11institutetext: Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University,
Sand 1, 72076 Tübingen, Germany, 11email: rauch@astro.uni-tuebingen.de

Spectral analysis of three hot subdwarf stars:
EC 11481--2303, Feige 110, and PG 0909+276thanks: Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666.

A critical oscillator-strength evaluation for iron-group elements
A. Landstorfer    T. Rauch    K. Werner
(Received 14 May, 2024; accepted 17 June, 2024)
Abstract

Context. For the precise spectral analysis of hot stars, advanced stellar-atmosphere models that consider deviations from the local thermodynamic equilibrium are mandatory. This requires accurate atomic data to calculate all transition rates and occupation numbers for atomic levels in the considered model atoms, not only for a few prominent lines exhibited in an observation. The critical evaluation of atomic data is a challenge because it requires precise laboratory measurements. Ultraviolet spectroscopy of hot stars with high resolving power provide such “laboratory” spectra.

Aims. We compare observed, isolated lines of the iron group (here calcium to nickel) with our synthetic line profiles to judge the accuracy of the respective oscillator strengths. This will verify them or yield individual correction values to improve the spectral analysis, that is the determination of, for example, effective temperature (Teffsubscript𝑇effT_{\mathrm{eff}}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT) and abundances.

Methods. To minimize the error propagation from uncertainties in Teffsubscript𝑇effT_{\mathrm{eff}}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT, surface gravity (g𝑔gitalic_g), and abundance determination, we start with a precise reanalysis of three hot subdwarf stars, namely EC 11481--2303, Feige 110, and PG 0909+276. Then, we measure the abundances of the iron-group elements individually. Based on identified, isolated lines of these elements, we compare observation and models to measure their deviation in strength (equivalent width).

Results. For EC 11481--2303 and Feige 110, we confirmed the previously determined Teffsubscript𝑇effT_{\mathrm{eff}}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT and logg𝑔\log groman_log italic_g values within their error limits. For all three stars, we fine-tuned all metal abundances to achieve the best reproduction of the observation. For more than 450 isolated absorption lines of the iron group, we compared modeled and observed line strengths. Considering the uncertainty of the analysis and evaluation procedure, an upper limit for the uncertainty of the underlying atomic data was established.

Conclusions. We selected strong, reliable isolated absorption lines, which we recommend to use as reference lines for abundance determinations in related objects.

Key Words.:
atomic data – line: identification – stars: abundances – stars: individual: EC 11481--2303 – stars: individual: Feige 110 – stars: individual: PG 0909+276  

1 Introduction

State-of-the-art non-local thermodynamic equilibrium (NLTE), fully metal-line blanketed model-atmospheres of hot stars have arrived at a high level of sophistication, adequate for the analysis of high-quality spectra, that can be obtained, for instance by observations with the Space Telescope Imaging Spectrograph (STIS, Riley 2019) aboard the Hubble Space Telescope (HST). Reliable atomic data are a crucial input for any model-atmosphere calculation. In NLTE stellar-atmosphere modeling, the occupation numbers of all atomic levels treated in NLTE have to be calculated via the rate equations (e.g., Hubeny & Mihalas 2014). Therefore, reliable transition probabilities (resp., oscillator strengths) are required, not only for the few lines that are identified in an observation but for the complete model atoms that are considered. Atomic data are provided to a great extent by, for example, the atomic spectra database111https://www.nist.gov/pml/atomic-spectra-database of the National Institute for Standards and Technologies (NIST, Ralchenko & Kramida 2020), the line lists provided by Kurucz222http://kurucz.harvard.edu/atoms.html (Kurucz 1991, 2018), or the Opacity Project333http://cdsweb.u-strasbg.fr/topbase/TheOP.html (OP, Seaton et al. 1994). Nevertheless, these databases are far from being complete, especially for higher ionization stages. Critical evaluations are scarce, for example, for transition probabilities of Sc, Massacrier & Artru (2012) found deviations of about three orders of magnitude between different calculation methods (Sect. 6).

