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We present two frameworks to infer some of the properties of neutron stars from

their electromagnetic radiation and the emission of continuous gravitational waves

due to r-mode oscillations. In the first framework, assuming a distance measure-

ment via electromagnetic observations, we infer three neutron star properties: the

moment of inertia, a parameter related to the r-mode saturation amplitude, and the

component of magnetic dipole moment perpendicular to the rotation axis. Unlike

signals from mountains, r-mode oscillations provide additional information through

a parameter (κ) that satisfies a universal relation with the star’s compactness. In

the second framework, we utilize this and the relation between the moment of inertia

and compactness, in addition to assuming an equation of state and utilizing pulsar

frequency measurements, to directly measure the neutron star’s distance along with

the aforementioned parameters. We employ a Fisher information matrix-based ap-

proach for quantitative error estimation in both frameworks. We find that the error

in the distance measurement dominates the errors in the first framework for any

reasonable observation time. In contrast, due to the low errors in pulsar frequency

measurements, parameters can be inferred accurately via the second framework but

work only in a restricted parameter space. We finally address potential ways to

overcome critical drawbacks of our analyses and discuss directions for future work.
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I. INTRODUCTION

The new age of gravitational wave astronomy has the potential to provide more infor-

mation than traditional astronomy or complement it in a useful way. Ever since the first

detection of gravitational waves from a binary black hole merger event, GW150914, in 2015

[1], a plethora of compact binary inspirals has been detected ([2–4]). These detections have

given us vital astrophysical insights such as confirming the existence of stellar-mass black

holes and providing an association between binary neutron star mergers, gamma-ray bursts,

kilonovae, and the production of heavy elements in the universe [5], constraining the equation

of state high-density nuclear matter [6–8], etc.

Continuous gravitational waves (CGW), as yet an undiscovered type of gravitational

wave, are weak pseudo-monochromatic signals that last over long time scales, produced by

tiny mountains or velocity perturbations in the star. An important potential source for CGW

is r-mode oscillations in neutron stars. These are quasi-normal modes driven unstable by

gravitational radiation via the CFS instability ([9, 10]) with a frequency approximately equal

to 4/3rd of the rotation frequency of the star. While we expect the modes to grow due to

the instability [11] and eventually saturate because of damping, there are still uncertainties

associated with the amplitude achievable by r-modes because of the non-linear hydrodynam-

ics related to the damping mechanisms that limit the growth of the modes ([12–14]). We

expect that the saturation phase will last a long time, consequently generating CGW.

Although CGW signals have not been detected yet, the prospects for future detection

continue to improve with the increase in sensitivity of the upcoming detectors and the

refinement of the data analysis techniques [15]. Current CGW searches have only set upper

limits on the saturation amplitude αs, a parameter that characterises r-modes during the

saturation phase, from all-sky [16], directed [17] and narrow-band searches ([18, 19]).

As the prospects of detection improve, it becomes important to address what can be learnt

from such a detection. Under the assumption that a pulsar spins down just due to CGW, a

recent study [20] showed that one can only infer the ratio of a macroscopic parameter (e.g.

moment of Inertia, ellipticity) and the distance to the star. Thereafter, another study [21],

explored inferring the properties of the star assuming the existence of an electromagnetic

distance measurement, and, that the star spins down due to a dipolar magnetic field and

CGW. They also assumed that the detected signals are produced by mountains in the
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neutron star. This can be known with certainty, only in the case of targeted searches (when

the rotation frequency of the star is known)[22]. The potential source could also be r-modes

or other exotic possibilities [23, 24] for candidates detected via directed or all-sky searches.

It has also been shown by [25] that one can directly measure the distance to the neutron star

for signals produced by r-modes when the rotation frequency of the star is known. Based

on these works, we investigate the parameter inference of a detected CGW signal produced

by r-modes. In particular, we explore two different inference frameworks, assuming that the

star spins down due to a dipolar magnetic field and CGW. In the first framework, similar to

[21], we assume the existence of an electromagnetic distance measurement to the star post

which we infer three neutron star properties: its moment of inertia (I), the component of

magnetic dipole moment perpendicular to the rotation axis (mp) and a parameter alpha (α)

which is related to the saturation amplitude (Check Section II). In the second framework,

we explore the case of signals detected particularly via narrow-band searches, where the

distance to the star can be directly measured from the CGW signal along with the other

macroscopic properties mentioned before.

This paper is organised as follows. Section II introduces the basics of CGW and their

detection. Section III provides the two different theoretical frameworks used to infer neutron

star properties. In Section IV, we discuss the Monte Carlo simulation used to present an

error estimation study on the inferred parameters for both frameworks. Section V presents

the results of these simulations. Section VI provides a summary of the work, and discusses

key assumptions in this work, some drawbacks and potential ways to overcome them.

II. PRELIMINARIES

In this section, we present the preliminary information relevant to this work. We introduce

the signal model of a continuous gravitational wave (CGW) in section IIA and the parameter

estimation of the phase and amplitude parameters in section II B.

A. Continuous Gravitational Wave Signal Model

During the saturation phase, the r-mode oscillations produce a continuous gravitational

wave (CGW) signal dominated by l = m = 2 current quadrupole [11]. In this period, the
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noise-free strain h(t) in the detector is of the form [26]:

h(t) = Σ4
i=1Aihi(t, λ⃗), (1)

where Ai are functions of the amplitude parameters: the characteristic strain amplitude

(h0), the inclination angle (ι) between the Neutron star’s rotation axis and line of sight,

the polarization (ψ) and initial phase (ϕ0). The parameters represented by λ⃗ are called the

phase parameters; they include the star’s sky position, the gravitational wave frequency (f),

the frequency derivatives (fk), and if the star is in a binary system, its orbital parameters.

