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We show that it is possible to directly measure the formation time of galaxies using large-scale
structure. In particular, we show that the large-scale distribution of galaxies is sensitive to whether
galaxies form over a narrow period of time before their observed times, or are formed over a time
scale on the order of the age of the Universe. Along the way, we derive simple recursion relations
for the perturbative terms of the most general bias expansion for the galaxy density, thus fully
extending the famous dark-matter recursion relations to generic tracers.

I. INTRODUCTION AND CONCLUSIONS

The establishment of the standard cosmological model,
from the hot big bang at early times to the cosmologi-
cal constant and cold dark-matter dominated late-time
accelerated expansion, is one of the great triumphs of
modern science. It gives a depiction of a dynamical Uni-
verse that has evolved over billions of years from a dense
cosmic soup to a sparse sprinkling of stars, galaxies, and
dark-matter halos. This familiar picture was not always
obvious, however.

For example, there was much debate in the second
half of the twentieth century about the so-called 1948
steady-state model of the Universe [1]. This model pro-
posed that properties of the Universe, including number
and types of galaxies, did not change over time. Em-
pirical evidence, of course, eventually contradicted these
ideas. One such set of evidence was the observation that
properties of galaxies, including color and estimated ages,
changed with their measured redshifts (see for example
[2, 3]), suggesting that the galaxies themselves evolved
over time. This confusion, though, is understandable.
Indeed, we cannot watch objects in the Universe evolve
for very long; we can only see static snapshots at various
times in the past, making it quite challenging to directly
probe cosmic time scales.

A concept that is related to, but distinct from, the time
scale of cosmic evolution is what we call a cosmic response
time, i.e. the temporal extent to which the past influences
galaxies at a given time.1 This in turn is related to the
formation time of galaxies, which is at least as long as
the response time.

In this work, we provide, as far as we can tell, the first
directly cosmologically observable signals that are sensi-
tive to the formation time of galaxies (or galaxy clusters
and other gravitationally-bound objects in general). By
studying the response time of galaxies, we show that the
static pictures that we take of the Universe (in galaxy
surveys, for example) can contain unique signatures that
are only possible if galaxies have been forming over time

1 Mathematically, this is the time scale of support of the Green’s
function describing the response.

periods on the order of the age of the Universe. Even if
we have an incredibly large amount of evidence that this
must be the case, the possibility of a direct cosmological
observation is, to us, quite an extraordinary prospect.2

Furthermore, since our reasoning is based on the
effective field theory of large-scale structure (EFT of
LSS, [7, 8]), which is the unique theory of gravity, cold
dark matter, baryons, and tracers on large scales, our
conclusions do not depend on specific modeling choices
about stars or galaxies. Given the recent success of using
the EFT of LSS to analyze galaxy clustering data [9–13],
we now have the intriguing opportunity to explore the
Universe in this exciting new way.
It has been known for some time (see e.g. [14, 15]) that

on large scales, the galaxy distribution can be expressed
as a Taylor expansion in the fluctuations of the underly-
ing dark-matter distribution, an approach that goes by
the general name of the bias expansion (for a modern re-
view, see [16]). This makes intuitive sense, since galaxies
tend to form in regions of space where the dark-matter
density, and hence the gravitational potential, is high-
est. In [17] it was argued that this dependence should
be on second spatial derivatives of the gravitational po-
tential and gradients of the dark-matter velocity, and a
straightforward extension allows for a dependence on spa-
tial derivatives of these quantities. But is galaxy cluster-
ing only affected by the nearby dark-matter distribution
at the time that we measure it (local in time), or does
the configuration of the dark matter at earlier times, of
order a Hubble time earlier, have an impact (non-local
in time)? Said another way, given two identical localized
dark-matter configurations at a given time, will the same
galaxies always form, or do we need to know the whole
history of that configuration?
This question was conceptually answered in [18], which

pointed out that the most general dependence, based on

2 We stress that in this work, we are not concerned with ages or
generic evolution of structures (for which there is abundant as-
trophysical evidence, some of which we mentioned above), but
with the response time of structures. Previous studies in this di-
rection include numerical simulations and the so-called assembly
bias [4, 5], although it can be challenging to directly relate the
latter to galaxy formation time [6].
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the symmetries relevant to dark-matter and baryon dy-
namics and galaxy formation on large scales, which are
the equivalence principle and diffeomorphism invariance
(the non-relativistic limit of which is called Galilean in-
variance), is on second spatial derivatives of the gravi-
tational potential, gradients of the matter velocity (and
the relative velocity directly), and their spatial gradients,
integrated over all past times. This makes the EFT of
LSS generally local in space, but non-local in time.3

However, until now, the most advanced perturbative
calculations have shown that the non-local-in-time bias
expansion up to fourth order is mathematically equiva-
lent to the local-in-time expansion [21]. As we show in
this work, though, this is no longer true at fifth order,
and thus it is possible to see distinctly non-local-in-time
effects in the galaxy-clustering signal. Measuring the size
of these effects would then give us a direct indication of
the formation time scale of galaxies. As a side obser-
vation, this time scale would also give a direct (versus
indirect) lower bound on the age of the Universe.

