
Physics-inspired spatiotemporal-graph AI ensemble

for the detection of higher order wave mode signals

of spinning binary black hole mergers

Minyang Tian1,2,3, E. A. Huerta1,2,4, Huihuo Zheng5, and

Prayush Kumar6

1 Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois

60439, USA
2 Department of Physics, University of Illinois at Urbana-Champaign, Urbana,

Illinois 61801, USA
3 NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
4 Department of Computer Science, The University of Chicago, Chicago, Illinois

60637, USA
5 Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois

60439, USA
6 International Centre for Theoretical Sciences, Tata Institute of Fundamental

Research, Bangalore 560089, India

E-mail: mtian8@illinois.edu

Abstract. We present a new class of AI models for the detection of quasi-circular,

spinning, non-precessing binary black hole mergers whose waveforms include the higher

order gravitational wave modes (ℓ, |m|) = {(2, 2), (2, 1), (3, 3), (3, 2), (4, 4)}, and mode

mixing effects in the ℓ = 3, |m| = 2 harmonics. These AI models combine hybrid dilated

convolution neural networks to accurately model both short- and long-range temporal

sequential information of gravitational waves; and graph neural networks to capture

spatial correlations among gravitational wave observatories to consistently describe and

identify the presence of a signal in a three detector network encompassing the Advanced

LIGO and Virgo detectors. We first trained these spatiotemporal-graph AI models

using synthetic noise, using 1.2 million modeled waveforms to densely sample this signal

manifold, within 1.7 hours using 256 NVIDIA A100 GPUs in the Polaris supercomputer

at the Argonne Leadership Computing Facility. This distributed training approach

exhibited optimal classification performance, and strong scaling up to 512 NVIDIA

A100 GPUs. With these AI ensembles we processed data from a three detector network,

and found that an ensemble of 4 AI models achieves state-of-the-art performance for

signal detection, and reports two misclassifications for every decade of searched data.

We distributed AI inference over 128 GPUs in the Polaris supercomputer and 128 nodes

in the Theta supercomputer, and completed the processing of a decade of gravitational

wave data from a three detector network within 3.5 hours. Finally, we fine-tuned these

AI ensembles to process the entire month of February 2020, which is part of the O3b

LIGO/Virgo observation run, and found 6 gravitational waves, concurrently identified

in Advanced LIGO and Advanced Virgo data, and zero false positives. This analysis

was completed in one hour using one NVIDIA A100 GPU.
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Introduction

The development of AI methodologies for gravitational wave astrophysics is a booming

enterprise. Since 2017 [1, 2, 3, 4], there has been a rapid development of AI methods

and approaches to create, test and deploy production scale tools for gravitational wave

detection. These novel AI methodologies are being explored in earnest to provide

alternatives to well established, though compute intensive and poorly scaling, signal

processing tools, such as template matching algorithms, which utilize large sets of

modeled waveforms to search for signals in gravitational wave data [5, 6]. The first class

of AI models for gravitational wave detection were designed to describe 2D gravitational

wave signal manifolds, comprising the masses, (m1,m2), of non-spinning, quasi-circular

binary black hole mergers, and which were capable of detecting true gravitational wave

signals with a false positive rate of one misclassification for every 100 seconds of searched

data [7, 8, 9]. The development of these AI models required training datasets with a few

tens of thousands of modeled signals, and a couple of inexpensive GPUs to complete

the training within a few hours. These findings sparked the interest of the gravitational

wave community, leading to the organic creation of a vibrant, international community

of researchers who are harnessing advances in AI and computing to address timely and

pressing challenges in gravitational wave astrophysics [10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27]. These seminal ideas have been applied for signal

detection [28, 29, 30] and forecasting [31, 32, 33] of binary neutron stars, and for the

detection and forecasting of neutron star-black hole systems [31, 34]. Comprehensive

reviews of this active area of research may be found in Refs. [35, 36, 37], while Ref. [38]

provides a wider view on other problems tackled in the literature with machine-learning

methods such as detector noise characterisation and glitch classification, core-collapse

supernovae detection, parameter estimation, etc.

Promoting these disruptive ideas into production scale frameworks for gravitational

wave discovery requires innovation at the interface of AI and supercomputing [39]. This

is because AI models that describe compact binary systems that may be detectable

by ground-based interferometric detectors span a high dimensional signal manifold.

Assuming astrophysical compact binary sources that spiral into each other following

a series of quasi-circular orbits, and whose individual components are spinning and

non-precessing, may be described in terms of four parameters, (m1,m2, s
z
1, s

z
2). This

4D signal manifold needs to be smartly and densely sampled to train AI models so as

to capture the physics of these gravitational wave sources. This then translates into

training datasets that have tens of millions of modeled waveforms, i.e., Terabyte size

datasets. Therefore, in order to reduce time-to-solution, it is critical to use distributed

training algorithms that optimally utilize between hundreds to thousands of GPUs in

supercomputing platforms. Furthermore, these methodologies enable the design of AI

surrogates that incorporate physics and math principles in their architecture, training

and optimization. In parallel to these development, it is essential to create new methods

to improve the sensitivity and performance of state-of-the-art AI models.
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Recent accomplishments at the interface of physics inspired AI and supercomputing

include the design of physics inspired AI architectures, training and optimization

schemes that leverage thousands of GPUs [40, 41]. These AI surrogates have been used

to process from seconds- to years-long datasets of gravitational wave data to demonstrate

that AI can be used to search for and find gravitational wave signals with an average false

positive rate of one misclassification for every month of searched data [42, 43]. It has

also been demonstrated that when these AI surrogates are optimized for accelerated

inference with NVIDIA TensorRT, and the inference is distributed over the entire

ThetaGPU supercomputer at the Argonne Leadership Computing Facility, consisting

of 160 NVIDIA A100 Tensor Core GPUs, gravitational wave data can be processed over

52, 000X faster than real-time assuming a two detector network comprising the twin

Advanced LIGO detectors [44].

