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Abstract We analyze the BOSS power spectrum monopole and quadrupole, and the bispectrum
monopole and quadrupole data, using the predictions from the Effective Field Theory of Large-Scale
Structure (EFTofLSS). Specifically, we use the one loop prediction for the power spectrum and the
bispectrum monopole, and the tree level for the bispectrum quadrupole. After validating our pipeline
against numerical simulations as well as checking for several internal consistencies, we apply it to the
observational data. We find that analyzing the bispectrum monopole to higher wavenumbers thanks
to the one-loop prediction, as well as the addition of the tree-level quadrupole, significantly reduces
the error bars with respect to our original analysis of the power spectrum at one loop and bispectrum
monopole at tree level. After fixing the spectral tilt to Planck preferred value and using a Big Bang
Nucleosynthesis prior, we measure σ8 = 0.794± 0.037, h = 0.692± 0.011, and Ωm = 0.311± 0.010 to
about 4.7%, 1.6%, and 3.2%, at 68% CL, respectively. This represents an error bar reduction with
respect to the power spectrum-only analysis of about 30%, 18%, and 13% respectively. Remarkably,
the results are compatible with the ones obtained with a power-spectrum-only analysis, showing the
power of the EFTofLSS in simultaneously predicting several observables. We find no tension with
Planck.
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1 Introduction, Main Results and Conclusion

The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) has mapped the clustering
of galaxies in the nearby Universe in an unprecedented amount and with great accuracy [1].
Although BOSS’ survey volume is modest with respect to upcoming experiments such as
DESI [2] or Euclid [3], the BOSS data are remarkable as they have been revealing a wealth
of cosmological information from the large-scale structure of the Universe.

In the last couple of years, the Effective Field Theory of Large-Scale Structure (EFTofLSS)
prediction at one-loop order has been used to analyze the BOSS Full Shape (FS) of the
galaxy Power Spectrum (PS) [4, 5, 6], and Correlation Function (CF) [7, 8]. The BOSS
galaxy-clustering bispectrum monopole using the tree-level prediction was first analyzed in [4]
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(see [9] for a recent slight generalization). See also [10, 11, 12] for other techniques and analy-
sis using linear theory with higher multipoles. All ΛCDM cosmological parameters have been
measured from these data by only imposing a prior from Big Bang Nucleosynthesis (BBN),
reaching a remarkable, and perhaps surprising, precision on some of these. For example, the
present amount of matter, Ωm, and the Hubble constant (see also [13, 14] for subsequent
refinements) have error bars that are not far from the ones obtained from the Cosmic Mi-
crowave Background (CMB) [15]. For clustering and smooth quintessence models, limits on
the dark energy equation of state w parameter of ≲ 5% have been set using only late-time
measurements [14, 16]. This is again quite close to the ones obtained with the CMB [15].
These measurements provide a new, CMB-independent, method for determining the Hubble
constant [4], resulting in a measurement that is comparable, if not better, to the one based on
the cosmic ladder [17, 18] and CMB. Therefore, this tool has been used to shed light on how
some models that were proposed to alleviate the tension in the Hubble measurements (see
e.g. [19]) between the CMB and cosmic ladder [20, 21] (see also [22, 23]) actually perform.

Very recently, in [24], we used the one-loop EFTofLSS prediction for the bispectrum to
set the first and strong limits on primordial inflationary non-Gaussianities from Large-Scale
Structure (LSS) (see also [25, 26] for a contemporary and a subsequent paper, where, once put
together, the same shapes are constrained but stopping at the tree-level EFTofLSS prediction,
and so obtaining much weaker constraints for the same data). We obtained limits on three of
the so-called fNL parameters, f equil.

NL = 217± 297 , f orth.
NL = −64± 74 , f loc.

NL = 49± 36, at 68%
confidence level, which are predicted to be produced by some single-clock [27, 28] or multiple
fields [29, 30, 31, 32, 33] inflationary models. Perhaps quite surprisingly, those constraints
were already quite on par with the ones of the powerful CMB experiment WMAP [34], though
largely inferior to the more recent CMB experiment Planck [35]. Significant limits from LSS
on just f loc.

NL were obtained using the power spectrum only, first in [36], using the so-called
non-local bias [37, 38, 39], but the analysis of [24] uses for the first time the bispectrum,
obtaining much stronger constraints using the data from the same experiments.

It took an intense and years-long line of study to develop the EFTofLSS from the initial
formulation to the level that allows it to be applied to data. It appears to us that it often
happens that there is no proper acknowledgment of the many works that were needed to
reach this point. For instance, several authors cite Refs. [4, 5] for the ‘model’ to analyze the
PS FS, but the EFT model that is used in [4, 5] is essentially the same as the one originally
proposed in [40]. We therefore find it fair to add the following footnote in every paper where
the EFTofLSS is used to analyze observational data. Even though some of the mentioned
papers are not strictly required to analyze the data, we, and we believe probably anybody
else, would not have applied the EFTofLSS to data without all these intermediate results that
allowed us to overcome the widespread skepticism about the usefulness of the EFTofLSS.1

1The initial formulation of the EFTofLSS was performed in Eulerian space in [41, 42], and subsequently
extended to Lagrangian space in [43]. The dark matter power spectrum has been computed at one-, two-
and three-loop orders in [42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. These calculations were accompanied by
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In this paper we upgrade our original analysis of the one-loop power spectrum monopole
and quadrupole and tree-level bispectrum monopole [4], to include the full one-loop bis-
pectrum monopole and the tree-level bispectrum quadrupole. We scan over all the ΛCDM
parameters with BBN prior on the baryon abundance, Ωbh

2, with the exception of the tilt,
ns, that we fix to the Planck preferred value.

The development of a pipeline that allows us to analyze the one-loop bispectrum predicted
by the EFTofLSS has required much theoretical work, and the explanation of such techniques
will be presented in two upcoming papers [90, 91]. While the application to constrain pri-
mordial non-Gaussianities was already presented in [24], here, instead, we will just give the
essential details and focus on constraints of the ΛCDM parameters.

Our main results are summarized in fig. 1, where we plot the posteriors on the cosmological
parameters that are effectively scanned. This analysis improves the error bars on the ΛCDM
parameters σ8, h, and Ωm with respect to the power spectrum-only analysis by about 30%,
18%, and 13% respectively, achieving a precision of about 4.7%, 1.6%, and 3.2% at 68% CL,
respectively.2 Notice also that the results improve significantly upon the ones obtained using
instead the tree-level prediction for the bispectrum monopole: in particular, σ8 is better
determined by about 30%. Naively, a 30% improvement corresponds to doubling the data
volume of the survey. As it can be seen in the same figure, the results are compatible with
the ones obtained with a power-spectrum-only analysis. We find no tension with Planck: we
measure σ8, h, and Ωm to values consistent at 0.3σ, 1.4σ, 0.5σ, respectively, with the ones of
Planck νΛCDM [15].

The paper is organized as follows. In sec. 2 we describe the data products and the mea-
surements we use. In sec. 3 we describe the theory model including the observational aspects.
In sec. 4, we present the likelihood we use to describe the data. In sec. 5, we provide some
tests for our pipeline. Finally, in sec. 6, we provide some additional details about the main

some theoretical developments of the EFTofLSS, such as a careful understanding of renormalization [42, 54,
55] (including rather-subtle aspects such as lattice-running [42] and a better understanding of the velocity
field [44, 56]), of several ways for extracting the value of the counterterms from simulations [42, 57], and of the
non-locality in time of the EFTofLSS [44, 46, 58]. These theoretical explorations also include an enlightening
study in 1+1 dimensions [57]. An IR-resummation of the long displacement fields had to be performed in
order to reproduce the Baryon Acoustic Oscillation (BAO) peak, giving rise to the so-called IR-Resummed
EFTofLSS [59, 60, 61, 62, 63]. Accounts of baryonic effects were presented in [64, 65]. The dark-matter
bispectrum has been computed at one-loop in [66, 67], the one-loop trispectrum in [68], and the displacement
field in [69]. The lensing power spectrum has been computed at two loops in [70]. Biased tracers, such as halos
and galaxies, have been studied in the context of the EFTofLSS in [58, 71, 72, 73, 40, 74, 75] (see also [76]),
the halo and matter power spectra and bispectra (including all cross correlations) in [58, 72]. Redshift space
distortions have been developed in [59, 77, 40]. Neutrinos have been included in the EFTofLSS in [78, 79],
clustering dark energy in [80, 52, 81, 82], and primordial non-Gaussianities in [72, 83, 84, 85, 77, 86]. Faster
evaluation schemes for the calculation of some of the loop integrals have been developed in [87]. Comparison
with high-quality N -body simulations to show that the EFTofLSS can accurately recover the cosmological
parameters have been performed in [4, 6, 88, 89].

2Here and in the rest of this work, we quote parameter constraints as the Bayesian 68% credible interval
from the one-dimensional marginalized posterior.
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Figure 1: Triangle plots, best-fit values, and relative 68%-credible intervals of base cosmological parameters
measured from the analysis of BOSS power spectrum multipoles Pℓ, ℓ = 0, 2, at one-loop, bispectrum monopole
B0 at tree or one-loop level, and bispectrum quadrupole B2 at tree-level. Planck νΛCDM results are shown
for comparison.

results. Technical aspects and additional materials are relegated to the appendices.

A note of warning: We end this section of the main results with a final note of warning. It
should be emphasized that in performing this analysis, as well as the preceding ones using the
EFTofLSS by our group [4, 6, 14, 20, 16, 7, 24], we have assumed that the observational data
are not affected by any unknown systematic error or undetected foregrounds. In other words,
we have simply analyzed the publicly available data: the two- and three-point functions of
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the galaxy density in redshift space as measured from the public galaxy catalogues. Given the
additional cosmological information that the theoretical modeling by the EFTofLSS allows
us to exploit in BOSS data, it might be worthwhile to investigate if potential undetected
systematic errors might affect our results. We leave an investigation of these issues to future
work.

2 Data

BOSS DR12 LRG sample. The main data sample analyzed in this work is the SDSS-
III BOSS DR12 luminous red galaxies (LRG) sample [1]. We use the BOSS catalogs DR12
(v5) combined CMASS-LOWZ [92].3 To each galaxy we assign the standard FKP weights for
optimality together with the correction weights described in [92] for BOSS data and in [93] for
the patchy mocks. The inverse covariances are corrected by the Hartlap factor to account for
the finite number of mocks used in their estimation [94]. In order to test our analysis pipeline,
we will analyze the mean over the 2048 Patchy mocks of CMASS NGC (hereafter referred
as ‘Patchy’). We will also make use of the Nseries mocks, which are full N -body simulations
populated with a Halo Occupation Distribution (HOD) model and selection function similar
to the one of BOSS CMASS NGC [1].4 We will analyze the mean of the 84 Nseries realizations
(hereafter referred as ‘Nseries’). All celestial coordinates are converted to comoving distance
assuming Ωfid

m = 0.310.

BOSS P+B full-shape measurements. In this work, we analyze the full shape of the
power spectrum multipoles ℓ = 0, 2, and of the bispectrum monopole and quadrupole (re-
spectively abbreviated ‘Pℓ’, ‘B0’ and ‘B2’). Those measurements are shown in fig. 2 (together
with the best fit from our theory model that we discuss later). The estimator for the power
spectrum is the standard ‘FKP’ estimator [95], generalized to redshift space in [96, 97, 98].
The bispectrum is estimated using the estimator outlined in [99] (see also [100, 101, 67, 102]).
The measurements are obtained using the code Rustico [99].5 For the power spectrum, we
find excellent agreement between the measurements from Rustico and Nbodykit [103].6 We
use Nbodykit to measure the window functions as described in [104], with consistent normal-
ization in the power spectrum as discussed in [105, 106, 107].

The configurations of the measurements are the following. We use a box of side length
Lbox = 3500 (2300)Mpc/h for CMASS (LOWZ), with Piecewise Cubic Spline (PCS) particle
assignment scheme and grid interlacing as described in [108]. The grid is consisting of 5123

cells. The power spectrum is binned in ∆k ≃ 0.01hMpc−1. Instead, we bin the bispectrum in
∆n = 12 (9) units of the fundamental frequency of the box kf for CMASS (LOWZ), starting
from the bin centered at nmin = 6+∆n/2, up to the one centered on nmax = 126 (69)−∆n/2,

3Publicly available at https://data.sdss.org/sas/dr12/boss/lss/
4Made available at https://www.ub.edu/bispectrum/page11.html
5https://github.com/hectorgil/Rustico
6https://github.com/bccp/nbodykit
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Figure 2: Measurements and best fits of bispectrum monopole B0 (top), power spectrum multipoles Pℓ

(bottom left), and bispectrum quadrupole B2 (bottom right) from BOSS (points and error bars) and 2048
Patchy (grey regions) CMASS NGC sky. The bispectrum is shown in bins ordered by their central values
forming either an equilateral, isoceles, or scalene triangle, shown in blue, orange, or green, respectively. The
bin triangle sides (top panel) are shown either by the bin central values (colored lines) or by their effective
values (grey points). The best fit (black points) is shown only for the scales analyzed. The relative error bars
(turquoise regions) are shown with the best fit residuals for comparison. While only CMASS NGC is shown
for clarity, the best fit depicted here is obtained fitting the full combination Pℓ+B0+B2 on all BOSS 4 skies.
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which correspond in frequencies to bins of size ∆k = 0.02154 (0.02459)hMpc−1, with first
and last bins centered on kmin = 0.0215 (0.029)hMpc−1 and kmax = 0.215 (0.176)hMpc−1,
respectively. This choice of bin size is motivated to keep the Hartlap factor at a value safely
close to 1 to limit the effect from the bias of the inverse covariance estimator. Given that we
have 2048 patchy mocks at our disposal to estimate the covariance, and, in our analysis, we
will analyze 42 (36) k-bins in Pℓ and 150 (62) triangle bins in B0, this makes for the Hartlap
factor of about 0.91 (0.95) for CMASS (LOWZ). B2, as analyzed at tree-level, only adds 9

bins per quadrupole (for both CMASS and LOWZ), which lead to the Hartlap factor of the
same order of about 0.9. Importantly, we keep all bins whose centers form a closed triangle.
Explicitly, we choose the following bins according to their centers ordered as:

(n1, n2, n3) , n1, n2, n3 = nmin, nmin + dn, . . . , nmax ,

if n1 ≤ n2 ≤ n3 and n3 ≤ n1 + n2 .
(1)

It follows that there are several bins that contain fundamental triangles that are not closed.
How to properly account for them is discussed in sec. 3.5.

3 Theory model

Our model for the power spectrum multipoles Pℓ, ℓ = 0, 2, the bispectrum monopole, B0,
and the bispectrum quadrupole, B2, consists in the prediction of EFTofLSS at one loop for
Pℓ and B0, and at tree-level for B2. We also incorporate a number of observational effects in
our modeling to make contact with the measurements.

