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Abstract

Unimodular gravity addresses the old cosmological constant (CC) problem, explaining why such constant is not at least as large

as the largest particle mass scale, but classically it is indistinguishable from ordinary gravity. Conversely, quantum physics

may give us a way to distinguish the two theories. Thus, here the unimodular constraint is imposed on a non-perturbative and

background-independent quantum version of quadratic gravity, which was recently formulated. It is shown that unimodularity

does lead to different predictions for some inflationary quantum observables. Unimodular gravity per se does not solves the new

CC problem (why the CC has the observed value?) even in this realization. To address this issue a multiverse made by different

eras in a single big bang is considered and the observed scale of dark energy is explained anthropically.
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1. Introduction

There is more than one issue related to the observed value

of the CC. The old CC problem consists in explaining why

the CC is not at least of the same order of magnitude of the

largest particle mass scale. This is because each particle con-

tributes to the vacuum energy density through a term of or-

der of its mass to the fourth and in Einstein gravity vacuum

energy density contributes to the CC. The new CC problem

consists in understanding why it is comparable to the present

matter density [1] although it scales differently with time;

this issue is also known as the coincidence problem. Both

problems are only fine-tunings, they do not indicate inconsis-

tencies between theory and observations. However, solutions

may suggest routes to search for new physics.

In some theories the CC is promoted to a dynamical scalar

field with a potential that is so slowly varying to mimic a CC.

Even in these realizations the CC problems persist: such po-

tential needs to be fine-tuned because each particle still con-

tributes to its zero-point value as described above, and no ex-

planation between the current comparable values of dark en-

ergy and matter densities is provided. The Euclid satellite [2],

which was launched on July 1, 2023, will soon provide infor-

mation on the nature of dark energy and further increase the

interest in this field of fundamental physics.

In unimodular gravity (UG) one requires by definition that

the spacetime volume is not a dynamical degree of freedom

(see [3] and references therein). This constraint effectively

changes the nature of the CC from the coefficient of a term in

the action (which the vacuum energy density contributes to)

to an integration constant of the classical field equations, re-

gardless of the theory on which this constraint is imposed [4].

Therefore, in the presence of the unimodular constraint there

is no reason to expect that the CC is at least of the same order

of magnitude of the largest particle mass scale, because vac-

uum energy no longer gravitates. Still, the new CC problem

remains unsolved because UG does not suggest any preferred

value for this constant. Anthropic considerations [3, 5] may

explain the value of the CC, but require a multiverse, which

so far has led to complicated landscapes, where theoretical

control is typically lost.

The main purpose of this paper is to combine UG and the

anthropic principle to address the CC problems.

Given the relevance of UG, it is also important to look

for observational tests. Classically, the unimodular constraint

does not change the field equations, but only the theoretical

nature of the CC; as a result, UG turns out to predict just the

same physics as gravity without the unimodular constraint.

While this is reassuring, because it implies that UG is a vi-

able modification of gravity, it is also disappointing because

classical physics does not allow us to distinguish between the
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two theories.

Quantum mechanics, however, can change the situation

completely as there is no theorem establishing the physical

equivalence at quantum level. In order to understand if this

really happens a consistent quantum gravity theory must be

considered. In this paper we implement the unimodular con-

straint in quadratic gravity, a renormalizable [6–9] and uni-

tary [10, 11] UV extension of Einstein gravity, which was

recently formulated in a non-perturbative and background-

independent way1 [15].

The classical action of quadratic gravity we consider is

S ren =

∫

d4x
√−g

(

R2

6 f 2
0

− 1

2 f 2
2

W2 +
M2

P

2
R − Λ0

)

. (1)

Here f0, f2,MP and Λ0 are renormalized parameters, g is the

determinant of the metric, R is the Ricci scalar and W2 ≡
WµνρσWµνρσ is the “square” of the Weyl tensor Wµνρσ.

We will show that a natural implementation of the uni-

modular constraint in quantum quadratic gravity is possible

through the path integral formalism. This is the first time a

non-perturbative and background-independent quantum UG

is formulated.

Theoretical differences between quadratic gravity and its

unimodular counterpart must be present at quantum level be-

cause, as we will show explicitly, in the latter, unlike in the

former, one path integrates only over those metrics respecting

the unimodular constraint. Theoretical differences in the con-

text of Einstein gravity have been noted in [16, 17]. However,

observational differences are necessary to physically distin-

guish the two theories.

