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Pulsar timing arrays (PTAs) are sensitive to oscillations in the gravitational potential along the
line-of-sight due to ultralight particle pressure. We calculate the probing power of PTAs for ultralight
bosons across all frequencies, from those larger than the inverse observation time to those smaller
than the inverse distance to the pulsar. We show that since the signal amplitude grows comparably to
the degradation in PTA sensitivity at frequencies smaller than inverse observation time, the discovery
potential can be extended towards lower masses by over three decades, maintaining high precision.
We demonstrate that, in the mass range 10−26 − 10−23 eV, existing 15-year PTA data can robustly
detect or rule out an ultralight component down to O(1 − 10)% of the total dark matter. Non-
detection, together with other bounds in different mass ranges, will imply that ultralight scalar/axion
can comprise at most 1 − 10% of dark matter in the 10−30−10−17 eV range. With 30 years of
observation, current PTAs can extend the reach down to 0.1−1%, while next-generation PTAs such
as SKA can attain the 0.01 − 0.1% precision. We generalize and derive predictions for ultralight
spin-1 vector (i.e. dark photon) and spin-2 tensor dark components.

Ultralight particles are intriguing dark matter candi-
dates, motivated by high energy theories [1]. As they
have de-Broglie wavelengths comparably to galactic or
even larger cluster scales, depending on their mass, they
would leave marks on cosmological and astrophysical
observables [2]. One such effect comes from the pres-
sure of the ultralight field which could cause the energy-
momentum tensor and equivalently spacetime to fluc-
tuate in a monochromatic way [3]. These fluctuations
would modify the observed arrival time of pulses from
pulsars and can be used to extract the properties, e.g.
mass and energy density, of ultralight scalar/axion-like
(spin-0), vector (dark photon/spin-1) and tensor (spin-2)
bosons, even if they form a fraction [4, 5] of dark matter.

Ultralight bosonic degrees of freedom have undergone
intense exploration in recent years (see Ref. [6] for a re-
view). The mass parameter space has already been con-
strained at several distinct scales by a number of probes.
Cosmic microwave background experiments (CMB) [7, 8]
combined with large-scale structure surveys [9] have
derived bounds on the extremely light range, roughly
10−32 − 10−25 eV. The ultraviolet luminosity function
and reionization constrain the 10−23−10−22 eV range [10].
Lyman-α experiments reaching large wavenumbers of the
matter power spectrum probe approximately the range
10−23−10−20.5 eV [11–15], and the shape of Eridanus-
II the 10−20.5 − 10−19 eV range[16]. Galaxy rotation
curves probe the 10−23.7 − 10−22 eV range [17]. Secular
variations in binary-pulsar orbital parameters can test
the mass range 10−23−10−18 eV [18–21]. Finally, non-
observation of superradiance in rapidly spinning super-
massive black holes (SMBHs) can explore the 10−20.5−
10−16.7 eV range [22]. With all of the above, the mass
range 10−26−10−23 eV still remains relatively unexplored.

In this Letter , we show that current data from the In-
ternational Pulsar-Timing Array (IPTA) [23, 24], a col-

laboration between NANOGRAV [25], PPTA [26] and
EPTA [27] can be used to probe the ultralight boson en-
ergy density fraction FULDM in the 10−26−10−23 eV mass
range with about 1-10% precision. The bounds remark-
ably extend to the smaller masses (lower frequencies) in
this window, since the strength of the ultralight particle
signal changes comparable to the PTA sensitivity curve.
Therefore, smaller mass particles can be efficiently con-
strained by current IPTA data down to frequencies cor-
responding to 1/Dpulsar∼1/kpc (where Dpulsar is the dis-
tance to the pulsar, and we set the speed of light c = 1).
Extending the observation period up to 30 years can im-
prove these constraints by one order of magnitude, and
with future PTA experiments, such as SKA [28], by two
more orders of magnitude. Combined with CMB/LSS,
Lyman-α and SMBH superradiance constraints, the dis-
covery potential of PTAs implies that ultralight bosons
can be probed continuously throughout the mass range
10−30−10−17 eV with ∼ O(1)% precision (see [29–34]).

