Berezinsky Hidden Sources: An Emergent Tension in the High-Energy Neutrino Sky?

Antonio Ambrosone,11footnotetext: Corresponding author.
Abstract

The IceCube Collaboration has recently reported compelling evidence of high-energy neutrino emission from NGC 1068, and also mild excesses for NGC 4151 and CGCG420-015, local Seyfert galaxies. This has increased the interest along neutrino emission from hot-corona surrounding the super massive black holes of Seyfert Galaxies. In this paper, we revisit phenomenological constraints on the neutrino emission from hot-coronae of seyfert galaxies, using an assumption of equi-ripartition between cosmic-rays and magnetic energy densities. We show that not only these sources are consistent with such an assumption but also that the data point towards low beta plasma parameters inside Seyfert Galaxies. We exploit this finding to constrain the Seyfert diffuse neutrino flux and we obtain that, in order not to overproduce neutrinos, not all the sources can be in an equi-ripartition state. We conclude (along with previous findings) that seyfert galaxies cannot explain the diffuse neutrino spectrum above 100TeVsimilar-toabsent100TeV\sim 100\,\rm TeV∼ 100 roman_TeV, allowing space for other astrophysical sources.

1 Introduction

Seyfert Galaxies are Active Galactic Nuclei (AGNs) powered by super-massive black holes (SMBHs) positioned in their core, whose accretion disk related processes produce very energetic phenomena, such as the creation of a hot corona region surrounding the black hole [1]. In the late 1970s V.S. Berezinsky proposed that the hot corona region might produce and accelerate high-energy cosmic rays (CRs) [2] (see also [3] and references therein for further details). these CRs were predicted to predominantly interact with ambient particles leading to the production of γ𝛾\gammaitalic_γ-rays and neutrinos, with only the latter being able to escape these very-high dense environments [2, 4, 5]. Despite this idea could have not been experimental explored for many years, current γ𝛾\gammaitalic_γ-ray and neutrino telescopes have strongly improved our knowledge about astrophysical messengers, making it possible to quantitative constrain this scenario. Firstly, many analyses have highlighted a tension between the diffuse γ𝛾\gammaitalic_γ-ray [6] and neutrino [7, 8, 9, 10] fluxes, especially because of the large neutrino flux below 100 TeV, exploring the potential role of hidden CR accelerators [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] (see also [22] for other details). Furthermore, the IceCube collaboration has recently found a 4.2 σ𝜎\sigmaitalic_σ excess above the background-only hypothesis of 72 high-energy neutrino events coming from the direction of NGC 1068, a nearby AGN [23], inferring a power-law differential neutrino flux (E3.2)similar-toabsentsuperscript𝐸3.2(\sim E^{-3.2})( ∼ italic_E start_POSTSUPERSCRIPT - 3.2 end_POSTSUPERSCRIPT ) approximately ten times higher than expected from a γ𝛾\gammaitalic_γ-ray transparent source, taking into account the γ𝛾\gammaitalic_γ-ray emission observed by the Fermi-LAT telescope from this source [24, 25, 26]. This, from one hand, has confirmed the idea of the presence of hidden high-energy neutrino sources in the Universe, but from the other hand, it has triggered a lot of controversy for the interpretation of this observation. Indeed, a lot of models have been proposed to explain such observations [3, 27, 28, 21, 19, 29, 30, 31, 32, 33, 34, 35, 36]. At the moment, the most natural explanation resides in high-energy neutrino emission in the hot corona emission where the high x-ray photon density is able to strongly suppress the high-energy γ𝛾\gammaitalic_γ-ray flux accompanying the neutrino flux, leading to a natural explanation for a γ𝛾\gammaitalic_γ-opaque source [37]. However, there is not consensus about the acceleration mechanisms for high-energy CRs inside the coronae. For instance, Refs. [21, 30] have proposed stochastic processes as acceleration mechanism while [20, 28] have proposed diffusive shock acceleration, both normalising the spectrum imposing that the CR pressure is just a small fraction of the thermal gas pressure. On the other hand, Ref. [3] recently explored the role of magnetic re-connection, normalising the spectrum considering equi-partition between CR energy density and magnetic energy density. On the contrary, Ref. [27] ascribed a fraction of the accretion mass rate energy to the production of high-energy CRs. Nonetheless, all the models seemingly share some common properties: firstly, results suggest energy losses be very important in the hot corona regions. In fact, Beithe- Heitler pair production leads to electromagnetic cascades shifting the energy of photons in the MeV energy range [21, 19, 38, 39]. Secondly, the predicted neutrino luminosity of hot corona is expected to be proportional to the AGN X-ray luminosity. Therefore, it is fundamental to observe of other seyfert galaxies to shed light onto the processes occurring in these kind of environments [40, 41]. On this regard, IceCube has searched for other seyfert galaxies in the local Universe, both as individual emitters and performing a stacking search [42, 43, 44, 45]. The authors found a 3σsimilar-toabsent3𝜎\sim 3\sigma∼ 3 italic_σ post-trial excess in the vicinity of NGC 4151 [43] with spectral index γ=2.830.28+0.35𝛾superscriptsubscript2.830.280.35\gamma=2.83_{-0.28}^{+0.35}italic_γ = 2.83 start_POSTSUBSCRIPT - 0.28 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.35 end_POSTSUPERSCRIPT. Furthermore, an excess has been found also in the vicinity of CGCC 420-015 (22.5σ)22.5𝜎(2-2.5~{}\sigma)( 2 - 2.5 italic_σ ) [42], with a spectrum very similar to NGC 1068 spectrum. By constrast, Ref. [41], analysing 10 years of public IceCube data, found an excess even in the direction of NGC 3079, another seyfert galaxy. Seemingly, these potential observations point towards a correlation between the neutrino and hard x-ray luminosity for these sources, although the results are too premature to draw robust conclusions [33]. In fact, while Refs. [38, 39] have produced optimistic estimates for the neutrino emission of several local seyfert galaxies, Ref. [46] has, on the contrary, argued that the seyfert hot coronae should not be able to produce a neutrino flux as high as the one observed by the IceCube collaboration. Furthermore, it is not clear if the steep spectra measured are byproducts of copious pγ𝛾\gammaitalic_γ interactions happening in the hot coronae or if they directly represent the cut-off of the injected CR fluxes [39]. In this paper, we derive new data-driven constraints on the seyfert neutrino emission exploiting all the state-of-the-art observations of the IceCube collaboration also exploring the potential role played by these sources to diffuse neutrino flux. To such a purpose, we employ a model which takes into account both CR escape mechanisms as well as CR energy losses and consistently solve the CR transport equation inside the hot-coronae. We normalise the spectrum assuming equi-ripartition between CR and magnetic energy densities, which represent an absolute maximum value for the CR normalization. We also ensure that the injected CR luminosity is only a fraction of the bolometric AGN luminosity which is self-consistently calculated through the background photon energy density. We show that the four sources which provide an excess into IceCube data are consistent with an equi-ripartion between CRs and magnetic density. In fact, the fit prefers small beta plasma values pointing towards high magnetic field values and a rather high energetic carried by CRs into Seyfert Galaxies (see below for further details). We then extrapolate this information to the whole seyfert population (diffuse neutrino flux), using the X-ray luminosity function (see [47]), showing that it slightly overproduce the diffuse neutrino flux inferred by the ICeCube collaboration through the starting track sample [10] in the 110TeVsimilar-toabsent110TeV\sim 1-10\,\rm TeV∼ 1 - 10 roman_TeV range. Future observations from the upcoming neutrino telescopes, such as KM3NeT [48], IceCube gen 2 [49], P-ONE [50] and the TRIDENT [51] telescopes will be fundamental to unveil the role of seyfert galaxies to the diffuse neutrino spectrum as well as the role of other astrophysical accelerators. The paper is organised as follows: in Sec. 2, we describe the CR transport model and the neutrino emission of seyfert galaxies, in Sec. 3, we summarise the X-ray and neutrino observations for the four sources observed by IceCube. In sec. 4, we quantitative test our model using the observations and report the results. In Sec. 5, we discuss the role of seyfert galaxies into the diffuse neutrino spectrum and in Sec. 6 we draw our conclusions. Finally, in appendix A, we provide details on the dynamical timescales in the hot-coronae and the neutrino production efficiency for proton-proton collisions and photomeson interactions.

2 On the Neutrino Emission of Seyfert Galaxies

The hot coronae regions are generally very small and extend only for 1-100 Schwarzschild radii (S)subscript𝑆(\mathcal{R}_{S})( caligraphic_R start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ) around the SMBHs [38]. In this work, we use spherical geometry with a radius R=rS𝑅𝑟subscript𝑆R=r\cdot\mathcal{R}_{S}italic_R = italic_r ⋅ caligraphic_R start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT, fixing r=20𝑟20r=20italic_r = 20 (consistent with the recent upper limits obtained by Ref. [39] with sub-GeV gamma-rays data). The CR transport equation reads

NCR(E)τescddE[EτlossNCR(E)]=Q(E)subscript𝑁𝐶𝑅𝐸subscript𝜏esc𝑑𝑑𝐸delimited-[]𝐸subscript𝜏losssubscript𝑁𝐶𝑅𝐸𝑄𝐸\frac{N_{CR}(E)}{\tau_{\rm esc}}-\frac{d}{dE}\bigg{[}\frac{E}{\tau_{\rm loss}}% N_{CR}(E)\bigg{]}=Q(E)divide start_ARG italic_N start_POSTSUBSCRIPT italic_C italic_R end_POSTSUBSCRIPT ( italic_E ) end_ARG start_ARG italic_τ start_POSTSUBSCRIPT roman_esc end_POSTSUBSCRIPT end_ARG - divide start_ARG italic_d end_ARG start_ARG italic_d italic_E end_ARG [ divide start_ARG italic_E end_ARG start_ARG italic_τ start_POSTSUBSCRIPT roman_loss end_POSTSUBSCRIPT end_ARG italic_N start_POSTSUBSCRIPT italic_C italic_R end_POSTSUBSCRIPT ( italic_E ) ] = italic_Q ( italic_E ) (2.1)

where τescsubscript𝜏esc\tau_{\rm esc}italic_τ start_POSTSUBSCRIPT roman_esc end_POSTSUBSCRIPT is the escape timescale, τlossessubscript𝜏losses\tau_{\rm losses}italic_τ start_POSTSUBSCRIPT roman_losses end_POSTSUBSCRIPT is the energy loss timescale (see app. A for details about the modelling on timescales) and finally Q(E)𝑄𝐸Q(E)italic_Q ( italic_E ) is the injection rate of CRs. Eq. 2.1 is solved through the green function as (see for instance [20])