Since AI advances in gravitational wave astrophysics exhibit great promise [21,

45, 34, 33, 46, 18, 19, 47], in this article we contribute to this line of research by

designing AI architectures, training and optimization methods that incorporate physics

and geometrical principles involved in the detection of gravitational waves. In practice,

we have designed neural networks that capture both short- and long-range temporal

dependencies of gravitational wave signals with hybrid dilated convolution networks.

We also incorporate geometrical and spatial considerations of signal detection in terms

of the location of gravitational wave detectors through graph neural networks. We show

that this approach improves the sensitivity of AI ensembles for signal detection, while

also reducing the number of false positives to 7 misclassification for every decade of

searched data when using an ensemble of two AI models, and to 2 misclassification for

every decade of searched data when using an ensemble of 4 AI models. This is the first

time AI methods achieve this level of accuracy over decade-long datasets.

We showcase this approach in the context of a network of three ground-based

gravitational wave detectors encompassing the twin Advanced LIGO and Advanced

Virgo detectors. We present results for an astrophysical population of quasi-circular,

spinning, non-precessing binary black hole mergers. We show how to reduce time-

to-solution by using distributed training on the Polaris supercomputer at the Argonne

Leadership Supercomputing Facility, in which we used 256 NVIDIA A100 GPUs to train

AI models within 1.7 hours, while also ensuring optimal classification performance. We

also demonstrate that our approach presents strong scaling up to 512 NVIDIA A100

GPUs. We also used 128 NVIDIA A100 GPUs in Polaris and 128 nodes in the Theta

supercomputer to process a decade’s worth of simulated advanced gravitational wave

data from a three detector networks within 3.5 hours, i.e., 25, 000X faster than real-time.

Results

We present a novel approach that brings together physical and geometrical

considerations in the design and training of AI models for gravitational wave detection.

We use a hybrid dilated convolution network (HDCN) to capture long-range temporal

https://www.alcf.anl.gov/alcf-resources/theta
https://www.alcf.anl.gov/polaris
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dependencies that are crucial for signal prediction, and combine it with a graph neural

network (GNN) to merge prediction embeddings from a three detection network—

Advanced LIGO Livingston (L) and Hanford (H); and Advanced Virgo (V)—considering

their spatial relationship.

We used the IMRPhenomXPHM waveform approximant [48] to model signals that

include the higher-order wave modes (ℓ, |m|) = {(2, 2), (2, 1), (3, 3), (3, 2), (4, 4)}, and
mode mixing effects in the ℓ = 3, |m| = 2 harmonics for quasi-circular, spinning, non-

precessing binary black holes. Given the large amount of modeled waveforms needed

to optimally sample this signal manifold, we introduce novel approaches to train these

AI models at scale in modern computing environments. We showcase how to use these

AI models to search for modeled waveforms in synthetic, recolored noise; as well as

in real gravitational wave data from the third Observing Run (O3) taken from the

Gravitational Wave Open Science Center [49]. To the best of our knowledge, these are

the first type of AI models designed to search for higher order gravitational wave modes

in real gravitational wave data.

In the Methods section we describe in detail the datasets and modeled waveforms

used for these studies, and approaches we have developed to train AI models at scale,

and to enable hyper-efficient AI inference of large scale gravitational wave datasets in

leadership class supercomputers.

We present results that quantify the ability of our AI models to search for and find

gravitational waves in a decade-long gravitational wave dataset in which we consider a

three detector network comprising the twin Advanced LIGO detectors and the Advanced

Virgo detector, assuming an astrophysical population of quasi-circular, spinning, non-

precessing binary black hole mergers.

Quasi-circular, spinning, non-precessing binary black hole mergers

We consider a binary black hole population described by 4 parameters, namely,

(m1,m2, s
z
1, s

z
2). The individual masses span the range m{1,2} ∈ [3M⊙, 50M⊙], while

their individual spins cover the range sz{1,2} ∈ [−0.9, 0.9]. To instill the physics of these

astrophysical sources into our AI surrogates, we have produced datasets of modeled

waveforms using the IMRPhenomXPHM model [48], which we used to incorporate higher

order wave modes in the modeling of binary black hole mergers. We also used this model

since it facilitates the production of modeled waveforms at scale in modern computing

environments. Here, we used three independent, non-overlapping datasets: the training

dataset has 1.2 million waveforms, whereas the validation and test sets have 300,000

modeled waveforms.

These waveforms are then curated to simulate a variety of astrophysically motivated

scenarios. We do this by using tools provided by the open-source PyCBC library [50] to

uniformly sample the masses and individual spins of binary components, as well as the

various angles that describe the sky location of these sources, except for the inclination

angle for which we use a sin (inclination) distribution. For signal-to-noise ratios (SNRs)
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we use a uniform volume prior. This approach ensures that AI models are capable

of correctly identifying gravitational waves that may be produced in a wide variety of

astrophysical scenarios. Once our AI models are fully trained, we test them with new

datasets that have not seen by these AI models during training. These new datasets

contain either pure noise, or noise plus injected signals that simulate detection scenarios.

Figure 1 presents two types of metrics we used to quantify the performance of our AI

models for signal detection, i.e., the Receiver Operating Characteristic (ROC) curve and

the Precision-Recall (PR) curve. Therein we present results for three cases, in which

we construct ensembles that include, 2 AI models (top row), 3 AI models (center row),

and 4 AI models (bottom row), respectively.