Our recent spectral analyses with advanced model-atmosphere techniques have shown that we could identify and successfully model about 95 % of all stellar lines (for 28 elements from H to Ba) in the ultraviolet (UV) wavelength range. This was shown, for instance, in analyses of the DAO-type central star of the PN Abell 35, BD22o3467superscript22o3467-22^{\mathrm{o}}3467- 22 start_POSTSUPERSCRIPT roman_o end_POSTSUPERSCRIPT 3467, (effective temperature Teff=80 000±10 000Ksubscript𝑇effplus-or-minus8000010000K\mbox{$T_{\mathrm{eff}}$}=80\,000\pm 10\,000\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 80 000 ± 10 000 roman_K, surface gravity log(g/cms2)=7.2±0.3𝑔cmsuperscripts2plus-or-minus7.20.3\log\,(g\,/\,\mathrm{cm\,s^{-2}})=7.2\pm 0.3roman_log ( italic_g / roman_cm roman_s start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ) = 7.2 ± 0.3, Ziegler et al. 2012; Löbling et al. 2020) and of the DO-type white dwarf (WD) RE 0503--289 (Teff=70 000±2000Ksubscript𝑇effplus-or-minus700002000K\mbox{$T_{\mathrm{eff}}$}=70\,000\pm 2000\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 70 000 ± 2000 roman_K, logg=7.5±0.1𝑔plus-or-minus7.50.1\log g=7.5\pm 0.1roman_log italic_g = 7.5 ± 0.1, Rauch et al. 2016b).

Vice versa, high-quality spectra obtained, for example, with the Far Ultraviolet Spectroscopic Explore (FUSE) or STIS are ideal “stellar laboratory spectra” to precisely measure atomic properties if the basic parameters like Teffsubscript𝑇effT_{\mathrm{eff}}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT, logg𝑔\log groman_log italic_g, and the photospheric abundances are accurately determined.

Hot subdwarfs of the spectral types O and B (sdO and sdB, respectively) are typically core He-burning stars with an H-rich envelope which is too thin to operate shell burning. Their majority exhibits effective temperatures Teff>20 000Ksubscript𝑇eff20000KT_{\rm eff}>20\,000\,{\rm K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT > 20 000 roman_K, surface gravities 5log(g/cm/s2)6less-than-or-similar-to5𝑔cmsuperscripts2less-than-or-similar-to65\lesssim\log\,(g\,/\,\mathrm{cm/s^{2}})\lesssim 65 ≲ roman_log ( italic_g / roman_cm / roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ≲ 6, stellar masses of 0.4MM0.55Mless-than-or-similar-to0.4subscript𝑀direct-product𝑀less-than-or-similar-to0.55subscript𝑀direct-product0.4\,M_{\odot}\lesssim M\lesssim 0.55\,M_{\odot}0.4 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ≲ italic_M ≲ 0.55 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, and radii of a few tenths of the solar radius. Although the formation and evolution of hot subdwarfs are not yet fully understood, they can be considered as the exposed stellar cores of low to medium mass red giants (Heber 2016) and will eventually evolve into white-dwarf stars. Due to diffusion effects (e.g., Rauch et al. 2016a), some hot subdwarfs are chemically peculiar, exhibiting extreme metal overabundances (Naslim et al. 2011; Wild & Jeffery 2017). This establishes the role of such objects to provide “laboratory spectra” in the above mentioned sense.

To make progress in the evaluation of available oscillator-strength data, we decided to observe hot subdwarf stars in the UV. We obtained high resolution and high signal-to-noise ratio (S/N) STIS spectra of three subdwarfs, namely EC 11481--2303, Feige 110, and PG 0909+276, with significantly different temperatures of Teff=55 000,47 250,36 900Ksubscript𝑇eff550004725036900K\mbox{$T_{\mathrm{eff}}$}=55\,000,47\,250,36\,900\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 55 000 , 47 250 , 36 900 roman_K, respectively, to identify and measure spectral lines of the so-called iron-group elements, namely Ca – Ni, in various ionisation stages (cf., Rauch & Deetjen 2003).

In the first part of this paper, we present detailed spectral analyses our three subdwarf stars. These stars and their previous analyses are described in Sect. 2, recent observations and the stellar atmosphere model program are introduced in Sect. 3. In Sect. 4, our new spectral analyses are presented in detail, where atmospheric parameters and element abundances are derived. In Sect. 5, the Gaia distance determination is used to derive stellar properties such as mass and radius.

In the second part of this paper, observed and modelled line strengths of isolated absorption lines are compared, and conclusions on the quality of atomic data are drawn. In Sect. 6, a brief summary of relevant atomic data sources and arising problems is given. The uncertainty of the analysis and evaluation procedure is discussed in Sect. 7, and an upper limit for the uncertainty of atomic data is given. In Sect. 8, we try to apply corrections on existing atomic data to improve their accuracy. In Sect. 9, certain absorption lines are recommended for abundance determinations, and in Sect. 10, our results are summarized.