NCR(E)=τlossEE+Q(E1)eG(E,E1)𝑑E1subscript𝑁𝐶𝑅𝐸subscript𝜏loss𝐸superscriptsubscript𝐸𝑄subscript𝐸1superscript𝑒𝐺𝐸subscript𝐸1differential-dsubscript𝐸1N_{CR}(E)=\frac{\tau_{\rm loss}}{E}\int_{E}^{+\infty}Q(E_{1})e^{-G(E,E_{1})}dE% _{1}italic_N start_POSTSUBSCRIPT italic_C italic_R end_POSTSUBSCRIPT ( italic_E ) = divide start_ARG italic_τ start_POSTSUBSCRIPT roman_loss end_POSTSUBSCRIPT end_ARG start_ARG italic_E end_ARG ∫ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + ∞ end_POSTSUPERSCRIPT italic_Q ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_e start_POSTSUPERSCRIPT - italic_G ( italic_E , italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT italic_d italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT (2.2)

with

G(E,E1)=EE1𝑑E2τloss(E2)E2τesc𝐺𝐸subscript𝐸1superscriptsubscript𝐸subscript𝐸1differential-dsubscript𝐸2subscript𝜏losssubscript𝐸2subscript𝐸2subscript𝜏escG(E,E_{1})=\int_{E}^{E_{1}}dE_{2}\frac{\tau_{\rm loss}(E_{2})}{E_{2}\cdot\tau_% {\rm esc}}italic_G ( italic_E , italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = ∫ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT divide start_ARG italic_τ start_POSTSUBSCRIPT roman_loss end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⋅ italic_τ start_POSTSUBSCRIPT roman_esc end_POSTSUBSCRIPT end_ARG (2.3)

The injection CR rate is assumed to be a power-law with an exponential cut-off at Emax=200TeVsubscript𝐸max200TeVE_{\rm max}=200\,\rm TeVitalic_E start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT = 200 roman_TeV, namely Q(E)=A(Empc2)γeE/Emax𝑄𝐸𝐴superscript𝐸subscript𝑚𝑝superscript𝑐2𝛾superscript𝑒𝐸subscript𝐸maxQ(E)=A(\frac{E}{m_{p}c^{2}})^{-\gamma}e^{-E/E_{\rm max}}italic_Q ( italic_E ) = italic_A ( divide start_ARG italic_E end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - italic_γ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_E / italic_E start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT end_POSTSUPERSCRIPT. The normalisation parameter A𝐴Aitalic_A is fixed so that the CR energy density UCRsubscript𝑈𝐶𝑅U_{CR}italic_U start_POSTSUBSCRIPT italic_C italic_R end_POSTSUBSCRIPT is in equi-ripartion with the magnetic energy density UBsubscript𝑈𝐵U_{B}italic_U start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT, namely UCR=UBsubscript𝑈𝐶𝑅subscript𝑈𝐵U_{CR}=U_{B}italic_U start_POSTSUBSCRIPT italic_C italic_R end_POSTSUBSCRIPT = italic_U start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT, with

UCR=mpc2+ENCR(E)𝑑Esubscript𝑈𝐶𝑅superscriptsubscriptsubscript𝑚𝑝superscript𝑐2𝐸subscript𝑁𝐶𝑅𝐸differential-d𝐸U_{CR}=\int_{m_{p}c^{2}}^{+\infty}EN_{CR}(E)dEitalic_U start_POSTSUBSCRIPT italic_C italic_R end_POSTSUBSCRIPT = ∫ start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + ∞ end_POSTSUPERSCRIPT italic_E italic_N start_POSTSUBSCRIPT italic_C italic_R end_POSTSUBSCRIPT ( italic_E ) italic_d italic_E (2.4)

and UB=B2/8πsubscript𝑈𝐵superscript𝐵28𝜋U_{B}=B^{2}/8\piitalic_U start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 8 italic_π. The magnetic field is set as [21]

B=8πnpKBTpβ𝐵8𝜋subscript𝑛𝑝subscript𝐾𝐵subscript𝑇𝑝𝛽B=\sqrt{\frac{8\pi n_{p}K_{B}T_{p}}{\beta}}italic_B = square-root start_ARG divide start_ARG 8 italic_π italic_n start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG start_ARG italic_β end_ARG end_ARG (2.5)

where KBsubscript𝐾𝐵K_{B}italic_K start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT is the Boltzmann constant, Tpsubscript𝑇𝑝T_{p}italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT is the thermal proton virial temperature and finally β𝛽\betaitalic_β is the plasma parameter which represents the ratio between the thermal and magnetic pressure [21]. The proton virial temperature is mpc2/(KBr)6.01010(r/30)1[K]similar-to-or-equalssubscript𝑚𝑝superscript𝑐2subscript𝐾𝐵𝑟6.0superscript1010superscript𝑟301delimited-[]Km_{p}c^{2}/(K_{B}\cdot r)\simeq 6.0\cdot 10^{10}(r/30)^{-1}\,[\rm K]italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( italic_K start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ⋅ italic_r ) ≃ 6.0 ⋅ 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT ( italic_r / 30 ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT [ roman_K ] [21]. It is important to take into account that the luminosity injected in CR is just a fraction of the bolometric luminosity of the AGN disk (Lph)subscript𝐿ph(L_{\rm ph})( italic_L start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT ). Therefore, we also constrain the normalization parameter A𝐴Aitalic_A with

mpc2+EQ(E)𝑑EηLphsuperscriptsubscriptsubscript𝑚𝑝superscript𝑐2𝐸𝑄𝐸differential-d𝐸𝜂subscript𝐿ph\int_{m_{p}c^{2}}^{+\infty}EQ(E)dE\leq\eta L_{\rm ph}∫ start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + ∞ end_POSTSUPERSCRIPT italic_E italic_Q ( italic_E ) italic_d italic_E ≤ italic_η italic_L start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT (2.6)

The bolometric luminosity gets contribution both from the accretion disk in the ultraviolet (UV) regime (usually also called the blue bump of AGNs) and from the coronae in the x-ray luminosity [20, 21, 3]. In this work, we utilise the model put forward by Ref. [20], where the number density of background photons can be modelled in terms of the x-ray luminosity of the AGN in the [210]KeVdelimited-[]210KeV[2-10]\,\rm KeV[ 2 - 10 ] roman_KeV band (here forth denominated simply LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT) (see [20] for more details). We fix η=25%𝜂percent25\eta=25\%italic_η = 25 % for the maximal efficiency conferred into CRs. In order to calculate the pp neutrino production rate, we employ the analytical prescription of ref. [52]

Qν+ν¯pp(E)=13cnp1031σpp(Ex)NCR(Ex)F~ν(x,Ex)dxxsuperscriptsubscript𝑄𝜈¯𝜈𝑝𝑝𝐸13𝑐subscript𝑛𝑝superscriptsubscriptsuperscript1031subscript𝜎𝑝𝑝𝐸𝑥subscript𝑁𝐶𝑅𝐸𝑥subscript~𝐹𝜈𝑥𝐸𝑥𝑑𝑥𝑥Q_{\nu+\bar{\nu}}^{pp}(E)=\frac{1}{3}c\cdot n_{p}\int_{10^{-3}}^{1}\sigma_{pp}% \big{(}\frac{E}{x}\big{)}N_{CR}\big{(}\frac{E}{x}\big{)}\tilde{F}_{\nu}\big{(}% x,\frac{E}{x}\big{)}\frac{dx}{x}italic_Q start_POSTSUBSCRIPT italic_ν + over¯ start_ARG italic_ν end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p italic_p end_POSTSUPERSCRIPT ( italic_E ) = divide start_ARG 1 end_ARG start_ARG 3 end_ARG italic_c ⋅ italic_n start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT italic_p italic_p end_POSTSUBSCRIPT ( divide start_ARG italic_E end_ARG start_ARG italic_x end_ARG ) italic_N start_POSTSUBSCRIPT italic_C italic_R end_POSTSUBSCRIPT ( divide start_ARG italic_E end_ARG start_ARG italic_x end_ARG ) over~ start_ARG italic_F end_ARG start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ( italic_x , divide start_ARG italic_E end_ARG start_ARG italic_x end_ARG ) divide start_ARG italic_d italic_x end_ARG start_ARG italic_x end_ARG (2.7)

where F~ν(x,Ex)subscript~𝐹𝜈𝑥𝐸𝑥\tilde{F}_{\nu}(x,\frac{E}{x})over~ start_ARG italic_F end_ARG start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ( italic_x , divide start_ARG italic_E end_ARG start_ARG italic_x end_ARG ) is defined in Ref. [52] and it takes into account all the neutrinos produced in the interaction, while the factor 1/3 takes into account neutrino oscillation. Since for ECR200TeVless-than-or-similar-tosubscript𝐸𝐶𝑅200TeVE_{CR}\lesssim 200\,\rm TeVitalic_E start_POSTSUBSCRIPT italic_C italic_R end_POSTSUBSCRIPT ≲ 200 roman_TeV, the neutrino production is dominated by pp collisions (see appendix A for details), for photomeson neutrino production, we estimate the neutrino production rate with multi-messenger relations [19, 53]

Eν2Qν+ν¯pγ18[ECR2NCR(E)τpγ]|ECR20Eνsimilar-to-or-equalssuperscriptsubscript𝐸𝜈2superscriptsubscript𝑄𝜈¯𝜈𝑝𝛾evaluated-at18delimited-[]superscriptsubscript𝐸CR2subscript𝑁CR𝐸subscript𝜏𝑝𝛾similar-to-or-equalssubscript𝐸CR20subscript𝐸𝜈E_{\nu}^{2}Q_{\nu+\bar{\nu}}^{p\gamma}\simeq\frac{1}{8}\bigg{[}\frac{E_{\rm CR% }^{2}N_{\rm CR}(E)}{\tau_{p\gamma}}\bigg{]}|_{E_{\rm CR}\simeq 20E_{\nu}}italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Q start_POSTSUBSCRIPT italic_ν + over¯ start_ARG italic_ν end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p italic_γ end_POSTSUPERSCRIPT ≃ divide start_ARG 1 end_ARG start_ARG 8 end_ARG [ divide start_ARG italic_E start_POSTSUBSCRIPT roman_CR end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT roman_CR end_POSTSUBSCRIPT ( italic_E ) end_ARG start_ARG italic_τ start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT end_ARG ] | start_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT roman_CR end_POSTSUBSCRIPT ≃ 20 italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_POSTSUBSCRIPT (2.8)

we evaluate the neutrino luminosity of the sources between 110TeV110TeV1-10\,\rm TeV1 - 10 roman_TeV as

Lν+ν¯110TeV=1TeV+EνQν+ν¯tot(Eν)𝑑Eνsuperscriptsubscript𝐿𝜈¯𝜈110TeVsuperscriptsubscript1TeVsubscript𝐸𝜈superscriptsubscript𝑄𝜈¯𝜈totsubscript𝐸𝜈differential-dsubscript𝐸𝜈L_{\nu+\bar{\nu}}^{1-10\,\rm TeV}=\int_{1\,\rm TeV}^{+\infty}E_{\nu}Q_{\nu+% \bar{\nu}}^{\rm tot}(E_{\nu})dE_{\nu}italic_L start_POSTSUBSCRIPT italic_ν + over¯ start_ARG italic_ν end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 - 10 roman_TeV end_POSTSUPERSCRIPT = ∫ start_POSTSUBSCRIPT 1 roman_TeV end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + ∞ end_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_Q start_POSTSUBSCRIPT italic_ν + over¯ start_ARG italic_ν end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_tot end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ) italic_d italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT (2.9)

with Qν+ν¯tot(E)=Qν+ν¯pp(E)+Qν+ν¯pγ(E)superscriptsubscript𝑄𝜈¯𝜈tot𝐸superscriptsubscript𝑄𝜈¯𝜈𝑝𝑝𝐸superscriptsubscript𝑄𝜈¯𝜈𝑝𝛾𝐸Q_{\nu+\bar{\nu}}^{\rm tot}(E)=Q_{\nu+\bar{\nu}}^{pp}(E)+Q_{\nu+\bar{\nu}}^{p% \gamma}(E)italic_Q start_POSTSUBSCRIPT italic_ν + over¯ start_ARG italic_ν end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_tot end_POSTSUPERSCRIPT ( italic_E ) = italic_Q start_POSTSUBSCRIPT italic_ν + over¯ start_ARG italic_ν end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p italic_p end_POSTSUPERSCRIPT ( italic_E ) + italic_Q start_POSTSUBSCRIPT italic_ν + over¯ start_ARG italic_ν end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p italic_γ end_POSTSUPERSCRIPT ( italic_E ). The differential neutrino flux at Earth is