To create the ROC curve, we computed the true positive rate against the false

positive rate as estimated from the output of our AI ensembles when we use them to

process a decade-long dataset that describes a three detector network that comprises

the Advanced LIGO and Advanced Virgo detectors. As mentioned before, the test

set includes 300,000 modeled waveforms to quantify the ability of AI ensembles to

correctly identify modeled waveforms, and discard other noise anomalies. To produce

the PR curve, we consider that PR = TP/ (TP + FP), where TP and FP stand for True

Positives and False Positives, respectively. Key results we extract from these studies

include the following:

• Figure 1 shows that AI’s precision to detect gravitational waves improves as we

increase the number of AI models in the ensemble (right column). At the same

time, there is a marginal reduction in the true positive rate, in particular for low

SNR signals (both left and right column).

• We provide key figures of merit in Table 1. Therein we show that a 2 AI model

ensemble reports 7 false positives per decade, a 3 AI model ensemble reports 3 false

positives per decade, while a 4 AI model ensemble produces 2 misclassifications

per decade of searched data. We also present the Area Under the Curve (AUC)

for the ROC and PR curves for gravitational wave signals in our 300,000 test

set with cumulative three detector network SNR1 = 8.4 and SNR2 = 10.6. We

selected these cumulative three detector network SNR values since they provide a

fair representation of the bulk of events reported in the Gravitational Wave Open

Science Center [51]. These results show that as we consider larger AI ensembles

there is marginal decrease in the ROC AUC and PR AUC for low SNR signals,

while signals with SNR2 = 10.6 have a negligible change.

This work significantly outperforms recent results in the literature [43, 44], in which

AI models were used to process a 5 year-long dataset. Here we significantly improve

the classification performance of those AI models, both in terms of improving the true

positive rate for signals across SNRs, and with a very significant improvement for low

and moderate SNR signals (compare these findings to those in Figure 4 in [43]). We

also reduce the number of misclassifications from 1 per month to 2 per decade. This is

the first time AI reaches this level of accuracy to correctly tell apart gravitational waves

from other noise anomalies.
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Figure 2. Classification performance of AI ensembles to detect quasi-circular, spinning, non-precessing black hole
mergers. As Figure 1, but now for a population of quasi-circular, spinning, non-precessing binary black hole mergers.

6/16

Figure 1. Classification performance of AI ensembles to detect quasi-

circular, spinning, non-precessing black hole mergers. Classification

performance in terms of the Receiver Operating Characteristic (ROC) curve, and the

Precision-Recall (PR) curve for ensembles that include 2 AI models (top row), 3 AI

models (center row), and 4 AI models (bottom row). These results were produced

using a decade-long gravitational wave test set, for the Advanced LIGO and Advanced

Virgo three detector network, in which we injected 300,000 modeled binary black hole

waveforms that cover a broad SNR range.
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Table 1. Classification performance of AI ensembles that include 2, 3 or 4 AI models

(left column). Here we consider a population of quasi-circular, spinning, non-precessing

binary black hole mergers. FP presents the number of false positives reported by the

AI ensembles upon processing a decade-long gravitational wave test set that describes a

three detector network comprising the Advanced LIGO and Advanced Virgo detectors,

and in which we injected 300,000 modeled waveforms that cover a broad range of signal-

to-noise ratios (SNRs). We also present additional figures of merit, namely, the Area

Under the Curve (AUC) for the Receiver Operating Characteristic (ROC) curve, and

the Precision-Recall (PR) curve for two cumulative three detector network SNR values

that represent the bulk of events detected thus far by Advanced LIGO and Advanced

Virgo, i.e., SNR1 = 8.4, and SNR2 = 10.6—see also Figure 1.

# of models FP ROC AUC PR AUC

SNR1 SNR2 SNR1 SNR2

2 7 0.9818 0.9929 0.9636 0.9857

3 3 0.9730 0.9894 0.9460 0.9789

4 2 0.9649 0.9855 0.9297 0.9710

In brief, AI ensembles trained with modeled waveforms that describe quasi-circular,

spinning, non-precessing binary black hole mergers provide optimal results. This is

because these AI models are exposed to signals with more complex morphology and

time-evolution, and thus are better equipped at telling apart true signals from other

noise anomalies. Again, if compare these results to those presented in Refs. [43, 44],

we notice that the AI models and computational methods we introduce in this paper

significantly improve the capabilities of AI for signal detection by enhancing its precision

and accuracy, and by significantly reducing the number of false positives over long

datasets.

Results with synthetic noise: trends and patterns. In the results above, we notice that

there is a trade-off in true positive rate and false positive rate that is driven by the size

of the ensembles. As we increase the number of AI models, the precision increases, i.e.,

we find less false positives. At the same time, the true positive rate also marginally

decreases. Another factor at play here is that we are combining several AI models that

share the same architecture, and whose initial weights have been randomly initialized for

training and optimization. These three factors affect the ROC AUC and PR AUC. Note,

though, that these differences are ≤ 3%, which is well within the range of fluctuations

in performance due to training and optimization.

AI ensembles on O3b data

In the results presented above, we considered a detector network whose individual

components have comparable sensitivity. We now explore the application of our AI

ensembles for O3b gravitational wave data in which the H, L and V detectors reported

a binary neutron star inspiral range of 135 Mpc, 115 Mpc, and 50 Mpc, respectively [52].
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These disparate sensitivities mean that our AI models will now have to deal with two

input channels that provide comparable outputs, HL, while another channel, V, will

provide noisier outputs. Since our AI architecture aggregates the output predictions

from each H, L and V detector, this means that our AI models may get confused

when H&L predictions agree on the existence of a potential event, while V may flag

it inconsistently as a positive or negative sample. Notwithstanding these significant

changes in the original scope and design of our AI models, we have fine-tuned our AI

models to search for HLV events in O3b data.

In practice, we selected O3b data covering the GPS times 1264291218 through to

1267056018. For training purposes, we extracted three separate L, H, and V data

segments, which are 4,096 seconds long, and have the following GPS start times:

1264685056, 1265528832 and 1266200576. We estimated training PSDs for L, H, and V

using these three 4,096 second long segments. To produce AI ensembles with real data,

we considered the training dataset of 1.2 million higher order wave modes that describe

quasi-circular, spinning, non-precessing binary black hole mergers.