We start with the signature of ultralight dark matter in
PTAs. Free scalar/axion-like degrees of freedom, ϕ, with
a canonical kinetic term have a Lagrangian density L =
1
2 (∂µϕ)

2 − 1
2m

2ϕ2. If such particles are non-relativistic,
then the field configuration is given by a plane wave of
nearly single frequency with corrections up to the kinetic
term, which is about 10−6 times smaller compared to the
rest mass. If we neglect the expansion of the background,
ϕ=A(x) cos(mt+ β). The energy density is nearly time
independent, ρ = ϕ̇2/2 + V ≃ 1

2m
2A2, and the pressure

oscillates with angular frequency twice the mass of the
particle, i.e. p = ϕ̇2/2− V ≃ ρ · cos(2πft+ 2β), where f
is the oscillation frequency that can be computed using
the corresponding mass as 2πf = w = 2m, and β is a
phase. Hence,

f = 5 · 10−9Hz
( m

10−23 eV

)
. (1)
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Then, solving the 00 and ii components of Einstein’s
equations at first order, with the following metric per-
turbations: δg00 = −2Φ and δgij = 2ψδij , one ends
up with ψ = ψ0(x) +

π
2GNA2 cos(2mt + 2β) = ψ0(x) +

πGNρ/m
2 cos(2mt+2β), the second term being the oscil-

lating piece defined as ψc=πGNρ/m
2. The time residual

can be calculated via the fractional frequency shift as

δ∆t =

∫ t

tp

ν′ − ν̄

ν̄
dt, (2)

where t and tp are the time at Earth and pulsar emission,
and the fractional change in the frequency is given by

ν′ − ν̄

ν̄
= ψ(x, t)− ψ(xp, tp)−

∫ t

tp

ni∂i(Φ + ψ)dt′, (3)

where the first term is the difference in the gravitational
potential and the second term is the change of its gradient
during propagation, which is suppressed by a factor k/m.
Now, plugging Eq. (3) into Eq. (2), we get the expression

δ∆t =
ψc

m
sin(mDpulsar + βe − βp)×

× cos(2mt−mDpulsar + βe + βp). (4)

where βe and βp corresponds to phase values at the Earth
and at the individual pulsar. The typical amplitude for
the residual oscillating signal is the root-mean-square
(rms) path average which is given by1

√
⟨(δ∆t)2⟩ =

√
1

L

∫ L

0

dl (δ∆t)2 = P · ψc/m, (5)

where L ≡ Dpulsar and P is defined as

P =
1√
2

(
1− sin(2mL)

2mL

) 1
2

(6)

In the case wherem·Dpulsar > 1 we have P ≃ 1. However,
in the limit m · Dpulsar ≪ 1, we have extra suppression
factor in the signal, of approximately mDpulsar.

The oscillations in the energy-momentum tensor will
cause oscillations in the gravitational potential which
correspond to an equivalent characteristic strain hc =
2
√
3ψc, stressing that this is not GW signal. A similar

analysis can be done for vector and tensor fields. For
the massive spin-1 case, i.e. a massive dark photon, the
field has 2 transverse and 1 longitudinal polarizations.
For the spin-2 case, i.e. tensor, the field has 1 scalar,
2 transverse and 2 transverse-traceless polarizations (for
subluminal gravitational waves [35]). These polarizations

1 For simplicity, we assume that for cross-correlation of signals
from two different pulsars, this factorizes as P(L1)P(L2) where
L1 and L2 are the Earth-pulsar distances for pulsar 1 and 2.

are of similar order-of-magnitude in strength. Although
there will be accompanying polarizations, the distinctive
modes will be transverse polarization for a vector field
and transverse-traceless polarization for a tensor field,
and so we will conduct our analysis for the detectability
of these specific polarizations. The signal from a single
pulsar corresponding to the scalar [3], vector [36] and
tensor [37] dark matter scenarios can be estimated as

hc, scalar ≃ 2 · 10−15 · P · FULDM

(
5nHz

f

)2

hc, vector ≃ 6 · 10−15 · P · FULDM

(
5nHz

f

)2

hc,tensor, α ≃ 5 · 10−15 · P · F1/2
ULDM

(
5nHz

f

)( α

10−7

)
(7)

where FULDM ≡ ( ρULDM

0.4GeV/cm3 ) is the fraction of ultralight

dark matter (ULDM) in the local Universe and α is the
spin-2 universal coupling to matter.
A number of comments are in order. First, the signal

suppression from propagation is important, since with
the corresponding modification the signal strain grows
more slowly than the red-noise strain and as a result the
signal-to-noise diminishes for frequencies smaller than in-
verse pulsar distance, i.e. f < 1/Dpulsar, see Fig. 1.
Secondly, the tensor case is special in the sense that

the only known viable massive spin-2 theory, bigravity,
includes a universal direct coupling term to matter with
strength α that cannot be tuned away. Because of this,
the signal from the massive tensor field is proportional to
f−1 instead of f−2 as in the scalar and vector cases [37].
Therefore, in the tensor case the constraint is effectively
on the combination α2FULDM

2,3.