ϕν+ν¯(E)=(1+z)24πDl(z)2Qν+ν¯tot(E(1+z))subscriptitalic-ϕ𝜈¯𝜈𝐸superscript1𝑧24𝜋subscript𝐷𝑙superscript𝑧2superscriptsubscript𝑄𝜈¯𝜈tot𝐸1𝑧\phi_{\nu+\bar{\nu}}(E)=\frac{(1+z)^{2}}{4\pi D_{l}(z)^{2}}Q_{\nu+\bar{\nu}}^{% \rm tot}(E(1+z))italic_ϕ start_POSTSUBSCRIPT italic_ν + over¯ start_ARG italic_ν end_ARG end_POSTSUBSCRIPT ( italic_E ) = divide start_ARG ( 1 + italic_z ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_π italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_z ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_Q start_POSTSUBSCRIPT italic_ν + over¯ start_ARG italic_ν end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_tot end_POSTSUPERSCRIPT ( italic_E ( 1 + italic_z ) ) (2.10)

where z𝑧zitalic_z and Dl(z)subscript𝐷𝑙𝑧D_{l}(z)italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_z ) are respectively the redshift and the luminosity density.

3 Neutrino vs X-ray Luminosity

In this section, we summarise the observations regarding the four neutrino sources which give an excess into IceCube data. For consistency and in order to avoid any bias, we use the values reported [54] in the BASS AGN catalogue for all the sources for redshifts and the x-ray luminosities. In particular, regarding the x-ray flux, we use the intrinsic x-ray (absorption-corrected) in the 2-10 KeV band. Tab. 1 summarises all the values considered.

Source redshift (z) Dl(z)(Mpc)subscript𝐷𝑙𝑧MpcD_{l}(z)(\rm Mpc)italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_z ) ( roman_Mpc ) FX(1012ergcm2s1)subscript𝐹𝑋superscript1012ergsuperscriptcm2superscripts1F_{X}(10^{-12}\,\rm erg\,\rm cm^{-2}\,\rm s^{-1})italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( 10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT roman_erg roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT )
NGC 1068 3.031033.03superscript1033.03\cdot 10^{-3}3.03 ⋅ 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 13.4 268.30268.30268.30268.30
NGC 4151 3.141033.14superscript1033.14\cdot 10^{-3}3.14 ⋅ 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 13.9 84.80
CGCG 420-015 2.9591022.959superscript1022.959\cdot 10^{-2}2.959 ⋅ 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT 133.9 50.50
NGC 3079 3.401033.40superscript1033.40\cdot 10^{-3}3.40 ⋅ 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 15.1 6.60
Table 1: The table summarises the value we use for redshift, luminosity distance and the intrinsic x-ray fluxes of the sources.

we compute the luminosity distance through redshift and using the standard cosmological parameters ΩM=0.31subscriptΩ𝑀0.31\Omega_{M}=0.31roman_Ω start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT = 0.31, ΩΛsubscriptΩΛ\Omega_{\Lambda}roman_Ω start_POSTSUBSCRIPT roman_Λ end_POSTSUBSCRIPT and H0=67.74Kms1Mpc1subscript𝐻067.74Kmsuperscripts1superscriptMpc1H_{0}=67.74\,\rm Km\,\rm s^{-1}\,\rm Mpc^{-1}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 67.74 roman_Km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_Mpc start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT [55]. We compute LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT as [54]

LX=Fx4πDl2(z)(1+z)2ΓFx4πDl2(z)subscript𝐿𝑋subscript𝐹𝑥4𝜋superscriptsubscript𝐷𝑙2𝑧superscript1𝑧2Γsimilar-to-or-equalssubscript𝐹𝑥4𝜋superscriptsubscript𝐷𝑙2𝑧L_{X}=F_{x}4\pi D_{l}^{2}(z)(1+z)^{2-\Gamma}\simeq F_{x}4\pi D_{l}^{2}(z)italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT = italic_F start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT 4 italic_π italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z ) ( 1 + italic_z ) start_POSTSUPERSCRIPT 2 - roman_Γ end_POSTSUPERSCRIPT ≃ italic_F start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT 4 italic_π italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z ) (3.1)

where we can neglect the contribution coming from redshift because these sources are very near and their x-ray spectrum is near to a E2superscript𝐸2E^{-2}italic_E start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT dependence of the x-ray flux.

It is paramount to correctly assess the uncertainty affecting the values reported in Tab. 1. Firstly, there is uncertainty in the distance value; for instance, Refs. [32, 3] report 10.1Mpc10.1Mpc10.1\,\rm Mpc10.1 roman_Mpc as the best quoted value for the distance of NGC 1068. We conservatively consider a 0.13 dex uncertainty in the distance in order to be consistent with this estimate. Furthermore, there is an uncertainty on the intrinsic x-ray flux, since the geometry of the absorption region in AGNs is unknown [56]. In fact, estimates on LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT for NGC 1068 span from 51042ergs1similar-toabsent5superscript1042ergsuperscripts1\sim 5\cdot 10^{42}\,\rm erg\,\rm s^{-1}∼ 5 ⋅ 10 start_POSTSUPERSCRIPT 42 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT [54] to 51043ergs1similar-toabsent5superscript1043ergsuperscripts1\sim 5\cdot 10^{43}\,\rm erg\,\rm s^{-1}∼ 5 ⋅ 10 start_POSTSUPERSCRIPT 43 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT [56]. Therefore, we consider an uncertainty of 0.7 dex for FXsubscript𝐹𝑋F_{X}italic_F start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT in order to obtain an overall range for LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT consistent with both estimates (we sum the uncertainty quadratically) leading to a total 0.75 dex uncertainty on logLXsubscript𝐿𝑋\log L_{X}roman_log italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT.

For the neutrinos, we consider the energy range 110TeV110TeV1-10\,\rm TeV1 - 10 roman_TeV which is interval where IceCube is most sensitive to very steep spectra observed for these sources [23]. Therefore, we compute the luminosity as

L110TeV=4πDl(z)2(1+z)2γ1TeV10TeVEϕν(E,γ)𝑑E4πDl(z)21TeV10TeVEϕν(E,γ)𝑑Esubscript𝐿110TeV4𝜋subscript𝐷𝑙superscript𝑧2superscript1𝑧2𝛾superscriptsubscript1TeV10TeV𝐸subscriptitalic-ϕ𝜈𝐸𝛾differential-d𝐸similar-to-or-equals4𝜋subscript𝐷𝑙superscript𝑧2superscriptsubscript1TeV10TeV𝐸subscriptitalic-ϕ𝜈𝐸𝛾differential-d𝐸L_{1-10\,\rm TeV}=4\pi D_{l}(z)^{2}(1+z)^{2-\gamma}\int_{1\,\rm TeV}^{10\,\rm TeV% }E\phi_{\nu}(E,\gamma)dE\simeq 4\pi D_{l}(z)^{2}\int_{1\,\rm TeV}^{10\,\rm TeV% }E\phi_{\nu}(E,\gamma)dEitalic_L start_POSTSUBSCRIPT 1 - 10 roman_TeV end_POSTSUBSCRIPT = 4 italic_π italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_z ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 1 + italic_z ) start_POSTSUPERSCRIPT 2 - italic_γ end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 1 roman_TeV end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 10 roman_TeV end_POSTSUPERSCRIPT italic_E italic_ϕ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ( italic_E , italic_γ ) italic_d italic_E ≃ 4 italic_π italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_z ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 1 roman_TeV end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 10 roman_TeV end_POSTSUPERSCRIPT italic_E italic_ϕ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ( italic_E , italic_γ ) italic_d italic_E (3.2)

where we neglect the dependence over z, because all the sources reside in the very local Universe. For NGC 1068, NGC 4151 and CGCG420-015, we consider the best-fit and the 68% CL contours for the power-law fit recently published by the IceCube collaboration [43, 42] (see also [23, 44, 45]); while for For NGC 3079, we utilise the spectral energy distribution (SED) shown by [41]. For the uncertainty, we consider the statistical 68.3%percent68.368.3\%68.3 % CL uncertainty as well as the distance uncertainty. Fig. 1 shows Lν110TeVsuperscriptsubscript𝐿𝜈110TeVL_{\nu}^{1-10\,\rm TeV}italic_L start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 - 10 roman_TeV end_POSTSUPERSCRIPT in terms of LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT for all the sources. We report NGC 1068, NGC 4151 and CGCG420-015 as black datapoints, while NGC 3079 is reported as grey data point.

Refer to caption
Figure 1: Lν(110TeV)superscriptsubscript𝐿𝜈110TeVL_{\nu}^{(1-10\,\rm TeV)}italic_L start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 - 10 roman_TeV ) end_POSTSUPERSCRIPT as a function of the LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT. The uncertainty on Lνsubscript𝐿𝜈L_{\nu}italic_L start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT comprises distance and statistical uncertainty, while the uncertainty on LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT is set at 0.75 dex in order to be consistent with all the LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT values inferred in the literature. NGC 1068, NGC 4151, CGCG 420-015 are shown as black datapoints while NGC 3079 as a grey datapoint. The blue band corresponds to the 1σ1𝜎1\sigma1 italic_σ uncertainty band from our statistical analysis, while the golden dashed line corresponds to the best-fit scenario.