3.1 EFTofLSS at one loop

In this section, we outline the relevant expressions for the one-loop power spectrum and
bispectrum for halos in redshift space P r,h and Br,h. The power spectrum and bispectrum
are defined as the 2- and 3- point functions of the halo overdensity δr,h, in Fourier space:

⟨δr,h(k⃗; ẑ)δr,h(k⃗′; ẑ)⟩ = (2π)3δD(k⃗ + k⃗′)P r,h(k, k̂ · ẑ) (2)

⟨δr,h(k⃗1; ẑ)δr,h(k⃗2; ẑ)δr,h(k⃗3; ẑ)⟩ = (2π)3δD(k⃗1 + k⃗2 + k⃗3)B
r,h(k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) ,

where ẑ is the line-of-sight direction, and δD is the Delta dirac function. After perturbatively
expanding the halo overdensity, we arrive at the following expressions for the one-loop power
spectrum:

P r,h
1-loop tot. = P r,h

11 + (P r,h
13 + P r,h,ct

13 ) + (P r,h
22 + P r,h,ϵ

22 ) , (3)

and the one-loop bispectrum:

Br,h
1-loop tot. = Br,h

211 + (B
r,h,(II)
321 +B

r,h,(II),ct
321 ) + (Br,h

411 +Br,h,ct
411 )

+ (Br,h
222 +Br,h,ϵ

222 ) + (B
r,h,(I)
321 +B

r,h,(I),ϵ
321 ) ,

(4)
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where we have grouped perturbation theory contributions with the counterterm contributions
that renormalize them in parentheses. The loop integrals are evaluated using the techniques
described in [91]. We note that the arguments of the above functions are the same as those
given in eq. (2), and we will often drop the arguments below for clarity.

Details for all of the above expressions can be found in app. A, but we summarize the de-
pendence on bias parameters and EFT parameters here for convenience. For the perturbation
theory contributions, we have

P r,h
11 [b1] , P r,h

13 [b1, b3, b8] , P r,h
22 [b1, b2, b5] ,

Br,h
211[b1, b2, b5] , B

r,h,(II)
321 [b1, b2, b3, b5, b8] , Br,h

411[b1, . . . , b11] ,

Br,h
222[b1, b2, b5] , B

r,h,(I)
321 [b1, b2, b3, b5, b6, b8, b10] ,

(5)

while for the counterterms, we have

P r,h,ct
13 [b1, ch,1, cπ,1, cπv,1, cπv,3] , P r,h,ϵ

22 [cSt1 , cSt2 , cSt3 ] ,

B
r,h,(II),ct
321 [b1, b2, b5, ch,1, cπ,1, cπv,1, cπv,3] , B

r,h,(I),ϵ
321 [b1, c

St
1 , cSt2 , {cSti }i=4,...,13] ,

Br,h,ct
411 [b1, {ch,i}i=1,...,5, cπ,1, cπ,5, {cπv,j}j=1,...,7] , Br,h,ϵ

222 [c
(222)
1 , c

(222)
2 , c

(222)
5 ] .

(6)

Notice that the diagrams P r,h
13 , B

r,h,(II)
321 , and Br,h

411 depend on less biases than the kernels
in eq. (54) would suggest. This is because, when considering the particular momentum-
configuration of the kernels that enter the loop in eq. (56) and eq. (58), they are degenerate
with EFT parameters.

To make contact with our measurements described in sec 2, what we analyze in the data
are various multipoles with respect to the line-of-sight ẑ. In particular, we analyze the power-
spectrum and bispectrum monopole and quadrupoles. The power-spectrum multipoles are
given by

P r,h
ℓ (k) =

2ℓ+ 1

2

∫ 1

−1

dµPℓ(µ)P
r,h(k, µ) , (7)

where Pℓ are the Legendre polynomials, and µ = k̂ · ẑ. The bispectrum monopole is the
average over the line-of-sight angles [109, 102, 110]7

Br,h
0 (k1, k2, k3) =

1

4π

∫ 1

−1

dµ1

∫ 2π

0

dϕBr,h(k1, k2, k3, µ1, µ2(µ1, ϕ)) , (8)

where µi = k̂i · ẑ, and explicitly, from the triangle conditions:

µ2(µ1, ϕ) = µ1k̂1 · k̂2 +
√
1− µ2

1

√
1− (k̂1 · k̂2)2 sinϕ , (9)

µ3(µ1, ϕ) = −k−1
3 (k1µ1 + k2µ2(µ1, ϕ)) . (10)

7We have corrected a factor of 1/(4π) in eq. (14) of [110].
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The expectation values of the estimator used by Rustico for the quadrupoles are:

Br,h
(2,1)(k1, k2, k3) ≡

5

4π

∫ 1

−1

dµ1

∫ 2π

0

dϕP2(µ1)B
r,h(k1, k2, k3, µ1, µ2(µ1, ϕ)) ,

Br,h
(2,2)(k1, k2, k3) ≡

5

4π

∫ 1

−1

dµ1

∫ 2π

0

dϕP2(µ2(µ1, ϕ))B
r,h(k1, k2, k3, µ1, µ2(µ1, ϕ)) ,

Br,h
(2,3)(k1, k2, k3) ≡

5

4π

∫ 1

−1

dµ1

∫ 2π

0

dϕP2(µ3(µ1, ϕ))B
r,h(k1, k2, k3, µ1, µ2(µ1, ϕ)) .

(11)

We work directly in this basis of quadrupoles, that are linear combinations of the B2m

coefficients of the spherical-harmonics expansion defined in [109]. We note that if only
considering the bispectrum monopole, c

(222)
2 and c

(222)
5 become degenerate, so we redefine

c
(222)
2 → c

(222)
2 − c

(222)
5 /6 (8).

3.2 IR-resummation

The IR-resummation is a crucial effect to include in our theory model, in order to correctly re-
produce the BAO. For the power spectrum, we use the full resummation of [47] as implemented
in Pybird [14]. For the bispectrum instead we rely on a wiggle-no wiggle approximation, fol-
lowing [111]. For the linear bispectrum, the formula we implement is:

Br,h
211 = 2Kr,h

1 (k⃗1; ẑ)K
r,h
1 (k⃗2; ẑ)K

r,h
2 (k⃗1, k⃗2; ẑ)PLO(k1)PLO(k2) + 2 perms. , (12)

where
PLO(k) = Pnw(k) + (1 + k2Σ2

tot)e
−k2Σ2

totPw(k) . (13)

Here Pw(k) = P11(k)−Pnw(k), and Pnw(k) is the no-wiggle power spectrum, which we obtain
using the sine-transform algorithm described in [112] and detailed in [113]. Then Σ2

tot is
defined by

Σ2
tot = − 2

15
f 2 δΣ2 +

(
1 +

1

3
f(2 + f)

)
Σ2 , (14)

Σ2 =
4π

3

∫ Λ

0

dq

(2π)3
Pnw(q) [1− j0(qxosc) + 2j2(qxosc)] , (15)

δΣ2 = 4π

∫ Λ

0

dq

(2π)3
Pnw(q)j2(qxosc) , (16)

where we choose Λ = 1hMpc−1 and xosc = 110Mpc/h, and jl are the spherical Bessel
functions.9 For the loop, our choice is to only substitute the non-integrated P11(k) with

PNLO(k) = Pnw(k) + e−k2Σ2
totPw(k) , (17)

while for linear power spectra whose argument are being integrated, we use P11. We discuss
the goodness of this approximation in sec. 5. Another method of BAO damping for the
tree-level bispectrum was given and tested on Patchy mocks in [12].

8When considering in addition the bispectrum quadrupole at one loop, this degeneracy breaks.
9We have checked that changing Λ to 0.12hMpc−1 leads to insignificant differences in the posteriors.
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3.3 Window function

The power spectrum and bispectrum need to be convolved with the window function of the
survey. For the power spectrum, this is standard and does not present numerical challenges.
However, for the bispectrum this becomes more challenging. Therefore, we resort to an
approximation used in [114], which amounts to evaluating the linear bispectrum with the
windowed power spectrum. In formula, we have:

Br,h
211 = 2Kr,h

1 (k⃗1; ẑ)K
r,h
1 (k⃗2; ẑ)K

r,h
2 (k⃗1, k⃗2; ẑ)[W ∗ P11](k⃗1)[W ∗ P11](k⃗2) + 2 perms. , (18)

where [W ∗ P11](k⃗) =
∫

d3k′

(2π)3
W (k⃗ − k⃗′)P11(k⃗

′). Rather than projecting (18) into multipoles,
we project (18) as if there was no window function, and for [W ∗P11](k⃗) we use the following:
for the monopole, we use W → W00 and, for the quadrupole we use W → W22, where W00

and W22 are defined in [4]. Because the window is a small effect, we do not apply it to the
loop bispectrum. We discuss the goodness of this approximation in sec. 5.

3.4 Alcock-Paczynski effect

To estimate the galaxy spectra from data, a reference cosmology is assumed to transform the
measured redshifts and celestial coordinates into three-dimensional cartesian coordinates. The
difference between the reference cosmology and the true cosmology produces a geometrical
distortion known as the Alcock-Paczynski (AP) effect [115]. We introduce the transverse and
parallel distortion parameters:

q⊥ =
DA(z)H0

Dref
A (z)Href

0

, q∥ =
Href(z)/Href

0

H(z)/H0

, (19)

where DA is the angular diameter distance, and the factors of H0 are there since our wavenum-
bers are in units hMpc−1. In terms of these, the true wavenumber and angle with the line of
sight are related to the ones in the reference cosmology by:

k =
kref

q⊥

[
1 + (µref)2

(
1

F 2
− 1

)]1/2
, µ =

µref

F

[
1 + (µref)2

(
1

F 2
− 1

)]−1/2

, (20)

where F = q∥/q⊥. To match the measured power spectrum multipoles, we do the following
integral:

Pℓ(k
ref) =

2ℓ+ 1

2q∥q2⊥

∫ 1

−1

dµrefLℓ(µ
ref)P (k(kref , µref), µ(µref)) . (21)

The formula for the bispectrum is:

B(ℓ,i)(k
ref
1 , kref

2 , kref
3 ) =

2ℓ+ 1

2q2∥q
4
⊥

∫ 1

−1

dµref
1

∫ 2π

0

dϕref

2π
B(k1, k2, k3, µ1, µ2, µ3)Pℓ(µi) . (22)

For the bispectrum, we only apply the Alcock-Paczynski effect on the tree-level part, as
it is a small effect: we find that, within BOSS error bars (on Ωm), it is an effect of at most
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∼ 1σ, and accordingly, the change in χ2 is at most 1 if neglecting it completely. Given the
size of the loop terms and counterterms, it is thus safe to neglect it there. We find that we
can achieve sufficient numerical accuracy using a nested trapezoidal rule with only 13 points
in µ and 4 points in ϕ, after using symmetries to restrict the integration domain to µ1 ∈ [0, 1],
and ϕ ∈ [−π/2, π/2].

3.5 Binning

For the power spectrum, data are an average over spherical shells in momentum space. The
theoretical prediction needs therefore to be averaged over the fundamental modes of the chosen
grid. Since our bins have many fundamental modes, in practice we do an integral of the power
spectrum over a bin, which is numerically very simple. The effect of binning is anyway small
for the power spectrum, with respect to the error bars of our data and simulations.

For the bispectrum, we have an average over fundamental (closed) triangles in a bin of
width ∆k around a central triangle with sides k1, k2, k3. Especially for our chosen bins with
∆k ≃ 0.02, it is important to take into account the binning effects when comparing the theory
to the data. The average should be done as a sum over fundamental triangles:

Br,h
(ℓ,i),bin(k1, k2, k3) =

2ℓ+ 1

NT

∑
q⃗1∈k1

∑
q⃗2∈k2

∑
q⃗2∈k2

δK(q⃗1 + q⃗2 + q⃗3)B
r,h(q⃗1, q⃗2, q⃗3)Pℓ(µi) , (23)

and we note that, here and elsewhere, Br,h(q⃗1, q⃗2, q⃗3) is the full redshift-space bispectrum, i.e.
we have suppressed the dependence on ẑ for notational convenience. Here NT is the number
of fundamental triangles in the bin, δK is the Kronecker delta function, and the notation
q⃗i ∈ ki means a sum over the fundamental modes q⃗i for which ki − ∆k

2
≤ |q⃗i| < ki +

∆k
2

.
Calculating such a sum is numerically very challenging. However, since in each bin there are
many fundamental triangles, we expect that an integral approximation should work well. The
only caveat is that one needs to integrate only over the closed triangles. In particular, this is
very important for bins such that k3 +∆k/2 > k1 + k2 −∆k (remember that our ordering is
k1 ≤ k2 ≤ k3), for which there are configurations of modes that do not form a closed triangle
in the bin.

Therefore, we implement the following formula:

Br,h
(ℓ,i),bin(k1, k2, k3) =

2ℓ+ 1

VT

(
3∏

i=1

∫
Vi

d3qi
(2π)3

)
(2π)3δ

(3)
D (q⃗1 + q⃗2 + q⃗3)B

r,h(q⃗1, q⃗2, q⃗3)Pℓ(µi) ,

(24)

where

VT ≡

(
3∏

i=1

∫
Vi

d3qi
(2π)3

)
(2π)3δ

(3)
D (q⃗1 + q⃗2 + q⃗3) , (25)

and we used the notation∫
Vi

d3qi
(2π)3

=

∫
ki

dqi
2π2

q2i

∫
d2q̂i
4π

, where
∫
ki

≡
∫ ki+

∆k
2

ki−∆k
2

dqi . (26)
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As shown in app. B, we can perform the angular integrals and find

Br,h
(ℓ,i),bin(k1, k2, k3) =

1

VT

∫
k1

dq1

∫
k2

dq2

∫
k3

dq3 q1q2q3
β (∆q)

8π4
Br,h

(ℓ,i)(q1, q2, q3) , (27)

VT =

∫
k1

dq1

∫
k2

dq2

∫
k3

dq3 q1q2q3
β (∆q)

8π4
, (28)

where β(∆q) = 1/2 if q1, q2, q3 form a folded triangle, β(∆q) = 1 for all other (closed)
triangles, and β(∆q) = 0 otherwise.

We apply only the binning in this way to the tree-level part. For efficient numerical
evaluation of the integrals in eq. (27), we implement the bispectrum binning as follow. For
a given bin centered in (k1, k2, k3), we enforce that (q1, q2, q3) forms a triangle by redefining
the integration boundaries: q1 ∈ [k1 − ∆k/2, k1 + ∆k/2], q2 ∈ [k2 − ∆k/2, k2 + ∆k/2], and
q3 ∈ [|k1 − k2|, k1 + k2]. Whenever q3 can not satisfy this triangle inequality, we drop this
configuration. As such, we can drop the β(∆q) function inside the integral. We perform a
change of variable q3 → cos(θ12) ≡ (q23 − q21 − q22)/(2q1q2), such that the integral measure
becomes q1q2q3 dq1dq2dq3 → q21q

2
2 dq1dq2d cos(θ12), We then discretize the integration domain

in 6 evenly-spaced points in q1, 6 in q2, and 4 in cos(θ12). On each point of this grid, we
evaluate the 14 pieces of the tree-level part of the bispectrum. The binning integrals are then
performed with a nested trapezoidal rule over the grid. Given that the AP integrals, eq. (22),
need to be performed for each of those evaluations, we limit the number of evaluations by first
looking for (and storing) the common triangles of the discretized domains over all the bins we
need to evaluate. For our 150 bins in CMASS, this reduces the total number of evaluations
by about a factor 1.5, from 6 · 6 · 4 · 150 = 21600 to 13782. After compilation of the integrand
expressions going in the AP integrals, we are able to evaluate the binned bispectrum in our
Python code with an overall runtime of ∼ 1 second on 1 CPU. The numerical precision of
such evaluation has been extensively tested, in particular against Monte-Carlo integrations,
and is found to be under control for the data and simulations error bars we analyze in this
work.

The loop pieces and counterterms, that are small with respect to the linear term, are
instead evaluated on effective wavenumbers.10 They are defined, as described in [116], by the
following averages:

keff,1 =
1

VT

∫
k1

dq1
2π

∫
k2

dq2
2π

∫
k3

dq3
2π

q1q2q3 β (∆q)min(q1, q2, q3) , (29)

keff,2 =
1

VT

∫
k1

dq1
2π

∫
k2

dq2
2π

∫
k3

dq3
2π

q1q2q3 β (∆q)med(q1, q2, q3) , (30)

keff,3 =
1

VT

∫
k1

dq1
2π

∫
k2

dq2
2π

∫
k3

dq3
2π

q1q2q3 β (∆q)max(q1, q2, q3) . (31)

As expected from the size of those terms and the size of the binning effect (∼ 1σ), we
have checked that properly binning the loop instead of evaluating them on these effective

10We checked that binning the loop did not lead to appreciable different posteriors.
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wavenumbers lead to negligible shift in the minχ2 and in the posteriors for the analyses
presented in this work.