2 Previous spectral analyses

EC 11481--2303 is an sdO-type subdwarf which was discovered in the Edinburgh-Cape Blue Object Survey (mV=11.76subscript𝑚V11.76m_{\mathrm{V}}=11.76italic_m start_POSTSUBSCRIPT roman_V end_POSTSUBSCRIPT = 11.76, Kilkenny et al. 1997). A faint companion star was identified at a distance of 6.66\aas@@fstack{\prime\prime}66 start_POSTFIX SUPERSCRIPTOP italic_. ′ ′ end_POSTFIX 6. Stys et al. (2000) performed the first spectral analysis using optical spectra obtained at the South African Astronomical Observatory and UV spectra of the International Ultraviolet Explorer (IUE, Macchetto 1976). Calculating LTE atmosphere models and considering only H + He, they determined Teff=41 790Ksubscript𝑇eff41790K\mbox{$T_{\mathrm{eff}}$}=41\,790\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 41 790 roman_K, logg=5.84𝑔5.84\log g=5.84roman_log italic_g = 5.84, and the abundance number ratio He / H = 0.014. With these parameters, however, no satisfactory fit for the peculiarly flat UV slope was possible.

For further investigation, Rauch et al. (2010) performed an NLTE spectral analysis with an optical spectrum of the Ultraviolet and Visual Echelle Spectrograph (UVES, Dekker et al. 2000), a FUSE spectrum and the previously mentioned IUE spectra. With their models containing H, He, C, N, and O, they found Teff=55 000Ksubscript𝑇eff55000K\mbox{$T_{\mathrm{eff}}$}=55\,000\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 55 000 roman_K, logg=5.8𝑔5.8\log g=5.8roman_log italic_g = 5.8, and He / H = 0.0025. Besides subsolar C, N, and O abundances, the flat UV slope was best explained by adding iron-group (IG) elements to their atmosphere models, with at least 10 times solar abundances. The IG elements’ influence was investigated by Ringat & Rauch (2012), who found that 10 to 100 times the solar iron abundance and 1000 times the solar nickel abundance provided the best fit to the UV slope, with the other IG elements having little impact.

Feige 110 is an sdOB-type hot subdwarf which was recorded in the Palomar Sky Survey (mV=11.85subscript𝑚𝑉11.85m_{V}=11.85italic_m start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT = 11.85) and catalogued by Feige (1958). An early spectral analysis with LTE pure H model atmospheres was performed by Greenstein (1971), who derived Teff=39 000Ksubscript𝑇eff39000K\mbox{$T_{\mathrm{eff}}$}=39\,000\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 39 000 roman_K and logg=6.5𝑔6.5\log g=6.5roman_log italic_g = 6.5. Kudritzki (1976) showed that the consideration of NLTE effects and the inclusion of helium lead to significant changes of the derived atmospheric parameters (ΔTeff=4000KΔsubscript𝑇eff4000K\Delta T_{\rm eff}=4000\,{\rm K}roman_Δ italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 4000 roman_K and Δlogg=0.4Δ𝑔0.4\Delta\log g=0.4roman_Δ roman_log italic_g = 0.4), which illustrated the necessity of NLTE models. Furthermore, Friedman et al. (2002) found Cr, Fe, and Ni absorption lines in the FUSE spectrum. With an optical X-Shooter spectrum and FUSE spectra, Rauch et al. (2014) carried out a more detailed spectral analysis. They found Teff=47 250Ksubscript𝑇eff47250K\mbox{$T_{\mathrm{eff}}$}=47\,250\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 47 250 roman_K, logg=6.0𝑔6.0\log g=6.0roman_log italic_g = 6.0, and He / H = 0.022. Additionally, IG-element abundances were found (except for Ca and Fe) to be at least 30 times solar.