The signal model is similar to the one produced by mountains, except the polarization ψ

must be reinterpreted as ψ + π
4
for a signal produced by the r-mode oscillations [27].

The characteristic strain amplitude for r-mode oscillations is given by [27]:

h0 =

√
512π7

5

G

rc5
f 3αsMR3J̃ , (2)

where r is the distance to the star from SSB, M is the mass of the star, R is the radius

of the star, αs is the r-mode saturation amplitude, f is the gravitational frequency which

is approximately related to the rotational frequency of the neutron star by f ≈ 4
3
frot,

with corrections depending on the nuclear equation of state of the star [28], and J̃ is a

dimensionless parameter that also depends on the equation of state of the star and is given

by [11]:

J̃ =
1

MR4

∫ R

0

ε(r) r6 dr, (3)

where ε(r) is the energy density inside the neutron star.

Various mechanisms including gravitational waves and electromagnetic radiation could

cause a Neutron star to spin down. Since the timescale of the observation of continuous

gravitational waves is much less than the intrinsic timescale of the spin-down of the star, we

can model the spin-down as a Taylor series [26]. Therefore, we model the evolution of the

phase of the gravitational wave as a second-order Taylor series [29] (here ḟ , f̈ ≡ f 1, f 2):

ϕ(t) = ϕ0 + 2π

[
ft+

1

2
ḟ t2 +

1

6
f̈ t3

]
. (4)

In Eq.(4), we have ignored the detector motion w.r.t the solar system barycenter (SSB),

which is a satisfactory assumption when the star’s sky position is known [29], which is the

case in this work. An important parameter that is relevant in the study of the spin-down of
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the star is the breaking index n given by:

n =
ff̈

ḟ 2
. (5)

The value of n contains information regarding the spin-down mechanism of the neutron star

[15]. If the star is just spinning down due to a current quadrupole moment produced by

the r-modes, then n = 7. If it is spinning down purely due to a dipolar magnetic field,

then n = 3. If the neutron star is spinning down just due to a mass quadrupole moment

(mountains in the star), then n = 5.

B. Gravitational Wave Parameter Estimation

Assuming that a true CGW signal is not appreciably different from the signal model

in section IIA, we expect to estimate the (h0, f, ḟ , f̈) from the signal as they are the key

parameters for inferring neutron star properties. As an initial attempt to study the errors

in these parameters from a CGW detection, we use a simple Fisher information matrix

approach similar to [20, 21, 25]. This approach is strictly valid only in the case of high-

signal-to-noise ratios. It has other issues like the possibility of a singular or ill-conditioned

Fisher information matrix [30]. Nevertheless, due to its computational simplicity, we use

this approach to get a quantitative picture. A comprehensive study using Bayesian inference

is expected to give more robust results and is left to future work.

For long observation duration compared to a day, the parameter space metric over the

phase parameters (f, ḟ , f̈) is approximately given by the ”phase metric” [31]:

gij(λ) =

〈
∂ϕ

∂f i

∂ϕ

∂f j

〉
−
〈
∂ϕ

∂f i

〉〈
∂ϕ

∂f j

〉
, (6)

where (f, ḟ , f̈) ≡ (f 0, f 1, f 2) and the time average operator ⟨ ⟩ is defined as:

⟨x(t)⟩ = 1

T

∫ T/2

−T/2

x(t)dt, (7)

where T is the total observation time (assuming 100% duty cycle). The metric quantifies the

”distance” between two points in the parameter space. The inverse of the Fisher information

matrix (which is also the covariance matrix), in terms of the metric, is:

Γij =
gij

ρ2
. (8)
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In Eq (8) ρ is the signal-to-noise ratio, which for a year or longer observation time, can be

averaged over ι and ψ and sky position [26]:

ρ2 =
4

25

h20T

Sh(f)
, (9)

ρ2 =
4

25

T

D2
, (10)

where Sh is the single-sided spectral density of the strain noise in the detector, and in Eq

(10), D is the ”sensitivity depth” [32, 33]:

D =

√
Sh(f)

h0
. (11)

The covariance matrix is calculated from Eq (8), using Eq (6) and Eq (10):

Σ(f, ḟ , f̈) =
D2

π2


1875
16T 3 0 −7875

2T 5

0 1125
T 5 0

−7875
2T 5 0 157500

T 7 .

 (12)

Now, the only relevant amplitude parameter is h0. The error in h0 is calculated using the

Fisher information matrix over the amplitude parameters Ai’s and the coordinate transfor-

mation from Ai to (ho, ι, ψ, ϕ0)[34]. For year-long observation, the error can be averaged

over the sky position and ψ [21]:

σ(h0) ≈
4.08Dh0√

T

√
2.59 + cos(ι)2

1− cos(ι)2
. (13)

Note that Eq (13) is singular at (ι = 0 or π) due to the coordinate transformation from Ai

to (ho, ι, ψ, ϕ0). For this reason, we can’t average over ι with a prior range that includes 0

and π. Thus, In this work, we assume cos(ι) lies in the range of [−0.9, 0.9], ignoring the

small probability of cases where |cos(ι)| ≈ 1.

