and the virial radius of the cluster is small.
To obtain velocity dispersions of the order 3000 km/s, implying
relativistic clusters, it seems likely that cluster masses of 107 M⊙
or higher are required.

The mass of the most massive object that forms in the
two cases is finally estimated employing the efficiencies from
Fig. (8). In the first case where the velocity is calculated assum-
ing virial equilibrium Eq. (8), the resulting black hole masses are
provided as a function of the cluster mass and radius in Fig. (10),
where the different panels correspond to different values of ηg.
In case of black hole clusters with masses of 105 − 106 M⊙, our
model suggests that only black hole seeds of moderate masses
can be formed, roughly of order 103 M⊙. Black hole seeds of
104 M⊙ require clusters with at least ∼ 107 M⊙ that still needs
to be sufficiently compact with a virial radius of less than a par-
sec. The presence of an external potential potentially makes this
more feasible, as it tends to increase the range of virial radii for
which a massive object of significant mass can be produced for
otherwise equal cluster parameters.

We also provide the corresponding estimates for the scenario
provided by Kroupa et al. (2020), with the estimated black hole
masses given in Fig. (11) for different values of ηg. The overall
behavior is similar, but for a stronger sensitive to the velocity
dispersion of the cluster; however, We note a shift by about half
an order of magnitude lower in the required mass of the cluster
for forming a seed black hole of a certain stellar mass, which is
dependent on the external potential. The decrease of the cluster
radius and increase its density as a result of the gas inflow is
thus potentially relevant and may lead to the formation of more
massive black hole seeds under otherwise similar conditions.

5. Discussions

This investigation provides a clear insight into the formation of
an IMBH in the dark core of a NSC. In a simplified model, we
consider a cluster with equal mass BHs distributed according to
a Plummer distribution. In our simulations, we form two sets of
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Fig. 9. In the left panel, we show the rms contour lines of the velocity calculated via Eq. 8, providing its dependency on the virial radius and the
total BH mass in the cluster. The contours illustrate the velocities at specific radii and masses. The right bottom panel provides countour lines
of the velocity of the cluster as defined by Eq. 9, assuming an additional contraction as calculated by Kroupa et al. (2020). The different colors
indicate various values of ηg.

BH seeds with approximately 104 M⊙ for clusters in a relativistic
state and approximately 103 M⊙ for other clusters.

However, our models are affected by different assumptions.
For instance, assuming equal-mass BHs in the cluster impacts
mass segregation, leading to time scales for cluster evolution
higher than in reality. Particularly, in clusters with a realistic
stellar mass function, we have tcc ⋍ 0.2trh (Zwart & McMillan
2002). Additionally, we neglect gas accretion onto the BHs,
which further affects the time scale evolution, including the re-
laxation time (Leigh et al. 2013) and the mass distribution of
the BHs in the cluster. Furthermore, gravitational recoil caused
by gravitational waves was not included in the simulations pre-
sented here. Studies such as Fragione & Silk (2020) provide a
more extensive analysis of mergers and escapers considering re-
coils, with velocities up to a few thousand km/s, where the typ-
ical mass of an ejected massive BH is 400-500 M⊙. They also
explore how the mass and density of the NSC influences the re-
tention of massive BHs and the formation of binaries, where the
massive NSCs can more easily retain massive BHs but the for-
mation of binaries requires longer time scales. Dense NSCs can
both retain massive BHs and have a higher efficiency in forming
binaries that merge through GW emission.

Regarding future work on the formation of an IMBH in a
realistic NSC, Kroupa et al. (2020) demonstrate that for a high
mass ratio of gas, ηg > 5.78, the cluster tends to expand for dark
core masses < 107M⊙. However, for a mass of the dark core
> 107 M⊙, the cluster is already initially in a relativistic state. To
form an IMBH, we could consider massive dark cores with either
massive black holes > 10 M⊙ or a higher number of BHs in the
cluster. But this is not enough to reach the core collapse with the
methodology that we use so far, as the relaxation time scales as
∝ (1 + ηg)4, so for values of ηg higher than 2.0 the core collapse
requires more than 1.4 Gyr. We further note that an initial mass
distribution of the BHs reduces the time of the core collapse.

Of course, this is a recent investigation and our knowledge
on the mass distribution of stellar mass BHs is still limited, and
no model can fully reproduce the distribution of observed total
masses. Nevertheless, the observations lie within the distribution
of mass in the 1σ band of the Mmax = 50 M⊙, α = 2.35 model
(Perna et al. 2019). which could be employed in follow-up cal-
culations in the future. In future projects it will also be important
to understand resonant relaxation (or Kozai) effects, which could
significantly increase the rate of inspiral and their relation with
the PN1 and PN2, affecting the precession and the impact of
the number of captures (Hopman & Alexander 2006). Finally,
the consideration of radiation recoil will give us a better under-
standing of the evolution and the formation of IMBHs.

6. Conclusions

In this paper, we have explored the formation of seed black holes
in dense black hole clusters embedded in an external potential,
with the goal of exploring the hypothesis of Davies et al. (2011)
that relevant gas inflows into such compact clusters will signif-
icantly increase the velocity dispersion and help to make the
timescale for gravitational wave emissions more relevant com-
pared to the timescale for ejections via 2+1 encounters, thereby
favoring the formation of a central massive object.