PG 0909+276 is an sdB-type hot subdwarf which was discovered in the Palomar-Green Survey (mV12subscript𝑚V12m_{\mathrm{V}}\approx 12italic_m start_POSTSUBSCRIPT roman_V end_POSTSUBSCRIPT ≈ 12, Green et al. 1986). A first spectral analysis with an optical spectrum performed by Saffer et al. (1994) yielded Teff=35 400Ksubscript𝑇eff35400K\mbox{$T_{\mathrm{eff}}$}=35\,400\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 35 400 roman_K, logg=6.02𝑔6.02\log g=6.02roman_log italic_g = 6.02 and He / H = 0.121. Heber & Edelmann (2004) found many IG-element absorption lines in IUE spectra, and a more detailed spectral analysis was performed by Wild & Jeffery (2017, 2018), who, in addition to the IUE spectra, used an optical spectrum recorded with the Fiber-Optics Cassegrain Echelle Spectrograph (FOCES, Pfeiffer et al. 1998) and high-resolution UV STIS spectra (Sect. 3). With LTE model atmospheres, they determined Teff=37 290Ksubscript𝑇eff37290K\mbox{$T_{\mathrm{eff}}$}=37\,290\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 37 290 roman_K, logg=6.1𝑔6.1\log g=6.1roman_log italic_g = 6.1, and He / H = 0.126. IG abundances were determined to be (except for Fe) at least 40 times solar.

3 Observations and spectral-analysis method

Spectral observations in the UV range already existed, but their resolution and S/N were not sufficient to investigate IG-element absorption lines with the desired accuracy. Thus, we reobserved our program stars (program id 14746, Fig. 1, Table 5) with the STIS grating E140M, that provides a resolving power of R=λ/Δλ45 800𝑅𝜆Δ𝜆45800R=\lambda/\Delta\lambda\approx 45\,800italic_R = italic_λ / roman_Δ italic_λ ≈ 45 800 for 1140λ/Å17091140𝜆Å17091140\leq\lambda/\mathrm{\AA}\leq 17091140 ≤ italic_λ / roman_Å ≤ 1709. We achieved S/N >35absent35>35> 35 for all three stars.

Refer to caption
Figure 1: STIS spectra of EC 11481--2303 (top, red line, flux ×\times× 1.04, for clarity), Feige 110 (middle, green), and PG 0909+276 (bottom, blue). All spectra were convolved with a Gaussian (FWHM = 2 Å̊A\mathring{\rm A}over̊ start_ARG roman_A end_ARG). The straight lines are estimates for the respective continuum-flux level.

For spectral modeling, we used the Tübingen NLTE Model-Atmosphere Package (TMAP, Werner et al. 2003, 2012), which is capable of modeling plane-parallel NLTE atmospheres of hot, compact stars in hydrostatic and radiative equilibrium. In general, the opacities of all elements (currently, model atoms are available up to barium) can be considered. In contrast to the few thousands of lines of the light metals, the electron configuration of the IG elements (partly filled 3d and 4s shells) leads to a high number of levels with similar energy, and therefore, the number of lines strongly increases to several hundreds of millions. To not exceed the number of NLTE levels TMAP can operate with, while still taking into account all the lines, a statistical approach is needed. The Iron Opacity and Interface Code (IrOnIc, Rauch & Deetjen 2003) divides the energy range between the ground state and the ionization energy of an IG ion into several (typically seven) bands. All levels within one band contribute to the energy and to the statistical weight of a generated super level, which then can be considered as a single NLTE level.

For IG-element opacities, Kurucz’s line lists are used as an input. Kurucz provides so-called LIN and POS lines (Kurucz 2018). As the latter were measured experimentally (“POSitively identified wavelength”), they can be used for the calculation of the synthetic spectrum and individual line identification. The LIN lines also include lines with quantum-mechanically calculated energy levels, and can therefore exhibit large wavelength uncertainties. Still, to obtain a realistic total opacity, they have to be included in model-atmosphere calculations (cf. Sect. 6).

Refer to caption
Figure 2: Comparison of H and He lines of a UVES spectrum of EC 11481--2303 (black) and a model spectrum, which contains H, He, C, N, O, and a generic IG model atom (red), for the determination of Teffsubscript𝑇effT_{\mathrm{eff}}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT, logg𝑔\log groman_log italic_g, and He / H. The emission/absorption feature in the red wing of He ii λ 4686Å𝜆4686Å\lambda\,4686\,\mathrm{\AA}italic_λ 4686 roman_Å is an artifact. [X] denotes log (mass fraction / solar mass fraction) of element X. From Rauch et al. (2010), Fig. 3, modified.