We then fine-tuned a suite of 20 AI models with these real datasets.

Each of these models was fine-tuned within 320 minutes using 48 NVIDIA

A100 GPUs in the Polaris supercomputer. We selected the top 6 AI clas-

sifiers and used them to process data from February 2020. Our find-

ings indicate that this AI ensemble can identify the following 6 gravita-

tional wave events: GW200129 065458 1264314069, GW200208 130117 1265200048,

GW200209 085452 1265271663, GW200216 220804 1265924055,

GW200219 094415 1266138626, and GW200224 222234 1266616125. Our AI ensemble

also reported no false positives, as shown in Figure 2.

Figure 2. Classification performance of AI ensemble throughout Febru-

ary 2020. Our 6 AI model ensemble was able to identify 6 HLV events

in February 2020 with no false positives. The detected events from left

to right are: GW200129 065458 1264314069, GW200208 130117 1265200048,

GW200209 085452 1265271663, GW200216 220804 1265924055,

GW200219 094415 1266138626, and GW200224 222234 1266616125.
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Table 2. HLV events detected by six different detection pipelines using data from

the O3b run throughout February 2020. Note that single detection triggers are not

included here.

HLV Events AI cWB GstLAL MBTA PyCBC-broad PyCBC-BBH

GW200129 065458 1264314069 ✓ ✓ ✓ ✓
GW200208 130117 1265200048 ✓ ✓ ✓ ✓ ✓
GW200209 085452 1265271663 ✓ ✓ ✓ ✓ ✓
GW200216 220804 1265924055 ✓ ✓ ✓ ✓ ✓
GW200219 094415 1266138626 ✓ ✓ ✓ ✓ ✓ ✓
GW200224 222234 1266616125 ✓ ✓ ✓ ✓ ✓ ✓

Table 3. Signal detection comparison between our AI ensemble and PyCBC analyses

for 10 events reported in Ref. [52] for O3b data covering the GPS times 1264291218

through to 1267056018. The data used for this analysis is open source data available

at the Gravitational Wave Open Science Center [49].

HLV Events AI # False Positives PyCBC # False Positives

GW200129 065458 1264314069 ✓ 0 ✓ 307

GW200202 154313 1264691364 0 239

GW200208 130117 1265200048 ✓ 0 ✓ 284

GW200208 222617 1265233948 0 323

GW200209 085452 1265271663 ✓ 0 291

GW200210 092254 1265359745 0 290

GW200216 220804 1265924055 ✓ 0 284

GW200219 094415 1266138626 ✓ 0 219

GW200220 061928 1266212739 0 231

GW200224 222234 1266616125 ✓ 0 ✓ 273

Quantitative comparison to other signal detection pipelines with real data

We can readily compare the output of our AI ensemble with other established pipelines

for gravitational wave detection for the O3b data we analyzed above. These results

are summarized in Table 2. It is worth pointing out that while the template-matching

and template-agnostic pipelines listed in Table 2 benefit from additional information

such as data calibration, data quality information, and data cleaning, our AI ensembles

are trained, validated and tested using available data at the Gravitational Wave Open

Science Center [49]. Thus, we have carried out an additional comparison between PyCBC

and our AI ensemble using open source data as is.

To carry out this analysis, we analyzed 4096s of HLV data around each of the 10

events reported in Ref. [52] for O3b data covering the GPS times 1264291218 through

to 1267056018. Using PyCBC version 32498060a5ef01fad606fe0a3e28b1a632adff30 (Nov

6, 2023), we computed the matched-filtering integral from 20Hz with the data and

templates being sampled at 2048Hz. We used IMRPhenomD waveform templates [53]

with a bank that covers the black hole mass range m{1,2} ∈ [3M⊙, 50M⊙], and aligned

individual spins sz{1,2} ∈ [−0.9, 0.9] with a minimal match of 97%. The search estimates
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the noise power spectral density over 512 second chunks of data, and takes the median

over all chunks. Other technical details, including the ranking statistic used and

methodology to compute the significance of triggers are as used in LVK analyses [52].

Note that our AI ensemble is designed to consider aligned individual spins and higher

order modes, which are not considered in this PyCBC since it would considerably increase

its computational cost.

The PyCBC runs for each of the 4096s long segments include filtering, coincidence

finding, ranking of events, and a small number of injections to determine the horizon

range of the search. Each individual analysis was completed in 4.5 hours using 4 CPUs

with 8GB RAM. AI inference on each of these segments was completed in 20.95s with

one NVIDIA A100 GPU. We summarize the findings of this analysis in Table 3. Therein

we notice that our AI ensemble can identify 6 HLV gravitational wave events with no

misclassifications. PyCBC can identify 3 gravitational wave events, and each has a sizeable

list of false positives, which are directly provided by PyCBC, and correspond to coincident

triggers present in all three detectors, HLV, that have a minimum individual detector

SNR of 5. We took a closer look at the 4 events that our AI ensemble did not find, and

discovered that:

• GW200202 154313 1264691364. According to Ref. [52], this event had individual

detector SNR of 4.6, 10, and 2.4 for H, L, and V, respectively, for the GstLAL

pipeline [6]. Since our AI model aggregates the predictions from the three detector

outputs, this event went unnoticed for both the H and V nodes, and thus marked

as noise.

• GW200208 222617 1265233948. As before, according to Ref. [52], this event had

individual detector SNR of 5.6, 5.7, and 2.1 for H, L, and V, respectively, for the

GstLAL pipeline [6]. This event went unnoticed for V and thus marked as noise.

• GW200210 092254 1265359745. This is a neutron star-black hole system, outside

of the parameter space that we considered in this study.

• GW200220 061928 1266212739. The masses of this event are out of the range we

considered to train our AI models.