The natural arena to look for quantum gravity observables

is inflation. In this paper we will then focus on that period

of the cosmological expansion and find indeed observational

differences.

Here, post-inflationary physics is also considered, where

a multiverse made by different eras in a single big bang is

present, to find an explanation of the observed CC scale (the

new CC problem). This leads to a landscape of values of the

CC that are scanned during different eras. Such landscape,

however, does not need to be complex as it would have to

without the UG solution to the old CC problem.

2. Non-perturbative quantum quadratic gravity

In the non-perturbative and background-independent for-

mulation of quantum quadratic gravity of [15], the canonical

coordinates q are initially identified in the Gauss spacetime

coordinate system and are the values of the 3D metric gi j and

its time derivative, Ki j ≡ −ġi j/2. Let us start by reviewing

the findings of [15], which are necessary to understand the

1The Higgs mass fine-tuning problem in quadratic gravity has been pre-

viously addressed in [12–14].

original results of this paper. In the next section a unimodular

version will be constructed. While gi j and its conjugate mo-

mentum are quantized in the ordinary way, Ki j and its con-

jugate momentum are subject to an alternative quantization

first discussed by Pauli [18], who elaborated on a previous

work by Dirac [19]. This Dirac-Pauli (DP) quantization has

been more recently developed in [20] (see also [11, 15, 21]

for reviews). The Euclidean path integral for the transition

amplitudes (between states of definite canonical coordinates

gi j and Ki j) in the presence of an external “current” Ji j for gi j

is

〈q fη, τ f |qi, τi〉J =
∫ q(τ f )=q f

q(τi)=qi

Cδg exp

(

−S E +

∫ τ f

τi

dτ

∫

d3x Ji jgi j

)

, (2)

where S E is the Euclidean action of quadratic gravity with

bare parameters. The boundary conditions at initial and final

imaginary times, τi and τ f , respectively, are

q(τi) = qi : glm(τi) = g
(i)
lm, g′lm(τi) = −2K

(i)
lm, (3)

q(τ f ) = q f : glm(τ f ) = g
( f )
lm , g′lm(τ f ) = −2K

( f )
lm ,(4)

where g
(i, f )
lm and K

(i, f )
lm provides initial and final conditions for

the metric and its time derivative, a prime denotes a deriva-

tive with respect to the imaginary time τ and, for simplic-

ity, the dependence on the spatial coordinates is understood

in (3) and (4). Also a label η indicates the sign reversal of the

canonical variables that are DP quantized; this ensures that

the corresponding inner product is positive-definite. The in-

tegration measure Cδg over the 3D metrics is invariant under

3D general coordinate transformations.

In a generic spacetime coordinate system, on the other

hand,

〈q fη, τ f |qi, τi〉J =
∫ q(τ f )=q f

q(τi)=qi

Dg

∣

∣

∣

∣

det
∂ f

∂ξ

∣

∣

∣

∣

δ( f )

× exp

(

−S E +

∫ τ f

τi

dτ

∫

d3xJµνgµν

)

, (5)

where the metric measure Dg is invariant under 4D general

coordinate transformations (greek letters denote 4D space-

time coordinates), the four spacetime functions ξ correspond

to the 4D diffeomorphisms and f plays the role of a gauge-

fixing function (its choice corresponds to the choice of the

coordinate system).

Through (5) one can also obtain the generating functional

of Green’s function, which reads (choosing this time the

Lorentzian signature)

Z(J) =
1

“J → 0”

∫

Dg

(

det
δ f

δξ

)

δ( f )

× exp

(

iS + i

∫

d4x Jµνgµν

)

, (6)

2



where S is the classical Lorentzian action with bare param-

eters and the denominator “J → 0” recalls us that the path

integral as usual should be divided by the same quantity but

with vanishing external 4D “current”, Jµν = 0

3. General unimodular constraint

In unimodular gravities (including quadratic gravity) one

requires that the volume of spacetime is not a dynamical vari-

able, but rather a fixed quantity. Mathematically, this con-

straint can be imposed by inserting in the Euclidean path in-

tegral (2) the (functional) δ function2

∏

xE

δ(∆τ∆V3

√

g(xE) − ∆VE), (7)

where ∆VE ≡ ∆τ∆V3ωE is the fixed volume element at Eu-

clidean spacetime point xE , ∆τ and ∆V3 are the imaginary

time and the spatial volume elements (which become dτ and

d3x, respectively, in the zero lattice-spacing limit) and ωE

corresponds to a fixed non-dynamical volume form. The δ

function in (7) can also be equivalently written as a functional

integral:

∏

xE

δ(∆τ∆V3

√

g(xE) − ∆VE) =

∫

(

∏

xE

dl(xE)

2π

)

× exp

(

i

∫ τ f

τi

dτ

∫

d3x l(xE)(
√

g(xE) − ωE (xE))

)

,

which corresponds to introducing an auxiliary field l (a La-

grange multiplier).