4 Statistical Analysis and Results

In this section, we test if our theoretical model (2) can follow the experimental results outlined in the previous section 3. For this purpose, we define the following chi-square

χ2(γ,β)=i(logLνobs,ilogLνmod(logLXobs,iγ,β))2σlogLν2+(logLνmod(log(LXobs,i),γ,β))logLX)2σlogLX2\chi^{2}(\gamma,\beta)=\sum_{i}\frac{(\ logL_{\nu}^{\rm obs,i}-\rm logL_{\nu}^% {\rm mod}(\rm logL_{X}^{\rm obs,i}\gamma,\beta))^{2}}{\sigma_{\ logL_{\nu}}^{2% }+\bigg{(}\frac{\partial\rm logL_{\nu}^{\rm mod}(\rm log(L_{X}^{\rm obs,i}),% \gamma,\beta))}{\partial\ logL_{X}}\bigg{)}^{2}\sigma_{\ log_{L_{X}}}^{2}}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_γ , italic_β ) = ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT divide start_ARG ( italic_l italic_o italic_g italic_L start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs , roman_i end_POSTSUPERSCRIPT - roman_logL start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_mod end_POSTSUPERSCRIPT ( roman_logL start_POSTSUBSCRIPT roman_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs , roman_i end_POSTSUPERSCRIPT italic_γ , italic_β ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_l italic_o italic_g italic_L start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( divide start_ARG ∂ roman_logL start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_mod end_POSTSUPERSCRIPT ( roman_log ( roman_L start_POSTSUBSCRIPT roman_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs , roman_i end_POSTSUPERSCRIPT ) , italic_γ , italic_β ) ) end_ARG start_ARG ∂ italic_l italic_o italic_g italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT italic_l italic_o italic_g start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG (4.1)

The logLν/LX𝑙𝑜𝑔subscript𝐿𝜈subscript𝐿𝑋\partial\ logL_{\nu}/\partial L_{X}∂ italic_l italic_o italic_g italic_L start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT / ∂ italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT term allows us to take into account also the uncertainty on LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT. We use Δχ2=χ2(γ,β)minχ2Δsuperscript𝜒2superscript𝜒2𝛾𝛽minsuperscript𝜒2\Delta\chi^{2}=\chi^{2}(\gamma,\beta)-\rm min\,\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_γ , italic_β ) - roman_min italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT as a mean to probe the parameter space for γ[0,3]𝛾03\gamma\in[0,3]italic_γ ∈ [ 0 , 3 ] and β[102,10]𝛽superscript10210\beta\in[10^{-2},10]italic_β ∈ [ 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT , 10 ]. Consistently with the Wilks’s theorem [57], the Δχ2Δsuperscript𝜒2\Delta\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT distribution is a chi-squared with a degree of freedom equal to the number of free parameters in the fit (2).

Therefore, the exclusion limits at 1,2 and 3σ3𝜎3\sigma3 italic_σ are respectively defined as Δχ2=2.28,6,12Δsuperscript𝜒22.28612\Delta\chi^{2}=2.28,6,12roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 2.28 , 6 , 12. Fig. 2 shows the best-fit scenario as well as the 1,2 and 3σ3𝜎3\sigma3 italic_σ contours. In Fig. 1, we also report the 1σ1𝜎1\sigma1 italic_σ band for Lνsubscript𝐿𝜈L_{\nu}italic_L start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT as well as the best-fit scenario obtained. We also compare our predicted SEDs with the ones obtained by IceCube (see Figs. 3 and 4). In particular, we show the best-fit scenario (golden dashed line) and the 1σ1𝜎1\sigma1 italic_σ band (orange) allowing for LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT to vary within the uncertainty reported in Fig. 1 fixing DLsubscript𝐷𝐿D_{L}italic_D start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT to the values shown in Tab. 1. For NGC 1068, we also report the expected KM3NeT differential sensitivity after 10 years of full operation [48].

Refer to caption
Figure 2: Δχ2Δsuperscript𝜒2\Delta\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT contours for our fit. the color scheme represents, respectively, the contours at 1,2121,21 , 2 and 3333 σ𝜎\sigmaitalic_σ. The red star represents the best fit scenario.

Despite all the uncertainties, the results allow us to derive some general conclusions: the four sources are consistent with the assumption of equi-ripartition between CRs and the magnetic energy density. In fact, low values for β(1)annotated𝛽less-than-or-similar-toabsent1\beta~{}(\lesssim 1)italic_β ( ≲ 1 ) ([39]) are preferred by the data in order to increase the magnetic field and so the CR flux normalisation. However, Ref. [46] has argued that in seyfert galaxies might be nonphysical to get low beta parameters since they are not usually characterised by strong jets. Along with previous findings [3, 19, 38, 39], very hard spectral indexes are needed in order to explain the measurements. Indeed, γ0.7similar-to-or-equals𝛾0.7\gamma\simeq 0.7italic_γ ≃ 0.7 as a best-fit value is very near to the value predicted by stochastic CR acceleration mechanism [30, 19] and magnetic reconnection [3]. In general, γ1.9greater-than-or-equivalent-to𝛾1.9\gamma\gtrsim 1.9italic_γ ≳ 1.9 are in tension at 2σsimilar-toabsent2𝜎\sim 2\sigma∼ 2 italic_σ with current observations, because softer injected spectra would need a higher normalisation to fit the observations. On this regard, we stress that with lower η𝜂\etaitalic_η values in Eq. 2.6, the model fails to completely fit all the data especially for NGC 1068 and CGCG420-015, which means that if the neutrino production indeed takes place in the hot corona, an enormous energetics is carried by CRs. Recently, Ref. [39] has proposed that CRs are only accelerated in specific energy ranges (10200TeV)similar-toabsent10200TeV(\sim 10-200\,\rm TeV)( ∼ 10 - 200 roman_TeV ) in order to reduce the tension with energetics. We leave this scenario for future exploration. Finally, we stress that for CGCG420-015 the model can barely be consistent with the observations.

Refer to caption
Refer to caption
Figure 3: Left: 1σ1𝜎1\sigma1 italic_σ SED band measured by IceCube [23, 43] (blue band) for NGC 1068 compared with predictions of our statistical analysis. In particular, we show the best-fit scenario (golden dashed line) and the 1σ1𝜎1\sigma1 italic_σ band allowing LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT to vary within the uncertainty shown in Fig. 1 and fixing DLsubscript𝐷𝐿D_{L}italic_D start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT to the values shown in Tab. 1 (orange band). We also report the expected KM3NeT differential sensitivity after 10 years of full operation [48]. Right: the same as on the left but for NGC 4151. The SED is directly taken from [43] (see also [44, 45]).
Refer to caption
Refer to caption
Figure 4: Left: 1σ1𝜎1\sigma1 italic_σ SED band for CGCG420-015 (blue band) [42, 44, 45])) compared with predictions of our statistical analysis. In particular, we show the best-fit scenario (golden dashed line) and the 1σ1𝜎1\sigma1 italic_σ band allowing LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT to vary within the uncertainty shown in Fig. 1 and fixing DLsubscript𝐷𝐿D_{L}italic_D start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT to the values shown in Tab. 1 (orange band). Right: the same as on left but for NGC 3079. The SED is taken from [41].

5 Diffuse Spectrum

Equipped with the previous results, in this section, we extrapolate the information to the whole population constraining the diffuse neutrino fluxes of seyfert galaxies.

For the distribution, we follow the distribution of Ref. [47] (see [20] for further details) and define the comoving density of sources as

ρ(LX,z)=dΦX(LX,z)dlogLX=dΦX(LX,0)dlogLXe(z,LX)𝜌subscript𝐿𝑋𝑧𝑑subscriptΦ𝑋subscript𝐿𝑋𝑧𝑑𝑙𝑜𝑔subscript𝐿𝑋𝑑subscriptΦ𝑋subscript𝐿𝑋0𝑑𝑙𝑜𝑔subscript𝐿𝑋𝑒𝑧subscript𝐿𝑋\rho(L_{X},z)=\frac{d\Phi_{X}(L_{X},z)}{d\ logL_{X}}=\frac{d\Phi_{X}(L_{X},0)}% {d\ logL_{X}}e(z,L_{X})italic_ρ ( italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT , italic_z ) = divide start_ARG italic_d roman_Φ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT , italic_z ) end_ARG start_ARG italic_d italic_l italic_o italic_g italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_d roman_Φ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT , 0 ) end_ARG start_ARG italic_d italic_l italic_o italic_g italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG italic_e ( italic_z , italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) (5.1)

with

dΦX(LX,0)dlogLX=A[(LXL)γ1+(LXL)γ2]1𝑑subscriptΦ𝑋subscript𝐿𝑋0𝑑𝑙𝑜𝑔subscript𝐿𝑋𝐴superscriptdelimited-[]superscriptsubscript𝐿𝑋subscript𝐿subscript𝛾1superscriptsubscript𝐿𝑋subscript𝐿subscript𝛾21\frac{d\Phi_{X}(L_{X},0)}{d\ logL_{X}}=A\bigg{[}\bigg{(}\frac{L_{X}}{L_{*}}% \bigg{)}^{\gamma_{1}}+\bigg{(}\frac{L_{X}}{L_{*}}\bigg{)}^{\gamma_{2}}\bigg{]}% ^{-1}divide start_ARG italic_d roman_Φ start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT , 0 ) end_ARG start_ARG italic_d italic_l italic_o italic_g italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG = italic_A [ ( divide start_ARG italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG start_ARG italic_L start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_γ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT + ( divide start_ARG italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG start_ARG italic_L start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_γ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (5.2)

and

e(z,Lx)={(1+z)p1if zzc1(LX)(1+zc1)p1(1+z1+zc1)p2if zc1(LX)zzc2(LX)(1+zc1)p1(1+zc21+zc1)p2(1+z1+zc2)p3if zzc2𝑒𝑧subscript𝐿𝑥casessuperscript1𝑧subscript𝑝1if zzc1(LX)superscript1subscript𝑧subscript𝑐1subscript𝑝1superscript1𝑧1subscript𝑧subscript𝑐1subscript𝑝2if zc1(LX)zzc2(LX)superscript1subscript𝑧subscript𝑐1subscript𝑝1superscript1subscript𝑧subscript𝑐21subscript𝑧subscript𝑐1subscript𝑝2superscript1𝑧1subscript𝑧subscript𝑐2subscript𝑝3if zzc2e(z,L_{x})=\begin{cases*}(1+z)^{p_{1}}&if $z\leq z_{c_{1}}(L_{X})$\\ (1+z_{c_{1}})^{p_{1}}\big{(}\frac{1+z}{1+z_{c_{1}}}\big{)}^{p_{2}}&if $z_{c_{1% }}(L_{X})\leq z\leq z_{c_{2}}(L_{X})$\\ (1+z_{c_{1}})^{p_{1}}\big{(}\frac{1+z_{c_{2}}}{1+z_{c_{1}}}\big{)}^{p_{2}}\big% {(}\frac{1+z}{1+z_{c_{2}}}\big{)}^{p_{3}}&if $z\geq z_{c_{2}}$\end{cases*}italic_e ( italic_z , italic_L start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ) = { start_ROW start_CELL ( 1 + italic_z ) start_POSTSUPERSCRIPT italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL if italic_z ≤ italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) end_CELL end_ROW start_ROW start_CELL ( 1 + italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( divide start_ARG 1 + italic_z end_ARG start_ARG 1 + italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL if italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) ≤ italic_z ≤ italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) end_CELL end_ROW start_ROW start_CELL ( 1 + italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( divide start_ARG 1 + italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG 1 + italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( divide start_ARG 1 + italic_z end_ARG start_ARG 1 + italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_p start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL if italic_z ≥ italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW (5.3)

where

p1(LX)=p1+β1(logLX44)subscript𝑝1subscript𝐿𝑋subscriptsuperscript𝑝1subscript𝛽1𝑙𝑜𝑔subscript𝐿𝑋44p_{1}(L_{X})=p^{*}_{1}+\beta_{1}(\ logL_{X}-44)italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) = italic_p start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_l italic_o italic_g italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT - 44 ) (5.4)