In brief, this analysis indicates that our AI ensembles may greatly benefit from using

additional information to further increase their detection capabilities, i.e., data quality

information, data cleaning, and other methodologies used in established gravitational

wave detection pipelines. We also learn that AI methods already provide the means

to search for gravitational wave signals with very complex morphology at minimal

computational cost.

Methods

Here we describe in detail the datasets, AI architectures, training and optimization

schemes used to create our AI models.
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Datasets. We used the IMRPhenomXPHM waveform model [48] to create datasets of

modeled waveforms, sampled at 4096 Hz, that describe an astrophysical population

of binary black holes that spiral into each other following a series of quasi-circular

orbits. Their binary components span the masses m{1,2} ∈ [3M⊙, 50M⊙], and individual

spins s{1,2} ∈ [−0.9, 0.9]. We generated 1.8 million waveforms by uniformly sampling

this (m1,m2, s
z
1, s

z
2) parameter space. Furthermore, we incorporated information about

the sky location and detector location into the modeled waveforms by sampling

right ascension and declination, orbital inclination, coalescence phase, and waveform

polarization. Right ascension and declination are sampled uniformly on a solid angle of

a sphere. The polar angle varies from π/2 (north pole) to −π/2 (south pole). The orbital

inclination is sampled using a sin(inclination)-distribution. The coalescence phase and

waveform polarization are both uniformly sampled covering the range [0, 2π). We have

densely sampled these parameters to expose our AI surrogates to a broad range of

plausible detection scenarios. With this approach, our AI surrogates learn the interplay

between these parameters, and the slightly different times at which the merger event

(waveform amplitude peak) is recorded by our AI surrogates in their three input data

channels, representing the Advanced LIGO and Advanced Virgo detectors.

For the construction of AI ensembles using real data, we also consider modeled

waveforms that describe higher order wave modes for quasi-circular, spinning, non-

precessing binary black hole mergers.

Out of the 1.8 million waveforms in our dataset, we have created three independent,

non-overlapping datasets. The training set has 1.2 million waveforms, whereas the

validation and test sets have 300,000 modeled waveforms each. In practice, we

produced HDF5 files each containing 2,000 modeled waveforms that uniformly sampled

the parameter space with random variable samples. We then split these HDF5 files

into training, validation and test sets, ensuring that they provide a fair coverage of

the parameter space. We follow best machine learning practices and ensure that the

recolored noise and signals used to produce the training, validation and test sets are

different to each other.

Power Spectral Density for Advanced LIGO and Advanced Virgo. To model the

sensitivity of Advanced LIGO and Advanced Virgo detectors, we rely on Power Spectral

Density (PSD) curves. Specifically, we use PSD curves from Advanced LIGO Sensitivity

(190 Mpc) based on the fourth observing run (O4, aligo O4high.txt) for the Hanford

and Livingston detectors. For Advanced Virgo detector, we use PSD data from the fifth

observing run (O5, avirgo O5low NEW.txt), which has a low noise and high range limit

target sensitivity [54, 55]. We selected these PSDs to study detection scenarios in which

the LIGO and Virgo detectors have similar sensitivities, which may be attained by the

end of O5. As we also show below, if one considers O3b PSDs, then the Advanced LIGO

and Advanced Virgo detectors have rather disparate sensitivities and the AI models get

confused when a noise trigger is found in LIGO data streams (L & H), whereas the

same noise trigger in Virgo data is inconsistently labeled by the AI models, especially
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for moderate SNR signals, given the current noisier nature of Advanced Virgo datasets.

In the context of real gravitational wave data, we estimated training PSDs for the

H, L and V detectors using three 4,096 seconds long segments with GPS start times

1264685056, 1265528832 and 1266200576. These segments do not contain any known

gravitational wave signals. Following best machine learning practices, the training,

validation and test sets are independent, i.e., there is no overlap among them in terms

of the simulated signals and real gravitational wave noise used in each of these datasets.

Data curation. Modeled waveforms were whitened with the aforementioned PSDs. We

also produced synthetic noise, and colored it with the PSDs representing each of the

detectors. To address the challenge posed by highly imbalanced data in real detection,

our dataset uses 70% negative samples (only noise) and 30% positive samples (noise and

signals).

For generating negative samples in our model, we randomly select 1s-long segments

of pure noise from the generated synthetic noise. These negative samples are labeled as

pure 0s. On the other hand, for generating positive samples, we consider the whitened

signal to the 0.5s before the merger and the ringdown part. Thereafter, we linearly mixed

whitened waveforms and whitened noise so as to describe a broad range of astrophysical

scenarios. The label for positive samples will be set to 1 only for the 0.5s before the

merger, while the remaining part will be labeled as 0, since we are mostly interested in

the merger portion of the signals where the AI models have the sharpest response.

For data curation in the context of gravitational wave data, we follow the same

exact procedure with the exception that now we use real H, L and V data to noise-

contaminate modeled waveforms, and we whitened both signals and noise using the

PSDs that we estimated with real data.

AI model architecture. Our neural network model has two building blocks: the HDCN

block, and the GNN block, which generates the final prediction with an output layer.

Our HDCN block is inspired byWaveNet [56], a deep neural network for audio generation

tasks, such as human speech or music. It uses dilated causal convolutions to model the

temporal dependencies of audio signals, allowing it to generate high-fidelity audio with

long-range structure. We believe we can also use it for our high sample rate time-series

data, as the dilated convolution layers enable the network to capture larger receptive

fields using fewer parameters. Moreover, its block-based structure enables the model to

respond to a diverse range of frequency bands.

We present the hybrid dilated convolution structure in Figure 3. It consists

of pre-processing and post-processing time-distributed convolution layers and dilated

convolution layers. With time-distributed convolution layers, HDCN is able to enlarge

the expressiveness of the embedding. By stacking dilated convolution layers with

different dilation rates and gated activation unit, HDCN will get an exponential increase

in the size of the receptive field with respect to the number of layers. It will be crucial

when considering long-range temporal dependencies in our signals. Finally, residual
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Figure 3. Architecture of hybrid dilated convolution network (HDCN).