Notes We work in the Newtonian approximation
where Φ(x⃗, t) is the gravitational potential, a(t) is the
scale factor of the Universe, the Hubble parameter is de-
fined by H(t) ≡ ȧ(t)/a(t), and the overdot ‘˙’ stands
for a derivative with respect to t. The dark-matter fluid
is described by the overdensity δ(x⃗, t) and fluid velocity
v⃗(x⃗, t). The growth factor D(t) is defined as the growing
mode solution to the linear equation of motion for δ, i.e.
satisfies D̈+2HḊ− 3ΩmH

2D/2 = 0, where Ωm(t) is the
time-dependent matter fraction.

The building blocks of Galilean scalars are the dimen-
sionless tensors

rij ≡
2∂i∂jΦ

3Ωma2H2
, and pij ≡ − D

aḊ
∂iv

j . (1)

For brevity, we will always denote the traces δijrij = δ
(which is true because of the Poisson equation) and
δijpij ≡ θ (which is our definition of θ). Then, for
other contractions, we write the matrix products as sim-
ple multiplication, i.e. r2 = rijrji, r2p = rijrjkpki,
rprp = rijpjkrklpli, and so on (repeated indices are al-
ways summed over). We work in the so-called Einstein-
de Sitter approximation, where the time dependence of
perturbations is given by

δ(n)(x⃗, t) =

(
D(t)

D(t′)

)n

δ(n)(x⃗, t′) ,

θ(n)(x⃗, t) =

(
D(t)

D(t′)

)n

θ(n)(x⃗, t′) .

(2)

In this work, we focus on the lowest-derivative bias terms
that are sufficient to establish our claims, and leave a dis-
cussion of higher-derivative bias (and counterterms) for

3 See also [19, 20] for discussions of non-local-in-time effects in
dark-matter clustering.

future work. Finally, we focus on the real space (as op-
posed to redshift space) prediction, which in any case
is the leading signal if one restricts observations to di-
rections near the line of sight. We leave extending our
results to redshift space to future work. For a much more
detailed explanation of the notation used here, see [21].

II. COMPLETE BIAS EXPANSION AND
RECURSION

We start by constructing the most general bias ex-
pansion for the galaxy overdensity δg(x⃗, t) ≡ (ng(x⃗, t) −
n̄g(t))/n̄g(t), where ng(x⃗, t) is the galaxy number-density
field and n̄g(t) is the average number density of galaxies,
that is consistent with the equivalence principle, diffeo-
morphism invariance, and is non-local in time. Up to
N -th order in perturbations, we have

δg(x⃗, t)
∣∣
N

=

N∑
n=1

δ(n)g (x⃗, t) , (3)

where the expression at n-th order is given by the non-
local-in-time integral over the sum of all possible local-
in-time functions Om up to order n [18]

δ(n)g (x⃗, t) =
∑
Om

∫ t

dt′H(t′)cOm(t, t′)

× [Om(x⃗fl(x⃗, t, t
′), t′)](n) ,

(4)

evaluated along the fluid element

x⃗fl(x⃗, t, t
′) = x⃗+

∫ t′

t

dt′′

a(t′′)
v⃗ (x⃗fl(x⃗, t, t

′′), t′′) , (5)

and we use the square brackets and superscript nota-
tion [·](n) to mean that we perturbatively expand the
expression inside of the brackets and take the n-th or-
der piece.4 Neglecting baryons, as they are a small ef-
fect [27, 28], in Eq. (4), since δg is a Galilean scalar,
the equivalence principle implies that the set of func-
tions {Om} is given by all possible rotationally invariant
contractions of the dark-matter fields rij and pij , and
integrating the Om along the fluid element is the most
general way to write a non-local-in-time expression for δg.
All of the complicated details of galaxy-formation physics
is then encoded in the functions cOm