The constraint factor (7) should also be inserted in the

path integral (5) for generic coordinate systems. Note that

∆τ∆V3
√

g is an invariant volume element and, therefore,

∆τ∆V3
√

g = ∆VE is a physical (coordinate-independent) con-

straint. With this condition one maintains general covariance

although the determinant of the metric g is not dynamical [3].

The insertion of (7) in (5) thus leads to a physically distinct

quantum theory, although, as we will discuss shortly, the clas-

sical limit is the same. Such insertion in particular implies

that the operator corresponding to g is reduced to a c-number

function in the unimodular theory. In [15] it was shown (with-

out inserting (7) in the path integrand) that the Euclidean path

integral of quadratic gravity is well defined in a physically

acceptable region of the bare parameter space, solving the

conformal-factor problem. Here we observe that the same

constraints on the bare parameters still ensure that the Eu-

clidean path integral of unimodular quadratic gravity is well

2Inserting the more general
∏

xE
δ(W(∆τ∆V3

√
g − ∆VE)), where W is

a generic function satisfying the regularity condition W′(0) , 0, leads to

an equivalent theory because just rescales the generating functional (2) by a

constant.

defined, i.e. even inserting (7), because (7) is a restriction on

the functional integration domain.

When analytically continuing to real time, (7) gets replaced

by the real-time version

∏

x

δ(∆t∆V3

√−g − ∆V) =

∫

(

∏

x

dl(x)

2π

)

×

exp

(

i

∫

d4x l(x)(
√

−g(x) − ω(x))

)

, (8)

where now ∆t is the real-time element, ∆V ≡ ∆t∆V3ω is the

fixed volume element at Lorentzian spacetime point x and ω

corresponds to the fixed non-dynamical volume form in the

Lorentzian theory. Analogously, (8) should be inserted in the

path integral (6) for the generating functional of Green’s func-

tions3.

One might doubt that quadratic gravity is still renormal-

izable after the unimodular constraint is imposed. To elimi-

nate this doubt note that the constraint
√−g = ω can be lo-

cally seen as a gauge fixing (the physical constraint is global,
∫

d4x
√−g =

∫

d4xω). So quadratic gravity remains renor-

malizable because one can analyze loop diagrams using a

gauge compatible with
√−g = ω; this is done, for exam-

ple, in [24, 25]. Note that the proof of renormalizability of

quadratic gravity in a generic gauge was provided in [9].

Suppose now that the action S in (6) instead of being only

the classical action also contains the effect of the matter fields

that are functionally integrated out. Since the spacetime vol-

ume ∆t∆V3

√−g is non dynamical the vacuum-energy contri-

bution of the matter fields, which can be absorbed in Λ0, does

not gravitate. This is an advantage of unimodular quadratic

gravity: the CC is completely independent of the (too large)

contribution coming from the known particles. One CC prob-

lem (the old one), which queries why the CC is not at least

of the same order of the largest particle mass, is thus solved.

Being the CC and the particle masses completely indepen-

dent of each other, there is no reason why it should be. This

feature of unimodular quadratic gravity also allows us to non-

perturbatively generate the Planck scale through classically-

scale invariant dynamics without a too large (Planckian)

quantum-mechanically-generated CC [11, 26].

If we now take the classical limit by following the methods

of [15] (but with (8) present inside the path integral) we have

to derive the field equations by imposing that g is not dynam-

ical, which leads to gµνδgµν = 0, where δgµν is the variation

of the metric that is performed in the stationary-action princi-

ple. Nevertheless, in any UG (including unimodular quadratic

gravity) this leads again to the same field equation one would

have obtained without imposing gµνδgµν = 0, although the

3For a discussion of the path integral of Einstein gravity with the unimod-

ular constraint see [22, 23].
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CC emerges as an arbitrary integration constant rather than a

coefficient in the action [4]. Therefore, the classical limit is

the same. Note that from this argument it also follows that

the physical CC is completely independent of Λ0.