III. PARAMETER ESTIMATION FRAMEWORK

In this section we develop two different frameworks based on [21] and [25], to infer three

neutron star properties: its principal moment of inertia (I), the component of magnetic

dipole moment perpendicular to the rotation axis (mp) and a parameter (α) which is related

to the saturation amplitude (αs) by α = αsMR3J̃ . In both cases, we assume that the
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spin-down of the star is due to magnetic dipole radiation and gravitational wave emission

(via r-mode current quadrupole). We ignore the minor effects of magnetic fields of the

order 1015 G or less, see section (VI) for more details. In the first scenario, we explore a

framework similar to [21], where the distance is estimated from electromagnetic observations

to 20% accuracy. The second scenario is relevant for targeted searches, where the rotational

frequency of the star is known. As mentioned earlier the frequency of a r-mode signal varies

slightly from f = 4
3
frot. This variation in frequency is quantified in terms of κ (see section

III B), which satisfies universal relations with compactness [28] and the dimensionless tidal

deformability [35]. We use the first universal relation to infer the distance of the star from

CGW signals directly [25] along with the macroscopic properties mentioned above.

A. Framework 1: Distance estimated from electromagnetic observations

Balancing the spin-down power with the luminosity of electromagnetic and gravitational

radiation gives:
dE

dt

∣∣∣
EM

+
dE

dt

∣∣∣
GW

= −dE
dt

∣∣∣
rot
. (14)

The rotational kinetic energy is taken to be that of a rotating sphere:

dE

dt

∣∣∣
rot

=
9

4
π2If ḟ . (15)

The luminosity of an electromagnetic dipole is given by:

dE

dt

∣∣∣
EM

=
27π4

8c3µ0

m2
pf

4

I
, (16)

where µ0 is vacuum permeability. The gravitational wave luminosity for r-mode is [15]:

dE

dt

∣∣∣
GW

=
1024π9

25

G

c7
α2f 8. (17)

To simplify the expressions we introduce the following constants,

Kd =
3π2

2c2µ0

Kgw =
4096π7G

225c7
Kh0 =

√
512π7

5

G

c5
. (18)

The spin-down equations are then given by:

ḟ = −
Kdm

2
p

I
f 3 − Kgwα

2

I
f 7. (19)
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Differentiating (19) we get:

f̈ = −3
Kdm

2
p

I
f 2ḟ − 7

Kgwα
2

I
f 6ḟ . (20)

As (h0, f, ḟ , f̈) are independently estimated from the CGW signal, we can solve Eq (2), Eq

(19), and Eq (20) to get:

α =
rh0
Kh0f

3
, (21)

I =
−4Kgwh

2
0r

2f

Kh0 ḟ(n− 3)
, (22)

mp =

√
Kgwh20r

2(7− n)

KdK2
h0
f 2(n− 3)

. (23)

Note that r is the distance to the star and the parameter α is independent of n and is related

to the saturation amplitude by:

α = αsMR3J̃ . (24)

One requires mass and radius measurements from electromagnetic observations to estimate

the saturation amplitude from observation. The negative sign in Eq (22) exists as ḟ < 0. Eqs

(21) - (23) are valid only when 3 < n < 7. This reflects the assumption that the spin-down

of the star is due to magnetic dipole radiation and r-mode gravitational wave emission.

The differential error of any quantity is given by [21]:

σ(A)2 = Σx,y
∂A

∂x

∂A

∂y
cov(x, y), (25)

where x, y ∈ (h0, f, ḟ , f̈) and ”cov” represents the covariance of x and y. The errors of the

neutron star properties can be calculated from Eq (25), (12), and (13) [21]:

σ(α)2

α2
=
σ(r)2

r2
+
σ(h0)

2

h20
+

16875D2

16π2f 2T 3
, (26)

σ (I)2

I2
=

4σ(r)2

r2
+

4σ (h0)
2

h20
+

16875D2

16π2f 2(n− 3)2T 3
, (27)

σ (mp)
2

m2
p

=
σ(r)2

r2
+
σ (h0)

2

h20
+

1875D2 (n2 − 9n+ 15)
2

16π2f 2(n− 5)2(n− 3)2T 3
. (28)

Note that the error in strain amplitude is inversely proportional to observation time (σ(h0) ∼

T−1/2, see Eq (13)), therefore the errors asymptote to the error in distance as T → ∞:

lim
T→∞

σ(α)

α
=
σ(r)

r
, (29)
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lim
T→∞

σ(I)

I
=

2σ(r)

r
, (30)

lim
T→∞

σ(mp)

mp

=
σ(r)

r
. (31)

The factor of 2 in Eq (30) exists as I is proportional to r2, whereas α andmp are proportional

to r.

B. Framework 2: Using universal relation to estimate distance

The frequency of the relevant (l = m = 2) r-mode oscillation, under the slow-rotation

approximation, is given by:

f = |2− κ|frot, (32)

where frot is the rotational frequency of the neutron star. For a slow-rotating Newtonian

star: κ = 2
3
. Various factors like relativistic effects, rapid rotation and magnetic field affect

the value of κ. It has been shown that the relativistic effect is the strongest factor [28] and

that κ satisfies a universal relation with the compactness (C = M
R
) of the star, given by

([28, 35]):

κ = 0.667− 0.478C − 1.11C2. (33)

The compactness of the star also satisfies a universal relation with the normalised moment

of inertia (Ī = I
M3 ) for slowly rotating stars ([36]):

ln(Ī) = 0.8314C−1 + 0.2101C−2 + 3.175× 10−3C−3

−2.717× 10−4C−4, (34)

where Eq (34) is in geometric units (G = c = 1).