Each detector input will be processed by an individual HDCN, which consists of the N

blocks of pre-processing time-distributed convolution layer, dilated convolution layer,

and the post-processing time-distributed convolution layer. N depends on the receptive

field desired. Here we use N=11 to cover a half second receptive field. Each block has

residual structure and skip connection to the output embedding.

structure and skip connections are used to combine both long-range and short-range

dependencies. Every detector strain data will be processed by an i.i.d. HDCN block

to output the prediction embeddings since we want to preserve each detector’s own

information for the following GNN block.

On the other hand, there are various GNN structures available [57, 58, 59, 60, 61],

and we decided to use the Message Passing Neural Network (MPNN) framework with

max pooling as the permutation invariant operator. We believe this can help capture

the most important features in the embeddings and discard the less significant ones.

Additionally, max pooling can help make the model more robust to small perturbations

or noise in the input data by focusing on the strongest features, i.e., on the merger

event.

Following the HDCN blocks, we obtain three prediction embeddings from the three

detector channels. Since all three embeddings should represent the same true signal

generated by the binary black hole merger, we need to combine them to produce the final

prediction output. While a naive approach is to concatenate the three channels and pass

them through a multi-layer perceptron (MLP) [42], this method is not entirely optimal.

If we change the order of the channels, the MLP output will differ even though the

channels still represent the same signal. Therefore, we need a more robust approach to

combine the embeddings. We use GNN to preserve the permutation invariance between

the three detector embeddings and obtain a graph-level embedding as the combined

output.
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(a)

(b) (c)

Figure 4. Spatiotemporal-graph AI model structure. (a) Graph neural network

(GNN) structure, (b) 3 prediction embeddings given by the hybrid dilated convolution

network (HDCN) block, (c) Geometric visualization for prediction embeddings of the

three time series produced by the Advanced LIGO and Advanced Virgo detectors.

The GNN structure is shown in Figure 4 (a). For each target node, the GNN

block applies an Aggregate step and a Combine step. During the Aggregate step, the

GNN processes each neighbor embedding using a convolution layer and then uses max

pooling to output the aggregated neighbor message, which is permutation invariant. In

the Combine step, the GNN concatenates the aggregated neighbor message with the

target node embedding and passes the result to another convolution layer to update

the target node embedding. The Aggregate and Combine layer is shared among the

3 nodes. Next, we use max pooling to combine the 3 node embeddings and generate

a graph-level embedding. Finally, we apply an MLP with sigmoid activation to the

graph-level embedding to generate element-wise predictions.

In the GNN block, we represent each time step as a three-node graph and use the

GNN to combine the three embeddings of each time step. Since each time step already

encompasses a long receptive field after HDCN, see Figure 4 (b), this method is sufficient

to generate accurate predictions at each time step. We can easily incorporate multiple-

step correlation by increasing the kernel size of the convolution layer accordingly. Then,
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we apply a general GNN to process the node embeddings, as it captures the relationship

between the embeddings, i.e., the locations of the detectors. Since the detector locations

remain constant over time, we use the same GNN function for all time steps. We can

relax this assumption when we consider signals whose detector antenna patterns evolve

over time. This approach has the added benefit of preserving the strong correlation

between the embeddings, which is due to their highly overlapping receptive fields.

Consequently, we can maintain this correlation in our final time-series prediction output.

We can consider each time step as a subgraph in a larger graph, as shown in Figure 4

(c), allowing us to share the aggregation and combination functions across all time

steps. In other words, we propose a time-independent GNN to process the time-series

embeddings.

AI ensembles. Our ensemble method employs a cascading strategy where detection is

considered positive, i.e., a real signal or an injected signal, only if there is unanimous

agreement among all models. Conversely, if even a single model identifies the detection

as negative, i.e., pure noise, the ensemble treats the entire detection as negative. This

stringent criterion for positive detection is designed to minimize FPs, ensuring that

only the most reliable detections are classified as positive. By requiring consensus, this

approach aims to enhance the specificity of our system, effectively reducing the likelihood

of false alarms without significantly compromising the sensitivity. This method leverages

the strengths of multiple models, filtering out less confident predictions, thereby

achieving a balance between sensitivity and specificity that is crucial for maintaining

high performance in our application. In practice, when we consider AI models trained,

valiated, and tested with synthetic noise, we find that AI ensembles with one, two,

three, and four AI models produce 599, 7, 3, and 2 FPs when tested over a decade long

dataset.

Detection strategy. For the determination of the threshold used in calculating FPs,

we strategically select the threshold that corresponds to the point on the ROC curve

nearest to the top left corner, i.e., closest to the point (0,1), which is used to determine

the width and height of the find peaks algorithm, where we choose 0.5 seconds for

the width and a threshold of 0.999999 for the height of the peak. This decision

is grounded in the empirical observations from our validation dataset, where our

model demonstrates a strong capability in identifying positive cases even at lower SNR

levels, yet accompanied by a considerable number of FPs. Given this performance

characteristic and the anticipation of encountering more pronounced data imbalance

in real scenarios—predominantly featuring negative or pure-noise samples—we opted

for a threshold embodying near-absolute confidence. This stringent threshold criterion

aims to substantially minimize false positives, enhancing the precision of our model in

real-world applications where the rarity of true positives necessitates a highly cautious

approach to declaring positive detections. This method of threshold selection, while

potentially increasing the model’s specificity, is a deliberate choice to ensure the
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reliability and applicability of our model’s outputs, especially in contexts where the

cost of false positives is high and the occurrence of true positives is exceptionally rare.