while

zc1(LX)={zc1(LXLa1)α1if LXLa1zc1otherwisesubscript𝑧subscript𝑐1subscript𝐿𝑋casessuperscriptsubscript𝑧subscript𝑐1superscriptsubscript𝐿𝑋subscript𝐿subscript𝑎1subscript𝛼1if LXLa1superscriptsubscript𝑧subscript𝑐1otherwisez_{c_{1}}(L_{X})=\begin{cases*}z_{c_{1}}^{*}\big{(}\frac{L_{X}}{L_{a_{1}}}\big% {)}^{\alpha_{1}}&if $L_{X}\leq L_{a_{1}}$\\ z_{c_{1}}^{*}&otherwise\end{cases*}italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) = { start_ROW start_CELL italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( divide start_ARG italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG start_ARG italic_L start_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL if italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ≤ italic_L start_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_CELL start_CELL otherwise end_CELL end_ROW (5.5)

and

zc2(LX)={zc2(LXLa2)α2if LXLa2zc2otherwisesubscript𝑧subscript𝑐2subscript𝐿𝑋casessuperscriptsubscript𝑧subscript𝑐2superscriptsubscript𝐿𝑋subscript𝐿subscript𝑎2subscript𝛼2if LXLa2superscriptsubscript𝑧subscript𝑐2otherwisez_{c_{2}}(L_{X})=\begin{cases*}z_{c_{2}}^{*}\big{(}\frac{L_{X}}{L_{a_{2}}}\big% {)}^{\alpha_{2}}&if $L_{X}\leq L_{a_{2}}$\\ z_{c_{2}}^{*}&otherwise\end{cases*}italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) = { start_ROW start_CELL italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( divide start_ARG italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG start_ARG italic_L start_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL if italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ≤ italic_L start_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_CELL start_CELL otherwise end_CELL end_ROW (5.6)

Tabs. 2 and 3 summarise all the parameters used in the distribution (see [47] for further details).

A(106h703Mpc3)𝐴superscript106superscriptsubscript703superscriptMpc3A\small{(10^{-6}\,h_{70}^{3}\,\rm Mpc^{-3})}italic_A ( 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT 70 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT roman_Mpc start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT ) logLsubscript𝐿\log L_{*}roman_log italic_L start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT γ1subscript𝛾1\gamma_{1}italic_γ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT γ2subscript𝛾2\gamma_{2}italic_γ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT p1superscriptsubscript𝑝1p_{1}^{*}italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT β1subscript𝛽1\beta_{1}italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT
2.91±0.07plus-or-minus2.910.072.91\pm 0.072.91 ± 0.07 43.97±0.06plus-or-minus43.970.0643.97\pm 0.0643.97 ± 0.06 0.96±0.04plus-or-minus0.960.040.96\pm 0.040.96 ± 0.04 2.71±0.09plus-or-minus2.710.092.71\pm 0.092.71 ± 0.09 4.78±0.16plus-or-minus4.780.164.78\pm 0.164.78 ± 0.16 0.84±0.18plus-or-minus0.840.180.84\pm 0.180.84 ± 0.18
Table 2: Summary of the distribution parameters taken from [47]. All the luminosity are expressed in units of ergs1ergsuperscripts1\rm erg\,\rm s^{-1}roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT.
zc1superscriptsubscript𝑧subscript𝑐1z_{c_{1}}^{*}italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT logLa1subscript𝐿subscript𝑎1\log L_{a_{1}}roman_log italic_L start_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT α1subscript𝛼1\alpha_{1}italic_α start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT p2subscript𝑝2p_{2}italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT p3subscript𝑝3p_{3}italic_p start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT zc2superscriptsubscript𝑧subscript𝑐2z_{c_{2}}^{*}italic_z start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT logLa2subscript𝐿subscript𝑎2\log L_{a_{2}}roman_log italic_L start_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT α2subscript𝛼2\alpha_{2}italic_α start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT
1.86±0.07plus-or-minus1.860.071.86\pm 0.071.86 ± 0.07 44.61±0.07plus-or-minus44.610.0744.61\pm 0.0744.61 ± 0.07 0.29±0.02plus-or-minus0.290.020.29\ \pm 0.020.29 ± 0.02 -1.5 -6.2 3.0 44 -0.1
Table 3: Continuation of Tab. 2 for the distribution parameters. All the luminosity are expressed in units of ergs1ergsuperscripts1\rm erg\,\rm s^{-1}roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT.

Along with Ref. [20], we multiply the A parameter for 1.5 in order to take into account the fraction of compton-thick AGNs into the x-ray luminosity function. The final diffuse neutrino spectrum per solid angle reads

Φν(Eν,γ,η,Emax)=c4πH00zmaxdzE(z)10411047ρ(LX,z)Qν+ν¯(Eν(1+z),LX,γ,η,Emax)subscriptΦ𝜈subscript𝐸𝜈𝛾𝜂subscript𝐸𝑐4𝜋subscript𝐻0superscriptsubscript0subscript𝑧max𝑑𝑧𝐸𝑧superscriptsubscriptsuperscript1041superscript1047𝜌subscript𝐿𝑋𝑧subscript𝑄𝜈¯𝜈subscript𝐸𝜈1𝑧subscript𝐿𝑋𝛾𝜂subscript𝐸max\Phi_{\nu}(E_{\nu},\gamma,\eta,E_{\max})=\frac{c}{4\pi H_{0}}\int_{0}^{z_{\rm max% }}\frac{dz}{E(z)}\int_{10^{41}}^{10^{47}}\rho(L_{X},z)Q_{\nu+\bar{\nu}}(E_{\nu% }(1+z),L_{X},\gamma,\eta,E_{\rm max})roman_Φ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT , italic_γ , italic_η , italic_E start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT ) = divide start_ARG italic_c end_ARG start_ARG 4 italic_π italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT end_POSTSUPERSCRIPT divide start_ARG italic_d italic_z end_ARG start_ARG italic_E ( italic_z ) end_ARG ∫ start_POSTSUBSCRIPT 10 start_POSTSUPERSCRIPT 41 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 10 start_POSTSUPERSCRIPT 47 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_ρ ( italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT , italic_z ) italic_Q start_POSTSUBSCRIPT italic_ν + over¯ start_ARG italic_ν end_ARG end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ( 1 + italic_z ) , italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT , italic_γ , italic_η , italic_E start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT ) (5.7)

with E(z)=ΩM(1+z)3+ΩΛ𝐸𝑧subscriptΩ𝑀superscript1𝑧3subscriptΩΛE(z)=\sqrt{\Omega_{M}(1+z)^{3}+\Omega_{\Lambda}}italic_E ( italic_z ) = square-root start_ARG roman_Ω start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT ( 1 + italic_z ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + roman_Ω start_POSTSUBSCRIPT roman_Λ end_POSTSUBSCRIPT end_ARG and the LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT integration limits are set to be 1041ergs1superscript1041ergsuperscripts110^{41}\,\rm erg\,\rm s^{-1}10 start_POSTSUPERSCRIPT 41 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and 1047ergs1superscript1047ergsuperscripts110^{47}\,\rm erg\,\rm s^{-1}10 start_POSTSUPERSCRIPT 47 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Fig. 5 shows our final best-fit scenario (golden dashed line), the 1σ1𝜎1\sigma1 italic_σ band according to our stastical analysis fixing the source distribution density to the best-fit scenario (dark red band) and finally the maximal 1σ1𝜎1\sigma1 italic_σ band taking also into account the uncertainty on the density distribution (orange band). We compare the results with the latest diffuse IceCube data (6 year cascade [8] and 10 year of starting tracks [10]) and the expected KM3NeT differential sensitivity after 10 years of full operation considering all-sky shower events [48].

Refer to caption
Figure 5: best-fit diffuse neutrino flux from seyfert galaxies (golden dashed line), the 1σ1𝜎1\sigma1 italic_σ band fixing the source density distribution to the best-fit scenario (dark red scenario) and the total 1σ1𝜎1\sigma1 italic_σ band considering an uncertainty over the density distribution (orange band) compared compared with the diffuse IceCube fluxes (10 years of starting tracks [10] and 6 years of cascades flux [8]) and with the expected KM3NeT differential sensitivity for shower events [48].

We notice that if we assume that all the seyfert galaxies have the same relation between Lνsubscript𝐿𝜈L_{\nu}italic_L start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT and LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT as imposed by the four sources used in the statistical analysis, we overproduce the diffuse neutrino flux at 110TeVsimilar-toabsent110TeV\sim 1-10\,\rm TeV∼ 1 - 10 roman_TeV. On this regard, the latest diffuse flux from IceCube starting tracks strongly constrain the astrophysical diffuse neutrino spectrum at 1TeVsimilar-toabsent1TeV\sim 1\,\rm TeV∼ 1 roman_TeV [10]. We stress that this result is independent on the possible energetics tension given by the low β𝛽\betaitalic_β plasma parameter because Lνsubscript𝐿𝜈L_{\nu}italic_L start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT and LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT are data-driven and any model should be able to reproduce these, leading to almost the same result. This has already been emphasised by Ref. [32] where the authors has evaluated the cosmic neutrino background from non-jetted AGNs, assuming that all AGNs behave like NGC 1068. Our best-fit result is slightly higher than the one reported in Ref. [32] because our model self-consistently exploits the luminosity information of all the four sources providing an excess into IceCube data rather than assume all the sources to be NGC 1068-like. However, within all uncertainties the results are consistent. The CR cut-off at 200TeV200TeV200\,\rm TeV200 roman_TeV naturally suppresses the contribution of seyfert galaxies at Eν100TeVsubscript𝐸𝜈100TeVE_{\nu}\geq 100\,\rm TeVitalic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ≥ 100 roman_TeV, leaving room for other astrophysical sources such blazars (see [32, 58] for instance) or starburst galaxies [22, 26, 59]. However, the chosen cut-off is only driven by the point-like IceCube observations which sets an upper limit of neutrino emission at 1050TeVsimilar-toabsent1050TeV\sim 10-50\,\rm TeV∼ 10 - 50 roman_TeV rather than first-principle calculations. Therefore, future theoretical studies directly probing the high-energy CR cut-offs in these sources are fundamental. In fact, a higher Emaxsubscript𝐸maxE_{\rm max}italic_E start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT value would lead to a higher diffuse neutrino flux at Eν100TeVsimilar-tosubscript𝐸𝜈100TeVE_{\nu}\sim 100\,\rm TeVitalic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ∼ 100 roman_TeV, providing further constraints to seyfert galaxies emissions. We also highlight that the upcoming KM3NeT telescope [48] will be fundamental in order to probe the role of each of these components into the high-energy neutrino sky especially in the 110TeV110TeV1-10\,\rm TeV1 - 10 roman_TeV energy range. Indeed, shower-like events, having a reduced background rate will be a perfect sample to investigate the diffuse emission of these galaxies with.