For the case of targeted searches, we can use Eq (32) to calculate κ from a CGW detec-

tion. The universal relations can then be used to calculate the compactness and normalised

moment of inertia. At this point assuming an equation of state of the neutron star lets us

calculate its moment of inertia by varying the central density to match the compactness

and the normalised moment of inertia. Note that the Ī - C relation (34) is not actually

required to determine the moment of inertia as there exists a one-to-one relation between

the moment of inertia and compactness for a given equation of state. We still use Eq (34) in

this framework as in the case where mass measurements are available for the star, Eq (34)
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allows us to measure the moment of inertia independent of the EOS. Check section VIC

for a more detailed discussion. We can then get the distance to the star by rearranging Eq

(22), using which the remaining parameters are calculated. This is similar to [25], where

they use universal relations with normalised tidal deformability instead of the compactness

of the star.

The error in κ is given by ([25]):

σ(κ)2 =
f 2

f 2
rot

[
σ(f)2

f 2
+
σ(frot)

2

frot
2

]
. (35)

Then using the universal relations the error in the normalised moment of inertia is:

σ(Ī)2

Ī2
=

1

C2

(
0.831C−1 + 0.420C−2 + 9.525× 10−3C−3

−1.087× 10−3C−4
)2 × σ(κ)2

(0.478 + 2.22C)2
, (36)

which is equal to the error in σ(I)/I given an equation of state. The error in the distance

of the star, calculated from Eq (27) is then:

σ(r)2

r2
=
σ (I)2

4I2
− σ (h0)

2

h20
− 16875D2

64π2f 2(n− 3)2T 3
. (37)

We can also estimate the error in α and mp via Eq’s (26) - (28):

σ(α)2

α2
=
σ(I)2

4I2
+

(4n2 − 24n+ 35)

4(n− 3)2
16875D2

16π2f 2T 3
, (38)

σ (mp)
2

m2
p

=
σ(I)2

4I2
+

1875D2 (n2 − 9n+ 15)
2

16π2f 2(n− 5)2(n− 3)2T 3
− 16875D2

64π2f 2(n− 3)2T 3
. (39)

Note that all the neutron star properties except the distance are independent of the signal

strain amplitude (h0).

IV. MONTE CARLO SIMULATION

In this section we explain how we use Monte Carlo simulations to study the errors in the

three inferred parameters. In Section IVA, we talk about Monte Carlo simulations for the

first framework (Section IIIA). Then, in Section IVB, we discuss the procedure of Monte

Carlo simulations for the second framework (Section IIIA).
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A. Framework 1

Here the parameters h0, f, ḟ , n, and r are required for inference and their errors depend

on D, T, ι, h0, and ∆r. We assume a distance of 1 Kpc is estimated via electromagnetic

observations with a 20% observational error, which is consistent with the previous study

[21].

We also choose to input values of I, instead of h0 through rearrangement of Eq (22),

similar to [21]. This is because the results that directly depend on h0 can be viewed as a

stronger or weaker signal. On the other hand, choices of I relate to the internal physics

of the star. Even though a larger I means a stronger signal (as I ∼ MR2), the strength

also depends on other factors like αs and r. A signal from a neutron star is simulated

by 9 parameters fin, ḟin, f̈in, Iin, rin, Tin,Din, cos(ι)in, and ∆r. Using these we calculate the

input properties Iin, αin, and mpin using Eqs (21) - (23). Then the errors (δf, δḟ , δf̈) are

drawn from a multivariate normal distribution whose covariance matrix is given by Eq (12).

Similarly, the error (δh0) is drawn from a normal distribution with the standard deviation

given by Eq (13). All other covariances are assumed to be zero. Then the output parameters

are given by:

f out = f in + δf, ḟ out = ḟ in + δḟ ,

f̈ out = f̈ in + δf̈ , hout0 = hin0 + δh0.
(40)

Using these output parameters we calculate Iout, αout, and mpout, which is then compared

with Iin, αin, and mpin . This process is iterated 106 times.

1. Choice of input parameters

Here we discuss the choice of the ranges/values of the 9 input parameters mentioned

above. We consider an observation time of 0.5 − 4 years, as gravitational wave detectors

observing runs last at least a year. A fixed rin of 1 Kpc is assumed. This is expected to

be within the range where all-sky searches are sensitive to neutron stars with αs > 10−4

and f > 100 Hz. An error of 20% is assumed in the distance measurement, which is not

unreasonable for current and next-generation radio telescopes [37, 38].

Unlike [21], we only explore a sensitivity depth of Din = 30 Hz−1/2, which is typical for

all-sky searches [32]. This must be interpreted as a signal being detected with a relatively

low computational cost. A more sensitive follow-up analysis would significantly increase the
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signal-to-noise ratio. Check [21] for details on how stability time, the time taken for the

parameter errors to reach within 10% of the distance error, varies as a function of sensitivity

depth. One could also use Sh(f) of current and future gravitational wave detectors [25], but

we don’t take this approach.