2 This harder scaling is what makes it possible to potentially detect
this kind of signal also at the much higher frequencies probed by
gravitational wave interferometers [54–56], see Fig. 3.

3 We note that the same f−1 scaling also applies when spin-0 and
spin-1 ULDM are directly coupled to matter

hc, scalar,Λ ≃ 3 · 10−18
( v

10−3

)(
10−26 GeV

Λ

)
FULDM

5nHz

f

hc, vector, gc ≃ 3.2 · 10−13
( g

10−24

)
FULDM

5nHz

f
(8)

where Λ is a cutoff, and ”g” denotes the coupling constant.
The interaction Lagrangian that defines the coupling constants
quoted above is

L = M⊕

(
1 +

ϕ(t)

Λ

) (
1 +

v2

2

)
+ qviA

i(t) +
αM⊕

2MP
Mij(t)v

ivj ,

(9)
where the spin-0, spin-1 and spin-2 fields are ϕ(t), Ai(t) and
Mij(t), respectively; M⊕ is the Earth’s mass and vi the velocity
of the solar-system barycenter quasi-inertial frame with respect
to the ULDM frame, MP the reduced Planck mass, and q =
gM⊕/mn with mn the mass of the neutron and g the B − L or
B coupling constant.
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FIG. 1. Characteristic strain, hc, for the signal in the case of
scalar ultralight particles with FULDM = 1, and for the noise
with current PTAs (assuming 15 and 30 years of observation
time [51], for 60 and 90 pulsars) and with SKA (15 years
with 5K pulsars), respectively. The effective noise curve is

defined here as heff ≡ hnoise(2R2
β)

−1/4. The signal, the PTA
sensitivity and the detectability in three regimes separated
by vertical dashed lines are discussed in detail in the text.
Note that the signal grows comparable to the the noise in
the regime 1/Dpulsar < f < 1/Tobs, allowing for precision
probing, and slower for f > 1/Tobs and f < 1/Dpulsar.

Having described the three different types of signals we
are after, we now turn to a discussion of the sensitivity of
current and future PTAs. Although all ultralight parti-
cles generate pressure which leads to perturbations in the
arrival time of pulsar signals, the type of perturbations
are distinct from each other. Accordingly, PTAs have
different response functions for scalar, vector and tensor
fields. The variables typically used in the literature to in-
dicate the strength of the signal: the characteristic strain
hc, the power spectral density Sh and the energy density
Ωh, are connected to each other as follows

H2
0 Ω(f) =

2π2

3
f3Sh(f) =

2π2

3
f2h2c(f). (10)

To estimate the detectability of the monochromatic sig-
nal, we start from the formula

SNR2 = 2 (f · Tobs)2
N∑

I=1

N∑
J>I

r2(β) IJ

(
Sh,signal

Sh,noise

)2

, (11)

where Tobs is the observation time, and I, J indicate
two pulsars in each pair correlation, and r2(β)IJ ≡
1
4π

∫
dΩ χ2

IJ , β=Scalar (S), Vector(V), Tensor(T), and N
is the total number of pulsars, assumed to have identical
properties to derive an ensemble average. The explicit
expressions for χIJ , the correlation coefficient between
each pair of pulsars separated by an angle ζ, for each β

are [38]

S : χIJ = 1, V : χIJ =
1

3
cos ζ

T : χIJ =
1

2
− 1

4

(
1− cos ζ

2

)(
1 + 6 ln

(
1− cos ζ

2

))
Defining R2

β ≡
∑N

I=1

∑N
J>I r

2
(β)IJ , this yields

R2
S =

N (N − 1)

2
, R2

V =
N (N − 1)

2 · 27
, R2

T =
N (N − 1)

2 · 48
.

(12)
The PTA sensitivity curve can be described as

Sn = 12π2f2
N
T

= h2n/f (13)

where T =
(

(f ·Tobs)
3

1+(f ·Tobs)3

)2

is the transmission function4,

N = 2σ2∆t + Pr f
−γ (white noise plus red noise which

can be relevant for small frequencies). Sn varies between
the different frequency ranges (see Fig. 1):

I) f > 1/Tobs : The high frequency part of the sensi-
tivity regime is controlled by white timing noise, whose
expression is given as Sn(f) = 12π2f2(2∆tσ2) = h2n/f .
Here ∆t is the timing period, and σ is the rms error
in timing residuals. This frequency regime has scaling
hn ∝ f3/2, or equivalently Ωn ∝ f5 [39–42].