4 Likelihood

To analyze the data, we start from a Gaussian likelihood, which is multiplied by the prior to
arrive at the Bayesian posterior P over cosmological and bias parameters:

−2 lnP = (Ti −Di)C
−1
ij (Tj −Dj)− 2 lnPpr , (32)

where Ti is the full vector of theory predictions in bin i, containing power spectrum multipoles
and bispectra, Di the corresponding data measurement in bin i, Cij is the full covariance
between bins i and j, and Ppr is a generic prior on the parameters.

Our theory model depends on cosmological and EFT parameters. It is the case that many
EFT parameters appear linearly in the theory model. Denoting them by gα, we can write

Ti = gαT
α
G,i + TNG,i , (33)

where Tα
G,i and TNG,i depend non-linearly (that is, at least quadratically) on the other cosmo-

logical parameters and three biases for each sky cut. Since we are interested in the marginal-
ized posteriors over cosmological parameters, it is very convenient to do the analytical Gaus-
sian integration over the gα. We will also choose a Gaussian prior on them, with covariance
σαβ and mean ĝα.11 Collecting the powers of gα, we can write the posterior in the following
form:

−2 lnP = gαF2,αβgβ − 2gαF1,α + F0 , (34)

where the F ’s are defined as:

F2,αβ = Tα
G,iC

−1
ij T β

G,j + σ−1
αβ , (35)

F1,α = −Tα
G,iC

−1
ij (TNG,j −Dj) + σ−1

αβ ĝβ , (36)

F0 = (TNG,i −Di)C
−1
ij (TNG,j −Dj) + ĝασ

−1
αβ ĝβ − 2 lnΠ , (37)

where Π is a generic prior on the cosmological and bias parameters non analytically marginal-
ized. In other words, we assume that Ppr is a sum of a Gaussian prior over the gα and a
remaining prior on the other parameters. After integrating the gα, we have the marginalized
posterior:

−2 lnPmarg = −F1,αF
−1
2,αβF1,β + F0 + ln det

(
F2

2π

)
. (38)

11We only use ĝα ̸= 0 in one of the checks in sec. 5.
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Prior. In our analysis, we vary the cosmological parameters ωcdm, h, and ln (1010As) with
a flat uninformative prior, while we use a Gaussian prior on ωb of mean ωb,BBN = 0.02233

and standard deviation σBBN = 0.00036, motivated from Big-Bang Nucleosynthesis (BBN)
experiments [117]. We instead fix ns to the truth of the simulations or to the Planck preferred
value when analyzing the data [15]. When analyzing the BOSS data, we also fix the neutrino
to minimal mass following Planck prescription.12

The EFT parameters should instead be restricted to be O(1) numbers, for consistency of
the perturbative expansion. The EFTofLSS is an expansion in the size of fluctuations and
derivatives. Both of these are suppressed by a nonlinear scale kNL ≃ kM ≃ 0.7hMpc−1, where
kNL is the nonlinear scale for the matter field, and kM is the typical wavenumber associated to
galaxy size. However, it was recognized in [77, 118] that terms involving expectation values
of velocity fields, coming from the transformation to redshift space, define a new scale, which
we denote by kNL,R ≃ kNL/

√
8. We therefore write down each operator in the EFT expansion

with either a kM or a kNL,R suppression, depending on its origin. We then use a Gaussian prior
of width 2 centered on 0 on all the EFT parameters that we analytically marginalize, with the
following exception: on ch,1, cπ,1, cπv,1, and cSt2 , that already appear in the power spectrum (see
their definitions in app. A), we put instead a Gaussian prior of width 4 centered on 0, such
that the prior is the same as the ones used in our previous series of analyses with the power
spectrum only (see e.g. [4, 6, 7]). For the quadratic biases, we define the linear combinations
c2 = (b2 + b5)/

√
2, c4 = (b2 − b5)/

√
2, and we assign on them a Gaussian prior of width 2

centered on 0. Finally, for b1, which is positive definite, we use a lognormal prior of mean 0.8

(since e0.8 = 2.23), and variance 0.8, such that [0, 3.4] is the 68% bound for this prior on b1.
For definiteness, in our prior, we take kNL = kM = 0.7hMpc−1 and n̄ = 4 · 10−4(Mpc/h)3.

When analyzing more than one sky, we can use the information that the bias and EFT
parameters should be the same at the same redshift, and their time evolution is expected
to be comparable to the growth factor to some small power. This allows us to estimate the
variation of b1 between CMASS or LOWZ effective redshifts, to be about 20%. Therefore, in
our multisky analyses the biases are correlated, which, as explained in the following section,
helps to mitigate prior volume effects. In practice, let us consider the 4-sky analysis and the
b1 parameters, which will be a vector (b(1)1 , b

(2)
1 , b

(3)
1 , b

(4)
1 ), with one b

(i)
1 for each sky. The prior

on it is a multivariate lognormal with correlation matrix:
1 ρ12 ρ13 ρ12ρ13

ρ12 1 ρ12ρ13 ρ13

ρ13 ρ12ρ13 1 ρ12

ρ12ρ13 ρ13 ρ12 1

 , (39)

where ρij = 1 − ϵ2ij/2, and we choose ϵ12 = 0.1, ϵ13 = 0.2. This formula is motivated by the
fact that two variables distributed according to a bivariate normal with correlation ρ, the

12As we describe later in sec. 5, we add a linear prior on Ωm, h and b1 in order to mitigate phase-space
projection effects.
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σproj/σ
data
stat Ωm h σ8 ωcdm ln(1010As) S8

N
se

ri
es Pℓ -0.02 0.05 0.08 0.02 0.05 0.07

Pℓ +B0 -0.06 -0.03 -0.04 -0.08 0.03 -0.06

Pℓ +B0 +B2 -0.12 -0. -0.04 -0.11 0.04 -0.08

1
sk

y Pℓ -0.15 0.07 -0.11 -0.06 -0.08 -0.15

Pℓ +B0 0.07 0.06 0.09 0.11 0.02 0.1

Pℓ +B0 +B2 0.13 0.06 0.04 0.15 -0.04 0.08
4

sk
ie

s Pℓ -0.01 0.05 -0.03 0.02 -0.04 -0.03

Pℓ +B0 0.05 -0. 0.01 0.03 0.01 0.03

Pℓ +B0 +B2 0.1 0. -0.05 0.07 -0.06 -0.01

Table 1: Residual deviations σproj after phase-space projection adjustment measured on synthetic data
generated and fitted with our model Pℓ +B0 +B2 with truth given by the best fits of Nseries, Patchy 1 sky,
or Patchy 4 skies, relative to BOSS error bars σdata

stat .

standard deviation of the difference is ϵ =
√

2(1− ρ). Our choices of ϵij then reflect that
we expect the values of b1 to be different only by about 10% between NGC and SGC, given
slightly different selection function, and only by about 20% between CMASS and LOWZ,
given the redshift evolution of b1. We use the same correlation matrix for the Gaussian priors
on all the quadruplets c2, c4 and the gα parameters.

Posterior sampling. Our analyses are performed using the Metropolis-Hastings sampler
as implemented in MontePython 3 [119], with the theory model evaluated using CLASS [120]
and PyBird. We declare our MCMC converged when the Gelman-Rubin criterion [121] is
≤ 0.02. The plots and summary statistics are calculated with the GetDist [122] package.

5 Pipeline validation

For our analyses, we use the following scale cut: kmin = 0.01hMpc−1 for all observables,
kmax = 0.23hMpc−1 for Pℓ and B0, and kmax = 0.08hMpc−1 for B2, on CMASS. For LOWZ
instead, we use kmax = 0.20hMpc−1 for Pℓ and B0 , following [4]. We keep kmax = 0.08hMpc−1

for B2 on LOWZ.13 In this section, we perform multiple checks to validate our method at this
scale cut.

5.1 Measuring and fixing phase-space effects

Our likelihood has several EFT parameters on top of the cosmological parameters. Some of
these appear in the likelihood in a Gaussian way, and we analytically marginalize over them.
Performing such a Gaussian integral corresponds to putting these parameters to their best
fit values, given all the other parameters and observational data. At this point, we are left

13For comparison purpose, we sometimes fit B0 using the tree-level prediction instead. When doing so, B0

is denoted Btree
0 (to distinguish from B1loop

0 ) and is fitted up to kmax = 0.08hMpc−1 for both CMASS and
LOWZ.
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σproj/σstat Ωm h σ8 ωcdm ln(1010As) S8

1 sky, ∼ 100V1sky -0.1 -0.14 -0.21 -0.2 -0.07 -0.23

1 sky, V1sky, adjust. 0.13 0.06 0.04 0.15 -0.04 0.08

4 skies, V4skies, adjust. 0.1 0. -0.05 0.07 -0.06 -0.01

Figure 3: Triangle plots of base cosmological parameters obtained fitting synthetic data analyzed using
a covariance with BOSS volume VBOSS or rescaled to a large volume ∼ 100VBOSS, with prior on the EFT
parameters centered on their truth, or with phase-space projection adjustment. Here the synthetic data are
corresponding exactly to our model Pℓ +B0 +B2 on the best fit of patchy. ‘1 sky’ or ‘4 skies’ correspond to
CMASS NGC or all BOSS skycuts, respectively. The grey lines in the triangle plots represent the truth. We
also show the relative deviations σproj/σstat on the base cosmological parameters from the truth from those
various analyses. In summary, the addition of a phase-space correction prior to our likelihood allows us to
recover unbiased mean in the 1D posteriors of the cosmological parameters of interest.

with a likelihood which has a non-Gaussian dependence on the EFT and the cosmological
parameters.

Now, there is an interesting phenomenon that we would like to describe. Let us analyze
data that are generated with our theory model: the EFTofLSS plus observational effects as
described in sec 3. We refer to these as ‘synthetic’ data. We generate these synthetic data
by choosing the best fit EFT parameters that we find by fitting the average of 2048 Patchy
simulations, on the Patchy cosmology, so that the resulting EFT and cosmological parameters
are at realistic values. In this case, the best fit has χ2 = 0 once we put flat priors on the EFT
parameters, and we should clearly recover the correct cosmological parameters. However, as
it can be seen from fig. 3, in green, the sampled posteriors show biases in all 1D posteriors of
the cosmological parameters, and in particular in σ8 and Ωm. What is going on?

The first hypothesis is that there could be an error in our pipeline. This hypothesis can
be discarded by noticing that if we analyze the data with a covariance that is about 100 times
smaller, we recover the truth with exquisite precision (see the blue curve in fig. 3). So, we
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exclude this hypothesis.
Another reason for the offset of the green curve in fig. 3 could be the prior on the EFT

parameters. In fact, while on the synthetic data the EFT parameters have some definite
values (which are well within the priors), our Gaussian priors are centered at zero, and so the
true value of the EFT parameters are slightly disfavored by the priors. We check if this can
be the reason to the offset seen in the posteriors of the cosmological parameters by sampling
instead with priors centered around the synthetic truth. We find that the resulting posteriors
are close to previous results (grey vs. green in fig. 3), suggesting that the central value of
the prior of the bias parameters does not play a substantial role. This means that even if the
truth is the maximum likelihood point, the posteriors will not recover it.

Having excluded that the bias in the posteriors on synthetic data is due to an error in
our pipeline or due to our priors, we conclude that it must be due to phase-space projection
effects. In fact, if the posteriors of the EFT parameters are effectively non-Gaussian (i.e.
if the error bars are sufficiently large that the Taylor expansion at second order around the
maximum of the posterior is not accurate enough to describe the actual posterior), then, upon
marginalization, one can get projection effects on the remaining parameters, which, in this
case, are the cosmological ones, even if the maximum likelihood point is the truth. Given
the large number of EFT parameters, it is not so surprising that this might be the case. We
call this effect ‘phase space effect,’ but it is also known as ‘prior volume effect’ or ‘projection
effect.’

We decide to fix this issue with the following procedure. As a measurement of the phase-
space effect, for all analyses in this work, we take the shift in the 1D posteriors from the truth
obtained fitting synthetic data with the same modeling and covariance. We add a prior of
the following form to the log-likelihood of Pℓ +B0(+B2):

lnPph. sp. 1sky
pr = −18

(
b1
2

)
+ 8

(
Ωm

0.31

)
+ 14

(
h

0.68

)
, (40)

lnPph. sp. 4sky
pr = −48

(
b1
2

)
+ 32

(
Ωm

0.31

)
+ 48

(
h

0.68

)
,

respectively for 1 sky and 4 skies.14 As such, upon marginalization, we recover unbiased
1D posteriors from the fit to the synthetic data (see the red curve in fig. 3 and also the
associated table). More in detail, in tab. 1, we show the residual deviation from phase-space
projection on the base cosmological parameters measured from synthetic data. We see that
for all data volume (either the one of CMASS NGC or of all BOSS 4 skies) and cosmologies
tested here (either the one of Nseries or the one of Patchy), we find that the residual deviation

14When analyzing the power spectrum multipoles Pℓ alone, we put the following prior instead:

lnPph. sp. 1sky
pr = 2

(
b1
2

)
− 2

(
Ωm

0.31

)
, (41)

lnPph. sp. 4sky
pr = −4

(
b1
2

)
+ 10

(
Ωm

0.31

)
+ 14

(
h

0.68

)
.

18



∆sys/σstat Ωm h σ8 ωcdm ln(1010As) S8

Pℓ +B0: base - w/ NNLO -0.03 -0.09 -0.03 -0.1 0.05 -0.04

Pℓ +B0: base - w/o B0 window 0.11 -0.05 0.01 0.05 -0.01 0.05

Pℓ +B0 +B2: base - w/o B0, B2 window 0.51 0.09 0.02 0.51 -0.25 0.19

Table 2: Relative shifts ∆sys/σstat on base cosmological parameters measured from various modeling choices
compared to our baseline: inclusion of the NNLO or removal of the window function in the bispectrum.

are negligibly small (≲ 0.15 or the error bars obtained with BOSS-volume covariance). Since
the synthetic data are close to the Patchy ones (and so to the data), and since we expect the
phase-space projection effects to be a slowly-varying function of the cosmological and EFT
parameters, we add the same phase-space-correcting prior to the likelihood of the BOSS data.