We draw the moment of inertia from the widely accepted range for neutron stars of

Iin = [1, 3] × 1038 Kg-m2 [39–41], cos(ι)in is drawn from [−0.9, 0.9] and nin is drawn from

[3, 7], based on our assumption of the spin-down mechanism. The range of values assumed

for fin and ḟin is given by:

fin = [30, 700]Hz, ḟin = [−10−8,−10−12] Hz s−1, (41)

where the range of f is slightly smaller than current all-sky surveys [42], as for higher

frequencies we would have to include the corrections to r-mode frequency due to rapid

rotation [28]. These ranges almost translate to surface magnetic fields of the order 1011−1015

G. We also restrict saturation amplitude to values between [10−7, 10−1], which is consistent

with current numerical simulations [13, 43]. For each iteration we draw Iin, fin, ḟin, nin, and

cos(ι)in from a uniform distribution, calculate hin via Eq (22) and then use it to calculate

αin, and mpin via Eq (21) and Eq (23).

2. Output Parameters

Post choosing values for the input parameters, we convert α into estimates of αs by using

Eq (24) and fiducial values for M = 1.4M⊙, R = (5Iin/2M)1/2 and J̃ = 0.01635 [11]. The

output parameters hout, fout, ḟout, and f̈out are then calculated via Eq (40). The output

braking index nout is then calculated using Eq (5). We ignore cases where αs ̸∈ [10−8, 10−1]

and nout ̸∈ [3, 7]. The condition on nout is required for the calculation of (Iout, αout,mpout)

and only a small fraction of the data is lost ( ∼ 1%), for observation time greater than a

year. Due to the restriction on αs, we lose around 8% to 16% of data as nin increases from 3

to 7. This is due to an increase in the number of cases where αs > 10−1 as nin is close to 7.

Although a significant chunk of data is lost, we still obtain key quantitative trends (section

[V]).

To compare the output and input parameters we use the median relative error:

ϵ(P ) ≡ median

{
|Pout − Pin|

Pin

∣∣∣∣ with P ∈ {I,mp, α, r}
}
, (42)
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following [21]. For framework 1, we also normalise the error of (I,mp, α) by the median

error in the distance (ϵ(r) ≈ 0.135) [21]:

ϵ̃(I) =
ϵ(I)

2ϵ(r)
, ϵ̃(α) =

ϵ(α)

ϵ(r)
, ϵ̃(mp) =

ϵ(mp)

ϵ(r)
. (43)

B. Framework 2

In this section, we discuss how we modify the Monte Carlo simulation for the second

framework. Unlike the previous section, this framework depends on the choice of an equation

of state of the star and is only relevant for targeted narrow-band searches.

The key parameters required for inference in this case are h0, f, ḟ , n, and κ and their errors

depend on D, T, ι, h0, and ∆frot. Here ∆frot refers to the measurement error in the neutron

star’s rotation frequency from electromagnetic measurements. In this case, we directly input

values of h0, as we can’t directly input values of any inherent neutron star properties. The

9 input parameters are then fin, ḟin, f̈in, h0in, κin, Tin,Din, cos(ι)in, and ∆frot, using which we

calculate the normalised moment of inertia Ī via Eq (34). An equation of state is then

assumed to calculate the input properties Iin, rin, αin, and mpin via Eq’s (21) - (23). We then

calculate the output parameters similar to section IVA and this is iterated 105 times (An

order less than the previous case due to computational cost).

1. Choice of input parameters

Now we discuss the choice of the ranges/values of the input parameters mentioned above.

We consider a similar observation time to the previous case. A range of [10−25 − 10−27] is

explored for h0in, as this range includes signals that current and future detectors can po-

tentially detect on narrow band searches [15, 44]. The range of h0in can be interpreted as a

range in the input distance (rin) of the star since it is the sole parameter that depends on

the strain amplitude (h0). The value of κ is drawn from [0.45, 0.60], based on theoretical

considerations [28]. We explore a sensitivity depth of Din = 100 Hz−1/2, which is reason-

able for narrow-band searches [32, 45]. Similar to the previous case, cos(ι) is drawn from

[−0.9, 0.9] and nin is drawn from [3, 7]. The range of values assumed for fin and ḟin is given

by:

fin = [30, 500] Hz, ḟin = [−10−8,−10−12] Hz s−1, (44)



14

which is a smaller parameter space in f in comparison to the previous case, as the universal

relation (Eq (34)) is only valid for slow rotations. We estimate the rotation frequency of

the star from Eq (32) and assume a measurement error (∆frot) of 0.1%, although pulsar

frequencies are measured with much higher accuracy [46]. These ranges almost translate

to similar values of magnetic field and saturation amplitude as found in section IVA. For

each iteration we draw (κin, h0in, fin, ḟin, nin, cos(ι)in) from a uniform distribution, calculate

Īin via Eq (34) and then use it to calculate (rin, Iin, αin,mpin). Note that one can estimate

M and R from Ī and thus calculate the saturation amplitude αs directly. This is used to

ignore the cases where the saturation amplitude is not within [10−7, 10−1].

FIG. 1. Moment of inertia (I) as a function of κ for the BSR4 equation of state.

In this work, we use the BSR4 ([47, 48]) equation of state to calculate the moment of

inertia via the RNS code [49]. Figure 1 shows the dependence of moment of inertia as a

function of κ for the BSR4 equation of state. This dependency is calculated by varying the

central density to match the normalised moment of inertia for each κ value. Check [25] to

see how this dependence varies for other realistic equations of state.