It is then important to understand whether the quantum dif-

ference between quadratic gravity and its unimodular coun-

terpart could be observable.

4. Unimodular inflation

The natural arena to study quantum effects in gravity is in-

flation: cosmological perturbations emerge as quantum fluc-

tuations in the theory of inflation.

Let us then consider a cosmological spacetime. Since ω

does transform (like
√−g) under general coordinate transfor-

mations with a well-known spacetime dependent factor, it is

always possible to find a coordinate system where ω = a4(u)

where a(u) is the cosmological scale factor and u is the con-

formal time. This allows us to take a standard Friedmann-

Lemaı̂tre-Robertson-Walker (FLRW) metric at the classical

level:

ds2 = a(u)2
(

δi jdxidx j − du2
)

, (9)

where we have neglected the spatial curvature parameter as

during inflation the energy density is dominated by the scalar

fields. The possibility of taking the standard FLRW metric

reflects the fact that the unimodular condition enforced by (8)

does not change the classical limit.

However, at quantum level the situation is different. This

suggests that at linear order in the perturbations we may ob-

serve some differences because the perturbations are treated

as quantum fields in the theory of inflation4.

The fact that in the formulation of unimodular gravity we

are adopting general covariance is maintained allows us to

use standard gauges. By choosing the conformal Newtonian

gauge, the metric describing the small perturbations around

the FLRW spacetime can be written as

ds2 = a(u)2
{[

(1 − 2Ψ(u, ~x))δi j + hi j(u, ~x)
]

dxidx j

+2Vi(u, ~x)dudxi − (1 + 2Φ(u, ~x))du2
}

, (10)

where the vector perturbations Vi satisfy

∂iVi = 0 (11)

and the tensor perturbations hi j obey

hi j = h ji, hii = 0, ∂ihi j = 0. (12)

Sometimes the Newtonian gauge is defined for the scalar per-

turbations Φ and Ψ only (see e.g. [27]). Here we consider a

4If, on the other hand, perturbations are treated classically there is no

hope to observationally distinguish between unimodular and non-unimodular

gravity as the classical theory is the same.

generalization, which also includes the non-scalar perturba-

tions. A possible gauge-dependent divergence of hi j has been

set to zero by appropriately choosing the gauge.

Now, since Ψ, Φ, Vi and hi j are quantum fields, but the

metric determinant g is reduced to a c-number function in the

unimodular theory, we must impose that any contribution to g

coming from these quantum fields vanishes. In the conformal

Newtonian gauge and at linear level in the perturbations

g = −a8(u)(1 + 2Φ − 6Ψ), (13)

where the traceless condition hii = 0 has been used, so we

obtain the constraint

Φ = 3Ψ (14)

in the unimodular theory.

Let us now assume for simplicity that inflation is driven

by a minimally coupled scalar field, which happens to be a

quasi-flat direction for the field values relevant during infla-

tion. This can happen without fine-tuning if the inflaton is

identified, for example, with a pseudo-Nambu-Goldstone bo-

son associated with an approximate and spontaneously bro-

ken global symmetry [10, 28]. This type of inflation, known

as natural inflation, is compatible with present cosmic mi-

crowave background (CMB) observations [29–31] when im-

plemented in quadratic gravity [32, 33]. We can neglect the

R2 term in the action as the scalaron is assumed to be non-

active during inflation in this setup.

The time-derivative of Φ does not appear in the action

quadratic in the perturbations [34], then Φ should be consid-

ered as a non-dynamical field. By varying that action with

respect to Φ one finds

− 4

3 f 2
2 M2

Pa2
~∇4 (Φ + Ψ)− 6H dΨ

du
+ 2~∇2Ψ− 6H2Φ = 0, (15)

where H ≡ 1
a

da
du

and ~∇4 ≡ (~∇2)2 is the square of the spatial

Laplacian ~∇2. Using now the unimodular constraint in (14),

− 16

3 f 2
2 M2

Pa2
~∇4Ψ − 6H dΨ

du
+ 2~∇2Ψ − 18H2Ψ = 0. (16)

By performing a Fourier transform on the spatial coordinate,

Ψ(u, ~x) =

∫

d3q

(2π)3/2
ei~q·~xΨ̃(u, ~q) (17)

this equation reads

− 16q4

3 f 2
2 M2

Pa2
Ψ̃ − 6H dΨ̃

du
− 2q2Ψ̃ − 18H2Ψ̃ = 0, (18)

where q ≡ |~q|. Using the de Sitter expression a(u) = −1/(Hu),

where H is the inflationary Hubble rate, one finds that the

general solution of (18) is

Ψ̃(u, ~q) = exp(q2u2/6 + 2H2q4u4/(9 f 2
2 M2

P)) u3 C (19)

4



with C a generic operator that is constant in u.