5.2 Scale cut from NNLO

A simulation-independent way to evaluate the theoretical error as a function of kmax is to
analyze the data by adding to the theory model a part of the next order terms: for our
one-loop model, this part consists in the next-to-next-to-leading-order (NNLO) terms. Such
a procedure was successfully applied to estimate the scale cut for the CF [7]. Here we use the
same technique. We add the following two-loop counterterms to the EFTofLSS prediction at
one-loop for the power spectrum:

PNNLO(k, µ) =
1

4
cr,4b

2
1µ

4 k4

k4
NL,R

P11(k) +
1

4
cr,6b1µ

6 k4

k4
NL,R

P11(k) , (42)

and for the bispectrum:

BNNLO(k1, k2, k3, µ, ϕ) = 2cNNLO,1K
r,h
2 (k⃗1, k⃗2; ẑ)K

r,h
1 (k⃗2; ẑ)fµ

2
1

k4
1

k4
NL,R

P11(k1)P11(k2)

+ cNNLO,2K
r,h
1 (k⃗1; ẑ)K

r,h
1 (k⃗2; ẑ)P11(k1)P11(k2)fµ3k3

(k2
1 + k2

2)

4k2
1k

2
2k

4
NL,R

[
− 2k⃗1 · k⃗2(k3

1µ1 + k3
2µ2)

+ 2fµ1µ2µ3k1k2k3(k
2
1 + k2

2)
]
+ perm. , (43)

where kNL,R = kNL/
√
8, as discussed in sec. 4. The prefactors cr,4, cr,6, cNNLO,1, and cNNLO,2

are given a Gaussian prior centered on zero and of width 2. We then analyze the data as a
function of kmax, and determine the maximum wavenumber by taking the largest kmax where
the shift in all 1D posteriors of the cosmological parameters with respect to the analysis
without these terms is equal to 1/3 ·σ. This would mean that our results would have become
sensitive to these terms that we do not fully compute, and so we need to analyze the data
only up to this threshold. For simplicity, rather than determining the kmax in this way, we
check the effect of these NNLO terms close to the kmax that we find in simulations, and check
that the effect of the NNLO terms is indeed not too large. The results are presented in tab. 2.
We see that the effect is negligibly small, confirming what we find in simulations next, i.e.
that our scale cut is appropriate.

19



0.1 0.0 0.1

m/ m

0.2

0.0

0.2

8/
8

0.05

0.00

0.05

h/
h

0.05 0.00 0.05

h/h
0.0 0.2

8/ 8

Nseries P
Nseries P + B0
Nseries P + B0 + B2

0.1 0.0 0.1

m/ m

0.2

0.0

0.2

0.4

8/
8

0.05

0.00

0.05

0.10

h/
h

0.0 0.1

h/h
0.1 0.1 0.3

8/ 8

Patchy P
Patchy P + B0
Patchy P + B0 + B2

∆X/X Ωm h σ8 ωcdm ln(1010As) S8

N
se

ri
es Pℓ −0.017± 0.048 0.003+0.022

−0.024 0.047+0.070
−0.086 −0.013+0.063

−0.071 0.035± 0.055 0.038+0.074
−0.092

Pℓ +B0 −0.005± 0.042 0.005±0.019 −0.012± 0.052 0.004+0.052
−0.058 −0.010± 0.040 −0.015± 0.058

Pℓ+B0+B2 −0.010± 0.041 0.006+0.018
−0.021 −0.009± 0.053 0.001± 0.053 −0.007± 0.041 −0.014± 0.059

P
at

ch
y Pℓ −0.021+0.052

−0.059 0.005±0.028 0.034+0.076
−0.098 −0.014± 0.078 0.026+0.056

−0.066 0.022+0.083
−0.10

Pℓ +B0 −0.011+0.044
−0.051 0.004±0.023 −0.011± 0.054 −0.004+0.052

−0.062 −0.006± 0.044 −0.017± 0.058

Pℓ+B0+B2 −0.012± 0.046 0.004±0.024 −0.004± 0.053 −0.006+0.052
−0.059 −0.001± 0.043 −0.011± 0.058

Figure 4: Triangle plots and relative 68%-credible intervals of base cosmological parameters measured from
the Nseries and Patchy simulations analyzed using a covariance with CMASS NGC volume. The grey lines
in the triangle plots represent the simulation truth.

5.3 Tests of additional modeling effects

Our implementation of the IR-resummation and of the window function is approximate, with-
out a control parameter. We therefore check the accuracy of the two implementations in the
following way.

For the window function, the correctness of our approximation has been checked in [123]
for the monopole. In fact, as shown in the second line of tab. 2, the difference between the
bispectrum computed with our approximation, and the one where we apply no window is
within 1/4 of the error bars obtained on all cosmological parameters from the fit to BOSS
data. For the quadrupole, the third line of tab. 2 shows that the difference with applying
no window is about 0.5σ on the posterior of Ωm (while negligible for the other cosmological
parameters). While this might seem too large an effect to tolerate, one should keep in mind
the following. Roughly speaking, the correct window function should consist of applying 3/2

factors of W to the bispectrum (i.e. one for each field). Applying no window therefore is
a radical negligence of all these factors, much worse than the approximation we do (which
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σsim
sys /σ

data
stat Ωm h σ8 ωcdm ln(1010As) S8

Nseries Pℓ +B0 0.02 0.17 0.15 -0.03 0.17 0.17

Nseries Pℓ +B0 +B2 0.16 0.25 0.08 -0.09 0.08 0.16

Patchy Pℓ +B0 0.27 0.21 0.23 0.05 0.14 0.33

Patchy Pℓ +B0 +B2 0.31 0.2 0.07 0.09 0 0.2

Table 3: Report of systematic errors on base cosmological parameters measured from the Nseries and
Patchy simulations. The systematic error, reported relative to the BOSS error bars σdata

stat , is defined as
σsim
sys ≡ max(|mean−truth|−σsim

stat/
√
Nsim, 0). Here σsim

stat/
√
Nsim represents the uncertainty from the simulation

cosmic variance, which corresponds to about 0.15 or 0.03 in σdata
stat for Nsim = 84 Nseries or Nsim = 2048 Patchy

realizations, respectively.

applies two factors of W ). We therefore believe that a more reliable estimate of the error
associated to our implementation of the window function for the quadrupole is obtained by
dividing the effect in tab. 2 by a factor of 4. Even if our estimate were to be wrong by a
factor 2, this would make the effect safely negligible. It would be interesting to compare
our approach to an analysis using another estimator based on tri-polar spherical harmonics
(described in [10] and tested on Patchy mocks in [12]) for which the window functions can be
estimated on an equal footing, making its application more straightforward.

Let us now discuss the goodness of our approximate implementation of the IR-resummation
of the bispectrum. It should be emphasized that the wiggle/no-wiggle procedure is affected by
several uncontrolled approximations (i.e. not controlled by a small parameter, but numerically
accidentally small) [62]. On top of those, our formulas neglect the angle dependence of
the IR-resummation, and, perhaps even more quantitatively importantly, do not damp the
oscillations in the power spectra whose momenta are integrated in the loop integrals, as for
example proposed in [111]. We checked that applying the damping for those power spectra
leads to a negligible (≲ 0.25) change in the χ2 when keeping all the parameters of the model
fixed. We therefore conclude that neglecting the IR-resummation on the ‘wiggly’ parts from
inside the loop integrals is accurate enough for BOSS data. We leave to future work more
careful inspection of the remaining approximations in our IR-resummation scheme.

5.4 Tests against simulations

We now test the accuracy of the model by comparing against N -body simulations described
in sec. 2. This does not only test the effect of the theoretical error due to the next order terms
not included in our baseline model or to the approximate IR-resummation, but also of the
other observational effects that we model imperfectly, such as the window function. In fig. 4,
we show the posteriors from the analysis of the average of 84 Nseries boxes, analyzed with the
covariance of one box, such that we also account for the phase space effect. Since the actual
cosmic variance associated to this average of 84 boxes is about 1/9 of the posteriors in fig. 4,
we measure for each cosmological parameter the theoretical error as the distance of the mean
of the posterior to the truth of the simulation minus 1/9 of the standard deviation (we take
zero if this number is negative). This allows us to detect theoretical errors larger than 1/9 of
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Nbin // dof minχ2 minχ2/dof p-value

CMASS NGC 42 + 150 + 9 = 201 159.5 0.79 0.99

CMASS SGC 42 + 150 + 9 = 201 188.7 0.94 0.72

LOWZ NGC 36 + 62 + 9 = 107 98.3 0.92 0.71

LOWZ SGC 36 + 62 + 9 = 107 106.4 0.99 0.50

Parameter Prior 3 + 41(1 + 0.1 + 0.2 + 0.1 · 0.2) ≃ 57 8.9 - -

Total 616− 57 = 559 561.9 1.01 0.46

Table 4: Goodness of fit given by the maximal log-likelihood value logL ≡ −minχ2/2 obtained fitting
BOSS 4 skies Pℓ + B0 + B2, and associated p-value. For each skycut, we detail the number of bins Nbin =

NPℓ

bin+NB0

bin+NB2

bin, while in ‘Parameter Prior’ we give instead the degrees of freedom (dof). The dof are taken
as the sum of 3 varied cosmological parameters (that are not prior dominated) plus an effective number of
correlated EFT parameters. The p-value are calculated assuming there is no correlation within the data.

a standard deviation of the posterior in fig. 4, which corresponds to about 0.15 of the of the
error bars obtained on the BOSS data. Our results show that the theoretical error that we
can detect is safely below 1/3 of the error bars obtained on BOSS, as summarized in tab. 3.

In fig. 4, we also present the analogous analysis on the average of 2048 Patchy mocks.
In this case, the detectable theoretical error is almost unaffected by cosmic variance. Thus,
assuming no systematic error in the Patchy simulations, the minimal detectable theoretical
error is practically zero. Also in this case, the theoretical error is safely below 1/3 the error
bars obtained on BOSS, as summarized in tab. 3.

We conclude that our analysis pipeline is free from significant systematics for BOSS volume
at the scale cuts chosen at the beginning of this section, and we now move on to the analysis
of the observational data.

6 Results

When analyzing the BOSS data, we find that there is no additional gain by adding all the
three independent quadrupoles after one has been included. We therefore present results
including only Br,h

(2,3).
In fig. 2, we show the best fit residuals and in tab. 4 the best-fit χ2 and associated p-

value. The p-value is very good and we do not find any concerning systematic behavior in the
residuals. In fig. 1, we provide the best-fit parameters, which safely lie within our 68%-credible
intervals.

The posteriors associated to the analysis of the BOSS data are presented in fig. 1 and
fig. 5. They are discussed in the Introduction. In App. C we provide the posteriors for the
other non-marginalized parameters as well their confidence interval. One can see that the
bispectrum improves their measurement by order 100%.
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Figure 5: Triangle plots of base cosmological parameters measured from the analysis of BOSS power spec-
trum multipoles Pℓ, ℓ = 0, 2, at one-loop, and bispectrum monopole B0 at tree or one-loop level.
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A EFTofLSS details

A.1 General expressions

Here we give the details necessary to compute the one-loop power spectrum and one-loop
bispectrum of biased tracers in redshift space in the EFTofLSS. The bias expansion for the
halo overdensity is given by

δh(x⃗, t) =b1

(
C(1)

δ,1(x⃗, t) + C(2)
δ,1(x⃗, t) + C(3)

δ,1(x⃗, t) + C(4)
δ,1(x⃗, t)

)
+ b2

(
C(2)

δ,2(x⃗, t) + C(3)
δ,2(x⃗, t) + C(4)

δ,2(x⃗, t)
)
+ b3

(
C(3)

δ,3(x⃗, t) + C(4)
δ,3(x⃗, t)

)
+ b4 C(4)

δ,4(x⃗, t) + b5

(
C(2)

δ2,1(x⃗, t) + C(3)

δ2,1(x⃗, t) + C(4)

δ2,1(x⃗, t)
)

+ b6

(
C(3)

δ2,2(x⃗, t) + C(4)

δ2,2(x⃗, t)
)
+ b7C(4)

δ2,3(x⃗, t) + b8

(
C(3)

r2,2(x⃗, t) + C(4)

r2,2(x⃗, t)
)

+ b9C(4)

r2,3(x⃗, t) + b10

(
C(3)

δ3,1(x⃗, t) + C(4)

δ3,1(x⃗, t)
)
+ b11C(4)

r3,2(x⃗, t)

+ b12C(4)

δ3,2(x⃗, t) + b13C(4)

r2δ,2(x⃗, t) + b14C(4)

δ4,1(x⃗, t) + b15C(4)

δr3,1(x⃗, t) .

(44)

In the above, the C(n)
O,α functions are defined by Taylor expanding the operator O in the fluid

line element x⃗fl [58], which is given recursively by

x⃗fl(x⃗, t, t
′) = x⃗−

∫ t

t′

dt′′

a(t′′)
v⃗(x⃗fl(x⃗, t, t

′′), t′′) . (45)

Explicitly, writing Om to represent an operator that is the product of m powers of fluctuations
(i.e. m = 3 for δ3, ∂2ϕ∂i∂jϕ∂

i∂jϕ, etc.), we have

[Om(x⃗fl(t, t
′), t′)](n) =

n−(m−1)∑
α=1

(
D(t′)

D(t)

)α+m−1

C(n)
Om,α(x⃗, t) , (46)

where the notation [. . . ](n) means to take the n-th order term in the perturbative expan-
sion. Explicit expressions for the operators up to third order can be found in [73], with the
identification C(3)

r2,2 = C(3)

s2,2 + C(3)

δ2,2/3, and fourth order operators can be found with eq. (46).
Operators at fourth order that are not related to previously used cubic terms are

C(4)

r3,2(x⃗, t) = [r3(x⃗, t)](4) − ∂ir
3(x⃗, t)

∂iθ(x⃗, t)

∂2
,

C(4)

r2δ,2(x⃗, t) = [r2(x⃗, t)δ(x⃗, t)](4) − ∂i(r
2(x⃗, t)δ(x⃗, t))

∂iθ(x⃗, t)

∂2
,

C(4)

δ4,1(x⃗, t) = δ(x⃗, t)4 , C(4)

δr3,1(x⃗, t) = δ(x⃗, t)r3(x⃗, t) ,

(47)

where

rij ≡ ∂i∂jϕ , r2 ≡ rijrji , r3 ≡ rijrjkrki , ∂2ϕ ≡ δ , and θ ≡ − ∂iv
i

faH
. (48)
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Given the position space halo overdensity δh, the transformation to redshift space, δr,h, is
accomplished by

δr,h = δh −
ẑiẑj

aH
∂i
(
(1 + δh)v

j
)
+

ẑiẑj ẑkẑl

2(aH)2
∂i∂j((1 + δh)v

kvl)

−
∏6

a=1 ẑ
ia

3!(aH)3
∂i1∂i2∂i3((1 + δh)v

i4vi5vi6) +

∏8
a=1 ẑ

ia

4!(aH)4
∂i1∂i2∂i3∂i4(v

i5vi6vi7vi8) + . . . ,

(49)

where ẑ is the line-of-sight direction. We then expand the overdensity perturbatively as

δr,h(k⃗; ẑ) =
∑
n

δ
(n)
r,h (k⃗; ẑ) . (50)

For the one-loop power spectrum and the one-loop bispectrum, we need the overdensity to
fourth order, n = 4. The solutions can be written as an expansion in powers of the linear
dark-matter overdensity δ(1) in terms of the symmetric n-th order halo kernels Kr,h

n defined
as in15

δ
(1)
r,h(k⃗; ẑ) = Kr,h

1 (k⃗; ẑ)δ(1)(k⃗) ,

δ
(n)
r,h (k⃗; ẑ) =

∫ k⃗

k⃗1,...,⃗kn

Kr,h
n (k⃗1, . . . , k⃗n; ẑ)δ

(1)(k⃗1) · · · δ(1)(k⃗n) , for n ≥ 2 .
(52)

For example,
Kr,h

1 (k⃗; ẑ) = b1 + f(k̂ · ẑ)2 , (53)

is the famous Kaiser result for linear theory. The explicit expressions for Kr,h
2 and Kr,h

3 are
given in [40], while the expression for Kr,h

4 is available in [90] and can be straightforwardly
derived from the above expressions. We provide the dependence of the kernels Kr,h

1,...,4 on the
bias parameters {bi} for i = 1, . . . , 15 here for convenience

Kr,h
1 [b1] , Kr,h

2 [b1, b2, b5] , Kr,h
3 [b1, b2, b3, b5, b6, b8, b10] , and Kr,h

4 [b1, . . . , b15] . (54)

Given the perturbative expansion above, we can write the observables of interest (in our
case the one-loop power spectrum and the one-loop bispectrum) in terms of the kernels Kr,h

n .
The relevant quantities for the power spectrum that enter eq. (3) are the tree-level power
spectrum

P r,h
11 (k, k̂ · ẑ) = (b1 + f(k̂ · ẑ)2)2P11(k) , (55)

and the one-loop contributions

P r,h
22 (k, k̂ · ẑ) = 2

∫
q⃗

Kr,h
2 (q⃗, k⃗ − q⃗; ẑ)2P11(q)P11(|⃗k − q⃗|) ,

P r,h
13 (k, k̂ · ẑ) = 6P11(k)K

r,h
1 (k⃗; ẑ)

∫
q⃗

Kr,h
3 (q⃗,−q⃗, k⃗; ẑ)P11(q) .