2. Output parameters

Similar to section IVA, we ignore cases where αs ̸∈ [10−8, 10−1] and nout ̸∈ [3, 7]. Due to

this, we again lose around 8% to 16% of data as nin increases from 3 to 7. We again use
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the median relative error (Eq (42)) to compare the input and output parameters, but we

don’t normalise the error with the 0.1% error assumed for the rotational frequency. This is

because the error depends on other input parameters, as T → ∞:

lim
T→∞

σ(Ī)

Ī
=

1

C

(
0.831C−1 + 0.420C−2 + 9.525× 10−3C−3 − 1.087× 10−3C−4

) f

frot

σ(frot)

(0.478 + 2.22C)
.

V. RESULTS

FIG. 2. Inference via framework 1: (Iout, αsout,mpout) converges to (Iin, αsin,mpin) with increase

in observation time. Here the input parameters are f = 300 Hz , ḟ = −10−9 Hz s−1, n = 3.1,

D = 30 Hz−1/2, cos(ι) = 0 and I = 2×1038 kg-m2. We convert the value of α into fiducial estimates

of αs by setting M = 1.4M⊙, J̃ = 0.01635 and R =
√

5I/2M .
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In this section, we present the results of the Monte Carlo error estimation study mentioned

in section IV. We analyse the dependence of errors on various factors like observation time

and breaking index and, also present a comparative analysis between both frameworks.

FIG. 3. Inference via framework 1: Normalised relative errors (ϵ̃) as a function of the braking index

n post-down-sampling. Here the input parameters are f = 300 Hz , ḟ = −10−9 Hz s−1, T = 1

year, D = 30 Hz−1/2, cos(ι) = 0 and I = 2× 1038 Kg-m2.

Unlike [21], the errors inferred via the first framework are dominated by the error in

distance for even an observation time of T = 0.5 years. This feature is seen for all values of

the braking index except close to the extremes (3 or 7). Figure 2 shows how the neutron star

properties inferred via the first framework, converge to their actual values as observation

time increases for n = 3.1. The input values for the parameters are I = 2 × 1038 Kg-m2 ,

α = 3.69× 1037 ( converted into fiducial estimates: αs = 3.37× 10−4) and mp = 1.27× 1020

Tesla-m2. As expected from theoretical considerations (Eqs (26) - (31)), the errors in the

parameters (I,mp) decrease with observation time and for T > 1 years we see the error

saturates to the error in the distance measurement. We do not observe this pattern for alpha

(α) as it is independent of the breaking index and the error in the distance measurement

dominates the error in alpha even for an observation time of T = 0.5 years. We can check
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this by substituting all the assumed input parameters in Eq (26):

σ(α)2

α2
=

σ(r)2

r2
+
σ(h0)

2

h20
+

16875D2

16π2f 2T 3

= 0.04 + 0.0025 + 2.75× 10−22 , (45)

where the observation time is T = 0.5 years.

Figure 3 shows the dependence of normalised relative errors (ϵ̃) on the neutron star’s

braking index (n), where signals are inferred via the first framework. It is for signals with

fin = 300 Hz, ḟin = −10−9 Hz s−1, Tin = 1 year, Din = 30 Hz−1/2, and Iin = 2× 1038 Kg-m2.

The moment of inertia (I) is best estimated at (n ≈ 7), where the spin-down is caused

mostly due to gravitational waves. The perpendicular component of the dipole moment is

estimated with the best accuracy when the spin-down is caused by both electromagnetic

radiation and gravitational waves. As expected, the median error in the parameter alpha

(α) does not depend on the breaking index.

FIG. 4. Inference via framework 2 : Relative errors (ϵ) as a function of braking index n post-down-

sampling. Here the input parameters are h0 = 1× 10−26, f = 300 Hz , ḟ = −10−9 Hz s−1, T = 1

year, D = 100 Hz−1/2, cos(ι) = 0 and κ = 0.56.

Figure 4 shows the sharp contrast in the dependence of median errors (ϵ) on the breaking

index (n) when we infer parameters via the second framework. This is shown for signals

with h0in = 1 × 10−26, fin = 300 Hz, ḟin = −10−9 Hz s−1 , Tin = 1 year, Din = 100 Hz−1/2,
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and κin = 0.56 (which implies Iin ≈ 2 × 1038 Kg-m2). In this framework, the moment of

inertia is independent of the breaking index as it is directly inferred from the frequency of

the signal. The distance of the star (r) and the parameter α are best estimated at n ≈ 7,

and the perpendicular component of the dipole moment can be best estimated at around

n ≈ 3. We also observe the median error in distance saturates at a greater value than other

parameters as it is the only parameter that directly depends on the strain amplitude (h0).

For inference via the second framework, the median errors in α can be interpreted as median

errors in αs, as one can directly estimate (αs) in this framework (Section IVB2).

FIG. 5. Inference via framework 2: (rout, αout) converges to (rout, αout). Here the inputs are

h0in = 1 × 10−26, f = 300 Hz , ḟ = −10−9 Hz s−1, n = 3.1, D = 100 Hz−1/2, cos(ι) = 0 and

κ = 0.56.

In figure 5, we show the convergence of (rout, αsout) to (rin, αsin) for signals with h0 =

1 × 10−26, fin = 300 Hz , ḟin = −10−9 Hz s−1, nin = 3.1, Din = 100 Hz−1/2, cos(ι)in = 0

and κin = 0.56. We observe the expected convergence of the parameters with the increase

in observation time. The parameter αs saturates at an observation time of T > 2 years due
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to the 0.1% error in the rotation frequency. In comparison, the distance measurement is

dominated by the error in h0 even for T > 4 years.