, which are a priori
unknown (from the EFT point of view) time-dependent
kernels, which physically can be thought of as the re-
sponse of the galaxy overdensity to a given field at a given

4 There was an interesting discussion [22] as to whether intrinsic
alignments (see [23] for an EFT description) of galaxies are most
affected by the gravitational field at late or early times [24–26].
Our non-local-in-time bias expansion Eq. (4) takes both possi-
bilities into account.
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time. The local-in-time expansion is given by setting
cOm

(t, t′) = cOm
(t)δD(t−t′)/H(t). Notice that we do not

include any time derivatives of rij or pij in the set {Om}
because these operators are not present in the strictly
local-in-time limit (i.e. they would be suppressed with
respect to other terms by H/ωshort ≪ 1 where 1/ωshort is
the time-scale of the relevant local-in-time physics) [18].
Thus, our expansion covers all Hubble-scale non-local-in-
time effects. From now on, in the list of functions {Om},
we identify the subscript m on Om to denote that the
function starts at order m, i.e. m = 3 for δ2θ, δ3, r2p, . . . .
In this way, the bias expansion at order n is reduced

to an algorithmic procedure. To create the list of seed
functions {Om}, we list all contractions up to n fac-
tors of rij and pij . We then iteratively Taylor expand
Om(x⃗fl(x⃗, t, t

′), t′) around x⃗ using the recursive definition
Eq. (5), and take the n-th order piece. After performing
this expansion, we end up with an expression that can
be cast in the following notation [21]

[Om(x⃗fl(x⃗, t, t
′), t′)](n) =

n−m+1∑
α=1

(
D(t′)

D(t)

)α+m−1

C(n)
Om,α(x⃗, t) .

(6)

The resulting bias functions C(n)
Om,α, which we say are in

the fluid expansion of the seed function Om, are defined
by the expansion in Eq. (6), whose form is guaranteed by
assuming the scaling time dependence of the dark-matter
fields Eq. (2), as well as the implied relation

C(n)
Om,α(x⃗, t) =

(
D(t)

D(t′)

)n

C(n)
Om,α(x⃗, t

′) . (7)

Plugging Eq. (6) into Eq. (4), and defining the expansion
coefficients

cOm,α(t) ≡
∫ t

dt′H(t′)cOm
(t, t′)

(
D(t′)

D(t)

)α+m−1

, (8)

we finally have the most general expansion of the over-
density at order n in terms of fields at the same time

δ(n)g (x⃗, t) =
∑
Om

n−m+1∑
α=1

cOm,α(t)C(n)
Om,α(x⃗, t) . (9)

There is in fact a much simpler way to obtain the bias

functions C(n)
Om,α, using recursion relations, which is an

additional key technical result of this work. While the
procedure described above is conceptually straightfor-
ward, it can be practically quite cumbersome (see the
derivation at fourth order in [21], for example). The
recursion relations come in two parts. The first is the
equal-time completeness relation

O(n)
m (x⃗, t) =

n−m+1∑
α=1

C(n)
Om,α(x⃗, t) , (10)

C(m)
Om,1

C(m+1)
Om,2 C(m+1)

Om,1

C(m+2)
Om,3 C(m+2)

Om,2 C(m+2)
Om,1

+

++

O(m)
m

O(m+1)
m

O(m+2)
m

=

=

=

FIG. 1. Diagrammatic representation of one way of using the
recursion relations Eq. (10) and Eq. (11) to determine the full set

of bias functions C(n)
Om,α in the fluid expansion of a seed function

Om. The red arrows indicate the use of the fluid recursion Eq. (11),
while the blue arrows indicate the use of the completeness relation
Eq. (10). Thus, the terms in the red shading (α < n−m+ 1) are
determined by the fluid recursion Eq. (11) and the terms in the
blue shading (α = n−m+ 1) are determined by the completeness
relation Eq. (10).

which is trivially obtained by setting t = t′ in Eq. (6),

and where O(n)
m is the standard expansion of Om at n-

th order in perturbations. The second, which captures
the consequences of expanding x⃗fl in Eq. (6), is the fluid
recursion

C(n)
Om,α(x⃗, t) = (11)

1

n− α−m+ 1

n−1∑
ℓ=m+α−1

∂iC(ℓ)
Om,α(x⃗, t)

∂i
∂2

θ(n−ℓ)(x⃗, t) ,

which is valid for n − α − m + 1 > 0. We explicitly
derive Eq. (11) in App. A. This recursion is reminiscent
of the famous dark-matter recursion relations [29], and
provides, for the first time, a full generalization to generic
biased tracers. We give a diagrammatic representation of
this recursion relation in Fig. 1.