II) f < 1/Tobs: Here Sn is set by three factors: (i)
the transmission function, which accounts for the in-
formation absorbed by the timing model fit (we as-
sume a quadratic spin-down model which fits for the
pulsar phase offset, spin period and period derivative).
In this regime, the transmission function scales as f−6

and limits the detection capability [49]. (ii) Measure-
ment white noise, which is frequency-independent; (iii)
Pulsar specific red noise [43], which is more effective
at low frequencies [45] (see also [46, 47]). For simplic-
ity, in making our forecast we will limit ourselves to
a subset of pulsars for which, in the frequency regime
we focus on, the red noise is subdominant compared
to white noise. We assume that this holds for 1/4th of
the total dataset (indeed, there are many such pulsars
[44–48]).

When the frequency of the signal is less than 1/Tobs,
there are two ways to do the analysis: i) One can keep
the white noise fixed and expand the signal in a Taylor
series. Then, the first two expansion terms are ab-
sorbed by the period and period derivative terms due

4 The transmission function in the limit f < 1/Tobs accounts for
the fact that fitting for the unknown pulsar period and period
derivative is equivalent to keeping the transmission function fixed
at 1 and expanding our signal up to cubic order, which then
introduces the f3 dependence to the signal.
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FIG. 2. Bounds on the fraction of a scalar ultralight boson component out of the total dark matter. We show existing
constraints from CMB [7, 8]; combined with BOSS [9]; reionization [10]; Lyman-α [11–15]; Eridanus-II [16]; galaxy rotation
curves [17]; and SMBH superradiance [22]. Our forecasts for current PTA (future; 30 year PTA, and 15 year SKA) are shown
in solid (dashed) blue.

to the lack of an independent measurement of these pa-
rameters, hence we are only left at the next order with
the cubic term. Keeping the noise fixed, we therefore
have an extra m3/T 3 ∼ f3/T 3 suppression. ii) One
can keep the signal the same, but then the response
will include again the ambiguity in period and period
derivative, hence one can modify the definition of the
noise via the transfer function [49]. The strain trans-
fer function is unity for frequencies larger than inverse
observation time (f > 1/Tobs), on the other hand, and
it is f−3 at low frequencies (f > 1/Tobs). The transfer
function for power spectral amplitude is quadratic in
the strain, hence they have f−6. Red noise makes the
sensitivity worse on top of this white noise curve.

The noise curve for a generic single pulsar is
parametrized as in Ref. [53], consistent with both sim-
ulated curves [49] and data [48]

hc,noise =
√
f · Sn =

√
12π2f3 (N/T ) ≃ 10−14 ×

×

√
∆t14d σ2

µs

T 3
obs,15yr

(
ξfrac · (f · Tobs)−3/2

+ (f · Tobs)3/2
)
(14)

where Tobs,15yr = Tobs/15yr is scaled observation time,
∆t14d = ∆t

14days is cadence, σµs = σ
µsec is rms signal er-

ror , ξfrac is the inverse of the square-root of the fraction
of pulsars where red noise is subdominant compared to
white noise. We take 1/4th of the pulsars to be white-
noise dominated in the regime we focus on, so ξfrac = 2

in this study. We emphasize that Eq. (14) is a generic re-
sult for PTAs, hence plugging in distinct timing errors or
observation periods, one can produce approximate sen-
sitivity curves. The scalings correspond to current PTA
experiments, namely the rms timing error is normalized
for µs. The next generation SKA experiment is expected
to improve this result by an order of magnitude, i.e. to
30 ns. Moreover, the number of observed pulsars with
SKA will be about two orders of magnitude larger than
the current PTA pulsar number [50]. Combined, these
two effects will improve the sensitivity of SKA by roughly
two orders of magnitude, as shown in Fig. 1.
To proceed, we plug Eq. (7) into Eq. (11), using our

source is monochromatic, with f∗ given in Eq. (1)

SNR2 ≃ 2 (f∗ · Tobs)2 R2
β

(
hc,signal
hc,noise

)4 ∣∣∣∣
f=f∗

, (15)

where R2
β is the response given to different spin fields, i.e.

scalar, vector and tensor, given in Eq. (12). With this re-
sult in hand, we are equipped with all the required items
to compute the sensitivity of current and future PTA
experiments to large portions of the parameter space of
ULDM particles of each distinct nature (scalar, vector
and tensor). Our results are shown in Figs. 2, and 3.
To provide intuition for the results, we now discuss

in detail the capabilities of PTAs to probe ULDM by
focusing on the scaling properties of the signal and noise
in each separate frequency regime in Figs. 1, 2 and 3 by
assuming conservative noise curve.



