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One well known method of generating a large blue spectral index for axionic isocurvature

perturbations is through a flat direction not having a quartic potential term for the radial

partner of the axion field. In this work, we show how one can obtain a large blue spec-

tral index even with a quartic potential term associated with the Peccei-Quinn symmetry

breaking radial partner. We use the fact that a large radial direction with a quartic term

can naturally induce a conformal limit which generates an isocurvature spectral index of

3. We point out that this conformal representation is intrinsically different from both the

ordinary equilibrium axion scenario or massless fields in Minkowski spacetime. Another way

to view this limit is as a scenario where the angular momentum of the initial conditions

slows down the radial field or as a superfluid limit. Quantization of the non-static system in

which derivative of the radial field and the derivative of the angular field do not commute

is treated with great care to compute the vacuum state. The parametric region consistent

with axion dark matter and isocurvature cosmology is discussed.
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1. INTRODUCTION

Having a large blue tilt in the axionic isocurvature spectrum allows cold dark matter (CDM)

density perturbations to be enhanced on short length scales without being in conflict with the

precision cosmology that exists for scales k/a0 ≲ 1 Mpc−1 [1–11]. The generation of isocurvature

perturbations by spectator axions, its model-specific characteristics, and the related observational

limitations have been extensively investigated in the past (see for example [12–48]). Although there

are models of axion which naturally generate large blue tilted spectra when there are no quartic
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potential terms in the radial field [49, 50], there is no previous discussion in the literature regarding

generating a large k range of very blue spectrum followed by a plateau from a well-motivated

axion models that contain a quartic term in the radial potential [51, 52].1 From a model building

perspective, one can therefore ask whether the overdamped spectrum of [49] (i.e. a smooth spectrum

composed of an exponentially large k-range with a very blue spectral index and followed by a zero

spectral index plateau without any large bumplike features) can be a signature of flat direction

models that are distinct from the quartic radial potential models. If the answer is affirmative, then

not only is the time-dependent mass a property that one can infer [5] from measuring the spectral

shape similar to that of [49], also the existence of flat direction would be inferrable from such a

measurement.

Motivated by this question and also from the desire to find novel well-motivated beyond the

Standard Model scenarios that generate a strongly blue tilted axionic isocurvature spectra, we

consider a generic complex scalar sector with the radial direction field Γ, the angular field θ, and a

quartic coupling λ. The quartic term usually controls the axion decay constant

Γvac =

√
2M2

λ
(1)

(what people often denote as fPQ) where the mass parameter M controls the tachyonic mass term

responsible for spontaneous breaking of Peccei-Quinn (PQ) symmetry. For the blue isocurvature

models, we require a large rolling period of the radial field Γ because it is the time-dependence of the

background fields that map to the nontrivial positive power (i.e. blue tilt) of k in the dimensionless

power spectrum. When Γ ≫ Γvac and the initial kinetic energy is negligible, we might naively

expect Γ to roll to Γvac on a time scale of (V ′′(Γ))−1/2. Such a fast roll for V ′′(Γ) ≫ H2 (making a

large blue tilt) would generate the range of k over which the blue spectra is produced to be

kbreak − klongest
klongest

∼ H√
V ′′(Γ)

≪ 1 (2)

where klongest is the length scale that leaves the horizon when Γ begins to roll and kbreak is the

scale that leaves the horizon when Γ reaches the minimum such that modes having k > kbreak will

approximately be a flat spectrum.

However, if there is an axion background field motion in the conserved U(1)PQ angular direction,

we know that the time scale to reach Γvac can be infinite in the limit that all U(1)PQ symmetry

1 For models that generate a moderately large blue tilt, although not as large as the ones considered in this paper,
see [53].
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breaking terms are turned off and ȧ → 0. Hence, in scenarios where the angular motion in the

conserved angular momentum direction is large, we might expect to be able to have a similar radial

rolling as the flat direction model of [49]. Unlike in the scenarios of [54, 55], we will use the initial

conditions where the phenomenology generating rotations are occurring during inflation. In such

angular momentum dependent scenarios, one naively expects the main limitations to obtaining a

large kbreak/klongest to be the dilution of the angular momentum due to the Hubble expansion. After

substituting the kinetic derived θ̇2 for the “angular momentum” L2, there is the well known effective

potential term

VE(Γ, a) =
λ

4
Γ4 +

1

2

L2

a6Γ2
(3)

which naively indicates that the effect of L2 will decay as a−6, becoming irrelevant too fast to be of

interest. However, the situation is a bit more interesting.

Because Γ is decreasing when Γ > Γmin, the denominator a6Γ2 initially decreases only like a−4:

i.e. more mildly, giving intuitively a better chance for a blue spectrum to be generated for a larger

number of efolds. Furthermore, this means that Γ4 is also decreasing as a−4, making the relative

contribution of the angular momentum not diminish with the increasing scale factor. Indeed, this

causes the potential to scale as the inverse mass dimension of the potential, hinting that this is a

conformal limit. As will be explained in this paper, this is a time-independent conformal limit of

a special type (different from a massless scalar field in Minkowski space or a massless equilibrium

axion in dS space), and this will be utilized to generate a blue isocurvature spectrum for the axion

field which is approximately δχ: i.e. ∆2
s ∝ k2 corresponding to a spectral index of nI = 3.

In addition to constructing a novel model of generating a blue spectrum, we also systematically

quantize the fields in this background-out-of-equilibrium situation which can be characterized by

the novel nonvanishing of the commutator [∂ηδχ, ∂ηδΓ] representing velocity correlation even in the

absence of non-derivative correlations. Although the work of [56, 57] quantizes a similar theory2

and agrees with our results, we present some distinct and unique details here regarding the axion

spectrum (particularly regarding conformal symmetry representation) and apply it to isocurvature

and dark matter phenomenology. One revelation is that the radial perturbations about the conformal

background solution mix with the angular perturbations for any eigenstate of the Hamiltonian

even at the quadratic fluctuation level, and the different energy eigenvectors (each eigenvector

2 We do not use any methods of their quantization because their work appeared after we had finished that part of
our paper.
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representing the mixing) are not orthogonal. Indeed, it will be shown that a massive δΓ that

kinetically mixes with δχ has nearly identical conformal representation as δχ. A more important

revelation is that, despite the complicated quantum mode mixing arising from the time-dependent

background, explicit quantization allows one to construct a time-independent Hamiltonian whose

ground state well-represents the vacuum. Because of this and angular field translational symmetry,

Goldstone theorem still applies during the conformal period, and the dispersion relationship is

approximately linear in k as k → 0 but with a different sound speed coefficient of 1/
√
3, similar to a

relativistic perfect fluid pressure wave. Indeed, it is well known that a quartic complex scalar with

spontaneous U(1) breaking is a simple model of a superfluid (see e.g. [58]).

As far as model parameters are concerned, there are the initial conditions of the background

fields, the quartic coupling, and the usual axion parameters which control the dark matter abun-

dances. The main theoretical limitation on extending this blue spectrum over a large k range is

the requirement that the axion remains a spectator, which limits the coupling and the background

field initial displacement value in the conformal regime. We also identify a range of initial condition

deformations away from the conformal limit over which the isocurvature spectrum is approximate

k2, beyond which parametric resonance sets in and destroys the smooth blue spectrum. We identify

the parameter regime in which this type of model can reproduce a spectrum of blue-tilt followed by

a plateau.

The order of presentation will be as follows. In Sec. 2, we define the notation for the “vanilla”

axion model and make general arguments of how a time-independent conformal limit and the spectral

index nI = 3 arises with the combination of large field displacements and angular momentum.

In Sec. 3, we quantize the theory explicitly about the large phase angular momentum to make

the vacuum choice precise and to compute the resulting normalization for the desired correlation

function. We also give a simplified discussion of how the intermediate-time transition away from

the time-independent conformal-era will not result in a large bump in the isocurvature spectrum.

In Sec. 4, we discuss how deformations of the initial conditions away from the time-independent

conformal limit will modify the spectrum. This will lead to oscillatory features in the spectrum.

In Sec. 5, we present example isocurvature spectra plots and the parametric ranges over which the

QCD axion phenomenology is compatible with observations. We then conclude with a summary.

Many appendices follow that provide details of the results presented in the main body of the work.

For example, the details of the conformal field representation will be given in Appendix A and the

details of the quantization is presented in Appendix D.
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2. SPECTATOR DEFINITION AND BASICS OF THE CONFORMAL LIMIT

In this section, we introduce the Lagrangian for our spectator field in terms of a complex scalar

field Φ with an underlying global U(1) PQ symmetry and lay out the basic physics central to the

computation before delving into detailed computations in the subsequent sections.

2.1. Basic Action

Consider the following action for a spectator complex scalar field Φ containing the axion in a

4-dimensional FLRW spacetime

S =

∫
dtd3x

√
−g (−∂µΦ∗∂µΦ− V ) (4)

where the potential is composed of the usual renormalizable terms symmetric under a global U(1)

V = −2M2Φ∗Φ+ λ (Φ∗Φ)2 (5)

with a dimensionless self-coupling constant λ and a dimension-one mass parameter M . We will

assume that the background metric ds2 = g
(0)
µν dxµdxν = −dt2 + a2(t)|dx⃗|2 is driven by an inflaton

whose energy dominates over the energy of Φ. As is well known (see e.g. [4]), the non-adiabatic

quantum fluctuations of Φ are diffeomorphism gauge invariant at the linear level and govern the

spectator isocurvature perturbations that add to the usual curvature perturbations of the inflaton.

To make the U(1) angular physics manifest, parameterize Φ as usual in terms of a radial field Γ

and an axial field Σ:

Φ =
1√
2
Γei

Σ
Γ (6)

where Γ and Σ are real scalar fields. The potential V in terms of the real field Γ is

V = −M2Γ2 +
λ

4
Γ4 (7)

with the stable vacuum at

Γvac =

√
2M2

λ
. (8)

The kinetic terms of the Lagrangian in terms of fields Γ and Σ are similarly rewritten as

−∂µΦ∗∂µΦ = −1

2

(
∂µΓ∂

µΓ− 2
Σ

Γ
∂µΣ∂

µΓ +

(
Σ

Γ

)2

∂µΓ∂
µΓ + ∂µΣ∂

µΣ

)
(9)
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where the Σ∂µΣ∂
µΓ coupling will later play a nontrivial role for the perturbations. We now define

a dimensionless angular variable

θ ≡ Σ

Γ
(10)

such that the action in terms of Γ and θ is

S =

∫
d4x

√
−g(0)

(
−1

2
g(0)µν

(
∂µΓ∂νΓ + Γ2∂µθ∂νθ

)
−
(
−M2Γ2 +

λ

4
Γ4

))
. (11)

where we note that the kinetic terms for the fields Γ and Γvacθ appear canonically normalized. This

system has a conserved background angular momentum

L ≡ a2Γ2
0∂ηθ0 (12)

owing to the U(1)PQ symmetry where the subscript 0 indicates homogeneous background compo-

nents of the fields and η is the conformal time variable defined as

η =
−1

aH
. (13)

In principle, this large angular momentum may be generated by a CP violating non-renormalizable

term as in the usual Affleck-Dine mechanism. We define any canonically normalized scalar field Υ

during inflation to be a spectator if

ρΥ ≪ ρinflaton (14)

where ρΥ represents the energy density of a field Υ. For an initial displacement of the radial field

Γ away from its vacuum state Γvac, Eq. (14) translates to

1

2

(
Γ̇0

2
+ Γ2

0θ̇0
2
)
+
λ

4
Γ4
0 ≪ 3M2

PH
2 (15)

where H = ȧ(t)/a(t) is the Hubble expansion rate. We will refer to this condition later when we

define our spectator dynamics under different initial conditions. This will be one of the dominant

constraints on the initial radial displacement of the system.

2.2. How conformal limit generates a blue spectrum

In this section, we will explain how a conformal limit spontaneously broken by a U(1) time-

translation locking can generate a blue spectral index of 3 for the axion. The details of this section
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are given in Appendix A. One nontrivial aspect that will be explained below is how the angular

time-dependence leads to a novel conformal phase that is distinct from the massless conformal phase

of Minkowski spacetime.

Consider the Φ action Eq. (11) in the conformal coordinates defined by the background metric

ds2 = a2(η)
(
−dη2 + |dx⃗|2

)
:

S =

∫
dηd3x

(
−1

2
ηµν

(
∂µY ∂νY + Y 2∂µθ∂νθ

)
−
[
−1

2

a′′

a
Y 2 −M2a2Y 2 + λ

Y 4

4

])
. (16)

where ηµν is the Minkowski metric, θ is given by Eq. (10), and Y ≡ aΓ. Note that only the M2a2Y 2

term breaks the scaling symmetry

a→ u−1a (17)

where u is a constant while the time-dependent term (a′′/a)Y 2 term does not. On the other

hand a′/a is time-dependent. The action of Eq. (16) therefore does not know about constant

time hypersurface proper length scales or time-translation noninvariance when both M2a2Y 2 and

(a′′/a)Y 2 can be neglected. If we consider only the classical homogeneous background equation of

Y (x) ≈ Y0(η), as shown in the Appendix A, we can go to a classical background solution of

Y0 = Yc = const (18)

∂ηθ0 = const (19)

in the limit

√
λY0 ≫Ma,

√
a′′/a. (20)

Hence, dynamically, we achieve the limit of Eq. (17) and the action written in terms of Y and θ (when

considering quantum fluctuations about the classical solution) does not know about spatial proper

length scales or time translation symmetry violations. This is intuitive since when
√
λY0 ≫ Ma,

the conformal factor a(η) scaling by a constant is a classical invariance. Furthermore, even though

a′′/a is time-dependent (despite it being conformally invariant) in quasi-dS spacetime, large
√
λY0

limit allows one to neglect this term to give a static system. A key defining characteristic of this

scenario is that θ̇0 ̸= 0 gives a tachyonic mass contribution −ηµνY 2∂µθ∂νθ/2 which is important

for achieving
√
λY0 ≫ Ma,

√
a′′/a at the minimum of Y0 effective potential. This in turn leads to

a new perturbation mixing term

−ηµνY 2∂µθ∂νθ/2 ∋ Y0δY ∂ηθ0∂0δθ (21)
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that changes the dispersion relationship. This is the reason why rotation is important for this

scenario and leads to an interesting tree-level conformally invariant theory which is the subject of

this paper. It is also important to note that once one expands about the background of Eqs. (18) and

(19), there is a scale ∂ηθ0 in the theory, but because it arises from spontaneous symmetry breaking,

it transforms under diffeomorphism that eventually will make the conformal representation similar

to that of a massive scalar field theory with the mass parameter behaving as a spurion (see Appendix

A for more details). Moreover, owing to the U(1) symmetry, the spontaneous conformal symmetry

breaking term ∂ηθ0 is a constant in the conformal time coordinates (as indicated by Eq. (19)).3

Now, let’s consider the axion sector with a rescaling of Eq. (10) as

θ =
aΣ

Y
≡ A
Y
. (22)

The action will be of the form

S ∋
∫
dηd3x

(
−1

2
ηµν∂µδA∂νδA+ U(1) and time invariant mixing of δY and δA

)
(23)

where δA are the scaled axion fluctuations about the constant ∂ηθ0 background solution that pairs

with Eq. (18). The mixing of δY and δA coming from Eq. (21) is the main difference between the

Minkowski spacetime’s conformal massless field and the axion here. As will be shown in Appendix

A, the scaling symmetry of Eq. (17), SO(3) symmetry, spatial translation invariance, and time-

translational symmetry together with PQ U(1) symmetry tells us

⟨δA(η, x⃗)δA(η, 0)⟩ ∼
|x⃗|→∞

cA
|x⃗|2

(24)

for a constant cA or equivalently

⟨δ (Γθ) (η, x⃗)δ (Γθ) (η, 0)⟩ ∼
|x⃗|→∞

cA
a2(η)|x⃗|2

(25)

is the physical axion correlator.

Remarkably, despite the fact that |x⃗|a ≫ H−1, the fluctuations δA do not sense the spacetime

curvature. In contrast, a generic minimally coupled massless real scalar field φs has a kinetic term

for a rescaled Φs ≡ aφs of

Sφ =

∫
dηd3x

(
1

2

[
(∂ηΦs)

2 −
(
a′′(η)

a(η)

)
Φ2
s −

∑
i

(∂iΦs)
2

])
(26)

3 Also, it is easy to check that there is no Q-ball formation in the current scenario.
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which contains time-dependence through (a′′/a): i.e. this theory is a → au invariant but it is not

time-translation invariant. In such situations, one has

⟨Φs(η, x⃗)Φs(η, 0)⟩ ∼
|x⃗|→∞

F

(
a′′

a
, |x⃗|
)

(27)

where F is a functional of (a′′/a) and a function of |x⃗|. Since the spatial derivatives become

unimportant for Eq. (26) for long wavelength modes, the dependence of F on (a′′/a) becomes

important in this |x⃗| → ∞ limit.4 The absence of this analogous time-translation invariance breaking

term for δA in Eq. (23) is partly due to the axionic nature of A in addition to being in the conformal

radial sector discussed previously. This is a time-independent conformal phase of the axionic theory.

The Fourier-space isocurvature spectrum corresponding to Eq. (25) is

∆2
s ∝ k2 (28)

which is conventionally described as having a spectral index of nI = 3. In other words, the large

Γ limit and a conformally compatible boundary conditions for the background field Γ0 allowed the

scaled axion field A to settle into a tree-level conformal theory that does not see the expanding

universe. Explicit mode computations shown in the subsequent sections will support this general

expectation based on conformality arguments. We should also note that Eq. (16) indicates that

the field δY = aδΓ is expected to behave as a massive field in the long wavelength limit owing to

the mass scale provided by Y 2 (∂ηθ0)
2 with a large ∂ηθ0 supporting a large Eq. (18). This implies

that δY two-point function in the long wavelength limit will behave as the massive correlator in flat

space giving ⟨δY δY ⟩ ∝ k3 which implies

⟨δΓδΓ⟩ = CY k
3/a2/(∂ηθ0) (29)

(where CY is a constant) during the time-independent conformal era when ∂ηθ0 =
√
λΓ0(ηi)a(ηi) (see

Appendix A that explains the appearance of ∂ηθ0 from a conformal representation perspective). As

explained in the Appendix A, we cannot read off k2 behavior of Eq. (28) from conformal invariance

alone because of the spontaneous breaking scale ∂ηθ0: it is a result of knowing time-independent

conformal invariance and masslessness of the δA field (the latter coming from the Goldstone property

of the spontaneously broken U(1)PQ symmetry).

The mixing of δY with δA through the ηµνY 2∂µθ∂νθ term after the spontaneous symmetry

breaking term ∂ηθ0 is turned on in Eq. (16) leads to an interesting dispersion relationship. Instead

4 This infinity here literally means |x⃗|a ≫ H−1.



11

of the dispersion relationship of a free massless theory, it will be that of a relativistic perfect fluid

acoustic wave: i.e.

dω

dk
=

1√
3

(30)

where ω is the frequency associated with the lighter eigenmode. This is an indication that the

axion here is a perturbation about a nontrivially interacting background medium. One obvious

consequence of this is that the perturbations freeze out a bit earlier when k ≈ a(tk)
√
3H during

inflation in contrast with the situation when
√
3 → 1. The fact that the dispersion relationship here

is linear in k is just as for a Nambu-Goldstone boson: the shift symmetry is still intact even though

there is a nontrivial mixing. In field theoretic situations where the system acts approximately as

an isotropic, adiabatic fluid, one expects the trace of the energy momentum tensor to vanish if the

system is conformal P ≈ ρ/3 which implies that the sound speed is as given by Eq. (30).5

Before moving on to the details, we should also remark about what the usual axion conformal

phase is after the initial time-independent conformal phase ends and the Γ has settled to its minimum

leading to the ordinary axion quantum fluctuation physics. The theory in that case is that of a

spacetime-curvature induced massive scalar field

S ≈
∫
d4x

1

2

{
−ηµν∂µ (aΣ) ∂ν(aΣ) +

(
a′′

a

)
(aΣ)2

}
(31)

which does have manifest conformal invariance of Eq. (17), but not time translation invariance nor

masslessness since during inflation (a′′/a) = 2/η2 which leads to a well-known tachyonic mass for

A = aΣ. Hence, we see that the theory which we are analyzing in detail in this paper is a theory that

goes from a time-independent spontaneously broken conformal phase to a time-dependent conformal

phase, latter of which is the usual axionic isocurvature quantum fluctuation theory during inflation.

3. EXPLICIT QUANTIZATION IN THE CONFORMAL LIMIT

Although we have given a conformal limit argument in Sec. 2.2 for the spectral index nI = 3, we

have not justified the selection of the vacuum state in the situation in which the background field

∂ηθ0 is large. Also, given the fast rotation which kinetically mixes the radial mode with the angular

mode, we expect the dispersion relationship to change from the standard one leading to order unity

5 This follows from the conservation of dilatation current jµ = Tµνx
ν if the dilatation is assumed to arise from

a recoordinatization. More about the relationship between the diffeomorphism representation and the spurion
representation is explained in Appendix. A.
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changes in the power spectrum. To address these issues, we quantize the theory in the conformal

limit explicitly.6

3.1. Conformal limit power quantization and power spectra

As shown in the Appendix D, we can quantize the two real scalar degrees of freedom

δψn = (δY, δX)n ≡ (aδΓ, aδχ)n ≡ (aδΓ, aΓ0δθ)
n (32)

governed by the quadratically expanded action

S2 =

∫
dηd3x

{
−1

2
ηµν∂

µδY ∂νδY − 1

2
ηµν∂

µδX∂νδX

− 2δY ηµν∂
µδX∂νθ0 +

2δXδY

Y0
ηµν∂

µY0∂
νθ0 +

δX

Y0
ηµν∂

µδX∂νY0 +
δY ηµν∂

µδY ∂νa

a

+
1

2
(δX)2 ηµν

(
∂µY0∂

νY0
Y 2
0

+ 2
∂µa∂νa

a2
− 2

∂µa∂νY0
aY0

)
−1

2
(δY )2 ηµν

(
∂µθ0∂

νθ0 +
∂µa∂νa

a2

)
−
(
−2M2a2

2
+

3λ

2
Y 2
0

)
(δY )2

}
. (33)

in the coordinates ds2 = a2(η)
(
−dη2 + |dx⃗|2

)
using

[δψn(η, x⃗), δψm(η, x⃗)] = 0, (34)

[πn(η, x⃗), πm(η, x⃗)] = 0, (35)

[δψn(η, x⃗), πm(η, x⃗)] = iδnmδ(3)(x⃗− y⃗) (36)

as usual. What is special in the scenario considered in this paper is that the coefficients involving

{X0, Y0, a} are generally time-dependent, but in the conformal limit described by Eqs. (18), (19),

and (20), the coefficients become time-independent: e.g.

Y0 ≡ aΓ0 ≈ Yc =
L1/3

λ1/6
= constant (37)

which follows from the conditions given in Eqs. (12) and (A8). Here, Yc represents a constant

conformal background radial solution.

Since we are going to compute the quantum correlator to 0th order in λ while Eq. (37) does not

allow us to set λ = 0, an explanation of the expansion is in order. Note that this conformal limit

6 After the quantization part of this work was completed, the work [56, 57] appeared which quantizes a similar theory
and agrees with the results here. One main difference is that we present more details here regarding the axion
spectrum and apply it to isocurvature and dark matter phenomenology.
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background is a solution to the classical equation of motion

δS

δΦ∗ = 0 (38)

which corresponds to leading ℏ → 0 field path. Keeping the nonlinear interactions for the classical

equation means we are treating λ |Φ|2Φ to be on equal footing as M2Φ. On the other hand we are

computing the quantum dynamics with λ → 0 in considering the quadratic quantum fluctuations

for the quantum correlator. Hence, we are taking the limit

O(λ|Φ|2a2) ∼ O(λY 2
0 ) ≳ O(M2a2) (39)

in the quadratic computation. Eq. (37) then says we are in the parametric region in which

λ2/3L2/3 ≳ O(M2a2) (40)

which will break down when a−2 has sufficiently diluted L2/3.