(56)

15We have introduced the following notation∫
k⃗1,...,⃗kn

≡
∫

d3k1
(2π)3

· · · d
3kn

(2π)3
,

∫ k⃗

k⃗1,...,⃗kn

≡
∫
k⃗1,...,⃗kn

(2π)3δD(k⃗ −
n∑

i=1

k⃗i) . (51)

Additionally, P11 is the dark-matter linear power spectrum.
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For the bispectrum, the quantities that enter eq. (4) are the tree-level bispectrum

Br,h
211 = 2Kr,h

1 (k⃗1; ẑ)K
r,h
1 (k⃗2; ẑ)K

r,h
2 (−k⃗1,−k⃗2; ẑ)P11(k1)P11(k2) + 2 perms. , (57)

and the one-loop contributions

Br,h
222 = 8

∫
q⃗

P11(q)P11(|⃗k2 − q⃗|)P11(|⃗k1 + q⃗|)

×Kr,h
2 (−q⃗, k⃗1 + q⃗; ẑ)Kr,h

2 (k⃗1 + q⃗, k⃗2 − q⃗; ẑ)Kr,h
2 (k⃗2 − q⃗, q⃗; ẑ) ,

B
r,h,(I)
321 = 6P11(k1)K

r,h
1 (k⃗1; ẑ)

∫
q⃗

P11(q)P11(|⃗k2 − q⃗|) (58)

×Kr,h
3 (−q⃗,−k⃗2 + q⃗,−k⃗1; ẑ)K

r,h
2 (q⃗, k⃗2 − q⃗; ẑ) + 5 perms. ,

B
r,h,(II)
321 = 6P11(k1)P11(k2)K

r,h
1 (k⃗1; ẑ)K

r,h
2 (k⃗1, k⃗2; ẑ)

∫
q⃗

P11(q)K
r,h
3 (k⃗2, q⃗,−q⃗; ẑ) + 5 perms. ,

Br,h
411 = 12P11(k1)P11(k2)K

r,h
1 (k⃗1; ẑ)K

r,h
1 (k⃗2; ẑ)

∫
q⃗

P11(q)K
r,h
4 (q⃗,−q⃗,−k⃗1,−k⃗2; ẑ) + 2 perms. .

Note that on the left-hand sides we have dropped the argument (k1, k2, k3, k̂1 · ẑ, k̂2 · ẑ) on the
bispectrum expressions to remove clutter.

Next we move on to the EFT counterterm contributions where, for renormalization up
to the one-loop bispectrum, we need the EFT counterterms to second order in fields. Addi-
tionally, since we work with biased tracers, we can introduce the counterterms directly into
eq. (49), i.e. directly at the level of biased tracers in redshift space, as in [40, 77] for ex-
ample. We divide the counterterm contributions into two sources, response terms which are
proportional to powers of the linear field δ(1), and stochastic terms which contain randomly
fluctuating fields, typically denoted with an ‘ϵ.’ We can write the response terms as

δ
(1)
r,h,ct(k⃗; ẑ) = Kr,h,ct

1 (k⃗; ẑ)δ(1)(k⃗) ,

δ
(2)
r,h,ct(k⃗; ẑ) =

∫ k⃗

q⃗1,q⃗2

Kr,h,ct
2 (q⃗1, q⃗2; ẑ)δ

(1)(q⃗1)δ
(1)(q⃗2) ,

(59)

where

Kr,h,ct
1 (k⃗; ẑ) =

k2

k2
NL

(
−ch,1 + f(k̂ · ẑ)2cπ,1 − 1

2
f 2(k̂ · ẑ)4cπv,1 − 1

2
f 2(k̂ · ẑ)2cπv,3

)
, (60)

and

Kr,h,ct
2 (k⃗1, k⃗2; ẑ) =

14∑
i=1

ci e
K2
i (k⃗1, k⃗2; ẑ) , (61)

with

ci = {ch,1, ch,2, ch,3, ch,4, ch,5, cπ,1, cπ,5, cπv,1, cπv,2, cπv,3, cπv,4, cπv,5, cπv,6, cπv,7} , (62)
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and the eK2
i functions are given below in sec. A.2. Similarly, we denote the first order stochastic

term as δr,h,ϵ1 (k⃗; ẑ), and the second order ones as

δ
(2)
r,h,ϵ(k⃗; ẑ) =

∫ k⃗

q⃗1,q⃗2

δr,h,ϵ2 (q⃗1, q⃗2; ẑ)δ
(1)(q⃗2) . (63)

Here, δr,h,ϵ1 (k⃗; ẑ) and δr,h,ϵ2 (q⃗1, q⃗2; ẑ) contain all allowed contractions of tensor stochastic fields
ϵij..., which we assume to be Poisson distributed and do not correlate with the matter field
δ(1). Contractions of the stochastic fields are defined as in [77].

In terms of the kernels above, the response counterterms are

P r,h,ct
13 (k, k̂ · ẑ) = 2Kr,h

1 (k⃗; ẑ)Kr,h,ct
1 (−k⃗; ẑ)P11(k) ,

B
r,h,(II),ct
321 = 2P11(k1)P11(k2)K

r,h,ct
1 (k⃗1; ẑ)K

r,h
1 (k⃗2; ẑ)K

r,h
2 (−k⃗1,−k⃗2; ẑ) + 5 perms. ,

Br,h,ct
411 = 2P11(k1)P11(k2)K

r,h
1 (k⃗1; ẑ)K

r,h
1 (k⃗2; ẑ)K

r,h,ct
2 (−k⃗1,−k⃗2; ẑ) + 2 perms. .

(64)

The two stochastic contributions that involve only δr,h,ϵ1 and do not contain any long-wavelength
fields are

P r,h,ϵ
22 =

1

n̄

(
cSt1 + cSt2

k2

k2
NL

+ cSt3
k2

k2
NL

f(k̂ · ẑ)2
)

, (65)

and

Br,h,ϵ
222 =

1

n̄2

(
c
(222)
1 +

1

k2
NL

(
c
(222)
2 (k2

1 + k2
2 + k2

3) + c
(222)
5 ẑiẑj

(
ki
1k

j
2 + ki

1k
j
3 + ki

2k
j
3

)))
. (66)

The final, mixed response-stochastic, contribution is slightly more complicated, so we first
define B̃

r,h,(I),ϵ
321 from

(2π)3δD(k⃗1 + k⃗2 + k⃗3)B̃
r,h,(I),ϵ
321 (k⃗1, k⃗2, k⃗3; ẑ) =

⟨δ(1)r,h(k⃗1; ẑ)δ
r,h,ϵ
1 (k⃗2; ẑ)δ

(2)
r,h,ϵ(k⃗3; ẑ)⟩+ ⟨δ(1)r,h(k⃗1; ẑ)δ

r,h,ϵ
1 (k⃗3; ẑ)δ

(2)
r,h,ϵ(k⃗2; ẑ)⟩ ,

(67)

so that

B
r,h,(I),ϵ
321 = B̃

r,h,(I),ϵ
321 (k⃗1, k⃗2, k⃗3; ẑ) + B̃

r,h,(I),ϵ
321 (k⃗3, k⃗1, k⃗2; ẑ) + B̃

r,h,(I),ϵ
321 (k⃗2, k⃗3, k⃗1; ẑ) . (68)

Then we have

B̃
r,h,(I),ϵ
321 (k⃗1, k⃗2, k⃗3; ẑ) =

(b1 + f(k̂1 · ẑ)2)
n̄

P11(k1)
13∑
i=1

cSti eSti (k⃗1, k⃗2, k⃗3; ẑ) . (69)

The eSti functions are given below in sec. A.2. Notice that eSt3 = 0, so that there is no cSt3
parameter.

A full description of the fourth order bias expansion and renormalization in redshift space
is given in [90]. See [124] for the bias expansion for the real space one-loop bispectrum (and
measurement of the scalar amplitude As from simulations).
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A.2 Explicit functions

The functions that enter Kr,h,ct
2 in eq. (61) are given by

eK2
1 =

−2fk2k
3
1µ1µ2 − 2fk4

2µ
2
1 + k4

1 + (k2
2 − k2

3) k
2
1

4k2
2k

2
NL

+ (1 ↔ 2) ,

eK2
2 = − 1

28k2
1k

2
2k

2
NL

(
k6
3 + 5k2

1k
2
2k

2
3 + 7k6

1 +
(
7k2

2 − 12k2
3

)
k4
1 + 3k2

2k
4
3 + (1 ↔ 2)

)
,

eK2
3 = − k2

3

k2
NL

, eK2
4 = −k2

3 (k
2
1 + k2

2 − k2
3)

2

4k2
1k

2
2k

2
NL

, eK2
5 =

k2
1 + k2

2 − k2
3

2k2
NL

,

(70)

eK2
6 =

f(k1µ1 + k2µ2)

4k2
1k

2
2k

2
NL

(
k2
1µ1

(
2fk2k

2
1µ1µ2 + 2fk3

2µ1µ2 − k3
1 +

(
k2
3 − k2

2

)
k1
)
+ (1 ↔ 2)

)
,

eK2
7 =

f (k2
1 − k2

2 − k2
3) (k

2
1 + k2

2 − k2
3) (k

2
1 − k2

2 + k2
3) (k1µ1 + k2µ2)

2

8k2
1k

2
2k

2
3k

2
NL

, (71)

eK2
8 =

f 2(k1µ1 + k2µ2)
2

8k2
1k

2
2k

2
NL

(
−2fk2

1k
2
2µ

2
1µ

2
2 + k2

1µ
2
1

(
−2fk2k1µ1µ2 + k2

1 + k2
2 − k2

3

)
+ (1 ↔ 2)

)
,

eK2
9 =

f 2(k1µ1 + k2µ2)
2

56k2
1k

2
2k

2
3k

2
NL

(
− 2k1k2

(
k4
3 + 5k2

1k
2
2

)
µ1µ2 + k2

1µ1

(
5k4

1µ1 + 10k2k
3
1µ2

− 10
(
k2
2 + k2

3

)
k2
1µ1 − 6k2k

2
3k1µ2 + 5

(
k2
2 − k2

3

)
2µ1

)
+ (1 ↔ 2)

)
,

eK2
10 =

f 2(k1µ1 + k2µ2)
2

8k2
1k

2
2k

2
NL

(
k2
1k

2
2 + k2

1

(
−2fk2k1µ1µ2 − 2fk2

2µ
2
1 + k2

1 − k2
3

)
+ (1 ↔ 2)

)
,

eK2
11 =

f 2(k1µ1 + k2µ2)
2

28k2
1k

2
2k

2
NL

(
−k4

3 − 12k2
1k

2
2 +

(
2k2

3 − k2
1

)
k2
1 +

(
2k2

3 − k2
2

)
k2
2

)
,

eK2
12 = −f 2 (µ2

1 + µ2
2) (k1µ1 + k2µ2)

2

4k2
NL

, eK2
13 =

f 2 (k2
1 + k2

2 − k2
3)µ1µ2 (k1µ1 + k2µ2)

2

4k1k2k2
NL

,

eK2
14 = −f 2 (k1µ1 + k2µ2)

2

2k2
NL

.

(72)

In the above, we have used the notation µi ≡ k̂i · ẑ.
The functions that enter the stochastic counterterm B

r,h,(I),ϵ
321 in eq. (69) are:

eSt1 = fµ2
1 − 1 ,

eSt2 = −k2
1 (k

2
2 (1− 2fµ2

1) + k2
3) + 2fk2 (k

2
3 − k2

2) k1µ1µ2 + (k2
2 − k2

3)
2

2k2
1k

2
NL

, (73)

eSt3 = 0 ,

eSt4 = −f 2µ1 (k
3
1µ1 (2fµ

2
1 − 1) + 4fk2k

2
1µ

2
1µ2 + k1µ1 (k

2
2 (4fµ

2
2 − 1) + k2

3) + 2k2 (k
2
3 − k2

2)µ2)

4k1k2
NL

,

eSt5 =
f 2µ1 (4fk2k

2
1µ

2
1µ2 + k1µ1 (k

2
2 (4fµ

2
2 − 1) + k2

3) + k3
1µ1 + 2k2 (k

2
3 − k2

2)µ2)

4k1k2
NL

,
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eSt6 = 2 , eSt7 = −k2
2 + k2

3

k2
NL

, eSt8 = −k4
1 + (k2

2 − k2
3)

2

2k2
1k

2
NL

,

eSt9 = − k2
1

k2
NL

, eSt10 = −f (k1µ1 + 2k2µ2) ((k
2
1 − k2

2 + k2
3)µ1 + 2k1k2µ2)

4k1k2
NL

, (74)

eSt11 =
fµ1 (k1 (k

2
1 + k2

2 − k2
3)µ1 + 2k2 (k

2
2 − k2

3)µ2)

2k1k2
NL

, eSt12 = −2fk2µ2 (k1µ1 + k2µ2)

k2
NL

,

eSt13 =
1

4k2
1k

2
3k

2
NL

f
(
k2
1

(
k2
1 − k2

2 + k2
3

)
2µ2

1 + 2k1k2
(
k2
1 − k2

2 + k2
3

)
2µ1µ2

+
((
k2
2 + k2

3

)
k4
1 − 2

(
k2
2 − k2

3

)
2k2

1 +
(
k2
2 − k2

3

)
2
(
k2
2 + k2

3

))
µ2
2

)
.

All of the above eSti are symmetric when swapping k⃗2 and k⃗3, as expected from eq. (67). To
see it, one must swap k2 ↔ k3 and µ2 ↔ µ3, and then replace µ3 = −k−1

3 (k1µ1 + k2µ2).

B Binning formula details

In this appendix, we want to show that the binning formula for the bispectrum

Br,h
(l,i),bin(k1, k2, k3) =

2l + 1

VT

(∏
i

∫
Vi

d3qi
(2π)3

)
(2π)3δ

(3)
D (q⃗1+ q⃗2+ q⃗3)Pl(µi)B

r,h(q⃗1, q⃗2, q⃗3) , (75)

is equivalent to

Br,h
(l,i),bin(k1, k2, k3) =

1

VT

(∏
i

∫
ki

dqi qi

)
β (∆q)

8π4
Br,h

(l,i)(q1, q2, q3) , (76)

We do the calculation here for general l, which is relevant to us for l = 0, 2.
Given that the bispectrum is a polynomial in µ1 and µ2, and switching to a basis of

Legendre polynomials, we can write

Br,h(q⃗1, q⃗2, q⃗3) =
∑
n1,n2

Br,h
n1,n2

(q1, q2, q3)Pn1(µ1)Pn2(µ2) . (77)

We can focus on the case of Pl(µ1), since the other cases just correspond to a permutation of
µi in eq. (77). Let us then start by writing the delta function as an integral over plane waves:

Br,h
(l,1),bin =

2l + 1

VT

(∏
i

∫
Vi

d3qi
(2π)3

)∫
d3x eix⃗·(q⃗1+q⃗2+q⃗3)Pl(µ1)

×
∑
n1,n2

Br,h
n1,n2

(q1, q2, q3)Pn1(µ1)Pn2(µ2) .