It is worth stressing that, unlike other treatments of bi-
ased tracers (such as [30, 31] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (11) is a consequence of Galilean invariance
(i.e. expanding x⃗fl), not of the conservation of galaxies.

Since we have formally done the integral over t′ in
Eq. (8), one might wonder where in Eq. (9) the non-
local-in-time effect has gone. Comparing Eq. (9) to the
local-in-time expression

δ
(n)
g,loc(x⃗, t) =

∑
Om

cOm
(t)O(n)

m (x⃗, t) , (12)

we see that the difference is in the basis functions of the
expansion (which as we will discuss below control the
possible functional forms of the clustering signals), since
Eq. (9) is equivalent to Eq. (12) under the restriction
that, for all α, cOm,α(t) = cOm

(t).
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III. NON-LOCAL-IN-TIME BIAS IN LSS

We can now return to the main question posed by this
work: is it possible to directly measure the effects of non-
locality in time on galaxy clustering? In our perturbative
description, this is equivalent to the the following mathe-
matical question: does the basis for the non-local-in-time
expansion Eq. (9) span a larger space than the basis for
the local-in-time expansion Eq. (12)? The answer, as we
will show below, is yes.

As shown in [21], the non-local-in-time and local-in-
time expansions are indeed equivalent up to fourth order
in perturbations.5 However, from the findings of this
work, this seems to simply be a consequence of expanding
to low orders in perturbation theory where there are too
few independent spatially local and Galilean invariant
functional forms available, since non-locality-in-time is
generically expected in the bias expansion [18].

So, to discover a non-local-in-time effect, we look to
fifth order. In particular, we will now find the non-local-
in-time basis for the expansion in Eq. (9). To find the

fifth-order functions C(n)
Om,α, we form the set {Om} by

finding all rotationally invariant contractions of rij and
pij up to fifth order. Writing the first few terms, we have
{Om} = {δ, θ, δ2, δθ, θ2, r2, rp, p2, . . . }, and overall there
are 63 contractions with up to five factors.6 We then find

the functions C(n)
Om,α for n ≤ 5 either by expanding x⃗fl as

in Eq. (6), or, equivalently, using the recursion relations
Eq. (10) and Eq. (11). After this, there are 151 bias func-
tions for n = 5. However, as described in App. B, not
all of these functions are independent. In particular, we
find a set of 122 degeneracy equations for n = 5, which
means that there are 29 independent functions that form
the basis of the non-local-in-time expansion Eq. (9).7 We
provide all of the Fourier-space kernels relevant for the
fifth-order expansion, and confirm all degeneracy equa-
tions, in an associated auxiliary file.

Next, we consider the basis of bias functions for the
local-in-time expression Eq. (12). At fifth order, this ex-
pansion starts with 63 terms, however, as before, not
all of them are linearly independent. We find 37 inde-
pendent degeneracy equations, and hence 26 independent
functions for the local-in-time bias expansion at fifth or-
der. Indeed, this is three less than the non-local-in-time
expansion, and hence the galaxy-clustering signal at fifth

5 Focusing on up to fourth order, [16, 32] discussed how it is pos-
sible to map non-local-in-time terms into very special non-local-
in-space terms. The bases discussed there are degenerate with a
local-in-time and local-in-space one, though [21].

6 Here and in the rest of this work, since we work up to fifth order,
we have already taken into account degeneracies that come from

the fact that r
(1)
ij = p

(1)
ij in terms that start at fifth order. If we

do not do this, there are 130 contractions with up to five factors.
7 Using the Lagrangian basis expansion, [33, 34] derived the num-
ber of independent fifth-order biases as 29, which is in agreement
with our findings.

order is sensitive to whether or not galaxies form on time
scales of order Hubble.
We are now in a position to explicitly give the fifth-

order basis derived for this work. To be more concrete,
we can write the fifth-order galaxy expansion in a basis
with 26 elements that are local in time, and three that
are non-local in time. In this starting-from-time-locality
(STL) basis, we explicitly write

δ(5)g (x⃗, t) =

29∑
j=1

b̃j(t)L(5)
j (x⃗, t) . (13)

We choose the basis such that the elements with j =
1, . . . , 26 are a basis of the local expansion Eq. (12). Ex-

plicitly, we take L(5)
j = O(5)

m with the corresponding Om

given by

{δ, θ, δθ, θ2, r2, rp, p2, θ3, r2p, rp2, p3,
r2θ, rpθ, p2θ, rp3, rprp, rp2δ, r3δ2,