In this regime when Y0 = Yc and ∂ηθ0 are constants, the Hamiltonian density simplifies to

H =
1

2
(∂ηδY )2 +

1

2
(∂ηδX)2 +

1

2
(∂iδΓ)

2 +
1

2
(∂iδχ)

2 − 1

2
(δY )2 (∂ηθ0)

2 +

(
3λ

2
Y 2
c

)
(δY )2 . (41)

The Fock state diagonalizing the Hamiltonian can be constructed using the ladder operators as

δψn =

∫
d3p

(2π)3/2

[
a++
p⃗ c++V

n
++e

−iω++η + a+−
p⃗ c+−V

n
+−e

−iω+−η + h.c.
]
eip⃗·x⃗ (42)

where

V n
++ =

 1

R++

 , V n
+− =

 1

R+−

 , (43)

R++ ≡ i

 −2
(
L
Y 2
c

)
ω++

1
2

(
ω2
++ − ω2

+−
)
+ (λY 2

c ) + 2
(
L
Y 2
c

)2
 , (44)

R+− ≡ i

 2
(
L
Y 2
c

)
ω+−

1
2

(
ω2
++ − ω2

+−
)
− (λY 2

c )− 2
(
L
Y 2
c

)2
 , (45)

ωs1s2 ≡ s1

√
k2 + 3λY 2

c + s2Yc
√
λ (4k2 + 9λY 2

c ), (46)

c++c
∗
++ = −

(
1−R2

+−
)
ω+− − 2i∂ηθ0R+−

2 (R+−ω+− −R++ω++) (R+−ω++ −R++ω+−)
, (47)

c+−c
∗
+− = −

(
1−R2

++

)
ω++ − 2i∂ηθ0R++

2 (R+−ω+− −R++ω++) (R+−ω++ −R++ω+−)
. (48)
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Note that V++ and V+− are not orthogonal. In the IR limit 1 ≪ k2 ≪ λY 2
c , the two distinct

frequency-squared values are

ω2
±− ≈ k2

3
+O

(
k4

λY 2
c

)
, (49)

and

ω2
±+ ≈ 6λY 2

c +
5k2

3
+O

(
k4

λY 2
c

)
(50)

corresponding to low and high frequency solutions and are separated by a large O
(
λY 2

c /k
2
)

hier-

archy. In the UV limit,

lim
k≫λY 2

c

ω2
±± → k2 (51)

and the two frequency solutions become degenerate. When excited with the lighter normal frequency

ω±− the fluctuations δΓ, δχ have a group velocity

lim
k≪

√
λYc

dω±−
dk

≈ 1√
3

(52)

corresponding to a radiation fluid with sound speed squared c2s ≈ 1/3. This is what we naively

expect from the conformal limit discussed in Sec. 2.2 if the conformal limit of this interacting

system is behaving like a relativistic perfect fluid which has an equation of state P = ρ/3 owing to

the conformal symmetry current conservation. As is well known, such a fluid has a sound speed

c2s =
∂P

∂ρ
=

1

3
(53)

which implies that acoustic waves travel with speed 1/
√
3 matching the group velocity Eq. (52).

Another interesting analogy comes from the tightly coupled cosmic microwave background radiation

to the electrons just before recombination. In that situation, in the limit that the baryon loading

vanishes, the speed of sound is 1/
√
3. Physically, the fast scattering of the electrons is inducing

photon pressure on the nonrelativistic electrons, setting up an acoustic wave, similar to how a ∂ηθ0-

induced mixing is generating an axion pressure-supported acoustic wave in the mixture of axions

and heavy radial fields.

To choose the vacuum, we define it as usual as

a+±
p⃗ |0⟩ = 0 (54)

since the ladder operators diagonalize the Hamiltonian. The nonadiabaticity at the end of the

conformal period may lead to particle production since the WKB vacuum after the conformal
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period will be different from this vacuum. Any particles produced during such time periods will be

inflated away.7

An interesting consequence of this quantized system is that the πn commutator equation of

Eq. (35) which usually is not very constraining induces a special constraint of

[∂ηδX, ∂ηδY ] = −2i∂ηθ0δ
(3)(x⃗− y⃗) (55)

which makes the kinetic contributions to the isocurvature cross correlators of radial and angular

mode temporarily nonzero as long as ∂ηθ0 is not negligible. This leads to ⟨∂ηδΓ∂ηδχ⟩ ̸= 0 even

though ⟨δΓδχ⟩ = 0 during this time-independent conformal era when ∂ηθ0 is constant. Eventually,

the time-independent conformal era ends when the background radial modes reaches the minimum

of the effective potential making ∂ηθ0 → 0 and in turn causing this kinetic cross correlation to

disappear as the system leaves the time-independent conformal phase to enter the usual time-

dependent conformal phase of the stabilized axions.

The correlation functions of radial and angular directions in the time-independent conformal

region (before the transition of the radial field at time ttr to fPQ) is

∆2
δΓ
Γ0

δΓ
Γ0

(η < ηtr) =
1

Γ2
0(η)a

2(η)

k3

2π2

(
|c++|2 + |c+−|2

)
(56)

∆2
δχ
Γ0

δχ
Γ0

(η < ηtr) =
1

Γ2
0(η)a

2(η)

k3

2π2

(
|c++R++|2 + |c+−R+−|2

)
(57)

where c+± and R+± depend on k. In Fig. 1, we plot the correlation functions given in Eqs. (56) and

(59) and compare them with the analytic approximations. We illustrate that for modes k ≪ ∂ηθ0,

the radial and angular isocurvature fluctuations during t < ttr exhibit spectral dependencies of

k3and k2 respectively. The complicated k-dependence simplifies to

lim
k≪∂ηθ0

∆2
δΓ
Γ0

δΓ
Γ0

(η < ηtr) ≈
(

1

31/223/2

)
1

Γ2
0(η)a

2(η)

k3

2π2∂ηθ0
, (58)

lim
k≪∂ηθ0

∆2
δχ
Γ0

δχ
Γ0

(η < ηtr) ≈
1

31/2

(
H/(2π)

Γ0(ηi)

)2( k

a(ηi)H

)2

(59)

on large length scales. Although the spectral indices here can be inferred from the symmetry

representations and minimal dynamical considerations of Appendix A, the details of 1/
√
3 and

7 Any effects on nongaussianities from this will be left for a future work.
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Figure 1: Plot illustrating the spectral dependence of the correlation functions given in Eqs. (57) and (56) cor-

responding respectively to the angular (solid blue) and radial (dotted red) directions in the time-independent

conformal era. For modes k ≪ ∂ηθ0, the radial and angular isocurvature fluctuations exhibit spectral depen-

dencies of k3and k2 respectively. The green dashed curve represents our analytic approximation taken from

Eq. (59), where Yi = Γ0(ηi)a(ηi). Note the presence of an additional normalizing factor of 1/
√
3, resulting

from the angular modes behaving like a radiation fluid with a sound speed c2s = 1/3. Modes with k ≫ ∂ηθ0

do not see the effective potential and thus resemble massless modes. These modes must be normalized with

the usual Bunch-Davies (BD) vacuum state. The brown dotdashed curve provides an analytic approximation

for pure massless modes normalized with the BD vacuum solution. The plot highlights smooth transition

from the vacuum state for the strongly coupled axion, obtained from the minimization of the Hamiltonian

density during the time-independent conformal era, to the usual BD solution. Notably, the spectral depen-

dence of angular fluctuations ∝ k2 highlights that in the rotating axion model, angular fluctuations maintain

conformality across all scales during t < ttr.

normalization factors appearing here are difficult to predict without explicit quantization. Although

one may naively think ∂ηθ0 here acts as a scale similar to the horizon scale in ordinary curvature

perturbations, making the spectral amplitude freeze out, the spectral amplitude is actually always

approximately frozen during the time-independent conformal period. Since ∂ηθ0 ≫ a(ηi)H is typical

for the parametric region of phenomenological interest, we can have a frozen subhorizon k2 spectrum

for a massless field. The δΓ spectral index minus one is 3 while the δχ spectral index is characterized

by nI − 1 = 2 as anticipated. This says that the δχ correlator dominates over the δΓ correlator by

a factor of ∂ηθ0/k. The fact that 1/
√
3 appears even for the massive δΓ correlator is indicative of



17

the sound speed changing due to the presence of ∂ηθ induced mixing.

At approximately the time ttr, the time-independent conformal regime in this strongly mixed

model comes to an end, and the radial field settles to the minimum of the potential at fPQ. From

the EoM provided in Eq. (D3) for the axial perturbations δχ, we infer that around this time, the

axial perturbations transition to a massless axion state entering a time-dependent conformal era.

Because Γ0(η) tends to follow δχ mode on superhorizon scales (see Appendix F) and because the

radial kinetic energy is too small to generate nontrivial resonances, there is no evolution of Eq. (59)

after the transition to the vacuum at time t = ttr. Therefore, the dimensionless power spectrum

Eq. (59) can be used for η > ηtr as well. For modes that exit the horizon a long time after the

radial field has settled to the minimum at fPQ, the spectrum is scale invariant. For these modes

the initial amplitude of the axial field fluctuations is normalized with the usual BD vacuum state

as ∼ 1/
√
2k. Hence, we approximate the spectrum as

lim
k≫∂ηθ0

∆2
δχ
Γ0

δχ
Γ0

(η → 0) ≈
(
H/(2π)

fPQ

)2

(60)

which is the same as the usual equilibrium spectrum. In matching Eqs. (59) and (60), there is a

sound-speed related factor shift in where the blue tilt region will match the plateau, and this is the

hallmark of our current model flowing from one rotating phase conformal field theory to the usual

Goldstone case which from the perspective Eq. (31) corresponds to a time-dependent scenario.

Note that Bunch-Davies boundary condition is in the limit k/(aH) → ∞. If ∞ is interpreted

modestly as ∂ηθ0/k ≳ 1, we see that the δΓ correlation function dominates in the UV. This indicates

that the kinetic term of δΓ is important in the Bunch-Davies limit and δΓ cannot be integrated out

in this limit. Indeed, one can explicitly compute

∆2
∂ηδΓ∂ηδχ(k, η < ηtr) =

1

a2(η)

k3

2π2
(i∂ηθ0) (61)

which says that there is a strong mixing between δχ and δΓ in the modest kinematic range reasonable

for standard Bunch-Davies boundary conditions.8 Even more impressively, we know that even in

the small k limit, there is essentially no distinction between the δΓ kinetic correlator and the δχ

8 Because ⟨∂ηΓ(x⃗)∂ηχ(y⃗)⟩ is not a Hermitian correlator, it does not have a direct measurability: the measurable
correlation ⟨∂ηΓ(x⃗)∂ηχ(y⃗) + ∂ηχ(y⃗)∂ηΓ(x⃗)⟩ vanishes at least at this order in perturbation theory. Nonetheless, the
kinetic correlations will appear in quantum dynamics including interactions. We will leave this topic to a future
investigation.
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kinetic correlator

lim
k≪∂ηθ0

∆2
∂ηδΓ∂ηδΓ(k, η < ηtr) ≈

1

a2(η)

√
3

2

k3

2π2
(∂ηθ0) , (62)

lim
k≪∂ηθ0

∆2
∂ηδχ∂ηδχ(k, η < ηtr) ≈

1

a2(η)

√
2

3

k3

2π2
(∂ηθ0) , (63)

in the time-independent conformal phase. This says you cannot really integrate out δΓ for any k if

you care about the kinetic term.9 This implies that the only way to justify completely integrating

out the δΓ mode in this cosmological context is not to use the standard Bunch-Davies conditions,

but require a non-standard restriction of modes that satisfy

k

∂ηθ0
≪ 1 (64)

and neglect kinetic aspects of inhomogeneity correlator physics.

3.2. Post-time-independent-conformal-era time evolution

After the time-independent conformal era ends, what happens to these spectra? In this section,

we will consider the time evolution of our coupled system during inflation and determine the di-

mensionless power spectrum for the axial and radial fields as η → 0. We consider the equation of

motion for the background field Γ0 derived from Eq. (11) and substitute ∂ηθ0 with the conserved

angular momentum L defined by Eq. (12):

∂2ηΓ0 + 2
∂ηa

a
∂ηΓ0 +

(
−2M2a2 + λΓ2

0a
2 −

(
L

a2Γ2
0

)2
)
Γ0 = 0. (65)

Note the in the limit η → 0, the radial field settles to the minimum

Γ0,min =M

√
2

λ
≡ fPQ (66)

and the angular velocity decays as H3/a2. Using the full solution for the background field Γ0, we

can obtain the evolution of the linear perturbations δϕnk = (δΓk, δχk)
n for each mode k by solving

the mode function hjmk (η) using the Eq. (D15) derived in Appendix D:[
δnj∂2η + κnj∂η +

(
W2
)nj]

hjmk (η) = 0 (67)

9 Of course kinetic terms become more important for larger k values.
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where n is the flavor index and m runs over distinct frequencies. We set the initial conditions at ηi

for each of the two frequency solutions as follows: h1k(η)

h2k(η)

++

η=ηi

= c++

 V 1
++(ηi)

V 2
++(ηi)

 e−iω++ηi ,

 ∂ηh
1
k(η)

∂ηh
2
k(η)

++

η=ηi

= −iω++

 h1k(η)

h2k(η)

++

η=ηi

(68)

and h1k(η)

h2k(η)

+−

η=ηi

= c+−

 V 1
+−(ηi)

V 2
+−(ηi)

 e−iω+−ηi ,

 ∂ηh
1
k(η)

∂ηh
2
k(η)

+−

η=ηi

= −iω+−

 h1k(η)

h2k(η)

+−

η=ηi

.

(69)

For modes k ≪ ∂ηθ0, the above initial conditions correspond to the mode amplitudes h1k(η)

h2k(η)

++

η=ηi

≈ 1

63/4
√
∂ηθ0

 √
3

−i
√
2

 (70)

and  h1k(η)

h2k(η)

+−

η=ηi

≈ 1√
233/4

 √
k/∂ηθ0

i
√
3/
√
k

 (71)

such that the canonical field amplitudes have the ratios∣∣∣∣δΓk(ηi)δχk(ηi)

∣∣∣∣++

≈
√

3

2
, (72)

and ∣∣∣∣δΓk(ηi)δχk(ηi)

∣∣∣∣+−
≈ k√

3∂ηθ0
(73)

for the ++ and +− frequency solutions respectively. The fact that the radial mode amplitude

vanishes in the k → 0 limit indicates that the smaller frequency mode is primarily made of the

angular mode at the initial time. Using these initial conditions for the mode functions hnrk , we

evolve the coupled system from ηi to a late time ηf when the background radial field Γ0 is settled at

fPQ and all modes of interest k are super-horizon. The above results also imply that the amplitude

of the axial fluctuations for modes with k ≪ ∂ηθ0 is dominated by the lighter frequency (ω+−)

solutions since

lim
k≪∂ηθ0

|δχk(ηi)|++

|δχk(ηi)|+− ≈ O

(√
k

∂ηθ0

)
. (74)
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Figure 2: Plot showing the time evolution of the background radial field Γ0(t) during the quasi-dS phase of

inflation. Starting from Γ0(ηi) = 1000Hinf , the field takes approximately 5 efolds to settle to the minimum

M
√
2/λ = 10Hinf . The initial evolution of the field a(η)Γ(η) = constant.

3.2.1. Adiabatic time-evolution example

Let us consider an example where we initialize the background radial field Γ0 at ηi with the

time-independent conformal solution

a(ηi)Γ0(ηi) = Yc ≡
L1/3

λ1/6
. (75)

Furthermore, in this example, we set H = Hinf , λ = 1 and fPQ = 10Hinf such that M = fPQ/
√
2.

We choose the conserved angular momentum L =
√
λ109H3

infa
3(ηi), hence Γ0(ηi) = 1000Hinf . Note

that even though the radial field has a large displacement away from the minimum along a quartic

potential, the effective radial mass is only order Hinf due to the effects of the angular momentum.

This cancellation is nothing more than the statement that stable orbits not passing through the

origin exist with angular momentum conservation, and if the space does not expand, this orbit can

persist indefinitely.

In Fig. 2, we show the time evolution of the background radial field. We observe that for our

choice of fiducial values, the radial field takes approximately 5 efolds to settle to the minimum. This

is close to the analytic estimate

∆Nsettle ≈ ln

(
Yc(ηi)/a(ηi)

fPQ
√
1 +H2/M2

)
. (76)

In Fig. 3, we show the time evolution of the corresponding radial and axial mode functions for the

two frequency solutions ω+± for a fiducial wavenumber k/a(ηi) = 10. The mode amplitudes h2rk
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Figure 3: Plot showing the time evolution of the mode functions hnrk /a during the quasi de-Sitter phase of

inflation for a fiducial mode k/a(ηi) = 10Hinf where the background radial field moves along a trajectory

as expected in the time-independent conformal period as shown in Fig. 2. The mode amplitudes h2+±
k /a

corresponding to the axial field freeze out when the background radial field settles to the minimum while

the radial perturbations corresponding to h1+±
k persist in their massive state, undergoing continued decay.

corresponding to the axial field (n = 2) freeze out when the background radial field settles to the

minimum at time ttr. In contrast, the radial perturbations corresponding to h1rk persist in their

massive state, undergoing continued decay. For the modes k < ∂ηθ0 ≡
√
λYc, the mode function h2rk

corresponding to the lower frequency solution ωr = ω+− has the larger amplitude. This is mainly

due to the overall normalization factor of 1/
√
ωr. Hence, a lower frequency yields a comparatively

larger mode amplitude.

4. DEFORMATIONS AWAY FROM TIME-INDEPENDENT CONFORMAL LIMIT

The previous section described a special initial condition leading to a time-independent

Γ0(η)a(η), leading to a time-independent conformal theory. Such cases are the analogs of circu-

lar orbits in mechanics. In this section, we describe deformations away from this time-independent

conformal limit such that Γ0(η)a(η) will have oscillations. These will imprint oscillations into the

power spectrum as we will show.
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4.1. Equations of motion

Eq. (11) implies the background equations of motion (EoM) for the radial and angular degrees

of freedom of

∂2ηΓ0 + 2
∂ηa

a
∂ηΓ0 +

(
−2M2a2 + λΓ2

0a
2 − (∂ηθ0)

2
)
Γ0 = 0 (77)

∂2ηθ + 2
∂ηa

a
∂ηθ0 + 2

∂ηΓ0

Γ0
∂ηθ0 = 0 (78)

where we have as usual assumed the background field to be spatially independent like the background

metric. We distinguish the spatially inhomogeneous fluctuations of quantities Q with δQ. Eq. (78)

leads to the conserved angular momentum L as defined in Eq. (12). This can be interpreted as

there being a comoving homogeneous U(1) charge density Γ2
0∂tθ0 that dilutes as a−3. We also note

from Eq. (77) that the background radial field has a force from (∂ηθ0)
2 Γ0 that can cancel a part of(

λΓ3
0 − 2M2Γ0

)
a2 depending on the size of the angular momentum L. This is the key cancellation

that allows the radial roll to be slow similar to the flat direction situation of [49] which is only lifted

by O
(
H2
)

mass terms. The linear order perturbation variables δΓ and δχ ≡ Γ0δθ in Fourier space

satisfy the mode equations given in Eqs. (D2) and (D3). Here, we note that one can easily identify

most of the axial fluctuation δΣ with δχ since

δΣ = Γδθ + θδΓ (79)

and in the limit δΓ/Γ ≪ δθ/θ, the axial fluctuations are given as δΣ ≈ δχ. Eqs. (D2) and (D3) show

that the fluctuations in the radial and angular directions are coupled at linear order via the dominant

quadratic interaction term Lint ⊃ −2δΓa2ηµν∂
µδχ∂νθ0. This spontaneous conformal symmetry

breaking induced coupling is a novel feature of field fluctuations about a rotating background.

In Sec. 3 we highlighted that the coupled δΓ − δχ system can be diagonalized with two sets

of normal frequencies denoted as ω++ and ω+−. In the IR limit corresponding to modes with

k2 ≪ λY 2
c , the lowest frequency ω+− has a dispersion relationship that is linear in k and the

associated mode function resembles a Goldstone mode. In this limiting case corresponding to a

Goldstone mode, it is possible to integrate out the radial mode δΓ and obtain a decoupled EoM for

the axial field fluctuations δχ. To this end, we rewrite the EoM for the scaled radial fluctuation δY

from Eq. (D7) and neglect the kinetic term ∂2ηδY :

−∂2i δY − 2∂ηθ0∂ηδX +

(
−2M2a2 + 3λY 2

0 − (∂ηθ0)
2 −

∂2ηa

a

)
δY + 2∂ηθ0

(
∂ηY0
Y0

)
δX = 0. (80)
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As noted in the discussion around Eq. (64), we can justify this step using the fact that we are not

concerned with kinetic correlators. Going to the Fourier space and evaluating within the conformal

regime, we obtain the expression(
k2 − 2M2a2 + 3λY 2

0 − (∂ηθ0)
2 −

∂2ηa

a

)
δYk = 2∂ηθ0∂ηδXk. (81)

The above expression allows us to replace δYk in the EoM for the axial field. Thus, we arrive at the

following decoupled EoM for the scaled axial field δX:

∂2ηδXk + 2∂ηθ0 ∂η

 2∂ηθ0∂ηδXk(
k2 − 2M2a2 + 3λY 2

0 − (∂ηθ0)
2 − ∂2ηa

a

)


+

(
k2 − 2M2a2 + λY 2

0 − (∂ηθ0)
2 −

∂2ηa

a

)
δXk = 0 (82)

which can be rewritten as

∂2ηδXk

1 +
4 (∂ηθ0)

2(
k2 − 2M2a2 + 3λY 2

0 − (∂ηθ0)
2 − ∂2ηa

a

)


+

(
k2 − 2M2a2 + λY 2

0 − (∂ηθ0)
2 −

∂2ηa

a

)
δXk ≈ 0 (83)

where the factor associated with the kinetic term ∂2ηδXk evaluates to1 +
4 (∂ηθ0)

2(
k2 − 2M2a2 + 3λY 2

0 − (∂ηθ0)
2 − ∂2ηa

a

)
 ≈ 3 (84)

in the IR limit
(
k ≪

√
λYc

)
of the time-independent conformal solution

(√
λYc = ∂ηθ0

)
. There-

fore, in this limiting scenario, the strong coupling with the radial mode only changes the overall

normalization for the kinetic term of δχ.