4 Spectral analysis

4.1 EC 11481--2303

First, we calculated an NLTE atmosphere model containing H, He, C, N, and O with TMAP, using the parameters and abundances determined by Rauch et al. (2010, Fig.2). Then, a synthetic spectrum in the range of λ=11401709Å𝜆11401709̊A\lambda=1140-1709\,\mathring{\rm A}italic_λ = 1140 - 1709 over̊ start_ARG roman_A end_ARG was calculated. In addition to this “basic model”, an individual atmosphere model and synthetic spectrum was calculated for each of the IG elements (containing HHeCNO +++ IG element), where an absorption line comparison provided the rough IG-element abundance. During this procedure, parameters such as EBVsubscript𝐸BVE_{\rm B-V}italic_E start_POSTSUBSCRIPT roman_B - roman_V end_POSTSUBSCRIPT or local normalization of the continuum needed to be readjusted to achieve an optimal agreement between model and observation. At last, the final model considering HHeCNOCaScTiVCrMnFeCoNi was calculated and compared with the observation.

4.1.1 Atmospheric parameters

Teff=55 000±5000Ksubscript𝑇effplus-or-minus550005000K\mbox{$T_{\mathrm{eff}}$}=55\,000\pm 5000\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 55 000 ± 5000 roman_K and logg=5.8±0.3𝑔plus-or-minus5.80.3\log g=5.8\pm 0.3roman_log italic_g = 5.8 ± 0.3, which were determined by Rauch et al. (2010), was confirmed. The interstellar H i column density NHi=3.5×1020cm2subscript𝑁Hi3.5superscript1020superscriptcm2N_{{\rm H}\,\textsc{i}}=3.5\times 10^{20}\,{\rm cm}^{-2}italic_N start_POSTSUBSCRIPT roman_H i end_POSTSUBSCRIPT = 3.5 × 10 start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT and the associated radial velocity vrad,Hi=7km/ssubscript𝑣radHi7kmsv_{\rm rad,H\,\textsc{i}}=-7\,{\rm km/s}italic_v start_POSTSUBSCRIPT roman_rad , roman_H i end_POSTSUBSCRIPT = - 7 roman_km / roman_s were determined by fitting the Ly α𝛼\alphaitalic_α line. Additionally, the stellar radial velocity vrad=87km/ssubscript𝑣rad87kmsv_{\rm rad}=-87\,{\rm km/s}italic_v start_POSTSUBSCRIPT roman_rad end_POSTSUBSCRIPT = - 87 roman_km / roman_s was determined, and EBV=0.0350.010+0.005subscript𝐸BVsubscriptsuperscript0.0350.0050.010E_{\rm B-V}=0.035^{+0.005}_{-0.010}italic_E start_POSTSUBSCRIPT roman_B - roman_V end_POSTSUBSCRIPT = 0.035 start_POSTSUPERSCRIPT + 0.005 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.010 end_POSTSUBSCRIPT was obtained by the interstellar Lyman-edge fit (Fig. 3).

Refer to caption
Figure 3: EBVsubscript𝐸BVE_{\rm B-V}italic_E start_POSTSUBSCRIPT roman_B - roman_V end_POSTSUBSCRIPT determination for EC 11481--2303. The model flux (red) is normalized to the 2MASS Ks brightness (purple mark, bottom right). The FUSE observation is shown in gray. The insert (top right) shows a detail of the FUSE observation around 1000 Å, compared to our synthetic flux attenuated with three different EBVsubscript𝐸BVE_{\rm B-V}italic_E start_POSTSUBSCRIPT roman_B - roman_V end_POSTSUBSCRIPT values.

It must be noted, however, that for the STIS observation, better agreement was achieved for EBV=0.055subscript𝐸BV0.055E_{\rm B-V}=0.055italic_E start_POSTSUBSCRIPT roman_B - roman_V end_POSTSUBSCRIPT = 0.055 (reducing NHisubscript𝑁HiN_{{\rm H}\,\textsc{i}}italic_N start_POSTSUBSCRIPT roman_H i end_POSTSUBSCRIPT slightly by about 15 % but not having further notably impact), and was therefore adopted as such. Some interstellar absorption lines of C, N, O, Si, S, Al, and Fe were found. In contrast to previous analyses, the rotational velocity vrotsubscript𝑣rotv_{\rm rot}italic_v start_POSTSUBSCRIPT roman_rot end_POSTSUBSCRIPT (vsiniabsent𝑣sin𝑖\equiv v\,{\rm sin}\,i≡ italic_v roman_sin italic_i) was increased from 30km/s30kms30\,{\rm km/s}30 roman_km / roman_s to 40km/s40kms40\,{\rm km/s}40 roman_km / roman_s (Fig. 4), which is due to an updated adaption of the STIS resolving power, that is the spectral line spread function (Robertson 2013).