δ5, r3θ, rp2θ, rpδθ, r2θ2, rpθ2, δθ3, θ4} ,

(14)

for j = 1, . . . , 26. Thus, the non-locality in time is con-
tained in the final three basis elements, which we take to
be

L(5)
27 = C(5)

δ,5 , L(5)
28 = C(5)

r2,4 , L(5)
29 = C(5)

p3,3 . (15)

Non-zero b̃27, b̃28, and b̃29 can only come from non-local-
in-time physics, so we call them non-local-in-time bias
parameters.8 We connect this basis to the so-called ba-
sis of descendants and show how fourth- and lower-order
biases automatically consistently appear in Eq. (13) in
App. C.

To see more quantitatively how the non-local-in-time
bias parameters measure the time scale of galaxy forma-
tion, consider the expression Eq. (8) for the bias param-
eters. Assuming that the kernel cOm(t, t′) has support
over a time scale of order 1/ω and expanding around the
local-in-time limit, we have

cOm,α(t) ≈ cOm
(t)

(
1 + gOm,α(t)

H

ω
+ . . .

)
, (16)

where the . . . represents terms higher order in H/ω, and
gOm,α(t) ∼ O(1). Since the non-local-in-time bias pa-

rameters b̃27, b̃28 and b̃29 all vanish in the local-in-time
limit, they are proportional to (at least) H/ω. The size
of the deviation from the first term, which is the local-
in-time piece, is controlled by H/ω: if there is a sizable
deviation from the local-in-time limit, then ω ∼ H, and
thus the time scale of the kernel cOm

(t, t′) is of the order

8 Here we reference the size of the physical bias parameters, which
are generally made up of a combination of bare and counterterm
contributions.
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1/H.9 In our case, this happens if b̃27, b̃28, or b̃29 are
order unity. This in turn would mean that the formation
of the observed population of galaxies has been affected
by the state of the Universe up to a Hubble time ago,
and thus that it has formed on a time scale on the order
of the age of the Universe.

It can be illuminating to momentarily consider a sys-
tem that is truly local in time. In this case, as we have
discussed above, the bias parameters are expected to
scale like H/ωshort ≪ 1. However, in the EFT, higher-
order loops will generically contribute to the lower-order
bias parameters. Importantly, for a system that is truly
local in time, those loops are expected to shift the bias
parameters also by an amount that scales like H/ωshort.
Given, though, that the cold dark-matter fluid is itself
non-local in time [19, 20], we expect that higher-order
dark-matter loops will generically contribute ∼ O(1) to
the galaxy bias parameters. We remind the reader that
by galaxies in this work, we mean gravitationally-bound
structures that form around the non-linear scale at a
given Hubble time.

IV. OBSERVABLE SIGNATURES

Until now, we have focused on the perturbative galaxy
overdensity field itself. In large-scale structure analyses,
we typically compare to data using correlation functions
(or n-point functions if they contain n fields) of the over-
density fields of various tracers. Thus, one way to mea-
sure the non-local-in-time effect that we have discovered
in this work is in correlation functions. Since we found
that this effect arises at fifth order in perturbations, the
lowest order observables sensitive to it are the two-loop
two-point function through

⟨δ(5)g1 (x⃗1)δ
(1)
g2 (x⃗2)⟩ , (17)

the two-loop three-point function through

⟨δ(5)g1 (x⃗1)δ
(2)
g2 (x⃗2)δ

(1)
g3 (x⃗3)⟩ , (18)

the one-loop four-point function through

⟨δ(5)g1 (x⃗1)δ
(1)
g2 (x⃗2)δ

(1)
g3 (x⃗3)δ

(1)
g4 (x⃗4)⟩ , (19)

the one-loop five-point function through

⟨δ(5)g1 (x⃗1)δ
(2)
g2 (x⃗2)δ

(1)
g3 (x⃗3)δ

(1)
g4 (x⃗4)δ

(1)
g5 (x⃗5)⟩ , (20)

9 Of course, the measurement of a smaller deviation from the local-
in-time limit means that the formation time scale could be cor-
respondingly smaller. It could also mean that the theory is fine
tuned in the sense that higher-order loop contributions acciden-
tally largely cancel the lower-order biases. On the other hand,
it could also be that for a quasi-local-in-time theory, the coeffi-
cients of some non-local-in-time operators are accidentally large,
which we refer to as being anomalous. These accidents become
more and more unlikely as one measures more parameters.