In time coordinate t, the mass-squared term for the perturbations δχ can be identified from the

decoupled EoM as

m2
δχ = −∂

2
t Γ0

Γ0
− 3

∂tΓ0

Γ0
= −2M2 + λΓ2

0 −
L2

a6Γ4
(85)

which goes to zero when the radial field settles to its vacuum state, say at time ttr, and the angular

momentum term is negligible. In this limit when δχ becomes massless, the quantum fluctuation

mode δχ does not decay any further, whereas modes decay when m2
δχ is non-negligible (even if the



24

modes are superhorizon). The isocurvature spectrum has a k dependence that is usually parame-

terized by the isocurvature spectral index nI :

∆2
s(k) ∝ knI−1. (86)

For a slowly varying mass of the linear spectator fluctuation δχ, the decoupled EoM in Eq. (83)

suggests that the spectral index nI can be evaluated as

nI(k)− 1 = 3− 3

√
1− 4

9
m2
δχ(k) (87)

where m2
δχ(k) is the effective mass-squared function from Eq. (85) evaluated at a time tk when

k/a(tk) ≈ 1. Hence, m2
δχ(k) must be at least O

(
H2
)

for a blue isocurvature power spectrum, which

can be achieved early in the evolution of Γ(t) due to the cancellation between λΓ2
0 and θ̇2. For the

time-independent conformal solution where Y0 ≡ aΓ0 = constant until t < ttr, we have

−2M2 + λΓ2
0 −

L2

a6Γ4
=
∂2ηa

a3
= 2H2 ∀t < ttr (88)

which yields

m2
δχ(k < ktr) = 2H2 (89)

and a spectral index

nI(k < ktr)− 1 = 2 (90)

where the scale associated with the transition ttr is given as

ktr =
a(ηtr)

a(ηi)
ki. (91)

For k-modes such that tk ≳ ttr and θ̇(tk) is negligible, the δχ(t > tk) spectator is massless,

the δχ power spectrum flattens out and becomes scale invariant. This region is recognized as a

massless plateau characterized by the familiar [H2/(2πfPQ)]
2 isocurvature amplitude. In contrast,

the fluctuation δΓ in the radial field has an effective mass-squared term m2
δΓ = m2

δχ + 2λΓ2
0. In

the limit Γ → fPQ and negligible angular velocity, the superhorizon fluctuations in δΓ can continue

to decay if 2λf2PQ > 9/4H2 and will not contribute significantly to the power spectrum due to

the decay. Preventing the decay will require 2λf2PQ < O
(
H2
)

such that radial fluctuations can

also contribute to the overall power spectrum. However, these cases do not give rise to a time-

independent conformal background solution as explained in Sec. 2 and thus do not result in an

extremely blue spectral index (e.g. nI > 2.4 [5]).
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In Sec. 4.3, we will study how deviations away from the time-independent conformal solution

impact the effective mass-squared parameter m2
δχ in Eq. (85), and thus determine a particular

parametric window of initial conditions within which one can obtain large blue isocurvature power

spectrum for a rotating spectator field Φ.

4.2. Non-rotating scenario

Before we present the rotating case, we will briefly comment on the non-rotating complex scalar

dynamics during inflation in the context of a quartic potential. In such cases, the angular velocity

is taken to be zero and hence the net angular momentum is negligible. During inflation if the

radial field Γ is frozen at some large displacement Γi, at some initial time ti, away from the stable

vacuum Γvac, the isocurvature fluctuations in the angular direction are scale-invariant and can be

suppressed due to largeness of Γi. After Γ starts to roll towards Γvac due to the Hubble expansion

rate dropping below the large mass of order
√
λΓ, based on arguments similar to that presented

around Eq. (16), one might naively conclude that there is a scale invariant isocurvature during the

roll towards the minimum. However, this would be incorrect since Eq. (A8) shows that Y0 = 0 with

θ̇ = 0 (i.e. rotations turned off), which contradicts the time-independent conformality requirement

Y0 ≫
√
a′′/a.

Furthermore, after reaching the minimum, large amplitude oscillations of the background radial

field can lead to parametric resonant enhancement of the angular fluctuations δχ. Alternatively, if

we consider large radial displacements such that λΓ2/H2 ≫ 1 during inflation, where the maximum

radial displacement is bounded by the spectator condition given in Eq. (15), then the radial field

is not frozen and oscillations of the radial field during inflation will give rise to similar parametric

resonance (PR) effects for the isocurvature fluctuations.

More explicitly, the solution to the non-rotating background radial EoM in Eq. (77) for a quartic

potential is given by elliptic functions. When the amplitude is large such that λΓ2
0/H

2 ≫ 1, the

elliptic solution can be approximated as ([59, 60])

Γ0(t) ≈ Γie
−H(t−ti) cos

(
c
√
λΓi/H

(
1− e−H(t−ti)

))
(92)

where c ≈ 0.847, Γi is the radial displacement at an initial time ti, and we have considered a quasi

de-Sitter scale factor a(t)/a(ti) = exp(H(t − ti)) during inflation for an approximately constant

inflationary Hubble parameter. As noted in the introduction, the field rolls down to the minimum
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in a Hubble time. Due to the oscillating background radial field, the linearized EoM for the axial

fluctuations δχ in Eq. (D3) now has a large amplitude oscillating mass-squared term

m2
δχ ≈ λΓ2

i e
−2H(t−ti) cos2

(
c
√
λΓi/H

(
1− e−H(t−ti)

))
. (93)

In the absence of angular rotations, the EoM in Eq. (D7) for the scaled linear fluctuations X = aδχ

takes the form

∂2ηX +

(
k2 +

(
−2M2a2 + λY 2

i cos2
(
c
√
λYi (η − ηi)

)
−
∂2ηa

a

))
X(η) = 0 (94)

where we have substituted Y0 = aΓ0 from the expression in Eq. (92). The above expression can be

reframed in the form of a general Mathieu differential equation:

∂2zX + (Aχ + 2qχ cos (2z))X = 0 (95)

for

z = c
√
λYi (η − ηi) , (96)

Aχ =
k2 − 2M2a2 − ∂2ηa

a

c2λY 2
i

+ 2qχ, (97)

qχ =
1

4c2
. (98)

We note that the Mathieu parameter qχ appears constant only as long as λΓ2/H2 ≫ 1. As

λΓ2/H2 → 1, the background radial field cannot be approximated through elliptic functions and

hence the angular fluctuations do not satisfy Mathieu equation anymore. Substituting for the value

of c from above, we infer that qχ ≈ 0.35 and Aχ ≈ 2qχ for modes with k2 ≪ λY 2
i . For these

modes, PR occurs in the first instability band. This results in a large exponential amplification

of the fluctuations and may result in the formation of axion strings until back-reaction ceases PR.

However, the inflation eventually dilutes these away and any disastrous cosmological effects from

them are generically avoided.10 Modes that lie barely outside the instability band do not undergo

PR and extend over a short ∆k-range of approximately ∆k/ki ∼ O(10). In Sec. 5, we will revisit

the concept of PR resulting from minor deviations from the time-independent conformal solution

and provide a thorough discussion on the underlying Mathieu system.

10 In principle, these may produce gravity waves. We will defer the investigation of this issue to a future work.
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4.3. Rotating scenario

As discussed around Eq.(87), to achieve a large blue isocurvature power spectrum we require that

the background radial field Γ or the angular fluctuations δχ have an effective mass of O(H) for a

suitable Nblue number of e-folds during inflation. The blue-tilted part of the isocurvature spectrum

has an approximate ∆k/ki-range equal to exp (Nblue) and hence Nblue provides a parametric cutoff

for the transition of the isocurvature power spectrum from a blue region to a massless plateau. The

above requirements can be easily fulfilled for a tuned rotating complex scalar field Φ during inflation.

We will now discuss this parametric range and dynamics in detail, computing an analytic estimate

of the isocurvature spectrum as well as an expression for the parametric tuning. The perturbations

away from the nI = 3 limit can be viewed as perturbing the boundary conditions away from the

time-independent conformal limit case presented in Appendix A.

We begin with the EoM for the background field Y0 = aΓ0:

∂2ηY0 +

(
−2M2a2 −

∂2ηa

a
+ λY 2

0 −
(
L

Y 2
0

)2
)
Y0 = 0 (99)

The above EoM implies that the time-independent conformal radial field Y0 has an effective potential

VY0(η) =
1

2

(
−2M2 + 2H2

H2η2
+

1

2
λY 2

0 +
L2

Y 4
0

)
Y 2
0 + constant. (100)

For a constant background solution, the potential is driven by the quartic (self-interaction) term

with an appropriately large angular velocity and a comparatively negligible Hubble friction and

mass terms:

λY 2
0 ≫ 2M2 + 2H2

H2η2
=⇒ λΓ2

0 (η) ≫ 2M2 + 2H2. (101)

Thus, for a large angular velocity, the effective potential has a time-dependent local minimum at

Y0(η) = (1 + δ(η))Yc (102)

where |δ(η)| ≪ 1.

To study the quantum inhomogeneities about a background solution where δ(η) is nontrivial,

we will below introduce two parameters {κ, ϵL} that control the deformations away from the time-

independent conformal limit. Consider an initial displacement of the scaled radial field

Y0(ηi) = Yi ≫ fPQa(ηi). (103)
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and parameterize initial radial velocity as

∂ηY0|ηi = κ
√
6λY 2

i (104)

at some initial time ηi and where κ is a dimensionless number. For a rotating (L ̸= 0) complex

scalar field, we parameterize the angular velocity as

∂ηθ0|ηi = (1− ϵL)
√
λYi. (105)

The corresponding value of the conserved angular momentum L is given as

L = (1− ϵL)
√
λY 3

i (106)

With this parameterization, a value of κ = ϵL = 0 refers to the situation where the angular

kinetic gradient approximately cancels with the radial potential gradient term at ti with the residual

2M2 ≪ λΓ2
i . This is the time-independent conformal limit boundary condition presented earlier.

As we will show now, the approximate cancellation with |ϵL| ≪ 1 results in a pseudo-flat direction

in radial dynamics that is only lifted by an O(H2) mass-squared term after integrating out residual

UV degree of freedoms which arise as a result ϵL ̸= 0. Hence, there exists a parametric window for

ϵL within which the leading approximation of a time-independent conformal background solution is

stable against UV oscillations.11

With the above parameterization, the new time-independent conformal background solution is

Yc = (1− ϵL)
1/3 Yi. (107)

Next we write the complete solution of the background radial field as

Y0(η) = Yc +∆Y0(η) (108)

and substitute into Eq. (99) to obtain an EoM for ∆Y0:

∂2η (Yc +∆Y0) +

(
−2M2a2 −

∂2ηa

a
+ λ

(
Y 2
c +∆Y 2

0 + 2Yc∆Y0
)
− L2

(Yc +∆Y0)
4

)
(Yc +∆Y0) = 0.

(109)

11 A similar parameterization was given in [61] where the authors found numerically that the PR doesn’t occur if
|ϵL| ≲ 0.2. Therein, the authors show that post-inflation if |ϵL| ≲ 0.2, the rotating PQ field can lead to kinetic
misalignment mechanism for axion production. However, in this paper, we are interested in rotations that occur
during inflation and decay before the end of inflation.
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Considering initial displacements and velocities not significantly deviating from a conformal solution

Yc, and thus parameterized by small values of ϵL and κ, we can examine small-amplitude oscillations

∆Y0 ≪ Yc. Hence, we linearize the EoM for ∆Y0 as

∂2η (∆Y0) +
(
6λY 2

c

)
∆Y0 ≈

(
2M2a2 +

∂2ηa

a

)
Yc (110)

where the O
(
H2
)

terms on the RHS induce supplementary small amplitude deviations away from a

constant background solution even when ϵL = κ = 0. Using the initial condition ∆Y0(ηi) = Yi − Yc

and ∂η∆Y0|ηi = κ
√
6λY 2

i and by defining a new frequency parameter

f =
√
6λYc ≡

√
6λYi (1− ϵL)

1/3 (111)

we obtain the approximate solution

∆Y0(η) ≈ (Yi − Yc) cos (f (η − ηi)) +

√
6Yc

(
2M2/H2 + 2

)
+ 6κ

√
λY 2

i ηi√
6fηi

sin (f (η − ηi))

+ Yc
(
2M2/H2 + 2

)
(cos (fη) (Ci (fηi)− Ci (fη)) + sin (fη) (Si (fηi)− Si (fη))) (112)

where we have taken ∂2ηa

a = 2H2 and Ci, Si are cosine- and sine-integral functions respectively

defined as

Ci(z) ≡ −
∫ ∞

z

dt

t
cos t (113)

Si(z) ≡
∫ z

0

dt

t
cos t . (114)

The oscillations have a constant frequency f in conformal time coordinate. During the confor-

mal regime when fη ≫ 1, we can reduce the Ci, Si functions in the above solution to obtain an

approximate result:

∆Y0(η) ≈ (Yi − Yc) cos (f (η − ηi)) +
κY 2

i

Yc
sin (f (η − ηi))

+ Yc

((
2M2 + 2H2

)
f2η2H2

−
(
2M2 + 2H2

)
f2η2iH

2
cos (f (η − ηi))

)
. (115)

Therefore, an approximate analytic solution for the background radial solution is

Y0(η) ≈ Yc

(
1 +

(
1− (1− ϵL)

1/3

(1− ϵL)
1/3

)
cos (f (η − ηi)) +

κ

(1− ϵL)
2/3

sin (f (η − ηi))

)

+ Yc

((
2M2/H2 + 2

)
f2η2

−
(
2M2/H2 + 2

)
f2η2i

cos (f (η − ηi))

)
. (116)
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By comparing our analytic solution with the numerical results, we find that modifying f from

Eq. (111) to

f =
√
6λYc (1 + δ) ≡

√
6λYi (1− ϵL)

1/3 (1 + δ) (117)

with δ = 0.1137ϵ2.178L leads to a sub-percent level accuracy for η < ηtr. For instance, δ ≈ 0.006 for

ϵL = 0.25. The additional empirical factor (1 + δ) accounts for minor correction to the frequency due

to the residual nonlinear effects of our original nonlinear differential system in Eq. (109). We note

that the kinetic energy induced oscillatory terms vanish in the limit {κ→ 0, ϵL → 0} corresponding

to the time-independent conformal boundary conditions. When the set {κ, ϵL} is nontrivial, then

the effective action Eq. (A12) obtains a time-dependent conformal representation: i.e. even in the

a′′/a neglected approximation

S2 ≈
∫
dηd3x

{
−1

2
ηµν∂

µδY ∂νδY − 1

2
ηµν∂

µδX∂νδX − δX

Y0
∂0δXY

′
0(η)

+
2L

Y 2
0 (η)

[
∂0δXδY − Y ′

0(η)

Y0(η)
δXδY

]
− 1

2

(Y ′
0(η))

2

Y 2
0 (η)

(δX)2 +
1

2

[(
L

Y 2
0 (η)

)2

− 3λY 2
0 (η)

]
(δY )2

}
(118)

the Y0 dependent terms of this equation are violating time-translation invariance.12 According to

Eq. (116), for |κ|, |ϵL| ≪ 1, the radial field oscillates around the mean Γi (ai/a) (1− ϵL)
1/3 with an

amplitude

Γamp = Γi (ai/a)

√(
1− (1− ϵL)

1/3
)2

+
κ2

(1− ϵL)
2/3

(119)

= Γi (ai/a)

√
(ϵL/3)

2 + κ2 +O
({
ϵ2L, κ

2, ϵLκ
})

(120)

and a large frequency O (f) ≫ H. These oscillations are small if

|ϵL| ≪ 1 (121)

|κ| ≪ 1. (122)

Although there is an asymmetry of how fast ϵL rises for ϵL > 0 versus ϵL < 0 due to the fact that
dΓamp

dϵL
diverges at ϵL = 1, the asymmetry magnitude is typically small. Since the parameters ϵL and

κ induce similar deviations, we can remove this degeneracy by taking κ→ 0.

12 Recall we had a simpler a′′/a time-dependent conformal representation in Eq. (31).
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The boundary of ∆Y0 ≲ 0.1Yc for small oscillations corresponds to |ϵL| ≲ 0.3 for κ = 0. As ∆Y0

increases due to an increasing |ϵL|, the oscillating mass-squared term at the linear order can lead

to PRs. The onset of PR for the radial and axial fluctuations of rotating complex spectator will be

discussed in Sec. 5. There we will show that the mass-squared term for the radial modes δYk leads

to PR in the blue-tilted region of the spectrum if ϵL ≳ 0.25 or ϵL ≲ −0.37. Including effects due to

the strong coupling with the axial field, the PR can be avoided for |ϵL| ≲ 0.1.

Next we evaluate the mass-squared quantity m2
δχ. Using the analytic solution for the background

radial field given in Eq. (116) and substituting Yc from Eq. (37), we evaluate m2
δχ in Eq. (85) up to

linear order in ∆Y0 as

m2
δχ =

(
−2M2a2 + λY 2

0 − L2

Y 4
0

)
a−2 (123)

= −2M2 + 6λYc∆Y0a
−2 +O

(
9λ∆Y 2

0 a
−2
)
. (124)

Substituting the solution for ∆Y0 from Eq. (115), we obtain the expression for the mass-squared

m2
δχ as

m2
δχ ≈ −2M2 + a−2

(
6λYcYi (1− Yc/Yi) cos (f (η − ηi)) + κ6λY 2

i sin (f (η − ηi))
)

+

((
2M2/H2 + 2

)
η2

a−2 − a−2

(
2M2/H2 + 2

)
η2i

cos (f (η − ηi))

)
,

m2
δχ ≈ 2H2 + a−2

(
f2
(
(1− ϵL)

−1/3 − 1
)
−
(
2M2/H2 + 2

)
η2i

)
cos (f (η − ηi))

+ f2a−2κ (1− ϵL)
−2/3 sin (f (η − ηi)) . (125)

The last two terms in the above expression are fast oscillating large amplitude (since 6λY 2
i ≫ H2)

contributions to the effective mass-squared function m2
δχ . As shown in Appendix B and also

discussed in [62], if the ratio of the amplitude to frequency-squared of the oscillatory terms are much

less than 1, then the effective mass-squared quantity is dominated by the slow-varying terms. Hence,

from Eq. (125), we have the ratios of amplitude to frequency-squared for the two oscillating terms

as approximately O (κ) and O
(
max

[
ϵL/3, (fPQ/Γi)

2
])

respectively. Since small radial oscillations

require bounds given in Eqs. (121-122), averaging over (which we will refer to as integrating out)

the UV fluctuations to obtain an effectively slowly varying equation as discussed in Appendix B is

justified.

Finally after integrating out the UV oscillations, the effective O(H2) mass-squared term up to
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zeroth order in ϵL, κ is

m2
δχ ≈ 2H2, (126)

and using the definition given in Eq. (87) the isocurvature power spectrum for the rotating complex

scalar has a blue spectral index of

nI ≈ 3. (127)

In view of the conformal limit discussion of Sec. 2.2, this is simply a stability statement indicating

that the UV oscillations do not change the leading approximation of conformal behavior when

Eqs. (121) and (122) are satisfied.

In addition to the conformal arguments given in Sec. 2.2 and Eq. (127), here is yet another

way to view the power spectrum from a horizon exit perspective. If we approximate the quantum

fluctuations δθ in the angular modes as H/ (2πΓk) where Γk is the radial amplitude when the

relevant mode exits the horizon at some time tk, the isocurvature power spectrum is approximately

∆2
s(k) ∼

(
H

2πΓkθi

)2

(128)

where θi is the final misalignment angle when the radial field settles to its stable vacuum13. Using

the leading Eq. (125) (or equivalently the conformal solution Eq. (18)), we find

∆2
s(k) ∼

(
H

2πθiΓi (1− ϵL)
1/3

)2(
a(tk)

ai

)2

∼

(
H

2πθiΓi (1− ϵL)
1/3

)2(
k

ki

)2

(129)

where ki corresponds to the mode exiting the horizon at ti or conformal time ηi.

To determine θi, we integrate Eq. (78) to obtain

θ(t) = θ(ti) +

∫ t

ti

dt
L

a3Γ2
. (130)

Since L is a constant and the radial field decays exponentially as Γ ≈ Γi (1− ϵL)
1/3 (ai/a) until

√
λΓ(t) → O (M,H), the integral in the above expression is dominated at early times (t < ttr)

13 Consistent with its use in the literature, we denote the final misalignment angle as θi. It is important not to confuse
this with the initial value of θ at time ti.
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and saturates as Γ → fPQ. Substituting Eq. (116) as the analytic solution to the radial field and

neglecting any O(ϵL) oscillations, we can approximate

θ(t) ≈ θ(ti) +
L

Γ2
i (1− ϵL)

2/3 a2i

∫ t

ti

dt

a
(131)

≈ θ(ti) +

√
λΓi

(1− ϵL)
1/3

(
1− e−H(t−ti)

H

)
(132)

where we took the scale factor as a(t) ≈ exp (Ht). Hence for t≫ ti,

θi = lim
t≫ti

θ(t) ≈ θ(ti) +

√
λΓi/H

(1− ϵL)
1/3

. (133)

Choosing to express θi in the interval [−π, π] as is sometimes customarily done, we write

θi + π ≈

(
θ(ti) +

√
λΓi/H

(1− ϵL)
1/3

)
mod 2π. (134)

The
√
λΓi/H/ (1− ϵL)

1/3 merely adds to the usual uncertainty in the vacuum θ angle.

4.3.1. Quasi-adiabatic time-evolution example

Let us consider an example of a rotating complex scalar with deviations away from the conformal

solution. Similar to the example presented in Sec. 3.2.1, we set λ = 1 and fPQ = 10Hinf . Further,

we initialize the background radial field Γ0 at ηi with the same value as in Sec. 3.2.1:

Γ0(ηi) = 1000Hinf . (135)

To parameterize the deviations away from an adiabatic time-evolution for a perfect conformal solu-

tion, we set ϵL = 0.1 and κ = 0 such that the conserved angular momentum from Eq. (106) is given

as

L = 0.9
√
λ109H3

infa
3(ηi). (136)

Note that with the above parameterization, Eq. (107) implies that the new conformal background

value is Yc ≈ 965.49Hinfa(ηi). In Fig. 2 we plot the time evolution of Γ0(t) from an initial amplitude

Γ0(ηi) to fPQ. In the same plot (see inset) we show a comparison of our analytic solution with the

numerical result.

To study the evolution of the linear perturbations, we note that the time-scale of oscillations of

the background radial field is much smaller than the evolution of the mean conformal solution, i.e

Tosc ∼ O

(
1√

6λΓ0(ηi)

)
≪ O

(
1

H

)
. (137)
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Figure 4: Plot showing the time evolution of the background radial field Γ0(t) (solid blue curve) during

the quasi de-Sitter phase of inflation for deviations from conformal conditions, parameterized by ϵL = 0.1

and κ = 0. Starting from Γ0(ηi) = 1000Hinf , the radial field quickly evolves along the conformal solution

Γc(η) =
L1/3

λ1/6a(η)
(red dashed line) while undergoing small amplitude ∼ O (ϵLΓc(ηi)) oscillations along this

trajectory. The oscillations have a frequency ≈
√
6λYc. The orange dotted curve shown in the inset represents

our analytic approximation for the small amplitude oscillations as given in Eq. (116).
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Figure 5: Plot showing the time evolution of the mode functions hnrk during the quasi de-Sitter phase of

inflation for a fiducial mode k/a(ηi) = 10Hinf in the context of quasi-adiabatic example where ϵL = 0.1 and

κ = 0. Compared to Fig. 3, we observe that the mode amplitude show small amplitude oscillations similar to

background radial field. Apart from these oscillations, the general evolution of the mode functions is similar

to the case presented in Sec. 3.2.1.
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Hence, we will time-average over these rapid oscillations, and assume an approximately conformal

evolution of the background radial field. This assumption allows us to quantize this system similar

to the analysis presented in Sec. 3. Therefore, we employ the same set of initial conditions for the

two frequency solutions that we presented in Eqs. (68) and (69) to solve for the mode functions

with a non-zero ϵL. In Fig. 5, we show the time evolution of the radial and axial mode functions

for a fiducial wavenumber k/a(ηi) = 10 in the context of this quasi-adiabatic system with small

deviations away from a conformal solution.