(78)

The integral over d2q̂3, is just ∫
d2q̂3 e

iq⃗3·x⃗ = 4πj0(q3x) . (79)
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And the rest of the exponentials we expand the plane wave:

eiq⃗1·x⃗ =
∑
l1

il1(2l1 + 1)jl1(q1x)Pl1(q̂1 · x̂). (80)

Putting all of this into eq. (78) we get:

Br,h
(l,1),bin =

2l + 1

VT

∑
n1,n2

∑
l1,l2

il1+l2(2l1 + 1)(2l2 + 1)

(
2∏

i=1

∫
Vi

d3qi
(2π)3

)∫
k3

dq3
2π2

q23B
r,h
n1,n2

(q1, q2, q3)

×
∫

d3xj0(q3x)jl1(q1x)jl2(q2x)Pl1(q̂1 · x̂)Pl2(q̂2 · x̂)Pl(q̂1 · ẑ)Pn1(q̂1 · ẑ)Pn2(q̂2 · ẑ) .

(81)

Now we can do all the angular integrals, using the formula,∫
d2x̂Pl1(q̂1 · x̂)Pl2(q̂2 · x̂) = δl1,l2

4π

2l1 + 1
Pl1(q̂1 · q̂2) , (82)

to evaluate∫
d2x̂

∫
d2q̂1

∫
d2q̂2Pl1(q̂1 · x̂)Pl2(q̂2 · x̂)Pl(q̂1 · ẑ)Pn1(q̂1 · ẑ)Pn2(q̂2 · ẑ)

= δl1,l2
4π

2l1 + 1

∫
d2q̂1

∫
d2q̂2Pl1(q̂1 · q̂2)Pl(q̂1 · ẑ)Pn1(q̂1 · ẑ)Pn2(q̂2 · ẑ)

= δl1,l2 δl1,n2

(4π)2

(2l1 + 1)2

∫
d2q̂1Pl1(q̂1 · ẑ)Pl(q̂1 · ẑ)Pn1(q̂1 · ẑ)

= δl1,l2 δl1,n2

(4π)3

(2l1 + 1)2

n2 l n1

0 0 0

2

,

(83)

and additionally we used the integral of three Legendre polynomials in terms of the Wigner
3-j symbol in the last line. We are now only left with integrals over the magnitudes:

Br,h
(l,1),bin = 4π

(2l + 1)

VT

∑
n1,n2

(−1)n2

(
3∏

i=1

∫
ki

dqi
2π2

q2i

)

×
∫ ∞

0

dxx2jn2(q1x)jn2(q2x)j0(q3x)

n2 l n1

0 0 0

2

Br,h
n1,n2

(q1, q2, q3) .

(84)

Further using the following integral over three spherical Bessel functions:∫ ∞

0

dxx2jn2(q1x)jn2(q2x)j0(q3x) =
π

4q1q2q3
β(q̂1 · q̂2)Pn2

(
q21 + q22 − q23

2q1q2

)
, (85)

where β(∆) = 1 for −1 < ∆ < 1, β(∆) = 1/2 for ∆ = ±1, and β(∆) = 0 otherwise, and
recognizing that the last Legendre is Pn2(−q̂1 · q̂2) = (−1)n2Pn2(q̂1 · q̂2), we can put everything
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together and we get that eq. (75) reduces to

Br,h
(l,1),bin =

2l + 1

VT

∑
n1,n2

(
3∏

i=1

∫
ki

dqiqi

)
β(q̂1 · q̂2)

8π4
Pn2(q̂1 · q̂2)

n2 l n1

0 0 0

2

Br,h
n1,n2

(q1, q2, q3) .

(86)
To get our formula (76), it is now sufficient to show that the unbinned bispectrum satisfies

Br,h
(l,1)(q1, q2, q3) = (2l + 1)

∑
n1,n2

Pn2(q̂1 · q̂2)

n2 l n1

0 0 0

2

Br,h
n1,n2

(q1, q2, q3) . (87)

So next, we write the left hand side of the above explicitly, and expand the redshift space
bispectrum, plugging eq. (77) into a generalization of eq. (8) and eq. (11):

Br,h
(l,1)(q1, q2, q3) = (2l + 1)

∑
n1,n2

∫ 1

−1

dµ1

2

∫ 2π

0

dϕ

2π
Pl(µ1)Pn1(µ1)Pn2(µ2)B

r,h
n1,n2

(q1, q2, q3) . (88)

This can be calculated in a coordinate system in which we fix q̂1, q̂2 and integrate over d2ẑ:

Br,h
(l,1)(q1, q2, q3) = (2l + 1)

∑
n1,n2

∫
d2ẑ

4π
Pl(q̂1 · ẑ)Pn1(q̂1 · ẑ)Pn2(q̂2 · ẑ)Br,h

n1,n2
(q1, q2, q3) . (89)

Next, we use that the product of two Legendre polynomials is

Pl(q̂1 · ẑ)Pn1(q̂1 · ẑ) =
n1+l∑

L=|n1−l|

(2L+ 1)

n1 l L

0 0 0

2

PL(q̂1 · ẑ) , (90)

and plug eq. (90) into eq. (89) to get

Br,h
(l,1)(q1, q2, q3) = (2l + 1)

∑
n1,n2

n1+l∑
L=|n1−l|

(2L+ 1)

n1 l L

0 0 0

2

×
∫

d2ẑ

4π
PL(q̂1 · ẑ)Pn2(q̂2 · ẑ)Br,h

n1,n2
(q1, q2, q3)

= (2l + 1)
∑
n1,n2

n1 l L

0 0 0

2

Pn2(q̂1 · q̂2)Br,h
n1,n2

(q1, q2, q3) ,

(91)

as desired.
For completeness we also calculate the volume

VT =

(∏
i

∫
Vi

d3qi
(2π)3

)
(2π)3δ

(3)
D (q⃗1 + q⃗2 + q⃗3) =

(∏
i

∫
Vi

d3qi
(2π)3

)∫
d3x eiq⃗1·x⃗eiq⃗2·x⃗eiq⃗3·x⃗ . (92)

We then integrate over the plane waves using eq. (79) and the three Bessel functions using
eq. (85) to get

VT =

(∏
i

∫
ki

dqi qi

)
β(q̂1 · q̂2)

8π4
. (93)
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Figure 6: Full triangle plots from the analysis of BOSS power spectrum multipoles Pℓ at one loop, bispectrum
monopole B0 at tree level or one loop, and bispectrum quadrupole B2 at tree level.

C Additional parameter posteriors

In fig. 6, we show the full triangle plots obtained fitting BOSS 4 skies Pℓ+B0+B2. In tab. 5,
we show the 68%-credible intervals of b1, c2, and c4 obtained on this same fit.
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mean ±σ b1 c2 c4

CMASS NGC

Pℓ 2.12± 0.18 0.95+0.45
−0.68 0.2± 1.7

Pℓ +B0 2.23± 0.13 1.27± 0.26 −0.29+0.55
−0.61

Pℓ +B0 +B2 2.19± 0.13 1.18+0.22
−0.28 −0.25+0.54

−0.60

CMASS SGC

Pℓ 2.13± 0.18 1.01+0.45
−0.62 0.2± 1.7

Pℓ +B0 2.27± 0.13 1.23± 0.26 −0.32+0.56
−0.63

Pℓ +B0 +B2 2.22± 0.14 1.14+0.23
−0.27 −0.27± 0.60

LOWZ NGC

Pℓ 1.93± 0.16 0.98+0.37
−0.47 0.2± 1.7

Pℓ +B0 2.04± 0.12 1.23+0.21
−0.24 −0.26± 0.64

Pℓ +B0 +B2 2.00± 0.12 1.14+0.20
−0.24 −0.27+0.60

−0.67

LOWZ SGC

Pℓ 1.93± 0.15 1.04+0.34
−0.40 0.2± 1.7

Pℓ +B0 2.05± 0.12 1.21+0.21
−0.24 −0.30± 0.65

Pℓ +B0 +B2 2.02± 0.12 1.12+0.20
−0.24 −0.30+0.61

−0.68

Table 5: 68%-credible intervals of b1, c2, and c4 from the analysis of BOSS power spectrum multipoles Pℓ at
the one-loop, bispectrum monopole B0 at the one-loop, and bispectrum quadrupole B2 at tree-level.

References
[1] BOSS collaboration, S. Alam et al., The clustering of galaxies in the completed SDSS-III

Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,
Mon. Not. Roy. Astron. Soc. 470 (2017) 2617–2652, [1607.03155].

[2] M. Levi, C. Bebek, T. Beers, R. Blum, R. Cahn, D. Eisenstein et al., The DESI Experiment,
a whitepaper for Snowmass 2013, ArXiv e-prints (2013) , [1308.0847].

[3] Euclid Theory Working Group collaboration, L. Amendola et al., Cosmology and
fundamental physics with the Euclid satellite, Living Rev. Rel. 16 (2013) 6, [1206.1225].

[4] G. D’Amico, J. Gleyzes, N. Kokron, D. Markovic, L. Senatore, P. Zhang et al., The
Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale
Structure, JCAP 05 (2020) 005, [1909.05271].

[5] M. M. Ivanov, M. Simonović and M. Zaldarriaga, Cosmological Parameters from the BOSS
Galaxy Power Spectrum, JCAP 05 (2020) 042, [1909.05277].

[6] T. Colas, G. D’amico, L. Senatore, P. Zhang and F. Beutler, Efficient Cosmological Analysis
of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure, JCAP 06
(2020) 001, [1909.07951].

[7] P. Zhang, G. D’Amico, L. Senatore, C. Zhao and Y. Cai, BOSS Correlation Function
Analysis from the Effective Field Theory of Large-Scale Structure, 2110.07539.

[8] S.-F. Chen, Z. Vlah and M. White, A new analysis of the BOSS survey, including full-shape
information and post-reconstruction BAO, 2110.05530.

[9] O. H. E. Philcox and M. M. Ivanov, The BOSS DR12 Full-Shape Cosmology: ΛCDM
Constraints from the Large-Scale Galaxy Power Spectrum and Bispectrum Monopole,
2112.04515.

33

http://dx.doi.org/10.1093/mnras/stx721
http://arxiv.org/abs/1607.03155
http://arxiv.org/abs/1308.0847
http://dx.doi.org/10.12942/lrr-2013-6
http://arxiv.org/abs/1206.1225
http://dx.doi.org/10.1088/1475-7516/2020/05/005
http://arxiv.org/abs/1909.05271
http://dx.doi.org/10.1088/1475-7516/2020/05/042
http://arxiv.org/abs/1909.05277
http://dx.doi.org/10.1088/1475-7516/2020/06/001
http://dx.doi.org/10.1088/1475-7516/2020/06/001
http://arxiv.org/abs/1909.07951
http://arxiv.org/abs/2110.07539
http://arxiv.org/abs/2110.05530
http://arxiv.org/abs/2112.04515


[10] N. S. Sugiyama, S. Saito, F. Beutler and H.-J. Seo, A complete FFT-based decomposition
formalism for the redshift-space bispectrum, Mon. Not. Roy. Astron. Soc. 484 (2019) 364–384,
[1803.02132].

[11] N. S. Sugiyama, S. Saito, F. Beutler and H.-J. Seo, Perturbation theory approach to predict
the covariance matrices of the galaxy power spectrum and bispectrum in redshift space, Mon.
Not. Roy. Astron. Soc. 497 (2020) 1684–1711, [1908.06234].

[12] N. S. Sugiyama, S. Saito, F. Beutler and H.-J. Seo, Towards a self-consistent analysis of the
anisotropic galaxy two- and three-point correlation functions on large scales: application to
mock galaxy catalogues, Mon. Not. Roy. Astron. Soc. 501 (2021) 2862–2896, [2010.06179].

[13] O. H. E. Philcox, M. M. Ivanov, M. Simonović and M. Zaldarriaga, Combining Full-Shape
and BAO Analyses of Galaxy Power Spectra: A 1.6\% CMB-independent constraint on H0,
JCAP 05 (2020) 032, [2002.04035].

[14] G. D’Amico, L. Senatore and P. Zhang, Limits on wCDM from the EFTofLSS with the
PyBird code, JCAP 01 (2021) 006, [2003.07956].

[15] Planck collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters,
Astron. Astrophys. 641 (2020) A6, [1807.06209].

[16] G. D’Amico, Y. Donath, L. Senatore and P. Zhang, Limits on Clustering and Smooth
Quintessence from the EFTofLSS, 2012.07554.

[17] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri and D. Scolnic, Large Magellanic Cloud
Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant
and Stronger Evidence for Physics beyond ΛCDM, Astrophys. J. 876 (2019) 85, [1903.07603].

[18] W. L. Freedman et al., The Carnegie-Chicago Hubble Program. VIII. An Independent
Determination of the Hubble Constant Based on the Tip of the Red Giant Branch,
1907.05922.

[19] L. Verde, T. Treu and A. G. Riess, Tensions between the Early and the Late Universe, in
Nature Astronomy 2019, 2019. 1907.10625. DOI.

[20] G. D’Amico, L. Senatore, P. Zhang and H. Zheng, The Hubble Tension in Light of the
Full-Shape Analysis of Large-Scale Structure Data, JCAP 05 (2021) 072, [2006.12420].

[21] M. M. Ivanov, E. McDonough, J. C. Hill, M. Simonović, M. W. Toomey, S. Alexander et al.,
Constraining Early Dark Energy with Large-Scale Structure, Phys. Rev. D 102 (2020) 103502,
[2006.11235].

[22] F. Niedermann and M. S. Sloth, New Early Dark Energy is compatible with current LSS data,
Phys. Rev. D 103 (2021) 103537, [2009.00006].

[23] T. L. Smith, V. Poulin, J. L. Bernal, K. K. Boddy, M. Kamionkowski and R. Murgia, Early
dark energy is not excluded by current large-scale structure data, Phys. Rev. D 103 (2021)
123542, [2009.10740].

34

http://dx.doi.org/10.1093/mnras/sty3249
http://arxiv.org/abs/1803.02132
http://dx.doi.org/10.1093/mnras/staa1940
http://dx.doi.org/10.1093/mnras/staa1940
http://arxiv.org/abs/1908.06234
http://dx.doi.org/10.1093/mnras/staa3725
http://arxiv.org/abs/2010.06179
http://dx.doi.org/10.1088/1475-7516/2020/05/032
http://arxiv.org/abs/2002.04035
http://dx.doi.org/10.1088/1475-7516/2021/01/006
http://arxiv.org/abs/2003.07956
http://dx.doi.org/10.1051/0004-6361/201833910
http://arxiv.org/abs/1807.06209
http://arxiv.org/abs/2012.07554
http://dx.doi.org/10.3847/1538-4357/ab1422
http://arxiv.org/abs/1903.07603
http://arxiv.org/abs/1907.05922
http://arxiv.org/abs/1907.10625
http://dx.doi.org/10.1038/s41550-019-0902-0
http://dx.doi.org/10.1088/1475-7516/2021/05/072
http://arxiv.org/abs/2006.12420
http://dx.doi.org/10.1103/PhysRevD.102.103502
http://arxiv.org/abs/2006.11235
http://dx.doi.org/10.1103/PhysRevD.103.103537
http://arxiv.org/abs/2009.00006
http://dx.doi.org/10.1103/PhysRevD.103.123542
http://dx.doi.org/10.1103/PhysRevD.103.123542
http://arxiv.org/abs/2009.10740


[24] G. D’Amico, M. Lewandowski, L. Senatore and P. Zhang, Limits on primordial
non-Gaussianities from BOSS galaxy-clustering data, 2201.11518.