5

PTA15 yr
SKA15 yr

CMB

+BOSS

Lyα
SPARC

Scalar

S

Vector

V

Tensor

T

10-2210-2410-2610-28
10-6

10-5

10-4

0.001

0.010

0.100

1
10-710-910-1110-13

m[eV]

ℱ
U
LD
M

f [Hz]

FIG. 3. Zoomed in for scalar, vector (dark photon) and tensor
(spin-2) (setting α=10−7, NPTA

p = 60, NSKA
p = 5K, and 15

years of observation time for both).

a) f > 1/Tobs : For scalar and vectors we have
hsignal ∝ f−2, while for tensor(spin-2) hsignal ∝ f−1;
and hnoise ∝ f3/2.

S, V : SNR2 ∝ (f · Tobs)2
h4c,s
h4c,n

∝ F 4
ULDM (f · Tobs)−12

T : SNR2 ∝ (f · Tobs)2
h4c,s
h4c,n

∝ F 2
ULDM (f · Tobs)−8 (16)

The fraction of dark matter we can probe scales
as FULDM ∝ (f · Tobs)3 for scalar and vector, and
FULDM ∝ (f · Tobs)4 for tensor. This is the regime
for masses larger than 10−23 eV.

b) 1/Dpulsar < f < 1/Tobs: For scalar and vectors we
have hsignal ∝ f−2, while for tensor hsignal ∝ f−1; and
hnoise ∝ f−3/2.

S, V : SNR2 ∝ (f · Tobs)2
h4c,s
h4c,n

∝ F 4
ULDM (f · Tobs)0

T : SNR2 ∝ (f · Tobs)2
h4c,s
h4c,n

∝ F 2
ULDM (f · Tobs)4 (17)

For scalars and vectors, in the f < 1/Tobs regime, the
signal grows slightly faster than noise, which results
in FULDM ∝ (f · Tobs)0. In the tensor case, we have
FULDM ∝ (f ·Tobs)−2. Depending on Tobs of the PTA,
this regime typically lies between m ∼ 10−26 eV and
m ∼ 10−23 eV.

c) f < 1/Dpulsar: For scalar and vectors hsignal ∝ f−1,
while for tensor hsignal ∝ f0; and hnoise ∝ f−3/2.

S, V : SNR2 ∝ (f · Tobs)2
h4c,s
h4c,n

∝ F 4
ULDM (f ·Dpulsar)

4

T : SNR2 ∝ (f · Tobs)2
h4c,s
h4c,n

∝ F 2
ULDM (f ·Dpulsar)

8 (18)

In the regime f < 1/Dpulsar, the SNR decreases for
scalar, vector and tensor. The fraction of dark matter
that can be probed scales as FULDM ∝ (f ·Dpulsar)

−1

for scalar and vector; and FULDM ∝ (f ·Dpulsar)
−4 for

tensor. Depending on the pulsar distance Dpulsar, this
is typically the regime where m ≲ 10−26eV.

To conclude, our results indicate that current as well as
future PTAs can probe ultralight bosons of scalar, vector
(dark photon) and tensor (spin-2) types with excellent
precision. The mass range 10−26 − 10−23 eV is especially
interesting since CMB and large-scale structure experi-
ments have less sensitivity in that regime, and in contrast
PTAs have the most sensitivity there, so that we can
close this gap, as shown in Fig. 2 and 3. Crucially, this
mass range roughly corresponds to the frequency regime
1/Dpulsar < f < 1/Tobs, where the signal stays strong
compared to the noise. Therefore, smaller mass parti-
cles (in the scalar and vector scenarios) can be tightly
constrained until frequencies f ∼ 1/Dpulsar. For tensor
particles, the potential oscillations scale with 1/f , hence
the best regime to probe them is around f∼1/Tobs.
Our calculations show that with current PTA data,

the abundance of ultralight bosons in the mass range
10−26 − 10−23 eV can be probed down to O(1− 10)% of
the total dark matter energy density. We also found that
with 30 year PTA data, the precision improves by about
one order of magnitude to 1%, and with SKA to 0.1%.
This work implies that combining PTAs with current

constraints from CMB, large-scale structure, Lyman-α
and superradiance (see Fig. 2), ultralight scalar dark
matter can be constrained throughout the mass range
10−30−10−17 eV to less than O(10%) of the dark matter.
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M. Viel, “Lyman-α constraints on ultralight scalar dark
matter: Implications for the early and late universe,”
Phys. Rev. D 96, no.12, 123514 (2017) [arXiv:1708.00015
[astro-ph.CO]].
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