5. PLOTS AND DISCUSSION

In Sec. 3 we derived analytic expressions for the effective mass-squared term m2
δχ for the axial

fluctuations at the linear order. Subsequently we showed that for a particular conformal choice

of background field boundary conditions, the isocurvature power spectrum ∆2
s has a blue index

nI ≈ 3 and hence increases as k2 before transitioning to a massless plateau in agreement with

the general considerations of Sec. 2.2. Next, we considered deformations away from the conformal

boundary condition, which generically induces radial background field oscillations which in turn

nontrivially alter the perturbation dynamics. In this section, we give plots of the isocurvature

power spectrum and briefly discuss the parameteric dependences. The dimensionless superhorizon

isocurvature power spectrum of the axial field fluctuations is given as:

∆2
s(k) = 4ω2

a

∆2
δχδχ(k, ηf )

(fPQθi)
2 (138)

where ηf → 0 and ∆2
δχδχ is given in Eq. (E2) and ωa ≡ Ωaxion/Ωcdm assumes that the axions

make up the CDM. Such axionic CDM would contribute to an approximately uncorrelated photon-

dark matter isocurvature inhomogeneities in the post-inflationary cosmological evolution before the

horizon reentry. Following the discussion under Eq. (59), we approximate the amplitude of the

blue-tilted region of the spectrum as

∆2
s(k < ktr) =

ω2
a

π2
√
3

(
H

Γ0(ηi)θi

)2( k

a(ηi)H

)2

. (139)

From Eq. (60), we infer that the scale invariant part of the isocurvature spectrum is

∆2
s(k ≫ ktr) =

ω2
a

π2

(
H

fPQθi

)2

. (140)

In the plots presented in this section, we normalize the isocurvature power spectra ∆2
s(k) with

respect to the quantity (fPQθi)
2 / (ωaH)2. Hence, we plot 4H−2∆2

δχδχ(k, ηf ) on the y-axis and the
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analytic approximation for the normalized spectrum ∆2
s(k) can be expressed as

∆2
s(k < ktr) =

(fPQθi)
2

ω2
aH

2
∆2
s(k < ktr) =


1

π2
√
3

(
fPQ

Γ0(ηi)

)2 (
k

a(ηi)H

)2
k < ktr

1
π2 k ≫ ktr

. (141)
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Figure 6: Plots showing the late-time conserved superhorizon isocurvature power spectra (normalized with

(fPQθi)
2
/ω2

a in Eq. (138)) of the axial field δχ for the two examples presented in Secs. 3.2.1 and 4.3.1. The

plots are generated by numerically evolving the radial and axial mode fluctuations from ηi to ηf → 0 and

evaluating the final isocurvature spectrum using Eq. (138). The plots on the top (bottom) rows correspond

to the parameter ϵL set to 0 (0.1) while keeping κ = 0. The power spectra have a spectral index nI ≈ 3 for

modes k < ktr where ktr/ai/H ≈ Γi/fPQ. In each plot we show the final power spectrum (red curve, circular

markers) and individual contributions from the ω++ (blue curve, diamond markers) and ω+− (green curve,

square markers) frequency modes. The spectrum is dominated by the Goldstone mode. Using Eqs. (139) and

(140) we plot the analytic spectrum (black dotted curve) in the k < ktr and k > 3ktr regions of the spectra

respectively. The small-amplitude oscillations seen in the ϵL = 0.1 scenario are explained in the main text.
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For the isocurvature spectrum normalized in this way, the amplitude of blue-tilted region only

depends upon the ratio Γ0(ηi)/fPQ.

In Fig. 6 we illustrate the isocurvature spectra for the two examples discussed in Secs. 3.2.1 and

4.3.1. These plots highlight that the isocurvature power spectrum has a blue index nI ≈ 3 for modes

k < ktr where ktr/ai/Hinf ≈ Γi/fPQ. In each plot we show the contributions from the ω++ and ω+−

frequency modes, with the spectrum being predominantly influenced by the lighter (ω+−) mode due

to the mode normalization. For comparison we also include our analytic spectrum in the blue-tilted

k < ktr and massless-plateau k > 3ktr regions of the spectrum. We lack an analytic prediction for the

intermediate (bumpy) region. Due to the sub-dominant deviations from the conformal background

solution in the ϵL = 0.1 scenario, we observe tiny oscillations in the spectrum that can be attributed

to the oscillation of the background radial field around the conformal background. Below we explore

the impact of a non-zero ϵL on the isocurvature spectrum.

5.1. ϵL dependence

In Fig. 7, we plot several examples of isocurvature power spectra for the rotating complex scalar

Φ for different values of ϵL highlighting the effect of a non-zero ϵL on the blue-tilted part of the

spectrum. For all cases, the vacuum boundary conditions for the fluctuations are set according

to Eqs. (68) and (69). As we will discuss below, the oscillations in the spectrum arise due to the

deviation of the background radial field from a conformal background solution. There is also a

contribution from the residual non-adiabaticity in the Bunch-Davies-like vacuum definition for the

radial and axial fluctuations coming from our choice of initial conditions.

In Sec. 3, we showed that for a time-independent conformal background solution, the Hamiltonian

for the coupled radial-axial field fluctuations can be diagonalized with frequency solutions ωH = ω±+

and ωL = ω±− as given in Eq. (46). The isocurvature power spectrum for the IR modes is dominated

by the lower frequency solution ωL and is blue-tilted, ∆2
s(k ≲ kIR) ∝ k2. In the ϵL ̸= 0 scenario, the

conformal symmetry is broken in a time-dependent way through the choice of boundary condition

leading to the background radial field Γ0 having O (ϵL) amplitude high-frequency oscillations for

|ϵL| ≪ 1. This is described by the approximate analytic solution given in Eq. (116). Compared to

the constant solution Yc, the amplitude of the oscillations can be defined by a new parameter x as(
Yi − Yc
Yc

)
= x ∼ O (ϵL/3) ≪ 1. (142)

Under these conditions, the oscillations of the background radial field induce coupling between
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Figure 7: Plots showing isocurvature power spectrum for rotating complex scalar Φ for different values of

ϵL. For generating these plots, we set λ = 10−4, M = Hinf and κ = 0. The initial radial displacement at ηi

is set at 300fPQ such that the k-range of the blue part of the spectrum is approximately ktr/ki ∼ 103. The

power spectrum has a blue index nI ≈ 3. We note that for ϵL ̸= 0, the spectrum exhibits oscillations that

grow rapidly with ϵL. The plot in the top row shows parametric enhancement of the spectrum within the

k2 region for values of ϵL = +0.3 and ϵL = −0.4. In the bottom row, we plot the isocurvature spectra on a

much finer k-bin to highlight sharp parameterically enhanced peaks at k/Hinf/ai ≈ 0.9
(
2
√
λYc

)
within the

flat region.
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the axial and radial field fluctuations which is O (x) magnitude and time-dependent. This leads

to a mixing between the normal mode-states eL and eH corresponding to ωL and ωH respectively.

Qualitatively, it suggests that an initial excitation of the lighter frequency state at ηi will generate

O (x) excitations of the remaining frequency solutions through the time-dependent mixing term.

Quantitatively, if the axial fluctuation is excited with the positive-frequency lighter eigenstate,

e−iωLη, then the time-dependent mixing will generate a mixed state expressed approximately as

δχk(η) ∼ Ck
[
(1 +O(x)) e−iωLη +O(x)e−iωHη +O(x)e+iωHη +O(x)e+iωLη

]
(143)

where the Ck is an overall normalization of mode function χk. The isocurvature power spectrum

during this phase (η ≪ ηtr) can be approximately given as

∆2
δχδχ(k, η) ∼ k3δχ∗

kδχk (144)

∼ k3 |Ck|2 [1 + 2O(x) + 2O(x) cos (2ωL (η − ηi))+

2O(x) cos ((ωH + ωL) (η − ηi)) + 2O(x) cos ((ωH − ωL) (η − ηi))] +O(x2) . (145)

Hence, we note that |ϵL| ≪ 1 deviations from a perfect conformal boundary condition “weakly”

break time-independent conformal phase and generate O(x)-amplitude oscillatory signals on the

blue-tilted part of the spectrum. These oscillations are approximately linear in k. In terms of

normalized momentum −kηi, the k-space frequencies for these oscillations in the blue-tilted region

can be read from the above expression as

ωj ≈

{
2√
3
,
1√
3
± 5k

6
√
6λY 2

c

}
(1− η/ηi) (146)

and the isocurvature spectrum can be conveniently expressed as

∆2
δχδχ(k ≪

√
λYc, η ≪ ηtr) ∼ k3 |Ck|2

1 + 2O(x) +

3∑
j=1

2O(x) cos (ωj (−kηi))

 . (147)

For η → 0 and k ≪
√
λYc, these frequencies are simply multiples of 1/

√
3. Thus, the time-dependent

conformal symmetry breaking boundary conditions imprint an oscillatory signal that is a signature

of the Goldstone mode’s dispersion relation. Since the k-space wavelength of these oscillations is

λk ≈ 2π
√
3/ηi ∼ O(10/ηi), these may be measurable.

To facilitate matching/fitting with the numerical/observational data, we transform the expression

in Eq. (145) into a semi-analytic empirical form by introducing ∼ O(1) unknown coefficients c0,1,2,3:

∆2
δχδχ(k, η) ∝ 1 + 2x [c0 + c3 cos (2ωL (η − ηi))+

c1 cos ((ωH + ωL) (η − ηi)) + c2 cos ((ωH − ωL) (η − ηi))] . (148)
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If c1 ≈ c2, the above expression takes the form

∆2
δχδχ(k, η) ∝ 1 + 2x [c0 + c3 cos (2ωL (η − ηi)) + 2c1 cos (ωH (η − ηi)) cos (ωL (η − ηi))] . (149)

To isolate the oscillations present in the data, we can normalize it with the smoother (no-wiggle

(nw)) spectrum. The resulting normalized spectrum can then be fitted using the following empirical

expression

∆2
δχδχ(k)

∆2
δχδχ,nw(k)

= 1 + 2x [c0 + c3 cos (2ωL (−ηi)) + c1 cos ((ωH + ωL) (−ηi))

+c2 cos ((ωH − ωL) (−ηi))] . (150)
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Figure 8: Plots showing the normalized isocurvature power spectra for ϵL = 0.05. These plots are generated

for a fiducial set of model parameters with λ = 1 and
√
2M/Hinf = 10 such that fPQ = 10Hinf . To highlight

the oscillatory signal in the power spectra for a nonzero ϵL parameter, we have normalized the spectrum

with the smooth, non-wiggly part of the spectrum. The numerical data is plotted in black color with circular

markers and our semi-analytic empirical expression from Eq. (148) is depicted by the red-dashed curve. The

top (bottom) plot shows the isocurvature spectrum before (after) the radial field reaches the fPQ.



41

In Fig. 8, we illustrate the normalized isocurvature spectra for ϵL = 0.05. Through the figure, we

highlight the comparison between the numerical data and our semi-analytic empirical expression in

Eq. (150). For the axial fluctuations initially excited with the positive-frequency lighter eigenstate

e−iωLη, the time-dependent O(ϵL) oscillations will generate a mixed state with other frequencies,

where the mixing is controlled by the O(ϵL/3) parameter as shown in Eq. (150). By fitting the

numerical data, we obtain the best fit values of the coefficients as {c0 = −0.0585, c1 = 0.9544, c2 =

1.0354, c3 = −0.3518}. The normalized amplitude of the oscillation during this phase is O(2x) ∼

ϵL ≡ 0.05. After transition, the axial fluctuations corresponding to the heavier frequency state,

±ωH , decay by a factor ∝ min [1, O(H/M)]. This is represented by the best fit values of the

coefficients {c0 = −0.0029, c1 = 0.1444, c2 = 0.1684, c3 = −0.3311} for the oscillations of the

late-time spectrum as illustrated in the bottom plot.

Let’s now go back to Fig. 7 and discuss its features for larger values of ϵL. The spectrum shows

parameteric resonance enhancement of the mode amplitude for values of ϵL = +0.3 and ϵL = −0.4

in the blue-tilted region. To understand the onset of the PR and its dependence on ϵL, let us

consider the uncoupled mode equation for the scaled radial fluctuations

∂2ηδYk +

(
k2 −

(
2M2 + 2H2

)
a2 + 3λ (Yc +∆Y0)

2 − L2

(Yc +∆Y0)
4

)
δYk = 0. (151)

In this simplified discussion, we focus solely on the effect of deformation from the conformal back-

ground on the mass-squared term of the radial mode, neglecting any coupling with the axial mode.

By neglecting the sub-dominant order Hubble mass terms and taking κ = 0, we expand up to linear

order in ∆Y0. This yields the reduced EoM:

∂2ηδYk +

(
k2 + 2λY 2

c + 10λY 2
c

(
1− (1− ϵL)

1/3

(1− ϵL)
1/3

)
cos (f (η − ηi))

)
δYk = 0 (152)

where we recognize the mass-squared term for the radial fluctuations as

m2
δY ≈ k2 + 2λY 2

c + 10λY 2
c

(
1− (1− ϵL)

1/3

(1− ϵL)
1/3

)
cos (f (η − ηi)) . (153)

In the above differential equation, we can identify the term fN =
√
k2 + 2λY 2

c as the natural

frequency of the oscillator and fD ≈ f as the frequency driving the parametric excitation. Through

a variable change z = f (η − ηi) /2, we reframe the above equation in terms of a general Matheiu

system:

d2u

dz2
+ (α− 2q cos (2z))u = 0 (154)
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Figure 9: Plot showing Mathieu stability chart in the α − q parameteric space for the first few stability

bands. The instability occurs within the shaded (unbounded) regions. For a fixed value of α ≈ 4/3 (gray

dashed line), we find that the system enters the first resonance band when the parameter |q| ≳ 0.35. The

above figure is obtained by plotting even (blue) and odd (red) Mathieu functions.

and find the corresponding Mathieu parameters as

α =
4
(
k2 + 2λY 2

c

)
6λY 2

c

, (155)

q = −
10
(
1−(1−ϵL)1/3

(1−ϵL)1/3

)
3

. (156)

In terms of the original model parameters, we find that α depends only on one combination

α = α

(
k

(1− ϵL)
1/3

√
λΓi

)
(157)

while q depends only on ϵL. If f2 ≫ k2, then

α ≈ 4

3
+O

(
k2/f2

)
(158)

causing α to be approximately independent of the parameters. Thus, we find that the parameter

α is approximately a constant for modes that exit the horizon before axial field becomes massless,

while |q| increases linearly with ϵL.

An interesting behavior of a Mathieu oscillator is the excitation via parameteric resonance for a

range of parameters α and q. In Fig. 9 we plot a stability chart of the Mathieu system highlighting

regions/bands of stable and unstable solutions in the α − q parametric space. In the plot we fix
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Figure 10: Plot of Mathieu parameter |q| as a function of the rotational parameter ϵL using Eq. (156). In

terms of rotational parameter ϵL, the oscillator becomes unstable for ϵL ≲ −0.37 and ϵL ≳ +0.25. Also see

Eq. (156).

α ≈ 4/3 as derived in Eq. (158). When the oscillator system falls within an unstable resonance band

it leads to an almost exponential excitation of the amplitude. For the radial mode fluctuations of our

rotating complex field, Eq. (158) suggests that the value of α is approximately a constant for small

values of ϵL and Eq. (156) indicates that q increases almost linearly with ϵL as shown in Fig. 10. For

a fixed value of α ≈ 4/3 (red dashed line), we find that the system enters the first resonance band

and becomes unstable when the parameter |q| ≳ 0.35. From Fig. 10, we infer that the uncoupled

radial mode fluctuations δYk become unstable for ϵL ≲ −0.37 and ϵL ≳ +0.25 for modes k2 ≪ f2.

The oscillator amplitude is resonantly enhanced and results in a nearly exponential amplification.

This observation aligns with our findings in Fig. 7. A similar analysis for the uncoupled axial field

yields a much smaller value of α ≈ 2k2/
(
3λY 2

c

)
such that the instability in the blue region occurs

only for values of |q| close to unity.

Eq. (155) also suggests that modes close to k2 ≈ 4λY 2
c yield a value of α ≈ 4, pushing the system

towards the next resonance band. From Fig. 9, we infer that unlike the first, the second resonance

band is significantly narrow for small values of |q| ∼ |ϵL| ≪ 1. Consequently, only finely tuned

values of k undergo PR, as depicted by the plot in the bottom row of Fig. 7, where we observe

narrow parameterically enhanced peaks for modes k ≈ O
(
2
√
λYc

)
. Similarly, PR linked to the nth

resonance band for |q| ≪ 1 would manifest for correspondingly higher k modes, with the width and

amplitude of the peaks decreasing with n.

The above discussion has a simple interpretation. In terms of the natural and driving frequencies
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of a parameteric oscillator (defined below Eq. (151)), large exponential PR occurs when

fN = n
fD
2

n ∈ {1, 2, 3, ...} (159)

where n refers to the nth resonance/instability band. For q ≪ 1, the bands have the usual width

∼ qn and hence the most important and broadest instability band is n = 1 when q ≪ 1. In the

first band, resonance occurs close to fN = fD/2. Hence resonance occurs when the mass of the

oscillating radial field is exactly twice the effective mass for the quantum modes δYk.

Due to the coupling between the radial and angular fluctuations, the parametrically enhanced

radial fluctuations can drive angular fluctuations δχ to large amplitudes. This enhancement lasts

as long as the radial mode stays within the first resonance band, a duration of about O(1) Hubble

time, after which the oscillatory mass behavior ceases in Eq. (151). It’s essential to note that the

above discussion on PR relies on the simplified “uncoupled” EoM for the radial mode δYk. However,

the presence of a strong derivative coupling with the axial mode can notably alter the PR dynamics.

Our numerical investigations across various Lagrangian parameters and initial conditions indicate

that PR generally does not manifest within the blue region of the spectra for |ϵL| ≲ 0.1. A more

comprehensive examination of PR’s dynamics is reserved for future studies.

5.2. Maximum k-range

As the background radial field approaches its stable vacuum, the effective mass-squared termm2
δχ

for the axial fluctuations becomes approximately massless. If M2a2/
(
6λY 2

c

)
< 1 for Nblue number

of e-folds, the mass term behaves as in Eq. (126), during which time, we have a blue spectrum.

Hence, the range of scales across which the spectrum remains strongly blue-tilted is approximately

exp (Nblue). Starting from the condition λY 2 ≫ max
(
2M2, a′′/a

)
for a blue spectral index, one can

show that

exp (Nblue) ≈
Γi

fPQ
√

1 +H2/M2
. (160)

Using the spectator energy condition in Eq. (15), we can give an approximate upper bound on

the maximum radial displacement Γi at ti for a rotating complex scalar Φ with |ϵL| ≪ 1:

3λ

4
Γ4
max ≈ ra3M

2
PH

2 (161)

or equivalently

Γmax

H
≈ 103

√
0.2
( ra
0.01

)1/4( 1

λ

)1/4
√
MP /H

106
(162)
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Figure 11: Plot showing comparison of the normalized isocurvature power spectra for different values of

M with λ = 10−4 and Γi = 300fPQ. For these choice of λ and M , the PQ scale fPQ ≈ 100O(M). The

transition from a spectral index nI = 3 occurs at the transition scale ktr/ki ≈ Γi/fPQ/
√
1 +H2/M2. The

plot also highlights the deviation of the isocurvature shapes at the transition to the massless plateau for

different values of M . We observe the appearance of the spectral bump for M ≳ 3H/4 as given in Eq. (C6).

where we have assumed a negligible radial velocity at ti. The parameter ra gives the ratio of spectator

energy density to that of inflaton’s and must be much less than 1. Also, Eq. (162) states that the

spectator energy bound is setting Γmax ≪MP . This is a significant departure from [7, 49, 62, 63] in

which the flat direction allowed the analog of the Γmax field to reach O(MP ) while the axionic sector

still remained a spectator. Hence, even though the conformal limit liberated the quartic model from

the constraints associated with the fast roll, the spectator condition has become more severe with

the introduction of the quartic coupling, limiting max (Γi). Using Eq. (162), the maximum range

for the blue part of the isocurvature spectrum for M ∼ O(H) is given by the expression

max (ktr/ki) ≈ exp (maxNblue) ≈ 103
√
0.2
( ra
0.01

)1/4( 1

λ

)1/4
√
MP /H

106
1

fPQ/H
. (163)

5.3. Spectral bump and M dependence

In Fig. 11, we show comparison between the isocurvature power spectra for different values of

M while keeping λ = 10−4, Γi = 300fPQ fixed and ϵL, κ = 0. From Eqs. (139) and (140), we

note that the normalized isocurvature power spectra ∆2
s(k) is independent of λ and hence we do

not study variation of λ parameter. The plot highlights the deviation in the shape of the power

spectra for different values of M as the spectrum transitions from a blue region to a massless
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plateau. We observe the appearance of a spectral bump (irrespective of λ) for values of M ≳ Mc

where Mc = 3H/4 is an approximate cutoff derived in Appendix C. This cutoff is essentially the

usual dS oscillator equation having a critical mass/H = 3/2 but the mass at the asymptotic future

minimum of the radial field effective potential is 2M. As the value of M rises above the cutoff Mc,

the asymptotic (late-time) behavior of the background radial field transitions from an exponential to

oscillatory similar to the critical transition observed in damped oscillators. Thus, as the radial field

Γ rolls down the potential and approaches its stable vacuum fPQ, for values of M ≳Mc the radial

field oscillates momentarily around the stable vacuum fPQ before settling down. The oscillation of

the radial field around fPQ translates into oscillations of the mass-squared term m2
Γ ≡ m2

δχ around

zero. These “non-adiabatic” oscillations give rise to a bump in the power spectrum. However, due

to the presence of the tachyonic drag force from the non-zero angular velocity term, the amplitude

of the oscillations and the corresponding height of the spectral bump become saturated for larger

values of M . Numerically, we find that for M ≫ H, the amplitude of the bump is approximately

a factor of 1.3 larger than the flat spectrum. On the other hand, when M ≲ Mc, the radial field

settles to the vacuum exponentially slow (Γ → fPQ

(
1 + exp

(
−3

4 (M/Mc)
2 t
))

) and hence the

power spectrum gradually converges, without any bump, to the massless plateau over a large range

of modes k as seen from the plots in Fig. 11.

Blue-tilted isocurvature power spectra with spectral bumps have been discussed previously in

[7, 62] for a SUSY embedding of the axion model as presented in [49] which we will refer to as the

KK model. In the KK model, a blue power spectrum with nI = 3 occurs when the Lagrangian

parameter is fixed at c+ = 2 (corresponding to the dynamical axion mass squared of c+H2). Notably,

a bump in the power spectrum at the transition “always” exists for the KK model, unlike the model

discussed in this paper, where the bump vanishes for M ≲ Mc despite the blue spectral index

remaining nI = 3. This is an important distinguishing feature between the model discussed in this

work and the flat-direction models like the KK model. This distinction arises from the proximity

of the mass √
c+H =

√
2H in the KK model to the critical mass 3H/2. Moreover, the KK model

lacks an additional drag force from a non-zero angular velocity term, unlike the model discussed

in this work. This drag force slows down the motion of the radial field in our model towards the

minimum of the potential, resulting in a gradual transition of the spectrum to the massless plateau.

Consequently, the presence of a bump at the transition from a k2-spectrum is a generic feature in

the KK model due to its near-critical mass and absence of an additional drag force. Unlike the

model discussed in this work, the height of the spectral bump in the overdamped KK model for
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Figure 12: We present examples of normalized isocurvature power spectra for both the KK model and

the rotating axion model. As discussed in the main text, the KK model can exhibit a significantly larger

max (ktr/ki) for the same values of fPQ and H. This is due to the comparatively larger radial displacement

allowed by the spectator condition in the KK model. For these plots, we set fPQ/H = 100 and H/Mp =

10−9. The remaining Lagrangian parameters are set at {c+ = 2, c− = 2} for the KK model and {λ =

2×10−4,M/H = 1} for the current model. In both models, the initial radial velocity is set to zero. Without

any adverse tuning of λ, a large max (ktr/ki) in the KK model can serve as a distinguishing feature between

the two models.

c+ = 2 can be larger than the flat spectrum by at most a factor of 3 where the height is governed

by the parameter c− ([62]).

Additionally, the maximum k-range for the blue part of the spectrum in the KK model can be

much larger than that achievable from the rotating axion model. This difference arises because the

potential of the KK model is quadratically dominated, compared to the quartic potential of the

rotating axion model. In Fig. 12, we plot examples of normalized isocurvature power spectra for

both the KK model and the rotating axion model. We emphasize that the KK model can exhibit a

significantly larger max (ktr/ki). In the absence of any adverse tuning of λ, such a large max (ktr/ki)

can serve as another distinguishing feature between the two models.