[25] G. Cabass, M. M. Ivanov, O. H. E. Philcox, M. Simonović and M. Zaldarriaga, Constraints
on Single-Field Inflation from the BOSS Galaxy Survey, 2201.07238.

[26] G. Cabass, M. M. Ivanov, O. H. E. Philcox, M. Simonović and M. Zaldarriaga, Constraints
on Multi-Field Inflation from the BOSS Galaxy Survey, 2204.01781.

[27] P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark and M. Zaldarriaga, Limits on
non-gaussianities from wmap data, JCAP 0605 (2006) 004, [astro-ph/0509029].

[28] L. Senatore, K. M. Smith and M. Zaldarriaga, Non-Gaussianities in Single Field Inflation
and their Optimal Limits from the WMAP 5-year Data, JCAP 1001 (2010) 028, [0905.3746].

[29] F. Bernardeau and J.-P. Uzan, NonGaussianity in multifield inflation, Phys. Rev. D 66
(2002) 103506, [hep-ph/0207295].

[30] D. H. Lyth, C. Ungarelli and D. Wands, The Primordial density perturbation in the curvaton
scenario, Phys. Rev. D 67 (2003) 023503, [astro-ph/0208055].

[31] M. Zaldarriaga, Non-Gaussianities in models with a varying inflaton decay rate, Phys. Rev. D
69 (2004) 043508, [astro-ph/0306006].

[32] D. Babich, P. Creminelli and M. Zaldarriaga, The Shape of non-Gaussianities, JCAP 08
(2004) 009, [astro-ph/0405356].

[33] L. Senatore and M. Zaldarriaga, The Effective Field Theory of Multifield Inflation, JHEP 04
(2012) 024, [1009.2093].

[34] WMAP collaboration, C. L. Bennett et al., Nine-Year Wilkinson Microwave Anisotropy
Probe (WMAP) Observations: Final Maps and Results, Astrophys. J. Suppl. 208 (2013) 20,
[1212.5225].

[35] Planck collaboration, Y. Akrami et al., Planck 2018 results. IX. Constraints on primordial
non-Gaussianity, Astron. Astrophys. 641 (2020) A9, [1905.05697].

[36] A. Slosar, C. Hirata, U. Seljak, S. Ho and N. Padmanabhan, Constraints on local primordial
non-Gaussianity from large scale structure, JCAP 08 (2008) 031, [0805.3580].

[37] N. Dalal, O. Dore, D. Huterer and A. Shirokov, The imprints of primordial non-gaussianities
on large-scale structure: scale dependent bias and abundance of virialized objects, Phys. Rev.
D 77 (2008) 123514, [0710.4560].

[38] L. Verde and S. Matarrese, Detectability of the effect of Inflationary non-Gaussianity on halo
bias, Astrophys. J. Lett. 706 (2009) L91–L95, [0909.3224].

[39] F. Schmidt and M. Kamionkowski, Halo Clustering with Non-Local Non-Gaussianity, Phys.
Rev. D 82 (2010) 103002, [1008.0638].

35

http://arxiv.org/abs/2201.11518
http://arxiv.org/abs/2201.07238
http://arxiv.org/abs/2204.01781
http://dx.doi.org/10.1088/1475-7516/2006/05/004
http://arxiv.org/abs/astro-ph/0509029
http://dx.doi.org/10.1088/1475-7516/2010/01/028
http://arxiv.org/abs/0905.3746
http://dx.doi.org/10.1103/PhysRevD.66.103506
http://dx.doi.org/10.1103/PhysRevD.66.103506
http://arxiv.org/abs/hep-ph/0207295
http://dx.doi.org/10.1103/PhysRevD.67.023503
http://arxiv.org/abs/astro-ph/0208055
http://dx.doi.org/10.1103/PhysRevD.69.043508
http://dx.doi.org/10.1103/PhysRevD.69.043508
http://arxiv.org/abs/astro-ph/0306006
http://dx.doi.org/10.1088/1475-7516/2004/08/009
http://dx.doi.org/10.1088/1475-7516/2004/08/009
http://arxiv.org/abs/astro-ph/0405356
http://dx.doi.org/10.1007/JHEP04(2012)024
http://dx.doi.org/10.1007/JHEP04(2012)024
http://arxiv.org/abs/1009.2093
http://dx.doi.org/10.1088/0067-0049/208/2/20
http://arxiv.org/abs/1212.5225
http://dx.doi.org/10.1051/0004-6361/201935891
http://arxiv.org/abs/1905.05697
http://dx.doi.org/10.1088/1475-7516/2008/08/031
http://arxiv.org/abs/0805.3580
http://dx.doi.org/10.1103/PhysRevD.77.123514
http://dx.doi.org/10.1103/PhysRevD.77.123514
http://arxiv.org/abs/0710.4560
http://dx.doi.org/10.1088/0004-637X/706/1/L91
http://arxiv.org/abs/0909.3224
http://dx.doi.org/10.1103/PhysRevD.82.103002
http://dx.doi.org/10.1103/PhysRevD.82.103002
http://arxiv.org/abs/1008.0638


[40] A. Perko, L. Senatore, E. Jennings and R. H. Wechsler, Biased Tracers in Redshift Space in
the EFT of Large-Scale Structure, 1610.09321.

[41] D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, Cosmological Non-Linearities as an
Effective Fluid, JCAP 1207 (2012) 051, [1004.2488].

[42] J. J. M. Carrasco, M. P. Hertzberg and L. Senatore, The Effective Field Theory of
Cosmological Large Scale Structures, JHEP 09 (2012) 082, [1206.2926].

[43] R. A. Porto, L. Senatore and M. Zaldarriaga, The Lagrangian-space Effective Field Theory of
Large Scale Structures, JCAP 1405 (2014) 022, [1311.2168].

[44] J. J. M. Carrasco, S. Foreman, D. Green and L. Senatore, The 2-loop matter power spectrum
and the IR-safe integrand, JCAP 1407 (2014) 056, [1304.4946].

[45] J. J. M. Carrasco, S. Foreman, D. Green and L. Senatore, The Effective Field Theory of Large
Scale Structures at Two Loops, JCAP 1407 (2014) 057, [1310.0464].

[46] S. M. Carroll, S. Leichenauer and J. Pollack, Consistent effective theory of long-wavelength
cosmological perturbations, Phys. Rev. D90 (2014) 023518, [1310.2920].

[47] L. Senatore and M. Zaldarriaga, The IR-resummed Effective Field Theory of Large Scale
Structures, JCAP 1502 (2015) 013, [1404.5954].

[48] T. Baldauf, E. Schaan and M. Zaldarriaga, On the reach of perturbative methods for dark
matter density fields, JCAP 1603 (2016) 007, [1507.02255].

[49] S. Foreman, H. Perrier and L. Senatore, Precision Comparison of the Power Spectrum in the
EFTofLSS with Simulations, JCAP 1605 (2016) 027, [1507.05326].

[50] T. Baldauf, L. Mercolli and M. Zaldarriaga, Effective field theory of large scale structure at
two loops: The apparent scale dependence of the speed of sound, Phys. Rev. D92 (2015)
123007, [1507.02256].

[51] M. Cataneo, S. Foreman and L. Senatore, Efficient exploration of cosmology dependence in
the EFT of LSS, 1606.03633.

[52] M. Lewandowski and L. Senatore, IR-safe and UV-safe integrands in the EFTofLSS with
exact time dependence, JCAP 1708 (2017) 037, [1701.07012].

[53] T. Konstandin, R. A. Porto and H. Rubira, The Effective Field Theory of Large Scale
Structure at Three Loops, 1906.00997.

[54] E. Pajer and M. Zaldarriaga, On the Renormalization of the Effective Field Theory of Large
Scale Structures, JCAP 1308 (2013) 037, [1301.7182].

[55] A. A. Abolhasani, M. Mirbabayi and E. Pajer, Systematic Renormalization of the Effective
Theory of Large Scale Structure, JCAP 1605 (2016) 063, [1509.07886].

[56] L. Mercolli and E. Pajer, On the velocity in the Effective Field Theory of Large Scale
Structures, JCAP 1403 (2014) 006, [1307.3220].

36

http://arxiv.org/abs/1610.09321
http://dx.doi.org/10.1088/1475-7516/2012/07/051
http://arxiv.org/abs/1004.2488
http://dx.doi.org/10.1007/JHEP09(2012)082
http://arxiv.org/abs/1206.2926
http://dx.doi.org/10.1088/1475-7516/2014/05/022
http://arxiv.org/abs/1311.2168
http://dx.doi.org/10.1088/1475-7516/2014/07/056
http://arxiv.org/abs/1304.4946
http://dx.doi.org/10.1088/1475-7516/2014/07/057
http://arxiv.org/abs/1310.0464
http://dx.doi.org/10.1103/PhysRevD.90.023518
http://arxiv.org/abs/1310.2920
http://dx.doi.org/10.1088/1475-7516/2015/02/013
http://arxiv.org/abs/1404.5954
http://dx.doi.org/10.1088/1475-7516/2016/03/007
http://arxiv.org/abs/1507.02255
http://dx.doi.org/10.1088/1475-7516/2016/05/027
http://arxiv.org/abs/1507.05326
http://dx.doi.org/10.1103/PhysRevD.92.123007
http://dx.doi.org/10.1103/PhysRevD.92.123007
http://arxiv.org/abs/1507.02256
http://arxiv.org/abs/1606.03633
http://dx.doi.org/10.1088/1475-7516/2017/08/037
http://arxiv.org/abs/1701.07012
http://arxiv.org/abs/1906.00997
http://dx.doi.org/10.1088/1475-7516/2013/08/037
http://arxiv.org/abs/1301.7182
http://dx.doi.org/10.1088/1475-7516/2016/05/063
http://arxiv.org/abs/1509.07886
http://dx.doi.org/10.1088/1475-7516/2014/03/006
http://arxiv.org/abs/1307.3220


[57] M. McQuinn and M. White, Cosmological perturbation theory in 1+1 dimensions, JCAP
1601 (2016) 043, [1502.07389].

[58] L. Senatore, Bias in the Effective Field Theory of Large Scale Structures, JCAP 1511 (2015)
007, [1406.7843].

[59] L. Senatore and M. Zaldarriaga, Redshift Space Distortions in the Effective Field Theory of
Large Scale Structures, 1409.1225.

[60] T. Baldauf, M. Mirbabayi, M. Simonovic and M. Zaldarriaga, Equivalence Principle and the
Baryon Acoustic Peak, Phys. Rev. D92 (2015) 043514, [1504.04366].

[61] L. Senatore and G. Trevisan, On the IR-Resummation in the EFTofLSS, JCAP 1805 (2018)
019, [1710.02178].

[62] M. Lewandowski and L. Senatore, An analytic implementation of the IR-resummation for the
BAO peak, 1810.11855.

[63] D. Blas, M. Garny, M. M. Ivanov and S. Sibiryakov, Time-Sliced Perturbation Theory II:
Baryon Acoustic Oscillations and Infrared Resummation, JCAP 1607 (2016) 028,
[1605.02149].

[64] M. Lewandowski, A. Perko and L. Senatore, Analytic Prediction of Baryonic Effects from the
EFT of Large Scale Structures, JCAP 1505 (2015) 019, [1412.5049].

[65] D. P. L. Bragança, M. Lewandowski, D. Sekera, L. Senatore and R. Sgier, Baryonic effects in
the Effective Field Theory of Large-Scale Structure and an analytic recipe for lensing in
CMB-S4, 2010.02929.

[66] R. E. Angulo, S. Foreman, M. Schmittfull and L. Senatore, The One-Loop Matter Bispectrum
in the Effective Field Theory of Large Scale Structures, JCAP 1510 (2015) 039, [1406.4143].

[67] T. Baldauf, L. Mercolli, M. Mirbabayi and E. Pajer, The Bispectrum in the Effective Field
Theory of Large Scale Structure, JCAP 1505 (2015) 007, [1406.4135].

[68] D. Bertolini, K. Schutz, M. P. Solon and K. M. Zurek, The Trispectrum in the Effective Field
Theory of Large Scale Structure, 1604.01770.

[69] T. Baldauf, E. Schaan and M. Zaldarriaga, On the reach of perturbative descriptions for dark
matter displacement fields, JCAP 1603 (2016) 017, [1505.07098].

[70] S. Foreman and L. Senatore, The EFT of Large Scale Structures at All Redshifts: Analytical
Predictions for Lensing, JCAP 1604 (2016) 033, [1503.01775].

[71] M. Mirbabayi, F. Schmidt and M. Zaldarriaga, Biased Tracers and Time Evolution, JCAP
1507 (2015) 030, [1412.5169].

[72] R. Angulo, M. Fasiello, L. Senatore and Z. Vlah, On the Statistics of Biased Tracers in the
Effective Field Theory of Large Scale Structures, JCAP 1509 (2015) 029, [1503.08826].

37

http://dx.doi.org/10.1088/1475-7516/2016/01/043
http://dx.doi.org/10.1088/1475-7516/2016/01/043
http://arxiv.org/abs/1502.07389
http://dx.doi.org/10.1088/1475-7516/2015/11/007
http://dx.doi.org/10.1088/1475-7516/2015/11/007
http://arxiv.org/abs/1406.7843
http://arxiv.org/abs/1409.1225
http://dx.doi.org/10.1103/PhysRevD.92.043514
http://arxiv.org/abs/1504.04366
http://dx.doi.org/10.1088/1475-7516/2018/05/019
http://dx.doi.org/10.1088/1475-7516/2018/05/019
http://arxiv.org/abs/1710.02178
http://arxiv.org/abs/1810.11855
http://dx.doi.org/10.1088/1475-7516/2016/07/028
http://arxiv.org/abs/1605.02149
http://dx.doi.org/10.1088/1475-7516/2015/05/019
http://arxiv.org/abs/1412.5049
http://arxiv.org/abs/2010.02929
http://dx.doi.org/10.1088/1475-7516/2015/10/039
http://arxiv.org/abs/1406.4143
http://dx.doi.org/10.1088/1475-7516/2015/05/007
http://arxiv.org/abs/1406.4135
http://arxiv.org/abs/1604.01770
http://dx.doi.org/10.1088/1475-7516/2016/03/017
http://arxiv.org/abs/1505.07098
http://dx.doi.org/10.1088/1475-7516/2016/04/033
http://arxiv.org/abs/1503.01775
http://dx.doi.org/10.1088/1475-7516/2015/07/030
http://dx.doi.org/10.1088/1475-7516/2015/07/030
http://arxiv.org/abs/1412.5169
http://dx.doi.org/10.1088/1475-7516/2015/09/029, 10.1088/1475-7516/2015/9/029
http://arxiv.org/abs/1503.08826


[73] T. Fujita, V. Mauerhofer, L. Senatore, Z. Vlah and R. Angulo, Very Massive Tracers and
Higher Derivative Biases, 1609.00717.

[74] E. O. Nadler, A. Perko and L. Senatore, On the Bispectra of Very Massive Tracers in the
Effective Field Theory of Large-Scale Structure, JCAP 1802 (2018) 058, [1710.10308].

[75] Y. Donath and L. Senatore, Biased Tracers in Redshift Space in the EFTofLSS with exact
time dependence, JCAP 10 (2020) 039, [2005.04805].

[76] P. McDonald and A. Roy, Clustering of dark matter tracers: generalizing bias for the coming
era of precision LSS, JCAP 0908 (2009) 020, [0902.0991].

[77] M. Lewandowski, L. Senatore, F. Prada, C. Zhao and C.-H. Chuang, EFT of large scale
structures in redshift space, Phys. Rev. D97 (2018) 063526, [1512.06831].

[78] L. Senatore and M. Zaldarriaga, The Effective Field Theory of Large-Scale Structure in the
presence of Massive Neutrinos, 1707.04698.