Refer to caption
Figure 4: Section of the EC 11481--2303 spectrum (STIS observation in gray, synthetic spectra in red and blue) for determination of vrotsubscript𝑣rotv_{\rm rot}italic_v start_POSTSUBSCRIPT roman_rot end_POSTSUBSCRIPT. Interstellar C ii lines are indicated (index ”IS“) and can be clearly distinguished due to the lack of rotational broadening.

4.1.2 Abundances

The rotational broadening of atmospheric lines hampers the identification of isolated absorption lines for most identified elements. The H and He abundance determined by Rauch et al. (2010) was confirmed, hence obtaining He / H = 0.0025. [N]=0.23delimited-[]N0.23[{\rm N}]=-0.23[ roman_N ] = - 0.23 ([X] denotes log (mass fraction / solar mass fraction) of element X) was determined from several lines, such as N v λλ 1 238.82, 1 242.80Å𝜆𝜆1238.821242.80̊A\lambda\lambda\ 1\,238.82,\,1\,242.80\,\mathring{\rm A}italic_λ italic_λ 1 238.82 , 1 242.80 over̊ start_ARG roman_A end_ARG. For C and O, upper limits were derived as no isolated absorption lines could be unambiguously identified. An upper limit of [C]<5.45delimited-[]C5.45[{\rm C}]<-5.45[ roman_C ] < - 5.45 was found with C iv λ 1548.20Å𝜆1548.20̊A\lambda\ 1548.20\,\mathring{\rm A}italic_λ 1548.20 over̊ start_ARG roman_A end_ARG, and [O]<3.77delimited-[]O3.77[{\rm O}]<-3.77[ roman_O ] < - 3.77 was found with the relatively weak O iv λ 1343.51Å𝜆1343.51̊A\lambda\ 1343.51\,\mathring{\rm A}italic_λ 1343.51 over̊ start_ARG roman_A end_ARG.

Refer to caption
Figure 5: Sections of the EC 11481--2303 spectrum (STIS observation in gray, synthetic spectra for selected element opacities are individually colored and shifted for clarity). Top: Iron- and nickel-dominant section, with several weakly-blended absorption lines. Bottom: Iron-dominant section.

To obtain IG-element abundances, several synthetic spectra have been created (one for Cr, Mn, Fe, Co, and Ni, respectively, and one for Ca – V, as these elements exhibit fewer visible absorption lines in the investigated spectrum), whereas all other IG-elements’ lines were artificially removed. This procedure is slightly different from the above-mentioned and more practical to keep other parameters and normalization fixed. The different spectra were then compared with the observation section by section, and lines with weak blends were used for abundance fine-tuning (Fig. 5). For the elements Ca – V, few absorption lines, which all were strongly blended, could be identified, hence upper limits were determined. [Ca]<2.66delimited-[]Ca2.66[{\rm Ca}]<2.66[ roman_Ca ] < 2.66 was obtained with Ca iii λ 1 545.30Å𝜆1545.30̊A\lambda\ 1\,545.30\,\mathring{\rm A}italic_λ 1 545.30 over̊ start_ARG roman_A end_ARG. With Sc iv λλ 1 482.04, 1 574.92Å𝜆𝜆1482.041574.92̊A\lambda\lambda\ 1\,482.04,\,1\,574.92\,\mathring{\rm A}italic_λ italic_λ 1 482.04 , 1 574.92 over̊ start_ARG roman_A end_ARG, [Sc]<4.22delimited-[]Sc4.22[{\rm Sc}]<4.22[ roman_Sc ] < 4.22 was found, with Ti v λ 1 268.49Å𝜆1268.49̊A\lambda\ 1\,268.49\,\mathring{\rm A}italic_λ 1 268.49 over̊ start_ARG roman_A end_ARG and Ti iv λ 1 467.34Å𝜆1467.34̊A\lambda\ 1\,467.34\,\mathring{\rm A}italic_λ 1 467.34 over̊ start_ARG roman_A end_ARG, [Ti]<2.32delimited-[]Ti2.32[{\rm Ti}]<2.32[ roman_Ti ] < 2.32 was determined, and using V iv λ 1 395.00Å𝜆1395.00̊A\lambda\ 1\,395.00\,\mathring{\rm A}italic_λ 1 395.00 over̊ start_ARG roman_A end_ARG, [V]<2.49delimited-[]V2.49[{\rm V}]<2.49[ roman_V ] < 2.49 was found. For Cr and Mn each, about 20 absorption lines, although partly blended, could be identified. For Fe – Ni each, about 50 absorption lines, some of which can be considered close to isolated, could be identified. The abundances were determined to [Cr]=2.49delimited-[]Cr2.49[{\rm Cr}]=2.49[ roman_Cr ] = 2.49, [Mn]=2.80delimited-[]Mn2.80[{\rm Mn}]=2.80[ roman_Mn ] = 2.80, [Fe]=1.57delimited-[]Fe1.57[{\rm Fe}]=1.57[ roman_Fe ] = 1.57, [Co]=3.24delimited-[]Co3.24[{\rm Co}]=3.24[ roman_Co ] = 3.24 and [Ni]=2.57delimited-[]Ni2.57[{\rm Ni}]=2.57[ roman_Ni ] = 2.57 (Table 1). Conventionally, for the abundances an uncertainty of 0.1 - 0.3 dex is given. We estimate the uncertainty to be dependent on the line count n𝑛nitalic_n, which is proportional to the standard error of the mean 1/n1𝑛1/\sqrt{n}1 / square-root start_ARG italic_n end_ARG, hence obtaining a lower uncertainty for Fe, Co, and Ni (factor  0.63absent0.63\approx\,0.63≈ 0.63) compared to Cr and Mn.