5.4. Bounds on the conformal axion model

Since the bounds for the blue isocurvature spectrum is weak for ktr/atoday ≳ 1 Mpc−1 [1–11],

the plateau part of isocurvature spectrum ∆2
s can be much larger than O(10−2)∆2

ζ (where ∆2
ζ is

the adiabatic spectrum) if ktr/ki ≳ 104. Nonetheless, there is a constraint on the isocurvature for
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this shape of the spectrum as explored by [7, 8]. To this end, we will discuss how all of following

conditions being satisfied simultaneously within this conformal scenario applied to QCD axions is

difficult, although relaxing any one constraint gives a sizeable parameter region:

1. The axion is a QCD axion

2. max (ktr/ki) ≫ O(103)

3. λ = O(1)

4. All of DM being composed of axions.

5. Isocurvature not violating the current bounds.

The second condition is something that is desired for the interest of future observations and allows

much larger signals than the current bound of ∆2
s/∆

2
ζ ≲ 0.02 associated with the scale invariant

CDM-photon isocurvature spectrum. The third condition comes from naturalness/simplicity of

axion models. On the other hand, if the fourth condition is relaxed to CDM fraction being ωa = 0.1

(which is still quite sizeable and may even be detectable depending on the size of the electromagnetic

coupling [64]), then an appreciable parameter region opens up where the isocurvature primordial

amplitude can be larger than the adiabatic amplitude. Of course, for non-QCD axions, depending

on the dark matter scenario, the rest of the conditions can be satisfied.

Shown in Fig. 13 is an illustration of the predictions from the present scenario assuming that the

axions are QCD axions. The break in the blue spectrum given by Eq. (163) contains the following

parametric dependences:

max

(
ktr
ki

)
∼

√
MPH

λ1/4fPQ
. (164)

The prediction for the break spectral value depends on the initial value Γ(ti) and ktr/ki can be

maximally as large as what is shown in the solid and dashed diagonal lines. Hence, the conformal

scenario of Γ(t) ∝ 1/a lives to the left of these diagonal lines.

To derive the diagonal curves in Fig. 13, note that fixing ωa and θi essentially fix fPQ since

ωa =
Ωah

2

0.12
(165)

≈ 2

(
θ2i +

(
H

2πfPQ

)2
)[

ln

(
e

1− θ2i /π
2

)]7/6( fPQ
1012GeV

)7/6

(166)
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Figure 13: Left figure illustrates a natural coupling λ = 0.1 scenario with spectator energy fraction taken as

ra = 10−2. As max (ktr/ki) ∼
√
MPH/

√
λ/fPQ increases, the inflationary expansion rate H has to become

larger with a fixed λ and fPQ (where the latter is fixed by the axion fraction of CDM denoted as ωa),

making the isocurvature amplitude rise. The isocurvature bound in the shaded region is an approximate

extrapolation based on [7] assuming that the data induced bounds for that work applies to the current

scenario because of the similarity in the spectral shape. Only the small segment near ktr/ki ≈ 102 and 104

can be read off easily from [7], and the rest of the black curve above ktr/ki = 101.5 represents a smooth

interpolation. The horizontal solid black curve below ktr/ki = 101.5 represent the phenomenological [7, 8]

∆2
s/∆

2
ζ ≈ 2 × 10−2 CDM-photon isocurvature bound applicable to scale invariant spectrum. The allowed

region in the
(
∆2

s(k > ktr),max (ktr/ki)
)

plane is the left of the solid and the dashed diagonal lines (and

below the shaded region), and the exact location for the model prediction depends on the Γ initial conditions.

The reason why the solid and dashed diagonal lines cut off before reaching the top of the plot is because we

impose H/fPQ < 0.1 bound such that there is no symmetry restoration during inflation. The right figure is

similar to the left figure, except λ has been decreased to a more tuned value of 10−4. The main lesson from

these plots is that λ ∼ O(1) coupling is incompatible with large break ktr/ki (such as ktr/ki ∼ 104 which

phenomenologically allows larger isocurvature signal) if all of the dark matter is made of axion dark matter.

according to [65].1415 Combining this fact with our knowledge that the plateau part of the spectrum

(k ≫ ktr part) is given by

∆2
δa (k ≫ ktr) ≈ 4

(
H

2πfPQθi

)2

, (167)

we see that the isocurvature amplitude in the plateau depends just on H with fPQ fixed. Since we

now want the axion sector to be a spectator to inflation and H controls the energy density during

14 Here the ln factor approximately taking into account the anharmonic effects of axion oscillations has been included
to obtain the O(10) enhancement that exists for θi = 3.

15 Some models in the literature explore scenarios where fPQ during inflation differs from the late-time fa for the
axions, potentially relaxing isocurvature constraints. For further details, see [66] and the references therein.
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inflation, a larger H is needed if the initial Γ(ti) displacement that we desire for a larger

max

(
ktr
ki

)
≈ exp (H∆t) ≈ max [Γ(ti)]

fPQ
(168)

carries a larger energy, where the exp(H∆t) comes from the conformal scaling behavior of Γ(t).

The spectator condition with the initial energy in Γ(ti) being ra fraction of the total sets the

maximum Γ(ti) value to

Γmax
i (ktr/ki) ≈

(
4M2

PH
2ra

λ

)1/4

(169)

where we are assuming that the kinetic energy is negligible initially. In practice, we take ra ≲ 10−2

since the slow roll parameters are of O(10−2). Hence, we find that H is a function of ktr/ki in

Eq. (167). More explicitly, Eqs. (168) and (169) give

H2

f2PQ
=

λf2PQ
4M2

P ra

[
max

(
ktr
ki

)]4
(170)

or when inserted into Eq. (167)

∆2
s (k > ktr) ≈ 10−5

(
3λ/ra
10−2

)(
θi
3

)−2(z(θi)
38

)−12/7(max (ktr/ki)

104

)4

ω26/7
a (171)

where

z(θi) ≡ θ2i

[
ln

(
e

1− θ2i /π
2

)]7/6
(172)

and we have neglected the H dependence in Eq. (166): i.e. the formula applies to

{θi ≫ 0.02, H/fPQ ≲ 0.1}. Note that λ ∼ O(1) is in tension with max (ktr/ki) ∼ 104 with the

axions being all of the CDM since the isocurvature at the break would then be already five orders

of magnitude larger than the adiabatic perturbations. Making θi smaller does not help to alleviate

the isocurvature constraints while maintaining a large ktr/ki and ωa.

Note that the bound of

fPQ ≳ 109GeV (173)

coming from white dwarf cooling time merely sets a lower bound on ωa for a given θi according to

Eq. (166):

ωa ≳ 6× 10−4

(
θ2i +

(
H

2πfPQ

)2
)[

ln

(
e

1− θ2i /π
2

)]7/6( fmin
PQ

109GeV

)7/6

. (174)

Hence, with θi = 3 and neglecting the H/(2πfPQ) term, we find ωa ≈ 0.02 which rules out 10−3 as a

possibility to plot in Fig. 13. With smaller θi, a smaller ωa is certainly consistent with Eq. (173), but

that leads to a more stringent constraint associated with the existing isocurvature bounds because

of Eq. (171).
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6. CONCLUSION

In this paper, we have shown that modifying the initial conditions of a generic U(1) symmetric

quartic potential complex scalar model can lead to a novel axion isocurvature scenario in which

a transition takes place from a time-independent conformal phase to the time-dependent confor-

mal phase, the latter being the usual equilibrium axion scenario. Such time-independent spon-

taneously broken conformal phase initial condition is controlled by a large classical background

phase angular momentum ∂ηθ0(ηi) ≫ Ma(ηi) ≳ Ha(ηi) and a large radial field displacement

Γ0(ηi) ∼ ∂ηθ0(ηi)/
√
λ. With such initial conditions for the background, the quantum perturba-

tions remarkably enter a nontrivial time-independent spontaneously symmetry-broken conformal

phase characterized by a long wavelength spectral index of nI − 1 = 2 and a Goldstone dispersion

with a sound speed of 1/
√
3. Interestingly, the cross-correlation function ⟨∂ηδΓ∂ηδΣ⟩ during this

time-independent conformal phase between the radial and the axion fields does not vanish even

though ⟨δΓδΣ⟩ = 0 to leading order in perturbation theory.

After the Γ0 reaches the usual spontaneous PQ symmetry breaking minimum, the theory enters

the usual time-dependent conformal phase characterized by the time-dependent effective mass term

a′′/a = 2/η2. For k values corresponding to this time region, denoted as k > ktr, the isocurvature

spectrum is the well-known nI −1 = 0 flat plateau, and the Goldstone dispersion has a sound speed

of 1. One nontrivial phenomenological result established in this paper is that the spectral transition

from nI = 3 to nI = 1 for realistic parameter ranges can be sudden such that there is no large bump

connecting these two regions. This means that this quartic potential model can behave qualitatively

differently from the overdamped supersymmetric (SUSY) scenarios of [49] where there is a bump

[63]. Furthermore, if the k range over which the blue spectral index sets in is sufficiently large, then

the present model becomes more fine tuned compared to the flat direction models. In the sense of

making parameters less tuned, the SUSY models in this context can be considered analogous to the

low-energy SUSY models solving the Higgs mass hierarchy problem.

With two-parameter initial condition perturbations away from those generating the time-

independent spontaneously broken conformal phase, we have shown that the smooth nI = 3 to

nI = 1 spectra transition scenarios are stable with O(0.1) deformations of
√
λa(ηi)Γ0(ηi)/∂ηθ0(ηi)

and ∂η[aΓ0]/
(√

6λa2(ηi)Γ
2
0(ηi)

)
. On the other hand, small deviations of the spectral amplitudes

linear in these deformation ratios eventually gain a nonlinear dependence as these deviations grow

beyond magnitudes of around 0.3. Afterwards parametric resonances strongly set in and destroy the
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original qualitative shape of the spectra. The small oscillatory features apparent in small deforma-

tion cases are well-fit by a simple formula characteristic of the 1/
√
3 sound speed of the conformal

phase.

We have also explored the parametric region for which this scenario is phenomenologically in-

teresting. Requiring the simultaneous satisfaction of constraint of the axion being a QCD axion,

maximum nI = 3 blue spectral interval [ki, ktr] satisfying ktr/ki ≫ O(103), quartic coupling of order

unity, all of the DM being composed of axions, and isocurvature not violating the current bounds,

no viable parameter region exists. On the other hand, with the relaxation of these constraints, there

is a phenomenologically viable parametric region as shown in Fig. 13. Because the energy density

rises steeply compared to the flat direction scenarios as the radial field is displaced, the spectator

condition imposes a significant constraint that makes this scenario sensitive to the quartic coupling.

There are many natural future directions to explore. Given the natural similarities between

this model and the SUSY flat direction model of [49], it would be interesting to see whether non-

Gaussianities can break the degeneracy. Indeed, there is a peculiar feature of the time-independent

conformal spectra which kinetically cross correlates the radial mode and the axial mode, and this

kinetic mixing does not exist in the SUSY flat direction model. Hence, we would expect the non-

Gaussianities to be different between the two models even if the isocurvature spectra are similar.

Another interesting direction is in exploring the observability of the oscillatory features in the

power spectra. As noted above, in the quasi-conformal model, there are oscillatory features in the

isocurvature spectra for small deviations away from time-independent conformality and since those

oscillations encode the 1/
√
3 sound speed information, it would be interesting to see if observations

can measure this sound speed. Of course, work even remains to be done in assessing the observability

of the oscillatory features in the underdamped SUSY models [62] as noted in [67].

Appendix A: Conformal limit for the background

In this section, we describe how a large Γ/M and Γ/H limit together with a certain classical

boundary condition corresponds to a spontaneously broken approximate conformal limit of the

field theory of Γ and Σ during which Γa = nonzero constant + δ(Γa) where a is the scale factor

corresponding to the metric

ds2 = a2(η)
[
−dη2 + |dx⃗|2

]
. (A1)
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We begin by deriving the effective action from a general U(1) symmetric renormalizable theory that

spontaneously breaks an approximate conformal symmetry with a large phase angular momentum.

We then use the conformal symmetry parameterization to generate an automorphism of the correla-

tion functions. This allows one to derive a differential equation for the correlation functions whose

general solution is given. We will then use the spontaneously broken U(1) coset representation to

derive |x⃗ − y⃗|2 for the δX correlators and use the absence of this symmetry for δY correlators to

argue for the |x⃗− y⃗|−3 (∂ηθ0)
−1 dependence.

Start with a general renormalizable U(1) invariant action action given by Eq. (16):

S =

∫
dηd3x

{
−1

2
ηµν∂µY ∂νY − 1

2
ηµνY 2∂µθ∂νθ −

(
−1

2

a′′

a
Y 2 −M2a2Y 2 +

λ

4
Y 4

)}
(A2)

where Y ≡ aΓ. Note that this theory is almost invariant under the following constant u scaling

conformal (dilatation) transform:

a→ au−1 (A3)

were it not for the M2a2Y 2 term. Look for Y =constant solutions to the equation of motion for

Y (x) = Y0(η):

1

η00
Y −3
0 L2 −

(
a′′

a
+ 2M2a2

)
Y0 + λY 3

0 = 0. (A4)

where we used the U(1) generated conservation law to set

−η00Y 2
0 ∂ηθ = L (A5)

with L being a constant. Because metric scaling will be involved later, here we have chosen to keep

η00 explicit coming from the conserved quantity being proportional to the U(1) charge density j0

and not its associated 1-form j0. Eq. (A4) has an approximately time-independent solution

Y0 =
L1/3

(−η00λ)1/6
(A6)

when

λY 2
0 ≫ a′′

a
+ 2M2a2. (A7)

Substituting Eq. (A5) into (A6), we find

Y0 = Yc ≡
√
−η00 |∂ηθ0|√

λ
(A8)
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which is a constant by the virtue of Eq. (A6). Since Yc is a constant, we know from this equation

that θ′0(η) is a constant. In terms of Γ and θ fields, these solutions represent

Γ ≈ Γ0(η) =

√
−η00 |θ′0(η)|
a(η)

√
λ

(A9)

θ ≈ θ0(η) = θ0(ηi) + η∂ηθ0(ηi) (A10)

indicating that this is a nontrivial approximate time-dependent background in terms of the canonical

real radial field.

Now, define

X ≡ Ycθ. (A11)

By neglecting a′′/a and M2a2 consistently with Eq. (A7), the action now turns out to be completely

independent of the scale factor a:

S[X,Y, ηµν , Yc] ≈
∫
dηd3x

√
η

(
−1

2
ηµν [∂µY ] [∂νY ]− 1

2
ηµν [∂µX] [∂νX]

(
Y

Yc

)2

− λY 4

4

)
(A12)

showing explicitly that we have a conformal theory enjoying the symmetry

S[Xu, Y u, ηµνu
−2, Ycu] = S[X,Y, ηµν , Yc]. (A13)

where u is a constant.

Here, the arguments ηµν and Yc of S are viewed as externally input parameters, and we transform

them as we would a spurion. Note that the conformal representation here is different from the

dilatation subgroup representation of diffeomorphism (see e.g. [68]) especially because we are scaling

Yc which is a parameter, as in a spurion representation of the conformal group in a free massive

scalar theory. On the other hand, rewriting Eq. (A9) as

Yc = a(η)Γ0(η) (A14)

shows that the transform {ηµν , X, Y, Yc} → {ηµνu−2, Xu, Y u, Ycu} comes from scaling the scale

factor by a constant as a → au−1, such that the symmetry of Eq. (A13) being an element of the

conformal group is evident.16 We will see how these symmetries together with diffeomorphism will

give rise to constraints on the correlation functions of interest below.

16 If we had used Yc =
√

−η00 |θ′0(η)| /
√
λ, we would have still ended up with the conformal transform a2(ηi)η00 =

η00 → a2(ηi)u
−2η00 = η00u

−2 giving Yc → uYc.
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Expand the fields as

X(x) = θ0(η)Yc + δX(x) (A15)

Y (x) = Yc + δY (x) (A16)

where θ0(η) is given by Eq. (A10) and look for the effective action governing the perturbations only.

The perturbation-only action is

S2[δX, δY, ηµν , Yc, ∂ηθ0] =

∫
dηd3x

√
η

(
−1

2
ηµν∂

µδY ∂νδY − 1

2
ηµν∂

µδX∂νδX (A17)

−2δY ηµν∂
µδX∂νθ0 −

1

2
(δY )2 ηµν (∂µθ0∂νθ0)−

(
3λ

2
Y 2
c

)
(δY )2

)
(A18)

which enjoys the conformal symmetry

S2
[
δXu, δY u, ηµνu

−2, Ycu, ∂ηθ0
]
= S2 [δX, δY, ηµν , Yc, ∂ηθ0] (A19)

where the constant ∂ηθ0 does not transform. However, as we will see below, ∂ηθ0 will transform

under diffeomorphism because of the time derivative.

Carry out a coordinate change (diffeomorphism) dxµ = udxµ leading to

ηµν = u−2ηµν (A20)

and ϕ(x) = ϕ(x) = ϕ(xu−1) leading to the diffeomorphism invariant action transforming as

S2[δX, δY, ηµν , Yc, ∂ηθ0] =

∫
d4x
√
ηL(δX(x), δY (x), ηµν , Yc, ∂ηθ0) (A21)

=

∫
d4xu−4√ηL

(
δX(xu−1), δY (xu−1), u−2ηµν , Yc, u

−1∂ηθ(ηi)
)

(A22)

Scaling variables, we find

S2[δXu
−1, δY u−1, ηµνu

2, Ycu
−1, ∂ηθ0] =

∫
d4x

√
ηL(u−1δX(xu−1), u−1δY (xu−1), ηµν , Ycu

−1, ∂ηθ0u
−1).

(A23)

Because of Eq. (A19), this is equivalent to

S2[δXu
−1, δY u−1, ηµνu

2, Ycu
−1, ∂ηθ0] = S2[δX, δY, ηµν , Yc, ∂ηθ0] (A24)
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and thus

S2[δX, δY, ηµν , uYc, u∂ηθ0] =

∫
d4x

√
ηL(u−1δX(xu−1), u−1δY (xu−1), ηµν , Yc, ∂ηθ0) (A25)

= S2[u
−1δX(xu−1), u−1δY (xu−1), ηµν , Yc, ∂ηθ0] (A26)

Let’s see the implication of this on the Feynman correlator which will be equivalent to the in-in

equal time correlator that we seek at free field level:

⟨δX(η, x⃗)δX(η, y⃗)⟩g,Yc,∂ηθ0 =

∫
DδXDδY eiS2[δX,δY,g,Yc,∂ηθ0]δX(η, x⃗)δX(η, y⃗)∫

DδXDδY eiS2[δX,δY,g,Yc,∂ηθ0]
(A27)

Change variables ∫
DδXDδY =

∫
D
[
u−1δX̃(zu−1)

]
D
[
u−1δỸ (zu−1)

]
(A28)

to conclude

⟨δX(η, x⃗)δX(η, y⃗)⟩ηµν ,Yc,∂ηθ0 =

∫
DδXDδY eiS2[δX,δY,ηµν ,uYc,u∂ηθ0]u−2δX(ηu−1, x⃗u−1)δX(ηu−1, y⃗u−1)∫

DδXDδY eiS2[δX,δY,ηµν ,uYc,u∂ηθ0]

(A29)

or more explicitly

⟨δX(η, x⃗)δX(η, y⃗)⟩ηµν ,Yc,∂ηθ0 = u−2
〈
δX(ηu−1, x⃗u−1)δX(ηu−1, y⃗u−1)

〉
ηµν ,uYc,u∂ηθ0

. (A30)

To derive the differential equation governing the correlator by assuming SO(3) and spatial trans-

lation invariance, start by writing

⟨δX(η, x⃗)δX(η, y⃗)⟩ηµν ,Yc,∂ηθ0
= f(η, |x⃗− y⃗| , Yc, ∂ηθ0) (A31)

where f(η, w, s, P ) is a function of variables {η, w, s, P}. This and Eq. (A30) says

u−2f(ηu−1, u−1 |z⃗| , uYc, u∂ηθ0) = f(η, |x⃗− y⃗| , Yc, ∂ηθ0) (A32)

Taking a derivative with respect to u and setting u = 1, we find

−2f(η, z, Yc, ∂ηθ0)− η∂ηf(η, z, Yc, ∂ηθ0)|w1=η − z
∂

∂z
f(η, z, Yc, ∂ηθ0)

+Yc∂Ycf(η, z, Yc, ∂ηθ0) + ∂ηθ0∂(∂ηθ0)f(η, z, Yc, ∂ηθ0) = 0 (A33)

governing the correlator. A general solution to this equation is

f(η, z, Yc, ∂ηθ0) =
exp

(
Cf

(
ln z

−η , ln [(−η)Yc] , ln [(∂ηθ0(ηi)) (−η)]
))

η2
(A34)
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where Cf (w1, w2) is a general function of two variables. Now, S2 time translation invariance impliesf

being time-translation-invariant. This results in the differential equation

−2 +

3∑
i=1

∂wiCf (w1, w2, w3) = 0 (A35)

whose general solution is

Cf (w1, w2, w3) = −2w1 +Bf (w1 + w2, w1 + w3) (A36)

giving

f(η, z, Yc, ∂ηθ0) =
exp (Bf (ln [zYc] , ln [z∂ηθ0(ηi)])

z2
. (A37)

Furthermore, we know for circular orbits

Ycλ
1/2 =

√
−η00 (∂ηθ0) (A38)

and thus combine Yc and ∂ηθ0 dependence to conclude

⟨δX(η, x⃗)δX(η, y⃗)⟩ηµν ,Yc,∂ηθ0
=
EXf (ln [|x⃗− y⃗| (∂ηθ0(ηi))])

|x⃗− y⃗|2
(A39)

⟨δY (η, x⃗)δY (η, y⃗)⟩ηµν ,Yc,∂ηθ0 =
EYf (ln [|x⃗− y⃗| (∂ηθ0(ηi))])

|x⃗− y⃗|2
(A40)

which are manifestly time-independent but contain arbitrary |x⃗− y⃗| dependences unlike in the case

of massless scalar fields in Minkowski space.

Next, note the U(1) induced shift symmetry δX → δX + C has an associated current

jµ = ηµν {∂νδX + 2δY ∂νθ0} . (A41)

whose conservation is

−∂20δX − 2∂0δY ∂0θ0 + ∂2i δX = 0 (A42)

which is notably linear. In normal mode-Fourier space, Eq. (A42) is

ω2δXω,k + 2iωδYω,k∂0θ0 − k2δXω,k = 0. (A43)

In the large k limit, we have the usual Goldstone condition ω2 = k2 for any nonvanishing δXω,k.

The fact that the two modes have ω = ±k dispersion possibilities can be viewed as a consequence of
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approximately in tact CPT symmetry in that limit. For small k, there is at least one massless mode

that is independent of δXω,k and δYω,k as long as ωδXω,k and δYω,k do not diverge. Let’s label that

massless mode frequency as ω0. Indeed, because of the ∂ηθ0 dependent mixing in Eq. (A18), both

δXω0,0 and limk→0 δYω0,k/ω0 do not vanish.