As the simulations of massive black hole clusters incorporat-
ing post-Newtonian corrections with the real value of the speed
of light are still computationally unfeasible, we have treated the
speed of light as a free parameter to explore how the results of
our simulations depend on the speed of light and more specif-
ically also on the ratio of the velocity dispersion of the cluster
divided by the speed of light. The latter allows us to test and
explore the dependence on this parameter including an extrapo-
lation towards the parameters of real physical systems. We fo-
cused on black hole clusters with 104 stellar mass black holes
with each of them having 10 M⊙, a virial radius of 1 pc, ratios of

Article number, page 12 of 15



B. Gaete et al.: Supermassive black hole formation via collisions in black hole clusters

4 5 6 7 8

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
vi
r [
pc
]

ηg = 0.0

4 5 6 7 8

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
ηg = 0.5

4 5 6 7 8
log10 (Mcluster)  [M⊙]

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
vi
r [
pc
]

ηg = 1.0

4 5 6 7 8
log10 (Mcluster)  [M⊙]

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
ηg = 2.0

102

103

104

105

106

B
H
 s
ee
d 
M
as
s 
 [M

⊙
]

Fig. 10. We provide the mass of the most massive black hole estimated via the root mean square (rms) velocities calculated using Eq. 8 and their
corresponding efficiency depicted in Fig. 8. The clusters are within a range of virial radii from 0.1 to 2.0 pc and masses from 104 - 108 M⊙. The
color represents the mass of the BH that forms. Each panel corresponds to a different value of the external potential.

gas mass to mass in BHs ranging from 0 to 1 as well as values of
the speed of light ranging from 1000 km/s up to 3 × 104 km/s.

For values of the speed of light of 3000 km/s or less, we
found gravitational wave emission to be strongly enhanced, in-
creasing even the contraction time of the cluster and favoring the
formation of very massive objects of 104 M⊙ or more. For larger
values of the speed of light, the sensitivity to this parameter sig-
nificantly decreased as the timescale for gravitational wave emis-
sion was significantly enhanced, leading to typical seed masses
in the range of 500−1500 M⊙. Particularly, when considering the
ratio of cluster rms velocity v∞ divided by the speed of light c,
the latter provided a good relation with the efficiency for the for-
mation of the most massive object, which we defined as the mass
of the most massive object divided by the total mass in BHs. The
latter has ranged from 0.001− 0.004 for very low values of v∞/c
to values in the range of 0.05 − 0.08 for v∞/c ∼ 0.005 − 0.015.

When extrapolating to real astrophysical systems, we found
that black holes clusters with masses in the range of 105 −
106 M⊙, this scenario may only be able to provide seed black

holes of ∼ 103 M⊙. In clusters of 107 M⊙ that are more compact
than a parsec, the formation of seed masses with ∼ 104 M⊙ is
conceivable. The presence of an external potential allows the for-
mation of such objects also in clusters of moderately increased
size. If we adopt the formula provided by Kroupa et al. (2020)
for the increase of the velocity dispersion as a result of the con-
traction due to the gas inflow, we further find that the required
masses of the black hole clusters decrease by roughly half an
order of magnitude.

The astrophysical implications of the black holes formed via
this mechanism will depend on their capability for subsequent
growth. Even for accretion at a few percent of the Eddington rate,
a strong radiatively driven wind could self-regulate black hole
growth. The physics of such radiatively driven winds has been
explored e.g. by Thorne (1981) and Yamamoto & Fukue (2021),
which might be complemented by radiation driven disk winds as
well (Giustini & Proga 2019). Observational evidence suggests
that feedback via radiation-driven winds was more frequent and
stronger in the early Universe (Bischetti et al. 2022) and may
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Fig. 11. We provide the mass of the most massive black hole (BHs) that can form calculating the root mean square (rms) velocity using Eq. 9 from
Kroupa et al. (2020) and and the corresponding efficiency depicted in Fig. 8. The clusters are within a range of virial radii from 0.1 - 2.0 pc and
masses from 104 - 108 M⊙. The color represents the mass of the BH that forms. Each panel corresponds to different external potentials.

have been driven due to the opacity from dust grains (Ishibashi
2019). Particularly winds from hot accretion flows were recently
shown to be able to reach large scales (Cui & Yuan 2020), po-
tentially expelling large fractions of the gas in the host galaxy
(Brennan et al. 2018). Understanding the growth of seed black
holes at early stages will therefore require to further assess the
operation of this feedback mechanism in their specific environ-
ment.

A particularly interesting place to study the origin of
intermediate-mass black holes may include low-metallicity
dwarf galaxies in the metallicity range of 12+ log(O/H) = 7−9,
which may more closely resemble the conditions correspond-
ing to the early Universe. Enhanced X-ray activity has been
found in several of these (e.g. Prestwich et al. 2013; Reefe et al.
2023; Cann et al. 2024), which could be due to an enhanced X-
ray binary population but also an intermediate-mass black hole.
These objects may include some interesting intermediate cases,
as typically they do not necessarily show a fully established Nu-
clear Star Cluster in their center, but may include one or more

Globular Cluster-like objects which potentially could be form-
ing a dark core through the mechanism discussed above (e.g.
Davies et al. 2011). Within these lower-mass environments, the
evolution of the cluster would not necessarily lead to the forma-
tion of an intermediate-mass black hole, but could still be con-
tributing to the X-ray excess found in observations.

The results we derived here confirm important results from
previous studies; particularly it has been confirmed that higher
black hole formation efficiencies can be obtained when the clus-
ter becomes relativistic, i.e. when the velocity dispersion corre-
sponds to at least 1% of the speed of light. This assumption has
already been employed in the investigation by Lupi et al. (2014)
in the derivation of statistical predictions from this black hole
formation channel, concluding that a significant amount of seed
black holes may form in this way. Our results overall confirm
these conclusions and suggest that the implications of this for-
mation channel need to be taken into account in assessments of
the formation history of supermassive black holes.
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