Distributed training at scale. We use data parallelism, but not model parallelism,

for both training and inference since our model can be fit into a single A100/V100

GPU. In the training stage, data parallelism can help accelerate training time. By

distributing the workload across several GPUs, data parallelism significantly reduces

the time required for training. This acceleration is crucial for our large datasets,

where single-GPU training would be prohibitively slow. Also, the framework for data

parallelism is inherently scalable. It can accommodate additional GPUs without major

changes to the training algorithm, allowing for linear or near-linear speed-ups with

increased hardware resources.

We conducted scaling tests in the Polaris supercomputer at the Argonne Leadership

Computing Facility. In Figure 5 we present our scaling results. The AI models presented

in this article were trained within 1.7 hrs using 256 A100 GPUs. All these models have

optimal classification accuracy. We also conducted scaling studies using up to 512 A100

GPUs, in which case the training phase was completed 59 minutes. The AI models

presented in this paper are the top classifiers, in terms of ROC and PR analyses, from

this training campaign. In the context of AI models trained to find events in real data,

we fine-tuned a suite of 20 AI models using H, L and V data. This fine-tuning process

was completed, for each AI model, within 320 minutes using 48 NVIDIA A100 GPUs.

We then used the same figures of merit described above, such as ROC AUC and PR

AUC to identify the top six AI classifiers that we used for AI inference.

AI inference at scale. Once we completed the training of multiple AI models with

optimal classification performance, we distributed the inference over a decade of

simulated gravitational wave data. Leveraging data parallelism during the inference

phase allows us to simultaneously distribute data across multiple GPUs, facilitating

real-time detection capabilities. This approach not only enhances the throughput of

our system by making efficient use of available GPU resources but also significantly

reduces latency, ensuring that predictions are generated swiftly and accurately. By

parallelizing the data processing workload, we can handle larger volumes of data in

real time, maintaining high performance even under heavy load conditions. We first

processed these data using our AI ensemble using 128 A100 GPUs in Polaris, and then

post-process the AI models’ output using 128 CPU nodes in the Theta supercomputer.

The first part is completed within 3.19 hours, while the second is completed in about

0.3 hours. Thus, a decade’s worth of gravitational wave data is processed within 3.5

hours.

AI inference on O3b data. We used an additional step to process real data. First we

processed the entire month of February 2020 with our ensemble of 6 AI models. This

analysis was completed within 1 hour using a single NVIDIA V100 GPU. AI inference
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Figure 5. Distributed training in the Polaris supercomputer. We developed

novel methods to complete the training of spatiotemporal-graph AI models within

1.7 hours using 256 A100 NVIDIA GPUs. Our optimization method exhibits strong

scaling up to 512 NVIDIA A100 GPUs.

identified 13 noise triggers, which we then followed up using Data Quality tools provided

by the Gravitational Wave Open Science Center, to ensure that the data has the right

quality, as well as spectrograms to discard clear noise anomalies. These lightweight post-

processing analyses flagged 7 noise anomalies and 6 clean events. A sample is shown in

Figure 6, which presents spectrograms of a real event, GW200129 065458 1264314069,

and a noise anomaly located at GPS time 1265332743.9816895.which presents spectrograms of a real event, GW200129_065458_1264314069, and a noise anomaly located at GPS time
1265332743.9816895.

Figure 7. Post-processing of noise triggers identified by AI ensemble. Spectrograms of a noise anomaly at GPS time
1265332743.9816895 (top panel), and the gravitational wave event GW200129_065458_1264314069 (bottom panel).

Discussion
We have demonstrated how to encapsulate temporal and spatial aspects of gravitational wave detection into a novel spatiotemporal-
graph AI model. We have tested this methodology considering 2D and 4D signal manifolds that describe binary black hole
mergers. Our findings indicate that AI ensembles can attain optimal signal detection while also reducing the number of false
positives to only 2 over a decade of searched data that describes a three detector network. This is the first time AI attains this
level of accuracy and sensitivity for gravitational wave detection.

On the algorithm side of things, this work also represents a milestone in the training of AI models that combine hybrid
dilated convolution networks and graph neural networks, since we succeeded in training these complex models at scale using
up to 256 A100 GPUs with optimal performance, and demonstrated strong scaling using up to 512 A100 GPUs.

In addition to reducing time-to-solution using distributed training, we also distributed AI inference so as to process an entire
decade of advanced gravitational wave data within 3.5 hours. In brief, AI provides a natural pathway to accelerate and automate
gravitational wave discovery using existing supercomputing resources.

We have explored the use of these AI ensembles to search for gravitational waves in O3b data available at the Gravitational
Wave Open Science Center. We did this by processing Advanced LIGO and Advanced Virgo data that span the month of
February 2020. Our findings indicate that we can indeed identify 6 HLV events that span the signal manifold used to train our
AI ensembles, and readily discard noise anomalies. This is the first analysis in the literature that introduces AI models trained
with higher order wave modes for an astrophysical population of quasi-circular, spinning, non-precessing binary black hole
mergers.

Using real data, we identified a number of challenges related to the disparate sensitivities of the HLV detector network.
A potential approach for a more resilient AI architecture may consist of aggregating predictions from the H and L channels
(since they have comparable sensitivity) to figure out whether a given signal is concurrently observed by the Advanced LIGO
detectors, and then look at the output from Advanced Virgo. This third output may provide additional confidence for a detection
if any of the Advanced LIGO detectors is down and the signal is also visible in Advanced Virgo. However, AI predictions from
advanced Virgo may not be used to discard potential events if they are not clearly extracted from Advanced Virgo data. This
condition may be used to design AI models that consider a larger detector network, and may be relaxed once all detectors reach
comparable sensitivity.

On the algorithm side of things, the choice of pooling operations in the GNN block can influence the quality of the learned
node representations and ultimately affect the performance of our AI models. Currently, we are utilizing max pooling based on
our preliminary ablation experiments with addition, max pooling, and average pooling. The specific nature of signal detection
seems to favor max pooling since it provides best convergence and evaluation performance. However, in future work it will be
worth exploring the idea of integrating multiple pooling strategies and concatenating their outputs. This approach may allow
the model to capture a more comprehensive set of features and potentially generalize better.