6 Conclusions

In this paper, we have revisited the constraints on the neutrino emission of seyfert galaxies, initially proposed by V.S. Berezinsky [2], exploiting the latest observations by the IceCube collaboration [43, 42, 44, 45, 41]. We develop a theoretical model accounting both for CR escape and energy losses mechanisms, assuming equi-ripartition between CR and magnetic energy densities. The four point-like sources providing an excess into IceCube data are consistent with an equi-ripartion hypothesis but the beta plasma parameter required to fit the data is rather low (β1)less-than-or-similar-to𝛽1(\beta\lesssim 1)( italic_β ≲ 1 ), pointing to a high energetics carried by CRs inside these sources. Therefore, future dedicated analyses will be crucial to investigate if such condition can be met in environment of seyfert galaxies. Furthermore, extrapolating the neutrino emission to the whole source population might overestimate the diffuse neutrino flux at 110TeVsimilar-toabsent110TeV\sim 1-10\,\rm TeV∼ 1 - 10 roman_TeV energies leading to a potential tension in the high-energy neutrino sky. We might argue that all the sources might not be in an equi-ripartition state and if we take a back-of-the-envelope estimate of 1/10similar-toabsent110\sim 1/10∼ 1 / 10 of the sources (considering that IceCube has observed an excess for 3 sources out of a catalogue of the 30 most luminous sources in the northern hemisphere), this would sensibly reduce the tension (see also Ref. [32] for further remarks). All in all, all these results point to the fact that regions sourrounding the SBMHs in AGNs might sensibly produce high-energy neutrinos.

Acknowledgments

The authors are supported by the research project TAsP (Theoretical Astroparticle Physics) funded by the Istituto Nazionale di Fisica Nucleare (INFN).

References

  • [1] A. Marconi, G. Risaliti, R. Gilli, L. K. Hunt, R. Maiolino, and M. Salvati. Local supermassive black holes, relics of active galactic nuclei and the X-ray background. Montly Notices of the Royal Astronomical Society, 351(1):169–185, June 2004.
  • [2] V. S. Berezinsky and V. L. Ginzburg. On High Energy Neutrino Radiation of Quasars and Active Galactic Nuclei. In International Cosmic Ray Conference, volume 1 of International Cosmic Ray Conference, page 238, January 1981.
  • [3] Damiano F. G. Fiorillo, Maria Petropoulou, Luca Comisso, Enrico Peretti, and Lorenzo Sironi. TeV Neutrinos and Hard X-Rays from Relativistic Reconnection in the Corona of NGC 1068. Astrophys. J., 961(1):L14, 2024.
  • [4] V. S. Berezinsky and V. I. Dokuchaev. Hidden source of high-energy neutrinos in collapsing galactic nucleus. Astropart. Phys., 15:87–96, 2001.
  • [5] Veniamin S. Berezinsky and Vyacheslav I. Dokuchaev. High-energy neutrinos as observational signature of massive black hole formation. Astron. Astrophys., 454:401–407, 2006.
  • [6] M. Ackermann et al. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. Astrophys. J., 799:86, 2015.
  • [7] R. Abbasi et al. The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data. Phys. Rev. D, 104:022002, 2021.
  • [8] M. G. Aartsen et al. Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data. Phys. Rev. Lett., 125(12):121104, 2020.
  • [9] R. Abbasi et al. Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data. Astrophys. J., 928(1):50, 2022.
  • [10] R. Abbasi et al. Characterization of the Astrophysical Diffuse Neutrino Flux using Starting Track Events in IceCube. 2 2024.
  • [11] Keith Bechtol, Markus Ahlers, Mattia Di Mauro, Marco Ajello, and Justin Vandenbroucke. Evidence against star-forming galaxies as the dominant source of IceCube neutrinos. Astrophys. J., 836(1):47, 2017.
  • [12] Xiao-Chuan Chang, Ruo-Yu Liu, and Xiang-Yu Wang. How far are the sources of IceCube neutrinos? Constraints from the diffuse TeV gamma-ray background. Astrophys. J., 825:148, 2016.
  • [13] Di Xiao, Peter Mészáros, Kohta Murase, and Zi-gao Dai. Revisiting the Contributions of Supernova and Hypernova Remnants to the Diffuse High-energy Backgrounds: Constraints on Very High Redshift Injection. Astrophys. J., 826(2):133, 2016.
  • [14] Takahiro Sudoh, Tomonori Totani, and Norita Kawanaka. High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data. Publ. Astron. Soc. Jap., 70(3):Publications of the Astronomical Society of Japan, Volume 70, Issue 3, 1 June 2018, 49, https://doi.org/10.1093/pasj/psy039, 2018.
  • [15] Antonio Capanema, Arman Esmaili, and Kohta Murase. New constraints on the origin of medium-energy neutrinos observed by IceCube. Phys. Rev. D, 101(10):103012, 2020.
  • [16] Antonio Capanema, Arman Esmaili, and Pasquale Dario Serpico. Where do IceCube neutrinos come from? Hints from the diffuse gamma-ray flux. JCAP, 02:037, 2021.
  • [17] Kohta Murase, Dafne Guetta, and Markus Ahlers. Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos. Phys. Rev. Lett., 116(7):071101, 2016.
  • [18] Ke Fang, John S. Gallagher, and Francis Halzen. The TeV Diffuse Cosmic Neutrino Spectrum and the Nature of Astrophysical Neutrino Sources. Astrophys. J., 933(2):190, 2022.
  • [19] Kohta Murase. Hidden Hearts of Neutrino Active Galaxies. Astrophys. J. Lett., 941(1):L17, 2022.
  • [20] Yoshiyuki Inoue, Dmitry Khangulyan, Susumu Inoue, and Akihiro Doi. On high-energy particles in accretion disk coronae of supermassive black holes: implications for MeV gamma rays and high-energy neutrinos from AGN cores. 4 2019.
  • [21] Kohta Murase, Shigeo S. Kimura, and Peter Meszaros. Hidden Cores of Active Galactic Nuclei as the Origin of Medium-Energy Neutrinos: Critical Tests with the MeV Gamma-Ray Connection. Phys. Rev. Lett., 125(1):011101, 2020.
  • [22] Antonio Ambrosone, Marco Chianese, Damiano F. G. Fiorillo, Antonio Marinelli, Gennaro Miele, and Ofelia Pisanti. Starburst galaxies strike back: a multi-messenger analysis with Fermi-LAT and IceCube data. Mon. Not. Roy. Astron. Soc., 503(3):4032–4049, 2021.
  • [23] R. Abbasi et al. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science, 378(6619):538–543, 2022.
  • [24] M. Ackermann, M. Ajello, A. Allafort, L. Baldini, J. Ballet, D. Bastieri, K. Bechtol, R. Bellazzini, B. Berenji, E. D. Bloom, E. Bonamente, A. W. Borgland, A. Bouvier, J. Bregeon, M. Brigida, P. Bruel, R. Buehler, S. Buson, G. A. Caliandro, R. A. Cameron, P. A. Caraveo, J. M. Casandjian, C. Cecchi, E. Charles, A. Chekhtman, C. C. Cheung, J. Chiang, A. N. Cillis, S. Ciprini, R. Claus, J. Cohen-Tanugi, J. Conrad, S. Cutini, F. de Palma, C. D. Dermer, S. W. Digel, E. do Couto e. Silva, P. S. Drell, A. Drlica-Wagner, C. Favuzzi, S. J. Fegan, P. Fortin, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, S. Germani, N. Giglietto, F. Giordano, T. Glanzman, G. Godfrey, I. A. Grenier, S. Guiriec, M. Gustafsson, D. Hadasch, M. Hayashida, E. Hays, R. E. Hughes, G. Jóhannesson, A. S. Johnson, T. Kamae, H. Katagiri, J. Kataoka, J. Knödlseder, M. Kuss, J. Lande, F. Longo, F. Loparco, B. Lott, M. N. Lovellette, P. Lubrano, G. M. Madejski, P. Martin, M. N. Mazziotta, J. E. McEnery, P. F. Michelson, T. Mizuno, C. Monte, M. E. Monzani, A. Morselli, I. V. Moskalenko, S. Murgia, S. Nishino, J. P. Norris, E. Nuss, M. Ohno, T. Ohsugi, A. Okumura, N. Omodei, E. Orlando, M. Ozaki, D. Parent, M. Persic, M. Pesce-Rollins, V. Petrosian, M. Pierbattista, F. Piron, G. Pivato, T. A. Porter, S. Rainò, R. Rando, M. Razzano, A. Reimer, O. Reimer, S. Ritz, M. Roth, C. Sbarra, C. Sgrò, E. J. Siskind, G. Spandre, P. Spinelli, Łukasz Stawarz, A. W. Strong, H. Takahashi, T. Tanaka, J. B. Thayer, L. Tibaldo, M. Tinivella, D. F. Torres, G. Tosti, E. Troja, Y. Uchiyama, J. Vandenbroucke, G. Vianello, V. Vitale, A. P. Waite, M. Wood, and Z. Yang. GeV Observations of Star-forming Galaxies with the Fermi Large Area Telescope. The Astrophysical Journal, 755(2):164, August 2012.
  • [25] M. Ajello, M. Di Mauro, V. S. Paliya, and S. Garrappa. The γ𝛾\gammaitalic_γ-Ray Emission of Star-forming Galaxies. Astrophys. J., 894(2):88, 2020.
  • [26] Antonio Ambrosone, Marco Chianese, and Antonio Marinelli. Constraining the hadronic properties of star-forming galaxies above 1GeV1GeV1\,\rm GeV1 roman_GeV with 15-years Fermi-LAT data. 2 2024.
  • [27] Björn Eichmann, Foteini Oikonomou, Silvia Salvatore, Ralf-Jürgen Dettmar, and Julia Becker Tjus. Solving the Multimessenger Puzzle of the AGN-starburst Composite Galaxy NGC 1068. Astrophys. J., 939(1):43, 2022.
  • [28] Yoshiyuki Inoue, Dmitry Khangulyan, and Akihiro Doi. On the Origin of High-energy Neutrinos from NGC 1068: The Role of Nonthermal Coronal Activity. Astrophys. J. Lett., 891(2):L33, 2020.
  • [29] Carlos Blanco, Dan Hooper, Tim Linden, and Elena Pinetti. On the Neutrino and Gamma-Ray Emission from NGC 1068. 7 2023.
  • [30] Ali Kheirandish, Kohta Murase, and Shigeo S. Kimura. High-energy Neutrinos from Magnetized Coronae of Active Galactic Nuclei and Prospects for Identification of Seyfert Galaxies and Quasars in Neutrino Telescopes. Astrophys. J., 922(1):45, 2021.
  • [31] Marco Ajello, Kohta Murase, and Alex McDaniel. Disentangling the Hadronic Components in NGC 1068. Astrophys. J. Lett., 954(2):L49, 2023.
  • [32] P. Padovani, R. Gilli, E. Resconi, C. Bellenghi, and F. Henningsen. The neutrino background from non-jetted active galactic nuclei. 4 2024.
  • [33] Emma Kun, Imre Bartos, Julia Becker Tjus, Peter L. Biermann, Anna Franckowiak, Francis Halzen, Santiago del Palacio, and Jooyun Woo. A correlation between hard X-rays and neutrinos in radio-loud and radio-quiet AGN. 4 2024.
  • [34] Abhishek Das, B. Theodore Zhang, and Kohta Murase. Revealing the production mechanism of high-energy neutrinos from ngc 1068, 2024.
  • [35] Koichiro Yasuda, Yoshiyuki Inoue, and Alexander Kusenko. Neutrinos and gamma rays from beta decays in an active galactic nucleus NGC 1068 jet. 5 2024.
  • [36] Ke Fang, Enrique Lopez Rodriguez, Francis Halzen, and John S. Gallagher. High-energy Neutrinos from the Inner Circumnuclear Region of NGC 1068. Astrophys. J., 956(1):8, 2023.
  • [37] P. Padovani et al. Supermassive black holes and very high-energy neutrinos: the case of NGC 1068. 5 2024.
  • [38] Kohta Murase, Christopher M. Karwin, Shigeo S. Kimura, Marco Ajello, and Sara Buson. Sub-GeV Gamma Rays from Nearby Seyfert Galaxies and Implications for Coronal Neutrino Emission. Astrophys. J. Lett., 961(2):L34, 2024.
  • [39] Abhishek Das, B. Theodore Zhang, and Kohta Murase. Revealing the Production Mechanism of High-Energy Neutrinos from NGC 1068. 5 2024.
  • [40] Giacomo Sommani, Anna Franckowiak, Massimiliano Lincetto, and Ralf-Jürgen Dettmar. Two 100 TeV neutrinos coincident with the Seyfert galaxy NGC 7469. 3 2024.
  • [41] A. Neronov, D. Savchenko, and D. V. Semikoz. Neutrino Signal from a Population of Seyfert Galaxies. Phys. Rev. Lett., 132(10):101002, 2024.
  • [42] R. Abbasi et al. IceCube Search for Neutrino Emission from X-ray Bright Seyfert Galaxies. 6 2024.
  • [43] R. Abbasi et al. Search for neutrino emission from hard X-ray AGN with IceCube. 6 2024.
  • [44] Shiqi Yu et al. Search for TeV Neutrinos from Seyfert Galaxies in the Southern Sky using Starting Track Events in IceCube. PoS, ICRC2023:1533, 2024.
  • [45] R. Abbasi et al. Searching for High-energy Neutrino Emission from Seyfert Galaxies in the Northern Sky with IceCube. PoS, ICRC2023:1052, 2023.
  • [46] Yoshiyuki Inoue, Shinsuke Takasao, and Dmitry Khangulyan. Upper Limit on the Coronal Cosmic Ray Energy Budget in Seyfert Galaxies. 1 2024.
  • [47] Yoshihiro Ueda, Masayuki Akiyama, Günther Hasinger, Takamitsu Miyaji, and Michael G. Watson. Toward the Standard Population Synthesis Model of the X-Ray Background: Evolution of X-Ray Luminosity and Absorption Functions of Active Galactic Nuclei Including Compton-thick Populations. The Astrophysical Journal, 786(2):104, May 2014.
  • [48] S. Aiello et al. Differential Sensitivity of the KM3NeT/ARCA detector to a diffuse neutrino flux and to point-like source emission: exploring the case of the Starburst Galaxies. 2 2024.
  • [49] M. G. Aartsen et al. IceCube-Gen2: the window to the extreme Universe. J. Phys. G, 48(6):060501, 2021.
  • [50] Matteo Agostini et al. The Pacific Ocean Neutrino Experiment. Nature Astron., 4(10):913–915, 2020.
  • [51] Z. P. Ye et al. A multi-cubic-kilometre neutrino telescope in the western Pacific Ocean. Nature Astron., 7(12):1497–1505, 2023.
  • [52] S. R. Kelner, Felex A. Aharonian, and V. V. Bugayov. Energy spectra of gamma-rays, electrons and neutrinos produced at proton-proton interactions in the very high energy regime. Phys. Rev. D, 74:034018, 2006. [Erratum: Phys.Rev.D 79, 039901 (2009)].
  • [53] Ofelia Pisanti. Astrophysical neutrinos: theory. J. Phys. Conf. Ser., 1263(1):012004, 2019.
  • [54] C. Ricci, B. Trakhtenbrot, M. J. Koss, Y. Ueda, I. Del Vecchio, E. Treister, K. Schawinski, S. Paltani, K. Oh, I. Lamperti, S. Berney, P. Gandhi, K. Ichikawa, F. E. Bauer, L. C. Ho, D. Asmus, V. Beckmann, S. Soldi, M. Baloković, N. Gehrels, and C. B. Markwardt. BAT AGN Spectroscopic Survey. V. X-Ray Properties of the Swift/BAT 70-month AGN Catalog. ApJS, 233(2):17, December 2017.
  • [55] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641:A6, 2020. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  • [56] A. Marinucci et al. NuSTAR catches the unveiling nucleus of NGC 1068. Mon. Not. Roy. Astron. Soc., 456(1):L94–L98, 2016.
  • [57] S. S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses. Annals Math. Statist., 9(1):60–62, 1938.
  • [58] Andrea Palladino, Xavier Rodrigues, Shan Gao, and Walter Winter. Interpretation of the diffuse astrophysical neutrino flux in terms of the blazar sequence. Astrophys. J., 871(1):41, 2019.
  • [59] Enrico Peretti, Pasquale Blasi, Felix Aharonian, Giovanni Morlino, and Pierre Cristofari. Contribution of starburst nuclei to the diffuse gamma-ray and neutrino flux. Mon. Not. Roy. Astron. Soc., 493(4):5880–5891, 2020.
  • [60] Julian A. Mayers et al. Correlations between X-ray properties and Black Hole Mass in AGN: towards a new method to estimate black hole mass from short exposure X-ray observations. 3 2018.
  • [61] Shan Gao, Katsuaki Asano, and Peter Mészáros. High energy neutrinos from dissipative photospheric models of gamma ray bursts. Journal of Cosmology and Astroparticle Physics, 2012(11):058, November 2012.
  • [62] S. R. Kelner and F. A. Aharonian. Energy spectra of gamma-rays, electrons and neutrinos produced at interactions of relativistic protons with low energy radiation. Phys. Rev. D, 78:034013, 2008. [Erratum: Phys.Rev.D 82, 099901 (2010)].