and the tree-level six-point function through

⟨δ(5)g1 (x⃗1)δ
(1)
g2 (x⃗2)δ

(1)
g3 (x⃗3)δ

(1)
g4 (x⃗4)δ

(1)
g5 (x⃗5)δ

(1)
g6 (x⃗6)⟩ , (21)

where we have used the subscript gi to denote possibly
different tracer samples (each of which can have a differ-
ent set of bias parameters), and we have taken all fields
to be at the same time t and dropped that argument to
remove clutter.
As two explicit examples, consider the contributions

to the two-loop two-point function Eq. (17) and the
tree-level six-point function Eq. (20) for gi = g for
i = 1, . . . , 6. Using the STL basis Eq. (13), we have
the explicit non-local-in-time contributions

29∑
j=27

b̃j⟨L(5)
j (x⃗1)δ

(1)
g (x⃗2)⟩ , (22)

29∑
j=27

b̃j⟨L(5)
j (x⃗1)δ

(1)
g (x⃗2)δ

(1)
g (x⃗3)δ

(1)
g (x⃗4)δ

(1)
g (x⃗5)δ

(1)
g (x⃗6)⟩ ,

to the two-point and six-point functions respectively. As
we have seen, these would not be present in the galaxy
correlation functions if galaxies formed in a local-in-time
way. This makes them concrete, direct, observable sig-
natures of the formation time of galaxies.
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Appendix A: Proof of fluid recursion

To derive Eq. (11), we will want to take d/dt of Eq. (6),
which means that we will need to know ∂tx⃗fl(x⃗, t, t

′). To
find that, we notice that by definition the fluid element
satisfies the composition rule

x⃗fl (x⃗fl(x⃗, tin, t), t, t
′) = x⃗fl(x⃗, tin, t

′) . (A1)

Since the right-hand side is independent of t, this implies

d

dt
x⃗fl (x⃗fl(x⃗, tin, t), t, t

′) = 0 . (A2)

Using the chain rule, and

d

dt
x⃗fl(x⃗, tin, t) =

1

a(t)
v⃗(x⃗fl(x⃗, tin, t), t) , (A3)

which follows immediately from the definition of x⃗fl

Eq. (5), this implies

0 =
[ ∂

∂t
x⃗fl(y⃗, t, t

′)+

vi(y⃗, t)

a(t)

∂

∂yi
x⃗fl(y⃗, t, t

′)
]∣∣∣

y⃗=x⃗fl(x⃗,tin,t)
.

(A4)
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Since the initial tin is arbitrary, we can take tin = t, which
gives (

∂

∂t
+

vi(x⃗, t)

a(t)

∂

∂xi

)
x⃗fl(x⃗, t, t

′) = 0 . (A5)

This equation simply says that the convective derivative
of the fluid element is zero, which makes intuitive sense
since the convective derivative is defined to be along the
fluid flow.

Now we take d/dt of both sides of Eq. (6). The right-
hand side is simple, and we have (defining Dα

m(t′, t) ≡
(D(t′)/D(t))α+m−1 to reduce clutter)

D(t)

Ḋ(t)

d

dt

n−m+1∑
α=1

Dα
m(t′, t)C(n)

Om,α(x⃗, t) = (A6)

n−m+1∑
α=1

Dα
m(t′, t)(n− α−m+ 1)C(n)

Om,α(x⃗, t) ,

where we have used Eq. (7) for the time dependence of

C(n)
Om,α.
On the left-hand side, we have

d

dt
[Om(x⃗fl(x⃗, t, t

′), t′)](n) =

[
d

dt
Om(x⃗fl(x⃗, t, t

′), t′)

](n)
=

[
∂

∂t
xi
fl(x⃗, t, t

′)
∂

∂yi
Om(y⃗, t′)

∣∣∣
y⃗=x⃗fl(x⃗,t,t′)

](n)
=

[
−vj(x⃗, t)

a(t)

∂

∂xj
xi
fl(x⃗, t, t

′)
∂

∂yi
Om(y⃗, t′)

∣∣∣
y⃗=x⃗fl(x⃗,t,t′)

](n)
=

[
−vj(x⃗, t)

a(t)

∂

∂xi
Om(x⃗fl(x⃗, t, t

′), t′)

](n)
(A7)

=
Ḋ(t)

D(t)

[
∂i
∂2

θ(x⃗, t)
∂

∂xi
Om(x⃗fl(x⃗, t, t

′), t′)

](n)
=

Ḋ(t)

D(t)

n−1∑
ℓ=m

∂i
∂2

θ(n−ℓ)(x⃗, t)
∂

∂xi
[Om(x⃗fl(x⃗, t, t

′), t′)]
(ℓ)

,

where we have used Eq. (A5) to go from the second to
third line, the chain rule to go from the third to fourth
line, and the definition of θ from Eq. (1) in the fifth line.