12/16

Figure 6. Post-processing of noise triggers identified by AI ensemble.

Spectrograms of a noise anomaly at GPS time 1265332743.9816895 (top panel), and

the gravitational wave event GW200129 065458 1264314069 (bottom panel).
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Discussion

We have demonstrated how to encapsulate temporal and spatial aspects of gravitational

wave detection into a novel spatiotemporal-graph AI model. We have tested this

methodology considering a 4D signal manifold that describe binary black hole mergers.

Our findings indicate that AI ensembles can attain optimal signal detection while also

reducing the number of false positives to only 2 over a decade of searched data that

describes a three detector network. This is the first time AI attains this level of accuracy

and sensitivity for gravitational wave detection.

On the algorithm side of things, this work also represents a milestone in the

training of AI models that combine hybrid dilated convolution networks and graph

neural networks, since we succeeded in training these complex models at scale using up

to 256 A100 GPUs with optimal performance, and demonstrated strong scaling using

up to 512 A100 GPUs.

In addition to reducing time-to-solution using distributed training, we also

distributed AI inference so as to process an entire decade of advanced gravitational

wave data within 3.5 hours. In brief, AI provides a natural pathway to accelerate and

automate gravitational wave discovery using existing supercomputing resources.

We have explored the use of these AI ensembles to search for gravitational waves

in O3b data available at the Gravitational Wave Open Science Center. We did this by

processing Advanced LIGO and Advanced Virgo data that span the month of February

2020. Our findings indicate that we can indeed identify 6 HLV events that span the

signal manifold used to train our AI ensembles, and readily discard noise anomalies. This

is the first analysis in the literature that introduces AI models trained with higher order

wave modes for an astrophysical population of quasi-circular, spinning, non-precessing

binary black hole mergers.

Using real data, we identified a number of challenges related to the disparate

sensitivities of the HLV detector network. A potential approach for a more resilient

AI architecture may consist of aggregating predictions from the H and L channels (since

they have comparable sensitivity) to figure out whether a given signal is concurrently

observed by the Advanced LIGO detectors, and then look at the output from Advanced

Virgo. This third output may provide additional confidence for a detection if any of

the Advanced LIGO detectors is down and the signal is also visible in Advanced Virgo.

However, AI predictions from advanced Virgo may not be used to discard potential

events if they are not clearly extracted from Advanced Virgo data. This condition may

be used to design AI models that consider a larger detector network, and may be relaxed

once all detectors reach comparable sensitivity.

We also compared the performance of our AI ensemble with production scale

analyses done with established gravitational wave pipelines, and then conducted a

PyCBC search for 10 gravitational wave sources using available gravitational wave data

as is. These comparisons elucidated the strengths and weaknesses of each approach,

and indicated that AI methods will greatly benefit from using information regarding



Physics-inspired spatiotemporal-graph AI ensemble for gravitational wave detection 19

data calibration, data quality input, and data cleaning. These additional pre-processing

analyses should be incorporated in future AI analyses.

On the algorithm side of things, the choice of pooling operations in the GNN

block can influence the quality of the learned node representations and ultimately affect

the performance of our AI models. Currently, we are utilizing max pooling based on

our preliminary ablation experiments with addition, max pooling, and average pooling.

The specific nature of signal detection seems to favor max pooling since it provides

best convergence and evaluation performance. However, in future work it will be worth

exploring the idea of integrating multiple pooling strategies and concatenating their

outputs. This approach may allow the model to capture a more comprehensive set of

features and potentially generalize better.

This work sets the stage for the development of resilient AI approaches for signal

detection using open source data at the Gravitational Wave Open Science Center to

process Advanced LIGO and Advanced Virgo data at scale. The next frontier is the

development of such AI models considering higher order wave modes that describe

spinning and precessing binary black hole mergers.

Data availability

We produced datasets of modeled waveforms using the IMRPhenomXPHM model [48], and

recolored gravitational wave noise using the open source PyCBC library [50]. The Power

Spectral Density noise curves for Advanced LIGO (aligo O4high.txt), and Advanced

Virgo (avirgo O5low NEW.txt) are readily available at the LIGO Document Control

Center Portal [55].

Code availability

The scientific software to reproduce our results, including data, AI models for synthetic

and real noise, postprocessing code, and a tutorial for their use is available at

GitHub [62].
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D93 044007 (Preprint 1508.07253)

[54] Abbott B P, Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams C, Adya V B,

Affeldt C, Agathos M, Agatsuma K, Aggarwal N, Aguiar O D, Aiello L, Ain A, Ajith P, Akutsu

T, Allen G, Allocca A, Aloy M A, Altin P A, Amato A, Ananyeva A, Anderson S B, Anderson

W G, Ando M, Angelova S V, Antier S, Appert S, Arai K, Arai K, Arai Y, Araki S, Araya A,

Araya M C, Areeda J S, Arène M, Aritomi N, Arnaud N, Arun K G, Ascenzi S, Ashton G, Aso

Y, Aston S M, Astone P, Aubin F, Aufmuth P, AultONeal K, Austin C, Avendano V, Avila-

Alvarez A, Babak S, Bacon P, Badaracco F, Bader M K M, Bae S W, Bae Y B, Baiotti L, Bajpai

R, Baker P T, Baldaccini F, Ballardin G, Ballmer S W, Banagiri S, Barayoga J C, Barclay S E,

Barish B C, Barker D, Barkett K, Barnum S, Barone F, Barr B, Barsotti L, Barsuglia M, Barta

D, Bartlett J, Barton M A, Bartos I, Bassiri R, Basti A, Bawaj M, Bayley J C, Bazzan M,
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