Table 1: EC 11481--2303, photospheric abundances.
Element Mass fraction [X]
H 8.73×1018.73superscript1018.73\times 10^{-1}8.73 × 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT 0.070.070.070.07
He 8.67×1038.67superscript1038.67\times 10^{-3}8.67 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 1.461.46-1.46- 1.46
C <8.37×109absent8.37superscript109<8.37\times 10^{-9}< 8.37 × 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT <5.45absent5.45<-5.45< - 5.45
N 4.07×1044.07superscript1044.07\times 10^{-4}4.07 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 0.230.23-0.23- 0.23
O <9.75×107absent9.75superscript107<9.75\times 10^{-7}< 9.75 × 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT <3.77absent3.77<-3.77< - 3.77
Ca <2.79×102absent2.79superscript102<2.79\times 10^{-2}< 2.79 × 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT <2.66absent2.66<2.66< 2.66
Sc <7.83×104absent7.83superscript104<7.83\times 10^{-4}< 7.83 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT <4.22absent4.22<4.22< 4.22
Ti <6.25×104absent6.25superscript104<6.25\times 10^{-4}< 6.25 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT <2.32absent2.32<2.32< 2.32
V <8.87×105absent8.87superscript105<8.87\times 10^{-5}< 8.87 × 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT <2.49absent2.49<2.49< 2.49
Cr 4.91×1034.91superscript1034.91\times 10^{-3}4.91 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.492.492.492.49
Mn 6.70×1036.70superscript1036.70\times 10^{-3}6.70 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.802.802.802.80
Fe 4.52×1024.52superscript1024.52\times 10^{-2}4.52 × 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT 1.571.571.571.57
Co 6.32×1036.32superscript1036.32\times 10^{-3}6.32 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 3.243.243.243.24
Ni 2.55×1022.55superscript1022.55\times 10^{-2}2.55 × 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT 2.572.572.572.57

4.2 Feige 110

As in the case of EC 11481--2303, we started to calculate an NLTE atmosphere model containing the light metals, this time H, He, C, N, O, Si, and S, using the parameters and abundances determined by Rauch et al. (2014). Again, a synthetic spectrum in the range of λ=11401709Å𝜆11401709̊A\lambda=1140-1709\,\mathring{\rm A}italic_λ = 1140 - 1709 over̊ start_ARG roman_A end_ARG was created as a basic model, and an individual atmosphere model and synthetic spectrum were calculated for each of the IG elements, where an absorption line comparison provided the rough IG-element abundance. Then, the final model considering HHeCNOSiSCaScTiVCrMnFeCoNi was calculated and compared with the observation, whereby for Feige 110, an automatic procedure was established to provide more precise IG-element abundances.