According to Eq. (A18), we see that the Lagrangian has a mode contribution

−2δY ηµν∂µδX∂νθ0 −
1

2
(δY )2 ηµν (∂µθ0∂νθ0)−

(
3λ

2
Y 2
c

)
(δY )2 (A44)

∼
(
δX∗

ω0,k
δY ∗

ω0,k

) 0 −iω0,k

iω0,k −2 (∂ηθ0(ηi))
2

 δXω0,k

δYω0,k

 (A45)

which in the ∂ηθ0(ηi)/ω0,k → ∞ limit has δX decoupling from δY and (∂ηθ0(ηi)) |x⃗− y⃗| → ∞

not changing the approximate correlation function for ⟨δXδX⟩. In that approximation, the factor

EXf (ln [|x⃗− y⃗| (∂ηθ0(ηi))]) in Eq. (A39) has an expansion for large |x⃗− y⃗| as

EXf (ln [|x⃗− y⃗| (∂ηθ0(ηi))]) = c1 +WX

(
1

|x⃗− y⃗| (∂ηθ0(ηi))

)
(A46)

where c1 is independent of |x⃗− y⃗| and WX(w) is a function where WX(0) = 0. This and Eq. (A39)

implies the correlator in Fourier space behaving as k2 corresponding to a spectral index of nI = 3

matching Eq. (28). Hence, unlike the ordinary massless Minkowski field, one has to use U(1)

Goldstone dynamical information contained in Eq. (A45) to fix the |x⃗− y⃗|−2 scaling for the ⟨δXδX⟩

correlator.

With this same ∂ηθ0(ηi)/ω0,k → ∞ approximation, we see from Eq. (A45) that a decoupled δY

becomes infinitely heavy as (∂ηθ0(ηi)) → ∞. Since this means that ⟨δY (η, x⃗)δY (η, y⃗)⟩ should vanish

with the same limit, we expect

EYf (ln [|x⃗− y⃗| (∂ηθ0(ηi))]) ∝
1

|x⃗− y⃗| (∂ηθ0(ηi))
+O

(
1

|x⃗− y⃗|2 (∂ηθ0(ηi))2

)
(A47)

if the expansion is analytic in inverse powers of |x⃗− y⃗| (∂ηθ0(ηi)). Explicit computations justify the

analyticity.

Now, the sound speed of δX cannot quite be read off from this expression since X = Yc(θ(ηi) +

η∂ηθ(ηi)) + δX generates a mixing between δY and ∂ηδX. This mixing generated change in the

sound speed, which is the most theoretically interesting aspect of the system studied in this paper,

and other aspects of this system are addressed in the main body of the text when we quantize the

theory.
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Appendix B: WKB approximation for oscillating potentials

In this section, we explain Eq. (B19) which is a generalization of the WKB ansatz applicable for

dispersion relationships with a fast time-oscillation component.

Consider the following differential equation

∂2ηy +m2(η)y = 0. (B1)

The WKB method allows us to approximate the solution to the above differential equation as

y(η) ≈
∑
±

c±√
m(η)

exp

(
±i
∫ η

dηm(η)

)
(B2)

given

∂ηm(η) ≪ m2 (η) (B3)

and hence the mass-squared function must be slowly varying.

Let us now consider the situation where the mass-squared term is

m2(η) = K2 +A cos (fη) (B4)

where K,A are constants and we are interested in cases with K2 < A and f ≫ 1 such that the

mass-squared function is characterized by high frequency large amplitude oscillations. It is easy to

note that the WKB approximation as given above is inappropriate and diverges at the zeros of m2.

Although one may use matching solutions at the zero crossings, such an approach is unwieldy for a

fast oscillating potential and doesn’t capture the long-time characteristic behavior of the system.

Another well-known approach begins with noting that Eq. (B1) with the mass-squared function

given in Eq. (B4) satisfies the Mathieu differential equation

∂2xy + (a− 2q cos (2x)) y = 0 (B5)

where

2x = fη (B6)

q =
−A/2
f2/4

(B7)

a =
K2

f2/4
(B8)
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with the generalized solution

y =
∑
±
c±Me± (r, q, x) (B9)

Me± =ce (r, q, x)± i se (r, q, x) (B10)

for ce, se as the generalized angular Mathieu functions. In the limiting case |q| ≪ 1, the Mathieu

function has the following series expansion in powers of q

Me± (r, q, x) ≈ exp (±irx)+ q

4

(
exp (±i (r − 2)x)

r − 1
+

exp (±i (r + 2)x)

r + 1

)
+O(q2) for r ̸= 1 (B11)

where

r ≈

√
a+

1

2 (1− a)
q2. (B12)

Using this, we can identify

rx ≈ η

√
K2 +

A2

2 (f2 − 4K2)
(B13)

in the limit

2A

f2
≪ 1, and

A

f
< K , (B14)

and the exact Mathieu solution given in Eq. (B9) can be approximated up to first order in q as

y ≈
∑
±
c±

(
exp (±iKη) + A

2f2

(
exp (±i (K − f) η)

2K
f − 1

+
exp (±i (K + f) η)

2K
f + 1

))
. (B15)

Hence, in the limit 2A/f2 ≪ 1, we observe that the solution to the oscillatory mass-squared function

in Eq. (B4) is a superposition of states with the dominant state having a frequency ∼ K. Therefore,

up to an accuracy of ra, the WKB approximate solution to the differential Eq. (B1) can be given as

yWKB ≈
∑
±

c±√
K

exp

(
±i
∫ η

dηK

)
+O(ra) (B16)

where

ra ≈
A

2f2
×max

(
1

2K
f − 1

,
1

2K
f + 1

)
. (B17)

Note that as long as ra ≪ 1, the dominant frequency of the WKB approximation is given by the

slow-varying mass parameter such that the WKB method no longer suffers from any oscillatory

divergences. The above results motivate us to draw following important conclusions.
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Given a differential equation of the form

∂2ηy +
(
K2(η) +A(η) cos (fη)

)
y = 0 (B18)

whereK(η) andA(η) are slow-varying non-oscillatory functions, the solution to the above differential

equation can be approximate through the following WKB ansatz

yWKB ≈
∑
±

c±√
K(η)

exp

(
±i
∫ η

dηK(η)

)
+O

A(η)
2f2

×max

 1
2K(η)
f − 1

,
1

2K(η)
f + 1

 (B19)

if

2A(η)/f2 ≪ 1, and A(η)/f < K (B20)

where

∂ηK(η) ≪ K2(η). (B21)

For f ≫ K, then the solution exhibits a large hierarchy in states such that the system can be

described as a superposition of IR and UV states

y ≈ yIR + yUV (B22)

with the corresponding frequencies as

freqIR ≈ K (B23)

freqUV ≈ f (B24)

and the amplitudes ∣∣∣∣yUV

yIR

∣∣∣∣
η

≈ A(η)

2f2
≪ 1. (B25)

Appendix C: Late time behavior and M cutoff

In this Appendix we discuss the asymptotic (late-time) behavior of the background radial field

as it settles to its stable vacuum and explore the associated mass parameter M -dependence. We

will see that as the radial field settles to its vacuum, the system can be characterized as an oscillator

with various damping. The damping characteristic is determined by M/Mc where the critical value

Mc is what we construct below
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To study the late-time behavior of the radial field as it settles to fPQ,we consider displacements

of the radial field around fPQparameterized as

Γ0(η) = fPQ (1 + r(η)) (C1)

and substitute into the EoM for the radial field Γ0 given in Eq. (65) to obtain an EoM for the

function r(η):

∂2ηr + 2
∂ηa

a
∂ηr + 2M2a2

−1 + (1 + r)2 − 1

2M2a6

(
L/f2PQ

(1 + r)2

)2
 (1 + r) = 0. (C2)

In the limit where Γ0 → fPQ, the angular velocity term can be neglected since it decays as La−2

and so we reduce the above expression to

∂2ηr + 2
∂ηa

a
∂ηr + 2M2a2

(
−1 + (1 + r)2

)
(1 + r) ≈ 0. (C3)

For small displacements r ≪ 1,

∂2ηr + 2
∂ηa

a
∂ηr + 4M2a2r ≈ 0. (C4)

The above differential equation has the solution

lim
Γ0→fPQ

r(η) ≈ c1η
3
2

(
1−(M/H)

√
1

(M/H)2
− 16

9

)
+ c2η

3
2

(
1+(M/H)

√
1

(M/H)2
− 16

9

)
(C5)

From the above asymptotic solution, we infer that

Mc =
3

4
H (C6)

is a critical value that characterizes the damped oscillations of the radial field around the vacuum.

For M > Mc, the argument of the exponential in Eq. (C5) obtains an imaginary part and the

radial field Γ0 behaves as an underdamped oscillator. For values of M ≪ Mc, the radial field is

overdamped and settles to the vacuum as

r(η) → c1η
3
4

(
M
Mc

)2

. (C7)

In the underdamped case which occurs when M > Mc, the radial field oscillates around the

minimum at fPQ until the oscillations decay away. These oscillations are characterized by the

expression:

r(η) ≈ η
3
2
(
c1η

−iν + c2η
+iν
)

(C8)

≈ η
3
2 (c1 cos (ν ln |η|) + c2 sin (ν ln |η|)) (C9)
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where

ν =
3/2

Mc

√
M2 −M2

c (C10)

is real.

Appendix D: Details of quantization

Here we present the details of the quantization of the radial-axion system in the presence of

large phase angular momentum background classical solution. The nontriviality will be coming

from the nonvanishing of the cross-commutator [∂ηδX, ∂ηY ] ∝ ∂ηθ0 even though [δX, δY ] = 0. This

quantization is what allows us to compute the sound speed and the vacuum structure rigorously.

In terms of the linear order field fluctuations δϕn = (δΓ, δχ) where δχ = Γ0δθ, we derive the

EoM from the action in Eq. (11) using the Euler-Lagrange equation

∂µ
∂L2

∂ (∂µϕn)
=
∂L2

∂ϕn
(D1)

where L2 is the component of the Lagrangian which is quadratic order in linear perturbations. The

EoM for δΓ and δχ are obtained from the above expression as

∂2ηδΓ− a−2∂2i δΓ+2
∂ηa

a
∂ηδΓ− 2∂ηθ0∂ηδχ+

(
−2M2a2 + 3λΓ2

0a
2 − (∂ηθ0)

2
)
δΓ+2∂ηθ0

∂ηΓ0

Γ0
δχ = 0,

(D2)

∂2ηδχ− a−2∂2i δχ+ 2
∂ηa

a
∂ηδχ+ 2∂ηθ0∂ηδΓ+

(
−2M2a2 + λΓ2

0a
2 − (∂ηθ0)

2
)
δχ− 2∂ηθ0

∂ηΓ0

Γ0
δΓ = 0.

(D3)

Eqs. (D2) and (D3) form a system of coupled ODEs and can be expressed compactly as

∂2ηδϕ
n − ∂2i δϕ

n + 2
∂ηa

a
∂ηδϕ

n + κnm∂ηϕ
m +

(
M2

)nm
δϕm = 0 (D4)

where

κnm =

 0 −2∂ηθ0

2∂ηθ0 0

 , (D5)

and

(
M2

)nm
=

 a2
(
−2M2 + 3λΓ2

0

)
− (∂ηθ0)

2 2∂ηθ0
∂ηΓ0

Γ0

−2∂ηθ0
∂ηΓ0

Γ0
a2
(
−2M2 + λΓ2

0

)
− (∂ηθ0)

2

 . (D6)
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Note that the linear perturbations δϕn are kinetically coupled through the coefficient ∂ηθ0. We

will refer to all scenarios where ∂ηθ0 ≫ H2 as strongly coupled. By defining new field variables

δψ = aδϕn = (aδΓ, aδχ) ≡ (δY, δX), we can rewrite the above system of equations as

∂2ηδψ
n − ∂2i δψ

n + κnm∂ηψ
m +

(
M2

)nm
δψm = 0 (D7)

where we modify
(
M2

)nm as

(
M2

)nm
=

 −2M2a2 + 3λY 2
0 − (∂ηθ0)

2 − ∂2ηa

a 2∂ηθ0

(
∂ηY0
Y0

)
−2∂ηθ0

(
∂ηY0
Y0

)
−2M2a2 + λY 2

0 − (∂ηθ0)
2 − ∂2ηa

a

 (D8)

and Y0 = aΓ0.

We will quantize this system of coupled fields δψn ≡ (δY, δX)n using the commutator relations

defined in Eq. (35). From the Lagrangian, we find the canonical momenta as

π1 =
∂L2

∂ (∂ηδY )
= −∂0δY = ∂ηδY, (D9)

and

π2 =
∂L2

∂ (∂ηδX)
= ∂ηδX + 2δY ∂ηθ0. (D10)

Hence, we arrive at the following commutator expressions for the fields δψn and their time-derivatives

∂ηδψ
n:

[δψn, δψm] = 0,

[δψn, ∂ηδψ
m] = iδnmδ(3) (x⃗− y⃗)

[∂ηδψ
n, ∂ηδψ

m] = iδ(3) (x⃗− y⃗)

 0 2∂ηθ0

−2∂ηθ0 0

 (D11)

which is remarkable since [δX, δY ] = 0 while [∂ηδX, ∂ηδY ] ̸= 0. As expected in the decoupling limit

when ∂ηθ0 → 0, the kinetic cross commutators vanish.

Next we write the most general solution for δψn in terms of time-independent non-Hermitian

ladder operators anrk and mode function hnrk as

δψn (η, x⃗) =

∫
d3k

(2π)3/2
δψn(η, k⃗)eik⃗·x⃗ =

∑
r

∫
d3k

(2π)3/2

(
ar
k⃗
hnrk (η) + ar†

−k⃗
hnr∗k (η)

)
eik⃗·x⃗ (D12)

where n is the flavor index and r counts the number of distinct frequency solutions. The time-

derivative of the field is

∂ηδψ
n =

∑
r

∫
d3k

(2π)3/2

(
ar
k⃗
∂ηh

nr
k (η) + ar†

−k⃗
∂ηh

nr∗
k (η)

)
eik⃗·x⃗. (D13)
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The ladder operators ar
k⃗

satisfy relation

[ar
k⃗
, as†p⃗ ] = F rsδ(3)(k⃗ − p⃗) (D14)

where the coefficients F rs must be determined by solving for mode function hnrk and using canonical

commutator relation given in Eq. (D11). Substituting our general solution from Eq. (D12) into

Eq. (D7) we obtain [
δnj∂2η + κnj∂η +

(
W2
)nj]

hjmk (η) = 0 (D15)

where

κnj =

 0 −2∂ηθ0

2∂ηθ0 0

 (D16)

(
W2
)nj

=

 k2 +
(
−2M2a2 + 3λY 2

0

)
− (∂ηθ0)

2 − ∂2ηa

a 2∂ηθ0

(
∂ηY0
Y0

)
−2∂ηθ0

(
∂ηY0
Y0

)
k2 +

(
−2M2a2 + λY 2

0

)
− (∂ηθ0)

2 − ∂2ηa

a

 .

(D17)

1. Normal modes

We will now solve the system of equations given in Eq. (D15) during the conformal regime.

Hence, we propose the following ansatz h1rk (η)

h2rk (η)

 =
∑
j

cjδ
r
j

 A1
j

A2
j

 e−iωjη (D18)

for time-independent mode vectors
(
A1
j , A

2
j

)
. Substituting this ansatz into Eq. (D15) we obtain

∑
r

[
δnj∂2η + κnj∂η +

(
W2
)nj] A1

r

A2
r

 e−iωrη = 0, (D19)

which is rewritten as  b+ 2λY 2
0

2L
Y 2
0

(
iωr +

∂ηY0
Y0

)
2L
Y 2
0

(
−iωr − ∂ηY0

Y0

)
b

 A1
r

A2
r

 = 0 (D20)

where we have replaced ∂ηθ0 with the conserved angular momentum L from Eq. (12) and b =

−ω2
r + k2 +

(
−2M2a2 + λY 2

0

)
−
(
L
Y 2
0

)2
− ∂2ηa

a .
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Since we solve Eq. (D15) at an early time ηi → −∞ and in the conformal limit Y0 ≈ Yc =(
L2/λ

)1/6 and ∂ηθ0 = L/Y 2
0 , we can neglect any small amplitude oscillations of the background

radial field. In the conformal limit λY 2
0 ≫ M2a2 ∼ H2a2 ∼ ∂2ηa/a, and hence we arrive at the

reduced expression for Eq. (D20) given as −ω2
r + k2 + 2λY 2

c i 2L
Y 2
c
ωr

−i 2L
Y 2
c
ωr −ω2

r + k2

 A1
r

A2
r

 = 0. (D21)

We note that in the conformal limit, our system is defined by time-independent coefficients. The

distinct “real” frequency solutions obtained by solving17 Eq. (D21) are

ωr = {ω−−, ω+−, ω−+, ω++} (D22)

where

ωs1s2 ≡ s1

√
k2 + 3λY 2

c + s2Yc
√
λ (4k2 + 9λY 2

c ), (D23)

and s1,2 ∈ [+,−]. In the IR limit

1 ≪ k2 ≪ λY 2
c , (D24)

the two distinct frequency squared

ω2
±− ≈ k2

3
+O

(
k4

λY 2
c

)
, (D25)

and

ω2
±+ ≈ 6λY 2

c +
5k2

3
+O

(
k4

λY 2
c

)
(D26)

correspond to low and high frequency solutions and are separated by the large O
(
λY 2

c /k
2
)

hierarchy.

In the UV limit,

lim
k≫λY 2

c

ω2
±± → k2 (D27)

and the two frequency solutions become degenerate.

We write the full mode function hnr as h1rk (η)

h2rk (η)

 = c++δ
r
++

 A1
++

A2
++

 e−iω++η + c+−δ
r
+−

 A1
+−

A2
+−

 e−iω+−η

+ c−+δ
r
−+

 A1
−+

A2
−+

 e−iω−+η + c−−δ
r
−−

 A1
−−

A2
−−

 e−iω−−η (D28)

17 Obtained by equating the determinant of the coefficient matrix in Eq. (D21) to zero and solving for ω
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where r ∈ [++,+−,−+,−−] counts distinct frequencies given by Eq. (D23). The normal vectors

corresponding to each frequency are given by the ratios

A2
++

A1
++

= −
A2

−+

A1
−+

= i

 −2
(
L
Y 2
c

)
ω++

1
2

(
ω2
++ − ω2

+−
)
+ (λY 2

c ) + 2
(
L
Y 2
c

)2
 , (D29)

A2
+−

A1
+−

= −
A2

−−
A1

−−
= i

 2
(
L
Y 2
c

)
ω+−

1
2

(
ω2
++ − ω2

+−
)
− (λY 2

c )− 2
(
L
Y 2
c

)2
 , (D30)

which are purely “imaginary”. Hence, we can rewrite the solution for the mode function as h1rk (η)

h2rk (η)

 = c++δ
r
++

 1

A2
++

A1
++

 e−iω++η + c+−δ
r
+−

 1

A2
+−

A1
+−

 e−iω+−η+

+ c−+δ
r
−+

 1

A2
++

A1
++

∗

eiω++η + c−−δ
r
−−

 1

A2
+−

A1
+−

∗

eiω+−η (D31)

where the frequencies ω++ are constant, real and positive and the ratios A2
r/A

1
r are purely imaginary.

In the decoupling limit where L→ 0 the kinetic terms mixing δΓ and δχ vanish and the decoupled

solution becomes :

lim
L→0

 h1rk (η)

h2rk (η)

 = c++δ
r
++

 1

0

 e−iω++η + c−+δ
r
−+

 1

0

 e−iω−+η

+ c+−δ
r
+−

 0

1

 e−iω+−η + c−−δ
r
−−

 0

1

 e−iω−−η,

h1rk (η) = c++δ
r
++e

−iω++η + c−+δ
r
−+e

−iω−+η,

h2rk (η) = c+−δ
r
+−e

−iω+−η + c−−δ
r
−−e

−iω−−η.

where the decoupled “instantaneous” frequencies18 are

lim
L→0

ωs1s2 ≡ s1
√
k2 + 2λY 2

c + s2 (λY 2
c ) (D32)

for

ω±+ = ±
√
k2 + 3λY 2

c (D33)

ω±− = ±
√
k2 + λY 2

c . (D34)

18 In the decoupled limit, the background solution for the radial field is not conformal due to the quartic potential
which will induce large amplitude oscillations. Hence, we cannot assume that Y0 ≈ constant. Therefore, we give
instantaneous frequencies.
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Substituting our solution for hnrk from Eq. (D31) into the expression for δψn we obtain

δψn =

∫
d3peip⃗·x⃗

(2π)3/2

[
a++
p⃗ c++V

n
++e

−iω++η + a+−
p⃗ c+−V

n
+−e

−iω+−η

+ a++†
−p⃗ c∗++V

n∗
++e

iω++η + a+−†
−p⃗ c∗+−V

n∗
+−e

iω+−η
]

(D35)

where

V n
++ =

 1

R++

 , V n
+− =

 1

R+−

 , V n
−+ = V ∗

++ =

 1

−R++

 , V n
−− = V ∗

+− =

 1

−R+−


(D36)

and

R++ =
A2

++

A1
++

, R+− =
A2

+−
A1

+−
. (D37)

2. Ladder algebra

To evaluate the ladder algebra, we first express the ladder operators: a++
p⃗ , a+−

p⃗ and their conju-

gates in terms of the fields δψn and its conjugate momenta πn. To this end, we define

Ln[w, q⃗] =
1

(2π)3/2

∫
dηeiwη

∫
d3xe−iq⃗·x⃗δψn (D38)

and

Nn[w, q⃗] ≡ 1

(2π)3/2

∫
dηeiwη

∫
d3xe−iq⃗·x⃗∂ηδψ

n. (D39)

From the above definition and Eq. (D35), we conclude that

Jn =

∫ ∞

−∞

dw

2π
Ln[w, q⃗] = a++

q⃗ c++V
n
++ + a+−

q⃗ c+−V
n
+− + a†++

−q⃗ c∗++V
n∗
++ + a†+−

−q⃗ c∗+−V
n∗
+−, (D40)

Jn+2 = i

∫ ∞

−∞

dw

2π
Nn[w, q⃗] = a++

q⃗ ω++c++V
n
++ + a+−

q⃗ ω+−c+−V
n
+−

− a†++
−q⃗ ω++c

∗
++V

n∗
++ − a†+−

−q⃗ ω+−c
∗
+−V

n∗
+−, (D41)

where n is the flavor index of our two-field coupled system and runs from 1 to 2. From Eqs. (D40)

and (D41) we setup the following system of equations to solve for the ladder operators
c++V

1
++ c+−V

1
+− c∗++V

1∗
++ c∗+−V

1∗
+−

c++V
2
++ c+−V

2
+− c∗++V

2∗
++ c∗+−V

2∗
+−

ω++c++V
1
++ ω+−c+−V

1
+− −ω++c

∗
++V

1∗
++ −ω+−c

∗
+−V

1∗
+−

ω++c++V
2
++ ω+−c+−V

2
+− −ω++c

∗
++V

2∗
++ −ω+−c

∗
+−V

2∗
+−




a++
q⃗

a+−
q⃗

a++†
−q⃗

a+−†
−q⃗

 =


J1

J2

J3

J4

 . (D42)
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Solving the above equation yields

a++
q⃗ = − R+−ω+−J

1

2c++ (R++ω++ −R+−ω+−)
+

ω+−J
2

2c++ (R++ω+− −R+−ω++)

+
J4

2c++ (R++ω++ −R+−ω+−)
− R+−J

3

2c++ (R++ω+− −R+−ω++)

a++†
−q⃗ = − R+−ω+−J

1

2c∗++ (R++ω++ −R+−ω+−)
+

R+−J
3

2c∗++ (R++ω+− −R+−ω++)

+
J4

2c∗++ (R++ω++ −R+−ω+−)
− ω+−J

2

2c∗++ (R++ω+− −R+−ω++)

a+−
q⃗ = − R+−ω+−J

1

2c+− (R+−ω+− −R++ω++)
+

R++ω+−J
2

2R+−c+− (R+−ω++ −R++ω+−)

+
J4

2c+− (R+−ω+− −R++ω++)
− R++J

3

2c+− (R+−ω++ −R++ω+−)
+

J2

2R+−c+−
+

J1

2c+−

a+−†
−q⃗ = − R+−ω+−J

1

2c∗+− (R+−ω+− −R++ω++)
+

R++J
3

2c∗+− (R+−ω++ −R++ω+−)