Now, we use Eq. (6) to replace [Om(x⃗fl(x⃗, t, t
′), t′)]

(ℓ)
to

get

D(t)

Ḋ(t)

d

dt
[Om(x⃗fl(x⃗, t, t

′), t′)](n) (A8)

=

n−1∑
ℓ=m

ℓ−m+1∑
α=1

Dα
m(t′, t)

∂i
∂2

θ(n−ℓ)(x⃗, t)∂iC(ℓ)
Om,α(x⃗, t)

=

n−m∑
α=1

Dα
m(t′, t)

n−1∑
ℓ=m+α−1

∂i
∂2

θ(n−ℓ)(x⃗, t)∂iC(ℓ)
Om,α(x⃗, t)

where we have simply changed the order of the sums
between the second and third lines. Equating the coeffi-
cients of each power of D(t′) in Eq. (A6) and Eq. (A8)
then gives our recursion relation Eq. (11).

Appendix B: Degeneracy equations

As mentioned in the main text, not all of the bias func-

tions C(n)
Om,α at a given n are linearly independent in the

sense that

∑
Om

n−m+1∑
α=1

d
(n)
i,Om,αC

(n)
Om,α(x⃗, t) = 0 , (B1)

for some time-independent coefficients d
(n)
i,Om,α for i =

1, . . . , N
(n)
d , where N

(n)
d ≡ rank[d(n)] is the number of in-

dependent degeneracy equations. In particular, we find

N
(5)
d = 122, and [21] found N

(4)
d = 73. Additionally,

letting N
(n)
C be the number of C(n)

Om,α functions that re-
sult after the procedure described in the main article, we

find N
(5)
C = 151 and [21] found N

(4)
C = 88. Finally,

using N
(n)
b ≡ N

(n)
C − N

(n)
d to denote the number of ba-

sis elements at order n, this means that N
(5)
b = 29 and

N
(4)
b = 15.10 We confirm all of the fifth-order degeneracy

equations in the associated ancillary file.
Thus, one can solve the degeneracy equations Eq. (B1)

in terms of N
(n)
b basis elements, which we denote gener-

ically as E(n)
j (x⃗, t) for j = 1, . . . , N

(n)
b . Since this is a

basis, all of the original functions can be written in terms
of it, so we have

C(n)
Om,α(x⃗, t) =

N
(n)
b∑

j=1

A
(n)
Om,α,j E

(n)
j (x⃗, t) , (B2)

for some time-independent coefficientsA
(n)
Om,α,j . Plugging

Eq. (B2) into Eq. (9) then gives

δ(n)g (x⃗, t) =

N
(n)
b∑

j=1

e
(n)
j (t)E(n)

j (x⃗, t) , (B3)

where e
(n)
j (t) =

∑
Om

∑n−m+1
α=1 cOm,α(t)A

(n)
Om,α,j . The

coefficients ej(t) are called bias parameters, and we have
now written the galaxy overdensity in terms of the min-
imal number of linearly independent functions.

Appendix C: Basis of descendants

Another, perhaps more natural, choice of basis func-
tions is the so-called basis of descendants [35], where if

C(n)
Om,α is used at order n, then C(n+1)

Om,α+1 is used at order

10 For completeness, we also haveN
(3)
b = 7, N

(2)
b = 3, andN

(1)
b = 1

with this method [35].
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n+ 1. We write the fifth-order expansion in the basis of
descendants as

δ(5)g (x⃗, t) =

29∑
j=1

bj(t)B(5)
j (x⃗, t) . (C1)

As shown below, the first 15 terms in Eq. (C1) are
determined by the fourth-order terms. That is, for j =
1, . . . , 15, the bj in Eq. (C1) are the same as those in [21],
and the basis functions are given by

B(5)
j = B(4)

j

∣∣∣
C(4)

Om,α→C(5)
Om,α

(C2)

where the B(4)
j are given explicitly in [21]. For the

new elements derived here, i.e. j = 16, . . . , 29, we have

B(5)
j = C(5)

Om,α, where the indices Om, α take the following
values for the given j

j : 16 17 18 19 20 21 22

Om, α : δ, 5 δ2, 4 r2, 4 δ3, 3 r3, 3 r2δ, 3 δ4, 2

j : 23 24 25 26 27 28 29

Om, α : r3δ, 2 r4, 2 δ5, 1 r5, 1 r4δ, 1 r3δ2, 1 p3, 3

.