Appendix A Details on the Dynamical Timescales

In this section, we report details on the dynamical timescale in the coronae. The escape timescale is given by the in-fall timescale onto the black hole τesc=R/Vfallsubscript𝜏esc𝑅subscript𝑉fall\tau_{\rm esc}=R/V_{\rm fall}italic_τ start_POSTSUBSCRIPT roman_esc end_POSTSUBSCRIPT = italic_R / italic_V start_POSTSUBSCRIPT roman_fall end_POSTSUBSCRIPT, with Vfall=α2GMBH/Rsubscript𝑉fall𝛼2𝐺subscript𝑀BH𝑅V_{\rm fall}=\alpha\sqrt{2GM_{\rm BH}/R}italic_V start_POSTSUBSCRIPT roman_fall end_POSTSUBSCRIPT = italic_α square-root start_ARG 2 italic_G italic_M start_POSTSUBSCRIPT roman_BH end_POSTSUBSCRIPT / italic_R end_ARG. Therefore τescsubscript𝜏esc\tau_{\rm esc}italic_τ start_POSTSUBSCRIPT roman_esc end_POSTSUBSCRIPT reads

τesc=3.54106(α0.1)(r20)1/2(MBH108M)[s]subscript𝜏esc3.54superscript106𝛼0.1superscript𝑟2012subscript𝑀BHsuperscript108subscriptMdirect-productdelimited-[]𝑠\tau_{\rm esc}=3.54\cdot 10^{6}\bigg{(}\frac{\alpha}{0.1}\bigg{)}\bigg{(}\frac% {r}{20}\bigg{)}^{1/2}\bigg{(}\frac{M_{\rm BH}}{10^{8}\,\rm M_{\odot}}\bigg{)}% \,[s]italic_τ start_POSTSUBSCRIPT roman_esc end_POSTSUBSCRIPT = 3.54 ⋅ 10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT ( divide start_ARG italic_α end_ARG start_ARG 0.1 end_ARG ) ( divide start_ARG italic_r end_ARG start_ARG 20 end_ARG ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_M start_POSTSUBSCRIPT roman_BH end_POSTSUBSCRIPT end_ARG start_ARG 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG ) [ italic_s ] (A.1)

we fix the friction coefficient α=0.1𝛼0.1\alpha=0.1italic_α = 0.1 [46]. For the mass of the SMBHs, we make use of [20, 60]

MBH=2107M(LX1.1551043ergs1)0.746subscript𝑀BH2superscript107subscript𝑀direct-productsuperscriptsubscript𝐿𝑋1.155superscript1043ergsuperscripts10.746M_{\rm BH}=2\cdot 10^{7}\,M_{\odot}\bigg{(}\frac{L_{X}}{1.155\cdot 10^{43}\,% \rm erg\,\rm s^{-1}}\bigg{)}^{0.746}italic_M start_POSTSUBSCRIPT roman_BH end_POSTSUBSCRIPT = 2 ⋅ 10 start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ( divide start_ARG italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG start_ARG 1.155 ⋅ 10 start_POSTSUPERSCRIPT 43 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 0.746 end_POSTSUPERSCRIPT (A.2)

in this way, we can express MBHsubscript𝑀BHM_{\rm BH}italic_M start_POSTSUBSCRIPT roman_BH end_POSTSUBSCRIPT in terms of LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT. τlosssubscript𝜏loss\tau_{\rm loss}italic_τ start_POSTSUBSCRIPT roman_loss end_POSTSUBSCRIPT is given by the competition between inverse compton (IC), Synchrotron, Bethe-Heitler pair production, photomeson production and pp collisions. For IC and Synchrotron the timescales read [20]

τIC,syn(E)=34(mpme)3mec2cσTUph,B(Empc2)1subscript𝜏ICsyn𝐸34superscriptsubscript𝑚𝑝subscript𝑚𝑒3subscript𝑚𝑒superscript𝑐2𝑐subscript𝜎𝑇subscript𝑈phBsuperscript𝐸subscript𝑚𝑝superscript𝑐21\tau_{\rm IC,\rm syn}(E)=\frac{3}{4}\bigg{(}\frac{m_{p}}{m_{e}}\bigg{)}^{3}% \frac{m_{e}c^{2}}{c\sigma_{T}U_{\rm ph,B}}\bigg{(}\frac{E}{m_{p}c^{2}}\bigg{)}% ^{-1}italic_τ start_POSTSUBSCRIPT roman_IC , roman_syn end_POSTSUBSCRIPT ( italic_E ) = divide start_ARG 3 end_ARG start_ARG 4 end_ARG ( divide start_ARG italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT divide start_ARG italic_m start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_c italic_σ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT italic_U start_POSTSUBSCRIPT roman_ph , roman_B end_POSTSUBSCRIPT end_ARG ( divide start_ARG italic_E end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (A.3)

where Uph=Lph/(4πR2c)subscript𝑈phsubscript𝐿ph4𝜋superscript𝑅2𝑐U_{\rm ph}=L_{\rm ph}/(4\pi R^{2}c)italic_U start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT = italic_L start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT / ( 4 italic_π italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c ) is the total background photon background with Lphsubscript𝐿phL_{\rm ph}italic_L start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT is the bolometric luminosity. UB=B2/8πsubscript𝑈𝐵superscript𝐵28𝜋U_{B}=B^{2}/8\piitalic_U start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = italic_B start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 8 italic_π is the magnetic energy density. The timescale for Bethe-Heitler pair production reads [20]