Figure 6 shows the normalised relative errors ϵ̃(I), ϵ̃(α), ϵ̃(mp) as function of frequency

(f) and it’s derivative (ḟ), for three values of braking index. The median errors are for

parameters inferred via the first framework and have been taken over the sampled region of

I and cos(ι) mentioned in section IVA1. These errors are for signals with an observation

time of T = 1 year and detected with D = 30Hz−1/2, which is relevant for a signal detected

in an all-sky search.

In figure 7 we plot the relative errors ϵ(r), ϵ(α), ϵ(mp) (ϵ(I) is not shown) as function

of braking index (n), frequency (f) and it’s derivative (ḟ), for parameters inferred via the

second framework. As mentioned earlier ϵ(α) ≡ ϵ(αs). These median errors are also taken

over the sampled region of h0 and cos(ι) mentioned in section IVB1. These errors are for

signals with an observation time of T = 1 year and detected with D = 100 Hz−1/2, which is

relevant for a signal detected in a narrow band search.

Both fig 6 and fig 7 show that the errors in all inferred properties are minimum for high

spin-down rates (ḟ ≈ −10−8 Hz s−1 and low frequency (f ≈ 100 Hz ). For stars which are

spinning down slowly (ḟ < −10−11), the errors are so high that the condition 3 < nout < 7

cannot be satisfied. These features that are common among both frameworks are also

the case for signals produced due to mountains on a neutron star and when an inference

strategy similar to the first framework is used [21]. In addition, we identify a white region

characterized by low frequencies (f < 100Hz) and high spin-down rates (ḟ > −10−9 Hz

s−1), whose size is minimal for n ≈ 3 but gets larger as n ≈ 7. This region corresponds to

instances where the condition [αsin < 10−1] is not met.

Fig 6 also suggests that a normalised relative error ϵ̃ ≤ 1.2 can be achieved for most of

the parameter space (f, ḟ) for all sky searches. This implies (via Eqn (43)) an error of 32%

in I and a 16% error in α and mp. The errors in α are sufficiently small that converting

the measured α into fiducial estimates of αs (as mentioned in section IVA2) would provide

valuable insights into the damping mechanisms that limit the growth of the r-modes ([12–

14, 43]). On the other hand, Fig 7 shows that framework 2 leads to much lower errors due

to the high accuracy in pulsar frequency measurements. An error of 16% can be achieved in

distance measurements which is comparable to electromagnetic observations [37]. We also

note a sufficiently low error of at least 2% for I and at least 1% for both α and mp (refer
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(a) n = 3.01

(b) n = 3.1

(c) n = 6.99

FIG. 6. Inference via framework 1: normalised relative errors ϵ̃(I), ϵ̃(α), ϵ̃(mp), for braking index

n = 3.01, 3.1, 6.99, as function of frequency (f) and it’s derivative (ḟ). Plotted are median errors

for T = 1 year and D = 30 Hz−1/2. The white areas indicate regions where ϵ̃ > 30 or nout ̸∈ [3, 7]

or αs ̸∈ [10−6, 10−1]. We used a total of 106 points.



21

(a) n = 3.01

(b) n = 4.0

(c) n = 6.99

FIG. 7. Inference via framework 2: Relative errors ϵ̃(I), ϵ̃(α), ϵ̃(mp), for braking index n =

3.01, 4, 6.99, as function of frequency (f) and it’s derivative (ḟ). Plotted are median errors for

T = 1 year and D = 100 Hz−1/2. The white areas indicate regions where ϵ > 10 or nout ̸∈ [3, 7] or

αs ̸∈ [10−6, 10−1]. Here we have used 105 points.
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to Fig. 7), achievable with a sufficiently high spin-down rate. This is because the errors

displayed in all properties, except the distance, do not directly depend on the strength h0 of

the detected signal (as we have assumed D = 100 Hz
1
2 ). However, this approach comes with

the drawback of assuming a specific equation of state and works only for slowly rotating

neutron stars. check VIB for the potential effects of magnetic field on this analysis.

VI. DISCUSSION AND CONCLUSION

A. Summary

In this article, we present an analysis similar to [21] of what properties can be inferred from

neutron stars that radiate electromagnetic waves and detectable continuous gravitational

waves produced by r-mode oscillations. We investigate two different frameworks. In the first

framework, we assume the distance of the star is measured via electromagnetic observations

with 20% accuracy. We then infer three neutron star properties: its principal moment of

inertia (I), the component of magnetic dipole moment perpendicular to the rotation axis

(mp), and a parameter (α) which is related to the saturation amplitude by α = αsMR3J̃ .

Unlike the signals produced due to mountains, for narrow-band searches, the signals due

to r-mode oscillations give us information on an additional parameter (κ) which satisfies

universal relations with the compactness of the star [28, 35]. In the second framework,

we use this and the I − C universal relations to directly measure the distance (r) of the

neutron star, along with the three parameters mentioned above. We then use a simple

Fisher information matrix-based approach to present a quantitative error estimation study

for parameters inferred via both frameworks.

Monte Carlo simulations typical for all-sky searches are done for the first framework,

whereas simulations typical for narrow-band searches are done for the second framework.