+
J4

2c∗+− (R+−ω+− −R++ω++)
− R++ω+−J

2

2R+−c∗+− (R+−ω++ −R++ω+−)
− J2

2R+−c∗+−
+

J1

2c∗+−

(D43)

where we use Eq. (D36) to set

V 1
++ = V 1

+− = 1 and, V 2
++ = R++, V 2

+− = R+−. (D44)

We can summarize these results as

arp⃗ =

4∑
n=1

U rnJ
n, (D45)

ar†−p⃗ =

4∑
n=1

W r
nJ

n, (D46)

where r = (++,+−). The Jn and Jn+2 operators appearing on the RHS of Eq. (D42) can be

evaluated as

Jn ≡
∫ ∞

−∞

dw

2π
{Ln[w, q⃗]} (D47)

=

∫ ∞

−∞

dw

2π

{
1

(2π)3/2

∫
dηeiwη

∫
d3xe−iq⃗·x⃗δψn

}
(D48)

=
1

(2π)3/2

∫
d3xe−iq⃗·x⃗δψn(0, x⃗) (D49)
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and,

Jn+2 ≡ i

∫ ∞

−∞

dw

2π
{Nn[w, q⃗]} (D50)

= i

∫ ∞

−∞

dw

2π

{
1

(2π)3/2

∫
dηeiwη

∫
d3xe−iq⃗·x⃗∂ηδψ

n

}
(D51)

= i
1

(2π)3/2

∫
d3xe−iq⃗·x⃗∂ηδψ

n(0, x⃗) (D52)

where we used
∫∞
−∞

dw
2π

∫
dηeiwηf(η) =

∫
dηf(η)

∫∞
−∞

dw
2π e

iwη =
∫
dηf(η)δ(η) = f(0). It follows then

that the commutators of Jn and Jn+2 operators can be obtained from the commutator relations in

Eq. (D11). Hence,

[
J1, J2

]
= 0[

J1, J3
]
= −δ(3)

(
q⃗ + q⃗′

)
[
J1, J4

]
= 0. (D53)[

J2, J3
]
= 0.[

J2, J4
]
= −δ(3)

(
q⃗ + q⃗′

)
[
J3, J4

]
= −i2∂ηθ0δ(3)

(
q⃗ + q⃗′

)
3. Ladder commutators

Using the solution for the ladder operators a++
p⃗ , a+−

p⃗ and their conjugates as given in Eq. (D43),

and the commutator algebra of J operators given in Eq. (D53), we can evaluate the ladder commu-

tators. There are 6 unique combinations of the commutators for +± frequencies that we present

below. We work out the first commutator in detail and leave the remaining for the readers as an

exercise:

[
a++
q⃗ , a++†

−q⃗′
]
=
[
U++
1 J1,W++

2 J2 +W++
3 J3 +W++

4 J4
]
+
[
U++
2 J2,W++

1 J1 +W++
3 J3 +W++

4 J4
]

+
[
U++
3 J3,W++

1 J1 +W++
2 J2 +W++

4 J4
]
+
[
U++
4 J4,W++

1 J1 +W++
2 J2 +W++

3 J3
]

=
(
U++
1 W++

3 − U++
3 W++

1

)
(−1)

+
(
U++
2 W++

4 − U++
4 W++

2

)
(−1) +

(
U++
3 W++

4 − U++
4 W++

3

)
(−i2∂ηθ0)

=

(
(R+−)

2 − 1
)
ω+− + 2i∂ηθ0R+−

2c++c∗++ (R+−ω+− −R++ω++) (R+−ω++ −R++ω+−)
δ(3)

(
q⃗ + q⃗′

)
. (D54)
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[
a+−
q⃗ , a+−†

−q⃗′
]
=

(
(R++)

2 − 1
)
ω++ + 2i∂ηθ0R++

2c+−c∗+− (R+−ω+− −R++ω++) (R+−ω++ −R++ω+−)
δ(3)

(
q⃗ + q⃗′

)
[
a++
q⃗ , a+−

q⃗′

]
= δ(3)

(
q⃗ + q⃗′

) (R++R+− + 1)ω+− − (R++R+− + 1)ω++ + 2i∂ηθ0 (R++ −R+−)

4c+−c++ (R+−ω+− −R++ω++) (R+−ω++ −R++ω+−)

= 0[
a1++
q⃗ , a2++†

−q⃗

]
= δ(3)

(
q⃗ + q⃗′

) (1−R++R+−)ω+− + (1−R++R+−)ω++ − 2i∂ηθ0 (R++ +R+−)

4c++c∗+− (R+−ω+− −R++ω++) (R+−ω++ −R++ω+−)

= 0[
a+−
q⃗ , a++†

−q⃗′
]
= 0[

a++†
−q⃗ , a+−†

−q⃗′
]
= 0 .

Hence for the operator set defined as

unq⃗ =
(
a++
q⃗ , a++†

−q⃗ , a+−
q⃗ , a+−†

−q⃗

)n
(D55)

the commutators are

[
unq⃗ , u

m
q⃗′
]
=


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0
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δ(3)
(
q⃗ + q⃗′

)
(D56)

where we set the coefficients c+± through the expressions

c++c
∗
++ = −

(
1− (R+−)

2
)
ω+− − 2i∂ηθ0R+−

2 (R+−ω+− −R++ω++) (R+−ω++ −R++ω+−)
, (D57)

c+−c
∗
+− = −

(
1− (R++)

2
)
ω++ − 2i∂ηθ0R++

2 (R+−ω+− −R++ω++) (R+−ω++ −R++ω+−)
. (D58)

Clearly, the ladder operators associated with distinct frequencies commute with each other. Hence,

we can define a common vacuum state |0⟩ which is annihilated simultaneously by both a++
q⃗ and

a+−
q⃗ for all q⃗:

a++
q⃗ |0⟩ = 0, (D59)

a+−
q⃗ |0⟩ = 0. (D60)

Note that the normal mode vectors V n
+± associated with the corresponding ladder operators a+±

are not orthogonal.
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4. Hamiltonian

We conclude our discussion on the quantization of the coupled system by evaluating its Hamilto-

nian. We show that in the conformal limit, the normal mode solution given in Eq. (D31) diagonalizes

the Hamiltonian such that the vacuum state |0⟩ is the state of minimum energy.

Hence, let us consider the Hamiltonian density defined through the expression

H2 =
∑
n

πn∂ηψ
n − L2 (D61)

and the Hamiltonian given by

H(η) =

∫
d3xH(η, x⃗). (D62)

In the time-independent conformal regime when Y0 = Yc and ∂ηθ0 are constants, the Hamiltonian

simplifies to

H =
1

2
(∂ηδY )2 +

1

2
(∂ηδX)2 +

1

2
(∂iδΓ)

2 +
1

2
(∂iδχ)

2

− 1

2
(δY )2 (∂ηθ0)

2 +

(
3λ

2
Y 2
c

)
(δY )2 . (D63)

We introduce Fourier notation

δψn
k⃗
(η) ≡

∫
d3xe−ik⃗·x⃗δψn(η, x⃗), (D64)

δψn(η, x⃗) ≡
∫

d3k

(2π)3
eik⃗·x⃗δψn

k⃗
(η), (D65)

∂ηδψ
n(η, x⃗) ≡

∫
d3k

(2π)3
eik⃗·x⃗∂ηδψ

n(η), (D66)

∂iψ
n(η, x⃗) ≡

∫
d3k

(2π)3
ik⃗eik⃗·x⃗δψn

k⃗
(η). (D67)

Taking the Fourier transform of the fields we write the Hamiltonian as

H =

∫
d3xH

=

∫
d3x

∫
d3k

(2π)3
eik⃗·x⃗

∫
d3q

(2π)3
eiq⃗·x⃗

(
Amn∂ηδψ

n
k⃗
∂ηδψ

m
q⃗ −

(
k⃗ · q⃗

)
Bmnδψn

k⃗
δψmq⃗ + Cmnδψn

k⃗
δψmq⃗

)
=

∫
d3k

(2π)3

∫
d3q

(2π)3

∫
d3xei(k⃗+q⃗)·x⃗

(
Amn∂ηδψ

n
k⃗
∂ηδψ

m
q⃗ −

(
k⃗ · q⃗

)
Bmnδψn

k⃗
δψmq⃗ + Cmnδψn

k⃗
δψmq⃗

)
=

∫
d3k

(2π)3

(
Amn∂ηδψ

n
k⃗
∂ηδψ

m
−k⃗ +Bmnδψn

k⃗
δψm−k⃗

)
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where

Amn =
1

2

 1 0

0 1

 , (D68)

Bmn =
1

2

 (k2 + 3λY 2
c − (∂ηθ0)

2
)

0

0 k2

 . (D69)

Hence, in the conformal limit the Hamiltonian is diagonal in terms of the fields and its time-

derivatives.

Using our general solution for the fields

δψn =

∫
d3k

(2π)3/2

∑
r

(
ar
k⃗
hnrk (η) + ar†

−k⃗
hnr∗k

)
eik⃗·x⃗ (D70)

it is possible to write(
Amn∂ηδψ

n
k⃗
∂ηδψ

m
−k⃗ +Bmnδψn

k⃗
δψm−k⃗

)
=
∑
r,s

[
T rs1 ar

k⃗
as−k⃗ + T rs2 ar†

−k⃗
as−k⃗ + T rs3 ar

k⃗
as†
k⃗
+ T rs4 ar†

−k⃗
as†
k⃗

]
(D71)

where the indices r, s ∈ (++,+−). Below we evaluate T rs1 :

T rs1 = Amn (∂ηh
nr
k )
(
∂ηh

ms
−k
)
+ a−2Bmnhnrk h

ms
−k

=
1

2
∂ηh

1r
k ∂ηh

1s
−k +

1

2

(
k2 + 3λY 2

0 − (∂ηθ0)
2
)
h1rk h

1s
−k +

1

2
∂ηh

2r
k ∂ηh

2s
−k +

1

2

(
k2
)
h2rk h

2s
−k. (D72)

Using the mode solution

hnrk = crV
n
r e

−iωrη ∂ηh
nr
k = −iωrcrV n

r e
−iωrη, (D73)

it follows that

T rs1
e−i(ωr+ωs)ηcrcs

=
[
−ωrωs + k2 + 3λY 2

0 − (∂ηθ0)
2
]
V 1
r V

1
s +

[
−ωrωs + k2

]
V 2
r V

2
s

= (ωr − ωs)
(
ωrV

1
r V

1
s − ωsV

2
r V

2
s − i2∂ηθ0V

1
s V

2
r

)
.

In the above equation, the expression in the second bracket goes to when r ̸= s. Hence, we conclude

that T rs1 = 0 for all combinations of r, s. Similar calculations show that T rs4 = 0.
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Next, we evaluate T rs2 :

T rs2 = Amn (∂ηh
nr∗
k ) (∂ηh

ms
k ) +Bmnhnr∗k hmsk

=
1

2

[
∂ηh

1r∗
k ∂ηh

1s
k +

(
k2 + 3λY 2

c − (∂ηθ0)
2
)
h1r∗k h1sk

]
+

1

2

[
∂ηh

2r∗
k ∂ηh

2s
k +

(
k2
)
h2r∗k h2sk

]
T rs2

ei(ωr−ωs)ηc∗rcs
=
[
ωrωs + k2 + 3λY 2

c − (∂ηθ0)
2
]
V 1∗
r V 1

s +
[
ωrωs + k2

]
V 2∗
r V 2

s

= (ωr + ωs)
(
ωrV

1
r V

1
s + ωsV

2∗
r V 2

s + i2∂ηθ0V
1
s V

2∗
r

)
which is non zero only when r = s. Similarly

T rs3
e−i(ωr−ωs)ηcrc∗s

=
[
ωrωs + k2 + 3λY 2

c − (∂ηθ0)
2
]
V 1
r V

1∗
s +

[
ωrωs + k2

]
V 2
r V

2∗
s

= (ωr + ωs)
(
ωrV

1
r V

1∗
s + ωsV

2
r V

2∗
s − i2∂ηθ0V

1∗
s V 2

r

)
vanishes when r ̸= s. Hence we find that for the amplitudes V n

r (k, ηi), the coefficients T rs1,4 vanish

for all combinations of r, s. Meanwhile, we find that T rs2,3 are non-zero only when r = s. Thus, the

normal frequency solutions corresponding to ω++ and ω+− diagonalize our Hamiltonian, which we

write as

H =

∫
d3k

(2π)3

(
Amn∂ηδψ

n
k⃗
∂ηδψ

m
−k⃗ +Bmnδψn

k⃗
δψm−k⃗

)
=

∑
r=++,+−

∫
d3k

(2π)3

[
T rs2 ar†

−k⃗
ar−k⃗ + T rs3 ar

k⃗
ar†
k⃗

]
=

∑
r=++,+−

∫
d3k

(2π)3
c∗rcrωr (ωr (1−RrRr)− i2∂ηθ0Rr)

(
2ar†

−k⃗
ar
k⃗
+
[
ar
k⃗
, ar†

−k⃗

])
.

Using the expression derived for the coefficients c+± from Eq. (D57) we find that

c∗rcr (ωr (1−RrRr)− i2∂ηθ0Rr) =
1

2
, (D74)

which allows us to write the final form of the Hamiltonian as

lim
η→ηi

H =
∑

r=++,+−

∫
d3k

(2π)3
ωr
2

(
2ar†

−k⃗
ar
k⃗
+
[
ar
k⃗
, ar†

−k⃗

])
=

∑
r=++,+−

∫
d3k

(2π)3
ωr

(
ar†
−k⃗
ar
k⃗
+

1

2
δ(3)(0)

)
.

The vacuum state |0⟩ when applied to the above Hamiltonian results in the lowest energy state with

ground state energy E0 = 1
2ℏ (ω++ + ω+−). Also, we see that the one particle state |r⟩ = ar†

k⃗
|0⟩
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is an eigenstate of the Hamiltonian with the energy eigenvalue E0 + ℏωr. We note that any other

choice for the mode amplitudes V n
r (k, ηi) other than that given in Eqs. (D29) and (D30) will lead

to a higher energy for the vacuum state |0⟩ and as such it would not be the correct ground state of

our theory.

Appendix E: Correlation function

Through the quantization presented in Appendix D, we showed that our coupled system of mode

functions hk(η) has two sets of normal frequencies ω++ and ω+− with which they can be excited.

Each frequency ωr(k) corresponds to an independent quantum oscillator solution. In this Appendix

we will evaluate the non-zero variance of these zero-point quantum fluctuations. Hence we consider

the following expression for the two-correlation ξnm = ⟨δψn (0, η) δψm (0, η)⟩ and evaluate it as

ξnm = ⟨0 |δψn (0, η) δψm (0, η)| 0⟩

=

∫
d3k

(2π)3/2

∫
d3p

(2π)3/2

〈
0
∣∣∣(a++

k⃗
hn++
k + a+−

k⃗
hn+−
k + h.c.

)
×
(
a++
p⃗ hm++

p + a+−
p⃗ hm+−

p + h.c.
)∣∣∣ 0〉

=

∫
d3k

(2π)3/2

∫
d3p

(2π)3/2

〈
0
∣∣∣a++

k⃗
a++†
−p⃗ hn++

k hm++∗
p + a+−

k⃗
a+−†
−⃗p hn+−

k hm+−∗
p

∣∣∣ 0〉
=

∫
d3k

(2π)3/2

∫
d3p

(2π)3/2
hn++
k hm++∗

p

〈
0
∣∣∣[a++

k⃗
, a++†

−p⃗

]∣∣∣ 0〉+ hn+−
k hm+−∗

p

〈
0
∣∣∣[a+−

k⃗
, a+−†

−⃗p

]∣∣∣ 0〉
=

∫
d3k

(2π)3/2

∫
d3p

(2π)3/2
(
hn++
k hm++∗

p + hn+−
k hm+−∗

p

)
δ(3)(k⃗ − p⃗)

=

∫
d ln k

k3

2π2
(
hn++
k (η)hm++∗

k (η) + hn+−
k (η)hm+−∗

k (η)
)

=

∫
d ln k∆2

δψnδψm(k, η)

where we define

∆2
δψnδψm(k, η) =

k3

2π2
(
hn++
k (η)hm++∗

k (η) + hn+−
k (η)hm+−∗

k (η)
)

(E1)

such that

∆2
δϕnδϕm(k, η) =

1

a2(η)

k3

2π2
(
hn++
k (η)hm++∗

k (η) + hn+−
k (η)hm+−∗

k (η)
)
. (E2)
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During conformal regime η < ηtr, the power spectra of the individual fields are given as

∆2
δΓδΓ(η < ηtr) =

1

a2(η)

k3

2π2

(∣∣h1++
k (η)

∣∣2 + ∣∣h1+−
k (η)

∣∣2) (E3)

=
1

a2(η)

k3

2π2

(
|c++|2 + |c+−|2

)
(E4)

lim
k≪∂ηθ0

∆2
δΓδΓ(η < ηtr) ≈

1

a2(η)

k2

2π2

(
k/∂ηθ0

31/223/2

)
(E5)

and

∆2
δχδχ(η < ηtr) =

1

a2(η)

k3

2π2

(∣∣h2++
k (η)

∣∣2 + ∣∣h2+−
k (η)

∣∣2) (E6)

=
1

a2(η)

k3

2π2

(
|c++R++ (η)|2 + |c+−R+− (η)|2

)
(E7)

lim
k≪∂ηθ0

∆2
δχδχ(η < ηtr) ≈

1

a2(η)

k2

2π2

(
1

31/22

)
. (E8)

Similarly one can show that the dimensionless cross-correlation (covariance) vanishes,

∆2
δΓδχ(η < ηtr) =

1

a2(η)

k3

2π2

(
|c++|2R∗

++ (η) + |c+−|2R∗
+− (η)

)
= 0. (E9)

The correlation between the time-derivatives of the fields Ξ = ⟨∂ηδψn (0, η) ∂ηδψm (0, η)⟩ can be

derived as

Ξ = ⟨0 |∂ηδψn (0, η) ∂ηδψm (0, η)| 0⟩

=

∫
d3k

(2π)3/2

∫
d3p

(2π)3/2

〈
0
∣∣∣∂η (a++

k⃗
hn++
k + a+−

k⃗
hn+−
k + h.c.

)
× ∂η

(
a++
p⃗ hm++

p + a+−
p⃗ hm+−

p + h.c.
)∣∣∣ 0〉

=

∫
d3k

(2π)3/2

∫
d3p

(2π)3/2

〈
0
∣∣∣a++

k⃗
a++†
−p⃗ ∂ηh

n++
k ∂ηh

m++∗
p + a+−

k⃗
a+−†
−⃗p ∂ηh

n+−
k ∂ηh

m+−∗
p

∣∣∣ 0〉
=

∫
d3k

(2π)3/2

∫
d3p

(2π)3/2
∂ηh

n++
k ∂ηh

m++∗
p

〈
0
∣∣∣[a++

k⃗
, a++†

−p⃗

]∣∣∣ 0〉+ ∂ηh
n+−
k ∂ηh

m+−∗
p

〈
0
∣∣∣[a+−

k⃗
, a+−†

−⃗p

]∣∣∣ 0〉
=

∫
d3k

(2π)3/2

∫
d3p

(2π)3/2
(
∂ηh

n++
k ∂ηh

m++∗
p + ∂ηh

n+−
k ∂ηh

m+−∗
p

)
δ(3)(k⃗ − p⃗)

=

∫
d ln k

k3

2π2
(
∂ηh

n++
k (η)∂ηh

m++∗
k (η) + ∂ηh

n+−
k (η)∂ηh

m+−∗
k (η)

)
.

Using the above expression we find the cross-correlation

⟨∂ηδY (0, η) ∂ηδX (0, η)⟩η<ηtr =
∫
d ln k

k3

2π2

(
ω2
++ |c++|2R∗

++ + ω2
+− |c+−|2R∗

+−

)
(E10)

=

∫
d ln k

k3

2π2
(i∂ηθ0) . (E11)
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As expected, the two point correlation of the field velocities is a non-vanishing observable at early-

time. Likewise,

lim
k≪∂ηθ0

⟨∂ηδY (0, η) ∂ηδY (0, η)⟩η<ηtr ≈
∫
d ln k

√
3

2

(
k3

2π2
∂ηθ0

)
, (E12)

lim
k≪∂ηθ0

⟨∂ηδX (0, η) ∂ηδX (0, η)⟩η<ηtr ≈
∫
d ln k

√
2

3

(
k3

2π2
∂ηθ0

)
. (E13)

Appendix F: Relationship between radial and angular modes

Suppose we parameterize a U(1) sigma model with the symmetry Φ → eiαΦ as

Φ =
1√
2
(Γ0 + δΓ)e

i
(
θ0+

δχ
Γ0

)
. (F1)

There is a shift symmetry

δχ→ δχ+ αΓ0 (F2)

where α is a constant. If δχ obeys a linear equation of motion

Oδχ = β (F3)

where O and β are independent of δχ but can depend on Γ0, then Eq. (F2) implies

Oδχ+ αOΓ0 = β. (F4)

Using Eq. (F3), we conclude

OΓ0 = 0 (F5)

which can be a nonlinear equation.

This means that if β is negligible, then δχ and Γ0 obey the same equation. In our model, the

equation of motion for δχ (see Eq. (D2)) makes

O = ∂2η − a−2∂2i + 2
∂ηa

a
∂η +

(
−2M2a2 + λΓ2

0a
2 − (∂ηθ0)

2
)

(F6)

in Eq. (F5) which upon expansion gives

∂2ηΓ0 + 2
∂ηa

a
∂ηΓ0 +

(
−2M2a2 + λΓ2

0a
2 − (∂ηθ0)

2
)
Γ0 = 0 (F7)

matching Eq. (77). The β in this system is

β = −2∂ηθ0Γ0∂η
δΓ

Γ0
. (F8)
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Because of the mismatch of β between Γ0 and δχ, we cannot conclude that δχ/Γ0 is constant from

this argument alone.