τBH1=7(mec2)3αfσTc92mpc2(Empc2)2mempc4/E+𝑑ϵnph(ϵ)ϵ3[(2Eϵmempc4)3/2(log(2Eϵmempc4)23)+23]superscriptsubscript𝜏BH17superscriptsubscript𝑚𝑒superscript𝑐23subscript𝛼𝑓subscript𝜎𝑇𝑐92subscript𝑚𝑝superscript𝑐2superscript𝐸subscript𝑚𝑝superscript𝑐22superscriptsubscriptsubscript𝑚𝑒subscript𝑚𝑝superscript𝑐4𝐸differential-ditalic-ϵsubscript𝑛phitalic-ϵsuperscriptitalic-ϵ3delimited-[]superscript2𝐸italic-ϵsubscript𝑚𝑒subscript𝑚𝑝superscript𝑐432log2Eitalic-ϵsubscriptmesubscriptmpsuperscriptc42323\tau_{\rm BH}^{-1}=\frac{7(m_{e}c^{2})^{3}\alpha_{f}\sigma_{T}\cdot c}{9\sqrt{% 2}m_{p}c^{2}}\bigg{(}\frac{E}{m_{p}c^{2}}\bigg{)}^{-2}\int_{m_{e}m_{p}c^{4}/E}% ^{+\infty}d\epsilon\frac{n_{\rm ph}(\epsilon)}{\epsilon^{3}}\cdot\bigg{[}\bigg% {(}\frac{2E\cdot\epsilon}{m_{e}m_{p}c^{4}}\bigg{)}^{3/2}\bigg{(}\rm log\bigg{(% }\frac{2E\cdot\epsilon}{m_{e}m_{p}c^{4}}\bigg{)}-\frac{2}{3}\bigg{)}+\frac{2}{% 3}\bigg{]}italic_τ start_POSTSUBSCRIPT roman_BH end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = divide start_ARG 7 ( italic_m start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ⋅ italic_c end_ARG start_ARG 9 square-root start_ARG 2 end_ARG italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG italic_E end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT / italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + ∞ end_POSTSUPERSCRIPT italic_d italic_ϵ divide start_ARG italic_n start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT ( italic_ϵ ) end_ARG start_ARG italic_ϵ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ⋅ [ ( divide start_ARG 2 italic_E ⋅ italic_ϵ end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT ( roman_log ( divide start_ARG 2 roman_E ⋅ italic_ϵ end_ARG start_ARG roman_m start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT roman_m start_POSTSUBSCRIPT roman_p end_POSTSUBSCRIPT roman_c start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ) - divide start_ARG 2 end_ARG start_ARG 3 end_ARG ) + divide start_ARG 2 end_ARG start_ARG 3 end_ARG ] (A.4)

where nph(ϵ)subscript𝑛phitalic-ϵn_{\rm ph}(\epsilon)italic_n start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT ( italic_ϵ ) is the background photon density from Ref. [20]. For photomeson interaction, we use [61]

τpγ1=c5mp22E20+𝑑Enph(E)E3Eth2EEmpc2𝑑ϵϵσpγ(ϵ)Kpγ(ϵ)\tau_{p\gamma}^{-1}=\frac{c^{5}m_{p}^{2}}{2E^{2}}\int_{0}^{+\infty}dE^{{}^{% \prime}}\frac{n_{\rm ph}(E^{{}^{\prime}})}{E^{{}^{\prime}3}}\int_{E_{\rm th}}^% {2\frac{E\cdot E^{{}^{\prime}}}{m_{p}c^{2}}}d\epsilon\epsilon\sigma_{p\gamma}(% \epsilon)K_{p\gamma}(\epsilon)italic_τ start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = divide start_ARG italic_c start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + ∞ end_POSTSUPERSCRIPT italic_d italic_E start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT divide start_ARG italic_n start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT ( italic_E start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ) end_ARG start_ARG italic_E start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT roman_th end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 divide start_ARG italic_E ⋅ italic_E start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_POSTSUPERSCRIPT italic_d italic_ϵ italic_ϵ italic_σ start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT ( italic_ϵ ) italic_K start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT ( italic_ϵ ) (A.5)

where σpγ(ϵ)subscript𝜎𝑝𝛾italic-ϵ\sigma_{p\gamma}(\epsilon)italic_σ start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT ( italic_ϵ ) is total inelastic pγ𝑝𝛾p\gammaitalic_p italic_γ cross section in the proton rest frame [62]. Kpγsubscript𝐾𝑝𝛾K_{p\gamma}italic_K start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT is approximated with a step function [61]

Kpγ(ϵ)={0.2if ϵ<1GeV0.6otherwisesubscript𝐾𝑝𝛾italic-ϵcases0.2if ϵ<1GeV0.6otherwiseK_{p\gamma}(\epsilon)=\begin{cases*}0.2&if $\epsilon<1\,\rm GeV$\\ 0.6&otherwise\end{cases*}italic_K start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT ( italic_ϵ ) = { start_ROW start_CELL 0.2 end_CELL start_CELL if italic_ϵ < 1 roman_GeV end_CELL end_ROW start_ROW start_CELL 0.6 end_CELL start_CELL otherwise end_CELL end_ROW (A.6)

finally, Eth=145MeVsubscript𝐸th145MeVE_{\rm th}=145\,\rm MeVitalic_E start_POSTSUBSCRIPT roman_th end_POSTSUBSCRIPT = 145 roman_MeV is the kinetic threshold for the process. The pp timescale reads [20, 52]

τpp=1kpnpσppcsubscript𝜏𝑝𝑝1subscript𝑘𝑝subscript𝑛𝑝subscript𝜎𝑝𝑝𝑐\tau_{pp}=\frac{1}{k_{p}n_{p}\sigma_{pp}c}italic_τ start_POSTSUBSCRIPT italic_p italic_p end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG italic_k start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_p italic_p end_POSTSUBSCRIPT italic_c end_ARG (A.7)

where kp=0.5subscript𝑘𝑝0.5k_{p}=0.5italic_k start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = 0.5 is the mean inelasticity of the process. npsubscript𝑛𝑝n_{p}italic_n start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT is the gas density and it is set considering charge neutrality of the corona as [20]

np=ττRσT2.8109ττ1.1(r20)1(MBH108M)1[cm3]subscript𝑛𝑝subscript𝜏𝜏𝑅subscript𝜎𝑇similar-to-or-equals2.8superscript109subscript𝜏𝜏1.1superscript𝑟201superscriptsubscript𝑀BHsuperscript108subscriptMdirect-product1delimited-[]superscriptcm3n_{p}=\frac{\tau_{\tau}}{R\sigma_{T}}\simeq 2.8\cdot 10^{9}\frac{\tau_{\tau}}{% 1.1}\bigg{(}\frac{r}{20}\bigg{)}^{-1}\bigg{(}\frac{M_{\rm BH}}{10^{8}\,\rm M_{% \odot}}\bigg{)}^{-1}\,[\rm cm^{-3}]italic_n start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = divide start_ARG italic_τ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT end_ARG start_ARG italic_R italic_σ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT end_ARG ≃ 2.8 ⋅ 10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT divide start_ARG italic_τ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT end_ARG start_ARG 1.1 end_ARG ( divide start_ARG italic_r end_ARG start_ARG 20 end_ARG ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( divide start_ARG italic_M start_POSTSUBSCRIPT roman_BH end_POSTSUBSCRIPT end_ARG start_ARG 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT [ roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT ] (A.8)

where ττ=1.1subscript𝜏𝜏1.1\tau_{\tau}=1.1italic_τ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT = 1.1 is the Thompson scattering optical depth [20]. We can analytically estimate the efficiency to produce neutrinos as Fcal(τloss1+τesc1)1/τppsimilar-to-or-equalssubscript𝐹calsuperscriptsuperscriptsubscript𝜏loss1superscriptsubscript𝜏𝑒𝑠𝑐11subscript𝜏𝑝𝑝F_{\rm cal}\simeq(\tau_{\rm loss}^{-1}+\tau_{esc}^{-1})^{-1}/\tau_{pp}italic_F start_POSTSUBSCRIPT roman_cal end_POSTSUBSCRIPT ≃ ( italic_τ start_POSTSUBSCRIPT roman_loss end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_τ start_POSTSUBSCRIPT italic_e italic_s italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT / italic_τ start_POSTSUBSCRIPT italic_p italic_p end_POSTSUBSCRIPT, Fcal(τloss1+τesc1)1/τpγsimilar-to-or-equalssubscript𝐹calsuperscriptsuperscriptsubscript𝜏loss1superscriptsubscript𝜏𝑒𝑠𝑐11subscript𝜏𝑝𝛾F_{\rm cal}\simeq(\tau_{\rm loss}^{-1}+\tau_{esc}^{-1})^{-1}/\tau_{p\gamma}italic_F start_POSTSUBSCRIPT roman_cal end_POSTSUBSCRIPT ≃ ( italic_τ start_POSTSUBSCRIPT roman_loss end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_τ start_POSTSUBSCRIPT italic_e italic_s italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT / italic_τ start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT respectively for pp𝑝𝑝ppitalic_p italic_p and pγ𝑝𝛾p\gammaitalic_p italic_γ interactions [20].

Fig. 6 shows the efficiency for three different values of LXsubscript𝐿𝑋L_{X}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT, 1042ergs1superscript1042ergsuperscripts110^{42}\,\rm erg\,\rm s^{-1}10 start_POSTSUPERSCRIPT 42 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, 1044ergs1superscript1044ergsuperscripts110^{44}\,\rm erg\,\rm s^{-1}10 start_POSTSUPERSCRIPT 44 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, 1046ergs1superscript1046ergsuperscripts110^{46}\,\rm erg\,\rm s^{-1}10 start_POSTSUPERSCRIPT 46 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT as a function of the CR energy, fixing β=0.32𝛽0.32\beta=0.32italic_β = 0.32 as the best-fit scenario obtained in the main text.

Refer to caption
Refer to caption
Refer to caption
Figure 6: efficiency for neutrino production as a function of the CR energy. The blue line corresponds to the pp𝑝𝑝ppitalic_p italic_p collision channel, the orange line corresponds to pγ𝑝𝛾p\gammaitalic_p italic_γ interactions and the green line corresponds to the calorimetric limit. We also report a dashed red vertical line corresponding to the CR cut-off assumed in the analysis. The top left, top right and the bottom panels respectively corresponds to LX=1042ergs1subscript𝐿𝑋superscript1042ergsuperscripts1L_{X}=10^{42}\,\rm erg\,\rm s^{-1}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT 42 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, LX=1044ergs1subscript𝐿𝑋superscript1044ergsuperscripts1L_{X}=10^{44}\,\rm erg\,\rm s^{-1}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT 44 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and LX=1046ergs1subscript𝐿𝑋superscript1046ergsuperscripts1L_{X}=10^{46}\,\rm erg\,\rm s^{-1}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT 46 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT.

The results show that for CR energy below the cut-off, the neutrino production is dominated by pp collisions.