(C3)
We also note that fifth order is the first time that ∂iv

j

has to be used as a seed function to form a basis, for

example through C(5)
p3,3 above. This is contrasted with

the case at fourth order where ∂i∂jΦ is enough [21].

Converting between the STL basis and the basis
of descendants, we find the following expression for
the non-local-in-time bias parameters and the basis-of-
descendants bias parameters

b̃27 = b1 − 4b2 + 6b3 − 4b4 + 90b8 − 76b9 + b16 ,

b̃28 = b18 − b9 ,

b̃29 = −4b8
3

+
4b9
3

− 10b11
3

+
7b20
3

+ b29 .

(C4)

Appendix D: Lower-order bias parameters

Here we show how bias parameters at fourth order ap-
pear automatically as biases at fifth order. For notational
convenience, in this Appendix we will use Γ as the com-

bined index Om, α, as in C(n)
Γ ≡ C(n)

Om,α, and Γn as the
set of the relevant Om and α at order n, as defined in
the sum in Eq. (9). We start with the fifth-order degen-
eracy equations. It turns out, as we explicitly check in
the ancillary file, that the full set of degeneracy equations

satisfied by C(5)
Γ , Eq. (B1) with n = 5, can be put in the

block form

0 =
∑
Γ∈Γ4

d
(4)
i,ΓC

(5)
Γ (x⃗, t) +

∑
Γ∈Γ5\Γ4

d̃
(5)
i,ΓC

(5)
Γ (x⃗, t) , (D1)

for i = 1, . . . , N
(5)
d , with d

(4)
i,Γ = 0 for i ∈ [N

(4)
d + 1, N

(5)
d ]

and d̃
(5)
i,Γ = 0 for i ∈ [1, N

(4)
d ]. For i = 1, . . . , N

(4)
d , the

second term on the right-hand side of Eq. (D1) vanishes,

so the C(5)
Γ with Γ ∈ Γ4 satisfy the same equations as the

fourth-order functions, Eq. (B1) with n = 4. Therefore
we can write them in an analogous way to the n = 4 case
of Eq. (B2), that is

C(5)
Γ (x⃗, t) =

N
(4)
b∑

j=1

A
(4)
Γ,j E

(5)
j (x⃗, t) , (D2)

for Γ ∈ Γ4, with

E(5)
j ≡ E(4)

j

∣∣∣
C(4)

Γ →C(5)
Γ

, (D3)

for j = 1, . . . , N
(4)
b . Said another way, since the E(4)

j are

just linear combinations of some C(4)
Γ , we define E(5)

j for

j = 1, . . . , N
(4)
b to be the same expressions as E(4)

j , but

with C(4)
Γ replaced with C(5)

Γ , i.e.

E(4)
j (x⃗, t) =

∑
Γ∈Γ4

β
(4)
j,ΓC

(4)
Γ (x⃗, t) ,

E(5)
j (x⃗, t) =

∑
Γ∈Γ4

β
(4)
j,ΓC

(5)
Γ (x⃗, t) ,

(D4)

for some coefficients β
(4)
j,Γ.

Now, the bias expansion at fifth order is

δ(5)g (x⃗, t) =
∑
Γ∈Γ5

cΓ(t)C(5)
Γ (x⃗, t) . (D5)

The sum above can be split into a sum over Γ ∈ Γ4 and
a sum over Γ ∈ Γ5 \ Γ4. For the sum over Γ4, we have

∑
Γ∈Γ4

cΓ(t)C(5)
Γ (x⃗, t) =

N
(4)
b∑

j=1

e
(4)
j (t)E(5)

j (x⃗, t) , (D6)

where we have used Eq. (D2) and the definition of e
(4)
j (t)

below Eq. (B3). Thus, the degeneracy equations Eq. (D1)
ensure that it is exactly the fourth-order bias parameters

e
(4)
j (t) that appear in Eq. (D6). Then, for the sum over

Γ ∈ Γ5 \ Γ4 in Eq. (D5), one can solve for the remain-

ing N
(5)
b − N

(4)
b basis elements using the rest of the de-

generacy equations in Eq. (D1), and this will introduce
the additional bias parameters that were not present at
fourth order. Since this is true for generic bias parame-

ters e
(4)
j (t), it is true in particular for the basis of descen-

dants bias parameters b
(4)
j (t) in Eq. (C1).
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