[79] R. de Belsunce and L. Senatore, Tree-Level Bispectrum in the Effective Field Theory of
Large-Scale Structure extended to Massive Neutrinos, 1804.06849.

[80] M. Lewandowski, A. Maleknejad and L. Senatore, An effective description of dark matter and
dark energy in the mildly non-linear regime, JCAP 1705 (2017) 038, [1611.07966].

[81] G. Cusin, M. Lewandowski and F. Vernizzi, Dark Energy and Modified Gravity in the
Effective Field Theory of Large-Scale Structure, JCAP 1804 (2018) 005, [1712.02783].

[82] B. Bose, K. Koyama, M. Lewandowski, F. Vernizzi and H. A. Winther, Towards Precision
Constraints on Gravity with the Effective Field Theory of Large-Scale Structure, JCAP 1804
(2018) 063, [1802.01566].

[83] V. Assassi, D. Baumann, E. Pajer, Y. Welling and D. van der Woude, Effective theory of
large-scale structure with primordial non-Gaussianity, JCAP 1511 (2015) 024, [1505.06668].

[84] V. Assassi, D. Baumann and F. Schmidt, Galaxy Bias and Primordial Non-Gaussianity,
JCAP 1512 (2015) 043, [1510.03723].

[85] D. Bertolini, K. Schutz, M. P. Solon, J. R. Walsh and K. M. Zurek, Non-Gaussian
Covariance of the Matter Power Spectrum in the Effective Field Theory of Large Scale
Structure, 1512.07630.

[86] D. Bertolini and M. P. Solon, Principal Shapes and Squeezed Limits in the Effective Field
Theory of Large Scale Structure, 1608.01310.

[87] M. Simonovic, T. Baldauf, M. Zaldarriaga, J. J. Carrasco and J. A. Kollmeier, Cosmological
perturbation theory using the FFTLog: formalism and connection to QFT loop integrals,
JCAP 1804 (2018) 030, [1708.08130].

38

http://arxiv.org/abs/1609.00717
http://dx.doi.org/10.1088/1475-7516/2018/02/058
http://arxiv.org/abs/1710.10308
http://dx.doi.org/10.1088/1475-7516/2020/10/039
http://arxiv.org/abs/2005.04805
http://dx.doi.org/10.1088/1475-7516/2009/08/020
http://arxiv.org/abs/0902.0991
http://dx.doi.org/10.1103/PhysRevD.97.063526
http://arxiv.org/abs/1512.06831
http://arxiv.org/abs/1707.04698
http://arxiv.org/abs/1804.06849
http://dx.doi.org/10.1088/1475-7516/2017/05/038
http://arxiv.org/abs/1611.07966
http://dx.doi.org/10.1088/1475-7516/2018/04/005
http://arxiv.org/abs/1712.02783
http://dx.doi.org/10.1088/1475-7516/2018/04/063
http://dx.doi.org/10.1088/1475-7516/2018/04/063
http://arxiv.org/abs/1802.01566
http://dx.doi.org/10.1088/1475-7516/2015/11/024
http://arxiv.org/abs/1505.06668
http://dx.doi.org/10.1088/1475-7516/2015/12/043
http://arxiv.org/abs/1510.03723
http://arxiv.org/abs/1512.07630
http://arxiv.org/abs/1608.01310
http://dx.doi.org/10.1088/1475-7516/2018/04/030
http://arxiv.org/abs/1708.08130


[88] T. Nishimichi, G. D’Amico, M. M. Ivanov, L. Senatore, M. Simonović, M. Takada et al.,
Blinded challenge for precision cosmology with large-scale structure: results from effective field
theory for the redshift-space galaxy power spectrum, Phys. Rev. D 102 (2020) 123541,
[2003.08277].

[89] S.-F. Chen, Z. Vlah, E. Castorina and M. White, Redshift-Space Distortions in Lagrangian
Perturbation Theory, JCAP 03 (2021) 100, [2012.04636].

[90] G. D’Amico, Y. Donath, M. Lewandowski, L. Senatore and P. Zhang, The one-loop
bispectrum of galaxies in redshift space from the Effective Field Theory of Large-Scale
Structure, 2211.17130.

[91] C. Anastasiou, D. P. L. Bragança, L. Senatore and H. Zheng, Efficiently evaluating loop
integrals in the EFTofLSS using QFT integrals with massive propagators, 2212.07421.

[92] B. Reid et al., SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy
target selection and large scale structure catalogues, Mon. Not. Roy. Astron. Soc. 455 (2016)
1553–1573, [1509.06529].

[93] F.-S. Kitaura et al., The clustering of galaxies in the SDSS-III Baryon Oscillation
Spectroscopic Survey: mock galaxy catalogues for the BOSS Final Data Release, Mon. Not.
Roy. Astron. Soc. 456 (2016) 4156–4173, [1509.06400].

[94] J. Hartlap, P. Simon and P. Schneider, Why your model parameter confidences might be too
optimistic: Unbiased estimation of the inverse covariance matrix, Astron. Astrophys. 464
(2007) 399, [astro-ph/0608064].

[95] H. A. Feldman, N. Kaiser and J. A. Peacock, Power spectrum analysis of three-dimensional
redshift surveys, Astrophys. J. 426 (1994) 23–37, [astro-ph/9304022].

[96] K. Yamamoto, Optimal weighting scheme in redshift space power spectrum analysis and a
prospect for measuring the cosmic equation of state, Astrophys. J. 595 (2003) 577–588,
[astro-ph/0208139].

[97] K. Yamamoto, M. Nakamichi, A. Kamino, B. A. Bassett and H. Nishioka, A Measurement of
the quadrupole power spectrum in the clustering of the 2dF QSO Survey, Publ. Astron. Soc.
Jap. 58 (2006) 93–102, [astro-ph/0505115].

[98] D. Bianchi, H. Gil-Marín, R. Ruggeri and W. J. Percival, Measuring line-of-sight dependent
Fourier-space clustering using FFTs, Mon. Not. Roy. Astron. Soc. 453 (2015) L11–L15,
[1505.05341].

[99] H. Gil-Marín et al., The clustering of galaxies in the SDSS-III Baryon Oscillation
Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12
BOSS galaxies, Mon. Not. Roy. Astron. Soc. 460 (2016) 4188–4209, [1509.06386].

[100] R. Scoccimarro, S. Colombi, J. N. Fry, J. A. Frieman, E. Hivon and A. Melott, Nonlinear
evolution of the bispectrum of cosmological perturbations, Astrophys. J. 496 (1998) 586,
[astro-ph/9704075].

39

http://dx.doi.org/10.1103/PhysRevD.102.123541
http://arxiv.org/abs/2003.08277
http://dx.doi.org/10.1088/1475-7516/2021/03/100
http://arxiv.org/abs/2012.04636
http://arxiv.org/abs/2211.17130
http://arxiv.org/abs/2212.07421
http://dx.doi.org/10.1093/mnras/stv2382
http://dx.doi.org/10.1093/mnras/stv2382
http://arxiv.org/abs/1509.06529
http://dx.doi.org/10.1093/mnras/stv2826
http://dx.doi.org/10.1093/mnras/stv2826
http://arxiv.org/abs/1509.06400
http://dx.doi.org/10.1051/0004-6361:20066170
http://dx.doi.org/10.1051/0004-6361:20066170
http://arxiv.org/abs/astro-ph/0608064
http://dx.doi.org/10.1086/174036
http://arxiv.org/abs/astro-ph/9304022
http://dx.doi.org/10.1086/377488
http://arxiv.org/abs/astro-ph/0208139
http://dx.doi.org/10.1093/pasj/58.1.93
http://dx.doi.org/10.1093/pasj/58.1.93
http://arxiv.org/abs/astro-ph/0505115
http://dx.doi.org/10.1093/mnrasl/slv090
http://arxiv.org/abs/1505.05341
http://dx.doi.org/10.1093/mnras/stw1096
http://arxiv.org/abs/1509.06386
http://dx.doi.org/10.1086/305399
http://arxiv.org/abs/astro-ph/9704075


[101] E. Sefusatti, Probing fundamental physics with large-scale structure: From Galaxy formation
to inflation, other thesis, 2005.

[102] R. Scoccimarro, Fast Estimators for Redshift-Space Clustering, Phys. Rev. D 92 (2015)
083532, [1506.02729].

[103] N. Hand, Y. Feng, F. Beutler, Y. Li, C. Modi, U. Seljak et al., nbodykit: an open-source,
massively parallel toolkit for large-scale structure, Astron. J. 156 (2018) 160, [1712.05834].

[104] F. Beutler, E. Castorina and P. Zhang, Interpreting measurements of the anisotropic galaxy
power spectrum, JCAP 03 (2019) 040, [1810.05051].

[105] A. de Mattia and V. Ruhlmann-Kleider, Integral constraints in spectroscopic surveys, JCAP
08 (2019) 036, [1904.08851].

[106] A. de Mattia et al., The Completed SDSS-IV extended Baryon Oscillation Spectroscopic
Survey: measurement of the BAO and growth rate of structure of the emission line galaxy
sample from the anisotropic power spectrum between redshift 0.6 and 1.1, Mon. Not. Roy.
Astron. Soc. 501 (2021) 5616–5645, [2007.09008].

[107] F. Beutler and P. McDonald, Unified galaxy power spectrum measurements from 6dFGS,
BOSS, and eBOSS, JCAP 11 (2021) 031, [2106.06324].

[108] E. Sefusatti, M. Crocce, R. Scoccimarro and H. Couchman, Accurate Estimators of
Correlation Functions in Fourier Space, Mon. Not. Roy. Astron. Soc. 460 (2016) 3624–3636,
[1512.07295].

[109] R. Scoccimarro, H. M. P. Couchman and J. A. Frieman, The Bispectrum as a Signature of
Gravitational Instability in Redshift-Space, Astrophys. J. 517 (1999) 531–540,
[astro-ph/9808305].

[110] H. Gil-Marín, W. J. Percival, L. Verde, J. R. Brownstein, C.-H. Chuang, F.-S. Kitaura et al.,
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD
measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies, Mon. Not.
Roy. Astron. Soc. 465 (2017) 1757–1788, [1606.00439].

[111] M. M. Ivanov and S. Sibiryakov, Infrared Resummation for Biased Tracers in Redshift Space,
JCAP 1807 (2018) 053, [1804.05080].

[112] J. Hamann, S. Hannestad, J. Lesgourgues, C. Rampf and Y. Y. Y. Wong, Cosmological
parameters from large scale structure - geometric versus shape information, JCAP 2010
(July, 2010) 022, [1003.3999].

[113] A. Chudaykin, M. M. Ivanov, O. H. E. Philcox and M. Simonović, Nonlinear perturbation
theory extension of the Boltzmann code CLASS, Phys. Rev. D 102 (2020) 063533,
[2004.10607].

[114] H. Gil-Marín, J. Noreña, L. Verde, W. J. Percival, C. Wagner, M. Manera et al., The power
spectrum and bispectrum of SDSS DR11 BOSS galaxies I. Bias and gravity, Mon. Not. Roy.
Astron. Soc. 451 (2015) 539–580, [1407.5668].

40

http://dx.doi.org/10.1103/PhysRevD.92.083532
http://dx.doi.org/10.1103/PhysRevD.92.083532
http://arxiv.org/abs/1506.02729
http://dx.doi.org/10.3847/1538-3881/aadae0
http://arxiv.org/abs/1712.05834
http://dx.doi.org/10.1088/1475-7516/2019/03/040
http://arxiv.org/abs/1810.05051
http://dx.doi.org/10.1088/1475-7516/2019/08/036
http://dx.doi.org/10.1088/1475-7516/2019/08/036
http://arxiv.org/abs/1904.08851
http://dx.doi.org/10.1093/mnras/staa3891
http://dx.doi.org/10.1093/mnras/staa3891
http://arxiv.org/abs/2007.09008
http://dx.doi.org/10.1088/1475-7516/2021/11/031
http://arxiv.org/abs/2106.06324
http://dx.doi.org/10.1093/mnras/stw1229
http://arxiv.org/abs/1512.07295
http://dx.doi.org/10.1086/307220
http://arxiv.org/abs/astro-ph/9808305
http://dx.doi.org/10.1093/mnras/stw2679
http://dx.doi.org/10.1093/mnras/stw2679
http://arxiv.org/abs/1606.00439
http://dx.doi.org/10.1088/1475-7516/2018/07/053
http://arxiv.org/abs/1804.05080
http://dx.doi.org/10.1088/1475-7516/2010/07/022
http://dx.doi.org/10.1088/1475-7516/2010/07/022
http://arxiv.org/abs/1003.3999
http://dx.doi.org/10.1103/PhysRevD.102.063533
http://arxiv.org/abs/2004.10607
http://dx.doi.org/10.1093/mnras/stv961
http://dx.doi.org/10.1093/mnras/stv961
http://arxiv.org/abs/1407.5668


[115] C. Alcock and B. Paczynski, An evolution free test for non-zero cosmological constant, Nature
281 (1979) 358–359.

[116] F. Rizzo, C. Moretti, K. Pardede, A. Eggemeier, A. Oddo, E. Sefusatti et al., The Halo
Bispectrum Multipoles in Redshift Space, 2204.13628.

[117] V. Mossa et al., The baryon density of the Universe from an improved rate of deuterium
burning, Nature 587 (2020) 210–213.

[118] G. D’Amico, L. Senatore, P. Zhang and T. Nishimichi, Taming redshift-space distortion effects
in the EFTofLSS and its application to data, 2110.00016.

[119] T. Brinckmann and J. Lesgourgues, MontePython 3: boosted MCMC sampler and other
features, 1804.07261.

[120] D. Blas, J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System
(CLASS) II: Approximation schemes, JCAP 1107 (2011) 034, [1104.2933].

[121] A. Gelman and D. B. Rubin, Inference from Iterative Simulation Using Multiple Sequences,
Statist. Sci. 7 (1992) 457–472.

[122] A. Lewis, GetDist: a Python package for analysing Monte Carlo samples, 1910.13970.

[123] K. Pardede, F. Rizzo, M. Biagetti, E. Castorina, E. Sefusatti and P. Monaco,
Bispectrum-window convolution via Hankel transform, 2203.04174.

[124] A. Eggemeier, R. Scoccimarro, R. E. Smith, M. Crocce, A. Pezzotta and A. G. Sánchez,
Testing one-loop galaxy bias: Joint analysis of power spectrum and bispectrum, Phys. Rev. D
103 (2021) 123550, [2102.06902].

41

http://dx.doi.org/10.1038/281358a0
http://dx.doi.org/10.1038/281358a0
http://arxiv.org/abs/2204.13628
http://dx.doi.org/10.1038/s41586-020-2878-4
http://arxiv.org/abs/2110.00016
http://arxiv.org/abs/1804.07261
http://dx.doi.org/10.1088/1475-7516/2011/07/034
http://arxiv.org/abs/1104.2933
http://dx.doi.org/10.1214/ss/1177011136
http://arxiv.org/abs/1910.13970
http://arxiv.org/abs/2203.04174
http://dx.doi.org/10.1103/PhysRevD.103.123550
http://dx.doi.org/10.1103/PhysRevD.103.123550
http://arxiv.org/abs/2102.06902

	Introduction, Main Results and Conclusion
	Data
	Theory model
	EFTofLSS at one loop
	IR-resummation
	Window function
	Alcock-Paczynski effect
	Binning

	Likelihood
	Pipeline validation
	Measuring and fixing phase-space effects
	Scale cut from NNLO
	Tests of additional modeling effects
	Tests against simulations

	Results
	EFTofLSS details
	General expressions
	Explicit functions

	Binning formula details
	Additional parameter posteriors