We will now show that the conservation equation from U(1) symmetry together with a mild

assumption about the lack of resonance allows one to conclude that δχ(η)/Γ0(η) is approximately

frozen during and after the transition. Start with the linear perturbation equation for the the U(1)

current conservation

∂ηδq +

∣∣∣⃗k∣∣∣2 (aΓ0) δχ

Q(0)
= 0 (F9)

where we have defined

δq ≡ 1

(∂0θ0)

1

a

∂

∂η

(
δχ

aΓ0

)
+ 2

δΓ

aΓ0
(F10)

and gone to Fourier space. Let ηi be the first time in the time-independent conformal era when

the k2 term can be neglected in Eq. (F9). We can conclude that δq which is set during the time-

independent conformal era to be

δq ≈ 3c+−
a(ηi)Γ0(ηi)

≈ 3δΓ(ηi, k⃗)

a(ηi)Γ0(ηi)
(F11)

is conserved while our quantity of interest δχ/Γ0 is related to this constant through

∂

∂η

(
δχ

aΓ0

)
+ 2

δΓ

aΓ0
a (∂0θ0) = δqa (∂0θ0) (F12)

coming from Eq. (F10). Integrating, we find

δχ(ηf )

a(ηf )Γ0(ηf )
− δχ(ηtr)

a(ηi)Γ0(ηtr)
=

∫ ηf

dη′

{
δq∂η′θ0(η

′)− 2
δΓ(η′, k⃗)

Γ0(η′)

1

a(η′)
∂η′θ0

}
(F13)

≈
∫ ηf

ηtr

dη′

{
3δΓ(ηtr, k⃗)

a(ηtr)Γ0(ηtr)
∂η′θ0(η

′)− 2
δΓ(η′, k⃗)

Γ0(η′)

1

a(η′)
∂η′θ0

}
(F14)

where ηtr is the time at which Γ0(η)a(η) starts to change in time (i.e. deviate from the conformal

behavior). Because the lighter energy mode |ω+−⟩ becomes purely the δχ after the Γ0 settles to

the minimum of the potential, we know δΓ(η′, k⃗) → 0 asymptotically. Hence, for t′ > ttr we shall

assume

δΓ(η′, k⃗) ≲ δΓ(ηtr, k⃗). (F15)

Additionally we consider a smooth non-resonant adiabatic transition of the background radial field

such that

Γ0(η
′)a(η′) ≳ Γ0(ηtr)a(ηtr) (F16)
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because the equation of motion near the transition time can be solved to obtain

Y0(η) ≈ Yc

(
1 +

(
2M2/H2 + 2

)
f2η2

−
(
2M2/H2 + 2

)
f2η2i

cos (f (η − ηi))

)
(F17)

which shows that the coefficient of cos(f(η− ηi)) is suppressed. Hence, compared to the first term,

the second term in the integral falls off rapidly for t > ttr. Thus, we simplify the integral as

δχ(ηf )

a(ηf )Γ0(ηf )
− δχ(ηtr)

a(ηi)Γ0(ηtr)
≲

∣∣∣∣∣ 3δΓ(ηtr, k⃗)

a(ηtr)Γ0(ηtr)

∣∣∣∣∣
∫ ηf

ηtr

dη′∂η′θ0(η
′). (F18)

Using the conservation equation, this becomes

δχ(ηf )

a(ηf )Γ0(ηf )
− δχ(ηtr)

a(ηi)Γ0(ηtr)
≲

∣∣∣∣∣ 3δΓ(ηtr, k⃗)

a(ηtr)Γ0(ηtr)

∣∣∣∣∣ Q(0)H2

Γ2
0(ηtr)

(
−η3tr

)
(F19)

where we used Eq. (F16). Since we can solve during the time-independent conformal era∣∣∣∣∣ δΓ(ηtr, k⃗)

a(ηtr)Γ0(ηtr)

∣∣∣∣∣ ≈
(

k

∂ηθ0(ηtr)

) ∣∣∣∣∣ δχ(ηtr, k⃗)

a(ηtr)Γ0(ηtr)

∣∣∣∣∣ (F20)

we obtain the relation

δχ(ηf )

a(ηf )Γ0(ηf )
− δχ(ηtr)

a(ηtr)Γ0(ηtr)
≲

∣∣∣∣∣ δχ(ηtr, k⃗)

a(ηtr)Γ0(ηtr)

∣∣∣∣∣
(

k

atrH

)
. (F21)

This indicates that in the long wavelength limit, the isocurvature perturbation is conserved for modes

outside of the horizon at the transition time even in the presence of a large rotating background.

[1] J. Chluba and D. Grin, CMB spectral distortions from small-scale isocurvature fluctuations,

Mon.Not.Roy.Astron.Soc. 434 (2013) 1619–1635, [1304.4596].

[2] Y. Takeuchi and S. Chongchitnan, Constraining isocurvature perturbations with the 21 cm emission

from minihaloes, MNRAS 439 (2014) 1125–1135.

[3] J. B. Dent, D. A. Easson and H. Tashiro, Cosmological constraints from CMB distortion, Phys.Rev.

D86 (2012) 023514, [1202.6066].

[4] D. J. H. Chung and H. Yoo, Elementary Theorems Regarding Blue Isocurvature Perturbations, Phys.

Rev. D91 (2015) 083530, [1501.05618].

[5] D. J. H. Chung, Large blue isocurvature spectral index signals time-dependent mass, Phys. Rev. D94

(2016) 043524, [1509.05850].

[6] J. Chluba, Which spectral distortions does ΛCDM actually predict?, Mon. Not. Roy. Astron. Soc. 460

(2016) 227–239, [1603.02496].

https://doi.org/10.1093/mnras/stt1129
https://arxiv.org/abs/1304.4596
https://doi.org/10.1093/mnras/stu059
https://doi.org/10.1103/PhysRevD.86.023514
https://doi.org/10.1103/PhysRevD.86.023514
https://arxiv.org/abs/1202.6066
https://doi.org/10.1103/PhysRevD.91.083530
https://doi.org/10.1103/PhysRevD.91.083530
https://arxiv.org/abs/1501.05618
https://doi.org/10.1103/PhysRevD.94.043524
https://doi.org/10.1103/PhysRevD.94.043524
https://arxiv.org/abs/1509.05850
https://doi.org/10.1093/mnras/stw945
https://doi.org/10.1093/mnras/stw945
https://arxiv.org/abs/1603.02496


80

[7] D. J. H. Chung and A. Upadhye, Search for strongly blue axion isocurvature, Phys. Rev. D 98 (2018)

023525, [1711.06736].

[8] Planck collaboration, Y. Akrami et al., Planck 2018 results. X. Constraints on inflation, Astron.

Astrophys. 641 (2020) A10, [1807.06211].

[9] S. Chabanier, M. Millea and N. Palanque-Delabrouille, Matter power spectrum: from Lyα forest to

CMB scales, Mon. Not. Roy. Astron. Soc. 489 (2019) 2247–2253, [1905.08103].

[10] N. Lee and Y. Ali-Haïmoud, Probing small-scale baryon and dark matter isocurvature perturbations

with cosmic microwave background anisotropies, Phys. Rev. D 104 (2021) 103509, [2108.07798].

[11] A. Kurmus, S. Bose, M. Lovell, F.-Y. Cyr-Racine, M. Vogelsberger, C. Pfrommer et al., The feasibility

of constraining DM interactions with high-redshift observations by JWST, 2203.04985.

[12] S. Kasuya, M. Kawasaki and T. Yanagida, Domain Wall Problem of Axion and Isocurvature

Fluctuations in Chaotic Inflation Models, Physics Letters, Section B: Nuclear, Elementary Particle

and High-Energy Physics 415 (sep, 1997) 117–121, [9709202].

[13] M. Kawasaki, N. Sugiyama and T. Yanagida, Isocurvature and Adiabatic Fluctuations of Axion in

Chaotic Inflation Models and Large Scale Structure, Physical Review D - Particles, Fields, Gravitation

and Cosmology 54 (dec, 1995) 2442–2446, [9512368].

[14] K. Nakayama and M. Takimoto, Higgs inflation and suppression of axion isocurvature perturbation,

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 748 (may, 2015)

108–112, [1505.02119].

[15] K. Harigaya, M. Ibe, M. Kawasaki and T. T. Yanagida, Dynamics of Peccei-Quinn Breaking Field

after Inflation and Axion Isocurvature Perturbations, Journal of Cosmology and Astroparticle Physics

2015 (jul, 2015) , [1507.00119].

[16] K. Kadota, J.-O. Gong, K. Ichiki and T. Matsubara, CMB probes on the correlated axion isocurvature

perturbation, Journal of Cosmology and Astroparticle Physics 2015 (nov, 2014) , [1411.3974].

[17] N. Kitajima and F. Takahashi, Resonant conversions of QCD axions into hidden axions and

suppressed isocurvature perturbations, Journal of Cosmology and Astroparticle Physics 2015 (nov,

2014) , [1411.2011].

[18] M. Kawasaki, N. Kitajima and F. Takahashi, Relaxing Isocurvature Bounds on String Axion Dark

Matter, Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 737 (jun,

2014) 178–184, [1406.0660].

[19] T. Higaki, K. S. Jeong and F. Takahashi, Solving the Tension between High-Scale Inflation and Axion

Isocurvature Perturbations, Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy

Physics 734 (mar, 2014) 21–26, [1403.4186].

[20] K. S. Jeong and F. Takahashi, Suppressing Isocurvature Perturbations of QCD Axion Dark Matter,

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics 727 (apr, 2013)

448–451, [1304.8131].

https://doi.org/10.1103/PhysRevD.98.023525
https://doi.org/10.1103/PhysRevD.98.023525
https://arxiv.org/abs/1711.06736
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://arxiv.org/abs/1807.06211
https://doi.org/10.1093/mnras/stz2310
https://arxiv.org/abs/1905.08103
https://doi.org/10.1103/PhysRevD.104.103509
https://arxiv.org/abs/2108.07798
https://arxiv.org/abs/2203.04985
https://doi.org/10.1016/S0370-2693(97)01270-7
https://doi.org/10.1016/S0370-2693(97)01270-7
https://arxiv.org/abs/9709202
https://doi.org/10.1103/PhysRevD.54.2442
https://doi.org/10.1103/PhysRevD.54.2442
https://arxiv.org/abs/9512368
https://doi.org/10.1016/j.physletb.2015.07.001
https://doi.org/10.1016/j.physletb.2015.07.001
https://arxiv.org/abs/1505.02119
https://doi.org/10.1088/1475-7516/2015/11/003
https://doi.org/10.1088/1475-7516/2015/11/003
https://arxiv.org/abs/1507.00119
https://doi.org/10.1088/1475-7516/2015/03/026
https://arxiv.org/abs/1411.3974
https://doi.org/10.1088/1475-7516/2015/01/032
https://doi.org/10.1088/1475-7516/2015/01/032
https://arxiv.org/abs/1411.2011
https://doi.org/10.1016/j.physletb.2014.08.017
https://doi.org/10.1016/j.physletb.2014.08.017
https://arxiv.org/abs/1406.0660
https://doi.org/10.1016/j.physletb.2014.05.014
https://doi.org/10.1016/j.physletb.2014.05.014
https://arxiv.org/abs/1403.4186
https://doi.org/10.1016/j.physletb.2013.10.061
https://doi.org/10.1016/j.physletb.2013.10.061
https://arxiv.org/abs/1304.8131


81

[21] T. Kobayashi, R. Kurematsu and F. Takahashi, Isocurvature Constraints and Anharmonic Effects on

QCD Axion Dark Matter, Journal of Cosmology and Astroparticle Physics 2013 (apr, 2013) ,

[1304.0922].

[22] J. Hamann, S. Hannestad, G. G. Raffelt and Y. Y. Y. Wong, Isocurvature forecast in the anthropic

axion window, Journal of Cosmology and Astroparticle Physics 2009 (apr, 2009) , [0904.0647].

[23] M. P. Hertzberg, M. Tegmark and F. Wilczek, Axion Cosmology and the Energy Scale of Inflation,

Physical Review D - Particles, Fields, Gravitation and Cosmology 78 (jul, 2008) , [0807.1726].

[24] M. Beltran, J. Garcia-Bellido and J. Lesgourgues, Isocurvature bounds on axions revisited, Physical

Review D - Particles, Fields, Gravitation and Cosmology 75 (jun, 2006) , [0606107].

[25] P. Fox, A. Pierce and S. Thomas, Probing a QCD String Axion with Precision Cosmological

Measurements, 0409059.

[26] M. Estevez and O. Santillán, About the isocurvature tension between axion and high scale inflationary

models, European Physical Journal C 76 (jun, 2016) , [1606.02389].

[27] J. Kearney, N. Orlofsky and A. Pierce, High-Scale Axions without Isocurvature from Inflationary

Dynamics, Physical Review D 93 (jan, 2016) , [1601.03049].

[28] Y. Nomura, S. Rajendran and F. Sanches, Axion Isocurvature and Magnetic Monopoles, Physical

Review Letters 116 (nov, 2015) , [1511.06347].

[29] K. Kadota, T. Kobayashi and H. Otsuka, Axion inflation with cross-correlated axion isocurvature

perturbations, Journal of Cosmology and Astroparticle Physics 2016 (sep, 2015) , [1509.04523].

[30] C. Hikage, M. Kawasaki, T. Sekiguchi and T. Takahashi, CMB constraint on non-Gaussianity in

isocurvature perturbations, 1211.1095.

[31] D. Langlois, Isocurvature cosmological perturbations and the CMB, 2003. 10.1016/j.crhy.2003.09.004.

[32] S. Mollerach, On the primordial origin of isocurvature perturbations, Physics Letters B 242 (jun,

1990) 158–162.

[33] M. Axenides, R. Brandenberger and M. Turner, Development of axion perturbations in an axion

dominated universe, Physics Letters B 126 (jun, 1983) 178–182.

[34] B. Jo, H. Kim, H. D. Kim and C. S. Shin, Exploring the Universe with Dark Light Scalars, Physical

Review D 103 (oct, 2020) , [2010.10880].

[35] S. Iso, K. Kawana and K. Shimada, Axion-CMB Scenario in Supercooled Universe, 2105.06803.

[36] K. J. Bae, J. Kost and C. S. Shin, Deformation of Axion Potentials: Implications for Spontaneous

Baryogenesis, Dark Matter, and Isocurvature Perturbations, Physical Review D 99 (nov, 2018) ,

[1811.10655].

[37] L. Visinelli, Light axion-like dark matter must be present during inflation, Physical Review D 96 (mar,

2017) , [1703.08798].

[38] Y. Takeuchi and S. Chongchitnan, Constraining isocurvature perturbations with the 21cm emission

from minihaloes, 1311.2585.

https://doi.org/10.1088/1475-7516/2013/09/032
https://arxiv.org/abs/1304.0922
https://doi.org/10.1088/1475-7516/2009/06/022
https://arxiv.org/abs/0904.0647
https://doi.org/10.1103/PhysRevD.78.083507
https://arxiv.org/abs/0807.1726
https://doi.org/10.1103/PhysRevD.75.103507
https://doi.org/10.1103/PhysRevD.75.103507
https://arxiv.org/abs/0606107
https://arxiv.org/abs/0409059
https://doi.org/10.1140/epjc/s10052-016-4226-2
https://arxiv.org/abs/1606.02389
https://doi.org/10.1103/PhysRevD.93.095026
https://arxiv.org/abs/1601.03049
https://doi.org/10.1103/PhysRevLett.116.141803
https://doi.org/10.1103/PhysRevLett.116.141803
https://arxiv.org/abs/1511.06347
https://doi.org/10.1088/1475-7516/2016/01/044
https://arxiv.org/abs/1509.04523
https://arxiv.org/abs/1211.1095
https://doi.org/10.1016/0370-2693(90)91453-I
https://doi.org/10.1016/0370-2693(90)91453-I
https://doi.org/10.1016/0370-2693(83)90586-5
https://doi.org/10.1103/PhysRevD.103.083528
https://doi.org/10.1103/PhysRevD.103.083528
https://arxiv.org/abs/2010.10880
https://arxiv.org/abs/2105.06803
https://doi.org/10.1103/PhysRevD.99.043502
https://arxiv.org/abs/1811.10655
https://doi.org/10.1103/PhysRevD.96.023013
https://doi.org/10.1103/PhysRevD.96.023013
https://arxiv.org/abs/1703.08798
https://arxiv.org/abs/1311.2585


82

[39] M. Bucher, K. Moodley and N. Turok, Constraining isocurvature perturbations with CMB

polarization, Phys. Rev. Lett. 87 (2001) 191301, [astro-ph/0012141].

[40] S. Lu, Axion isocurvature collider, JHEP 04 (2022) 157, [2103.05958].

[41] A. S. Sakharov, Y. N. Eroshenko and S. G. Rubin, Looking at the NANOGrav signal through the

anthropic window of axionlike particles, Phys. Rev. D 104 (2021) 043005, [2104.08750].

[42] J. a. G. Rosa and L. B. Ventura, Spontaneous breaking of the Peccei-Quinn symmetry during warm

inflation, 2105.05771.

[43] L. Jukko and A. Rajantie, Stochastic isocurvature constraints for axion dark matter with high-scale

inflation, 2107.07948.

[44] Z. Chen, A. Kobakhidze, C. A. J. O’Hare, Z. S. C. Picker and G. Pierobon, Cosmology of the

companion-axion model: dark matter, gravitational waves, and primordial black holes, 2110.11014.

[45] K. S. Jeong, K. Matsukawa, S. Nakagawa and F. Takahashi, Cosmological effects of Peccei-Quinn

symmetry breaking on QCD axion dark matter, JCAP 03 (2022) 026, [2201.00681].

[46] M. Cicoli, A. Hebecker, J. Jaeckel and M. Wittner, Axions in string theory — slaying the Hydra of

dark radiation, JHEP 09 (2022) 198, [2203.08833].

[47] E. Koutsangelas, Removing the cosmological bound on the axion scale in the

Kim-Shifman-Vainshtein-Zakharov and Dine-Fischler-Srednicki-Zhitnitsky models, Phys. Rev. D 107

(2023) 095009, [2212.07822].

[48] M. Kawasaki and T. T. Yanagida, Hill-top inflation from Dai-Freed anomaly in the standard model –

A solution to the isocurvature problem of the axion dark matter, 2306.14579.

[49] S. Kasuya and M. Kawasaki, Axion isocurvature fluctuations with extremely blue spectrum, Phys.Rev.

D80 (2009) 023516, [0904.3800].

[50] H. K. Dreiner, F. Staub and L. Ubaldi, From the unification scale to the weak scale: A self consistent

supersymmetric Dine-Fischler-Srednicki-Zhitnitsky axion model, Phys. Rev. D 90 (2014) 055016,

[1402.5977].

[51] J. E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys. 82 (2010) 557–602,

[0807.3125].

[52] L. Di Luzio, M. Giannotti, E. Nardi and L. Visinelli, The landscape of QCD axion models, Phys. Rept.

870 (2020) 1–117, [2003.01100].

[53] R. Ebadi, S. Kumar, A. McCune, H. Tai and L.-T. Wang, Gravitational Waves from Stochastic Scalar

Fluctuations, 2307.01248.

[54] R. T. Co and K. Harigaya, Axiogenesis, Phys. Rev. Lett. 124 (2020) 111602, [1910.02080].

[55] R. T. Co, D. Dunsky, N. Fernandez, A. Ghalsasi, L. J. Hall, K. Harigaya et al., Gravitational Wave

and CMB Probes of Axion Kination, 2108.09299.

[56] P. Creminelli, M. Delladio, O. Janssen, A. Longo and L. Senatore, Non-analyticity of the S-matrix

with spontaneously broken Lorentz invariance, 2312.08441.

https://doi.org/10.1103/PhysRevLett.87.191301
https://arxiv.org/abs/astro-ph/0012141
https://doi.org/10.1007/JHEP04(2022)157
https://arxiv.org/abs/2103.05958
https://doi.org/10.1103/PhysRevD.104.043005
https://arxiv.org/abs/2104.08750
https://arxiv.org/abs/2105.05771
https://arxiv.org/abs/2107.07948
https://arxiv.org/abs/2110.11014
https://doi.org/10.1088/1475-7516/2022/03/026
https://arxiv.org/abs/2201.00681
https://doi.org/10.1007/JHEP09(2022)198
https://arxiv.org/abs/2203.08833
https://doi.org/10.1103/PhysRevD.107.095009
https://doi.org/10.1103/PhysRevD.107.095009
https://arxiv.org/abs/2212.07822
https://arxiv.org/abs/2306.14579
https://doi.org/10.1103/PhysRevD.80.023516
https://doi.org/10.1103/PhysRevD.80.023516
https://arxiv.org/abs/0904.3800
https://doi.org/10.1103/PhysRevD.90.055016
https://arxiv.org/abs/1402.5977
https://doi.org/10.1103/RevModPhys.82.557
https://arxiv.org/abs/0807.3125
https://doi.org/10.1016/j.physrep.2020.06.002
https://doi.org/10.1016/j.physrep.2020.06.002
https://arxiv.org/abs/2003.01100
https://arxiv.org/abs/2307.01248
https://doi.org/10.1103/PhysRevLett.124.111602
https://arxiv.org/abs/1910.02080
https://arxiv.org/abs/2108.09299
https://arxiv.org/abs/2312.08441


83

[57] L. Hui, I. Kourkoulou, A. Nicolis, A. Podo and S. Zhou, S-matrix positivity without Lorentz

invariance: a case study, JHEP 04 (2024) 145, [2312.08440].

[58] A. J. Leggett, Superfluidity, Rev. Mod. Phys. 71 (1999) S318–S323.

[59] P. B. Greene, L. Kofman, A. D. Linde and A. A. Starobinsky, Structure of resonance in preheating

after inflation, Phys. Rev. D 56 (1997) 6175–6192, [hep-ph/9705347].

[60] M. Kawasaki, T. T. Yanagida and K. Yoshino, Domain wall and isocurvature perturbation problems in

axion models, JCAP 11 (2013) 030, [1305.5338].

[61] R. T. Co, L. J. Hall, K. Harigaya, K. A. Olive and S. Verner, Axion Kinetic Misalignment and

Parametric Resonance from Inflation, JCAP 08 (2020) 036, [2004.00629].

[62] D. J. H. Chung and S. C. Tadepalli, Analytic treatment of underdamped axionic blue isocurvature

perturbations, Phys. Rev. D 105 (2022) 123511, [2110.02272].

[63] D. J. H. Chung and A. Upadhye, Bump in the blue axion isocurvature spectrum, Phys. Rev. D 95

(2017) 023503, [1610.04284].

[64] Y. K. Semertzidis and S. Youn, Axion dark matter: How to see it?, Sci. Adv. 8 (2022) abm9928,

[2104.14831].

[65] L. Visinelli and P. Gondolo, Dark Matter Axions Revisited, Phys. Rev. D 80 (2009) 035024,

[0903.4377].

[66] J. Kearney, N. Orlofsky and A. Pierce, High-Scale Axions without Isocurvature from Inflationary

Dynamics, Phys. Rev. D 93 (2016) 095026, [1601.03049].

[67] D. J. H. Chung, M. Münchmeyer and S. C. Tadepalli, Search for isocurvature with large-scale

structure: A forecast for Euclid and MegaMapper using EFTofLSS, Phys. Rev. D 108 (2023) 103542,

[2306.09456].

[68] P. H. Ginsparg, APPLIED CONFORMAL FIELD THEORY, in Les Houches Summer School in

Theoretical Physics: Fields, Strings, Critical Phenomena, 9, 1988, hep-th/9108028.

https://doi.org/10.1007/JHEP04(2024)145
https://arxiv.org/abs/2312.08440
https://doi.org/10.1103/RevModPhys.71.S318
https://doi.org/10.1103/PhysRevD.56.6175
https://arxiv.org/abs/hep-ph/9705347
https://doi.org/10.1088/1475-7516/2013/11/030
https://arxiv.org/abs/1305.5338
https://doi.org/10.1088/1475-7516/2020/08/036
https://arxiv.org/abs/2004.00629
https://doi.org/10.1103/PhysRevD.105.123511
https://arxiv.org/abs/2110.02272
https://doi.org/10.1103/PhysRevD.95.023503
https://doi.org/10.1103/PhysRevD.95.023503
https://arxiv.org/abs/1610.04284
https://doi.org/10.1126/sciadv.abm9928
https://arxiv.org/abs/2104.14831
https://doi.org/10.1103/PhysRevD.80.035024
https://arxiv.org/abs/0903.4377
https://doi.org/10.1103/PhysRevD.93.095026
https://arxiv.org/abs/1601.03049
https://doi.org/10.1103/PhysRevD.108.103542
https://arxiv.org/abs/2306.09456
https://arxiv.org/abs/hep-th/9108028

	Contents
	Introduction
	Spectator Definition and Basics of the Conformal Limit
	Basic Action
	How conformal limit generates a blue spectrum

	Explicit quantization in the conformal limit
	Conformal limit power quantization and power spectra
	Post-time-independent-conformal-era time evolution
	Adiabatic time-evolution example


	Deformations away from time-independent conformal limit
	Equations of motion
	Non-rotating scenario
	Rotating scenario
	Quasi-adiabatic time-evolution example


	Plots and Discussion
	L dependence
	Maximum k-range
	Spectral bump and M dependence
	Bounds on the conformal axion model

	Conclusion
	Conformal limit for the background
	WKB approximation for oscillating potentials
	Late time behavior and M cutoff
	Details of quantization
	Normal modes
	Ladder algebra
	Ladder commutators
	Hamiltonian

	Correlation function
	Relationship between radial and angular modes
	References
	References