When inferring properties via the first framework, for detected signals with a year-long

observation time (which could be higher depending on the detector duty cycle), it is possible

to achieve an accuracy of 32% for I and 16% for α and mp. On the other hand, for

inference via the second framework under similar conditions, we observe a comparatively

higher accuracy of 1− 2% or less is achievable for I, α, and mp, and 16% accuracy for r. A

key drawback of this framework is that it requires an assumption of a neutron star equation
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(a) n = 4.0

(b) n = 6.99

FIG. 8. Inference via framework 2: Relative errors ϵ̃(I), ϵ̃(α), ϵ̃(mp), for braking index n = 4, 6.99,

as function of frequency (f) and its derivative (ḟ). Plotted are median errors for T = 1 year and

D = 100 Hz−1/2. The white areas indicate regions where ϵ > 10 or nout ̸∈ [3, 7] or αs ̸∈ [10−6, 10−1],

B < 1012 G, and a total of 105 points was used.

of state and works only in the slow rotation limit. In contrast, no such requirements are

needed for the first framework. The most accurate estimates are when the breaking index

is in the region n ∈ [4, 6], f is small, and ḟ is large.

B. Assumptions

In this section, we present further discussion on the key assumptions made in our analysis.

Firstly, we assume that a supposed CGW detection can be identified as a signal due to r-

mode oscillations. It might not be possible if the rotational frequency of the star is not

known [22]. In that case, only the value of the breaking index (n) can give us an idea of
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the spin-down mechanism. The CGW signal detected in an all-sky survey could also be

due to more exotic sources [23, 24]. However, a successful detection with the gravitational

wave frequency (f ≈ 4
3
frot) in targeted/narrow-band searches would strongly imply that the

signal is produced by r-modes.

We assume that the spin-down of the star is due to dipolar magnetic field and r-mode

oscillations. This leads to a breaking index of n ∈ [3, 7], which is inconsistent with cur-

rent observations [50]. Recent NICER measurements also provide evidence for non-dipolar

magnetic fields [51]. Alternative spin-down mechanisms and complex magnetic field models

consistent with current observations are still works in progress [52]. Numerous factors other

than relativistic effects, such as the magnetic field, influence the r-mode frequency [53].

However, we have ignored these factors due to their negligible effects [28]. Additionally,

it’s worth noting that r-modes themselves could potentially amplify the magnetic field [54],

a consideration which we have chosen to disregard. In this work, we also don’t consider

stratification, which is shown to be important for realistic mature neutron stars [55].

The universal relations used in the second framework are valid only in a restricted pa-

rameter space. The κ − C relation is valid only in the slow-rotation approximation [35]

and has corrections of the order of ( f
fk
)2 [28], where fk is the Kepler frequency. The Ī − C

relation is also not valid for rapidly rotating stars [36] and must be affected by magnetic

fields. Similar universal relations called the ”I-Love-Q” relation [56], have been shown to

become EOS dependent for magnetic fields B > 1012G [57]. Although to the best of our

knowledge, no similar study exists for I − C relations used here, such a limit would further

restrict the region where the second inference framework can be used. Figure 8 shows the

effect of limiting to cases where B < 1012G. Only regions close to n ≈ 7 have a significant

parameter space to estimate. This is mainly because the smaller the magnetic field and the

braking index, the smaller the ḟ . As shown in the results, for cases where |ḟ | < 10−11, the

condition 3 < nout < 7 can not be satisfied.

Kindly note that one could have proceeded with a similar analysis to framework 2 without

the Ī − C relations. As the κ− C relation and an EOS assumption, will give a moment of

inertia estimate. In that case, the above-mentioned restriction of parameter space would not

be an issue. We opted not to proceed this way as using Ī −C relations has the potential to

infer the moment of inertia directly and thus all the other parameters, without an assumption

of EOS (Check VIC).
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C. Mitigating Drawbacks: Potential Solutions.

In this section, we discuss the drawbacks of our work, propose potential solutions to

address them and outline future directions for further improvement. The parameter α (α =

αsMR3J̃) is inferred through the first framework. Even if mass and radius measurements

become available from electromagnetic observations, there remains an equation of state-

dependent parameter J̃ necessary for estimating the saturation amplitude (αs). It was

demonstrated [14] that this parameter is bounded within a factor of 2, suggesting that a

fiducial value of J̃ ≈ 0.01635 could provide a reasonable rough estimate.

In inference via the second framework, an accurate estimation of all parameters, including

the saturation amplitude and distance, can be obtained after assuming an equation of state.

It is noteworthy that while the values of the parameters change with the equation of state,

the errors remain largely consistent [25]. A prudent approach would involve considering a

set of realistic equations of state to calculate potential limits on these parameters.

Low-mass X-ray binaries (LXMBs) represent crucial candidates for signals generated by r-

modes [58]. Accurate mass measurements through electromagnetic observations are possible

for such systems. Consequently, if we detect a CGW, and such mass measurements exist,

one can directly substitute it in the I−C relation to estimate I, mp, and r without assuming

any specific equation of state. However, αs still necessitates knowledge of J̃ and the radius

of the star, which could also be measured for LXMBs, but possibly not that accurately.

We plan to perform parameter inference by adopting a Bayesian framework in the future,

as it would yield robust conclusions and incorporate priors from electromagnetic observations

of neutron stars. One could also explore alternate spin-down models encompassing current

braking index observations [52] and study more complex magnetic field models rather than

a simple dipolar magnetic field to expand on this work [59].
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