The main phenomenologically interesting regime is the su-

perhorizon limit, u→ 0−, when a→ +∞. In this limitΨ→ 0

as fast as u3. It is then possible to show that the standard

curvature perturbation R acquires the expression in Einstein

gravity [34]. The predictions for the tensor-to-scalar ratio

r and the spectral index ns is then the same as in quadratic

gravity without the unimodular constraint. However, the fact

that Ψ → 0 in the superhorizon limit also implies that the

extra isocurvature mode B present in quadratic gravity, as

shown in [11, 34], decouples in unimodular quadratic grav-

ity. Since future CMB observations may detect the power

spectrum of B [35], we conclude that quadratic gravity can

be distinguished from its unimodular counterpart: the former

predicts an isocurvature mode that is absent in the latter.

5. Post-inflationary cosmology

After inflation a period of reheating should take place. In

order not to introduce a large fine-tuning of the Higgs mass

the inflaton should belong to a somewhat hidden sector. Re-

heating can take place, for example, thanks to the presence

of several light and weakly coupled scalar fields, which have

sizable couplings to the observed particles [10]. This sit-

uation is typical in asymptotically free Standard Model ex-

tensions [36, 37]. The aforementioned scalar fields undergo

quantum fluctuations that are of order H/(2π) independently

of the presence of the unimodular constraint: those fluctua-

tions emerge as solutions of the linearized equations of those

scalar fields on the inflationary de Sitter background and such

equations are independent of the unimodular constraint. This

mechanism ensures that the energy density of the inflaton is

transferred (as radiation) to the observable sector, which in-

cludes the Standard Model (SM) fields at low energy.

In both the inflationary and subsequent radiation-

dominated epochs life is clearly impossible. Indeed, in the

inflationary epoch the matter density is effectively absent and

the anthropic bound of [3, 5] is not satisfied; in the radiation-

dominated epoch the universe is too hot. As time passes by

the radiation energy density decreases and the temperature

drops so that a matter-dominated universe emerges at some

point, as the SM features more massive than massless degrees

of freedom. Since the matter density ρM also decreases with

time, eventually the energy density due to the CC, ρΛ, over-

come ρM again. In order not to violate the anthropic bound

of [3, 5], ρΛ should not be much larger than ρM . Since life

takes time to develop, it is reasonable to find a scientific com-

munity able to measure the CC at the latest possible epoch

compatible with this bound, which is when we live. Note that

the value of the CC is here explained5 anthropically with a

5This also explains why ρM and ρΛ have the same order of magnitude

today (the coincidence problem).

multiverse made by different eras in a single big bang; this

type of multiverse was mentioned before, see e.g. [38, 39].

Note that, since unimodular gravity solves the old issue

of explaining why the CC is not at least as large as the

largest particle mass scales, this multiverse (multiple uni-

verses across time) does not need to feature a complex land-

scape for the CC, unlike in non-unimodular (standard) grav-

ity.

6. Conclusions

Here, an unimodular version of a non-perturbative

and background independent quantum gravity featuring

quadratic-in-curvature terms has been constructed and the

cosmological constant problems have been addressed.

It was shown that the unimodular condition affects the

quantum predictions of the theory; in particular an isocurva-

ture mode, which is within the reach of future CMB observa-

tions, is removed by unimodularity. This allows us to phys-

ically distinguish between standard and unimodular gravity,

although the two theories share the same classical limit.

Although unimodular gravity explains why the CC is not as

large as the largest particle mass scale (the old CC problem),

because the CC is completely independent of the vacuum en-

ergy, the new CC problem (why the dark energy and matter

densities are comparable?) calls for other ingredients. To ad-

dress this further issue a multiverse made by different eras in

a single big bang was considered and the observed value of

dark energy is explained anthropically, but without the need

of a huge landscape: the dark energy density is not constant,

but varies during the various eras, such that in the period with

the largest probability of hosting intelligent life the dark en-

ergy density is larger than (but of the same order of magnitude

as) the matter density.
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