4.2.1 Atmospheric parameters

Teff=47 250±2000Ksubscript𝑇effplus-or-minus472502000K\mbox{$T_{\mathrm{eff}}$}=47\,250\pm 2000\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 47 250 ± 2000 roman_K and logg=6.0±0.2𝑔plus-or-minus6.00.2\log g=6.0\pm 0.2roman_log italic_g = 6.0 ± 0.2, which were determined by Rauch et al. (2014), was confirmed. NHi=2.0×1020cm2subscript𝑁Hi2.0superscript1020superscriptcm2N_{{\rm H}\,\textsc{i}}=2.0\times 10^{20}\,{\rm cm}^{-2}italic_N start_POSTSUBSCRIPT roman_H i end_POSTSUBSCRIPT = 2.0 × 10 start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT and vrad,Hi=7km/ssubscript𝑣radHi7kmsv_{\rm rad,H\,\textsc{i}}=-7\,{\rm km/s}italic_v start_POSTSUBSCRIPT roman_rad , roman_H i end_POSTSUBSCRIPT = - 7 roman_km / roman_s were determined by fitting the Ly α𝛼\alphaitalic_α line. vrad=13.5km/ssubscript𝑣rad13.5kmsv_{\rm rad}=-13.5\,{\rm km/s}italic_v start_POSTSUBSCRIPT roman_rad end_POSTSUBSCRIPT = - 13.5 roman_km / roman_s and vrot=0km/ssubscript𝑣rot0kmsv_{\rm rot}=0\,{\rm km/s}italic_v start_POSTSUBSCRIPT roman_rot end_POSTSUBSCRIPT = 0 roman_km / roman_s were determined, and EBV=0.02±0.005subscript𝐸BVplus-or-minus0.020.005E_{\rm B-V}=0.02\pm 0.005italic_E start_POSTSUBSCRIPT roman_B - roman_V end_POSTSUBSCRIPT = 0.02 ± 0.005 was obtained by the interstellar Lyman-edge fit. Additionally, some interstellar absorption lines of C, N, O, Si, S, Al, and Fe were found.

4.2.2 Abundances

The H and He abundances determined by Rauch et al. (2014) were confirmed, hence obtaining He / H = 0.022. [N]=0.83delimited-[]N0.83[{\rm N}]=-0.83[ roman_N ] = - 0.83 could be determined with several lines, such as N v λλ 1 238.82, 1 242.80Å𝜆𝜆1238.821242.80̊A\lambda\lambda\ 1\,238.82,\,1\,242.80\,\mathring{\rm A}italic_λ italic_λ 1 238.82 , 1 242.80 over̊ start_ARG roman_A end_ARG. [S]=0.26delimited-[]S0.26[{\rm S}]=-0.26[ roman_S ] = - 0.26 could also be derived from several lines, such as S v λλ 1 268.49, 1 501.76Å𝜆𝜆1268.491501.76̊A\lambda\lambda\ 1\,268.49,\,1\,501.76\,\mathring{\rm A}italic_λ italic_λ 1 268.49 , 1 501.76 over̊ start_ARG roman_A end_ARG. For C and O, upper limits were derived as no isolated absorption lines could be unambiguously identified. An upper limit of [C]<6.63delimited-[]C6.63[{\rm C}]<-6.63[ roman_C ] < - 6.63 was found with C iv λ 1 548.20Å𝜆1548.20̊A\lambda\ 1\,548.20\,\mathring{\rm A}italic_λ 1 548.20 over̊ start_ARG roman_A end_ARG, and [O]<3.59delimited-[]O3.59[{\rm O}]<-3.59[ roman_O ] < - 3.59 was found with the relatively weak O iv λ 1 343.51Å𝜆1343.51̊A\lambda\ 1\,343.51\,\mathring{\rm A}italic_λ 1 343.51 over̊ start_ARG roman_A end_ARG. For Si, also an upper limit was derived, as the identified absorption lines were strongly blended. Using Si iv λ 1 393.76Å𝜆1393.76̊A\lambda\ 1\,393.76\,\mathring{\rm A}italic_λ 1 393.76 over̊ start_ARG roman_A end_ARG, [Si]<4.1delimited-[]Si4.1[{\rm Si}]<-4.1[ roman_Si ] < - 4.1 was found.

The plethora of IG-element absorption lines leads to frequent blends. In the case of Ca, Ti, and V, few isolated absorption lines could be identified, and for Sc, none could be unambiguously identified. [Ca]=1.32delimited-[]Ca1.32[{\rm Ca}]=1.32[ roman_Ca ] = 1.32 was found with Ca iii λλ 1 463.34, 1 545.30Å𝜆𝜆1463.341545.30̊A\lambda\lambda\ 1\,463.34,\,1\,545.30\,\mathring{\rm A}italic_λ italic_λ 1 463.34 , 1 545.30 over̊ start_ARG roman_A end_ARG. [Ti]=2.47delimited-[]Ti2.47[{\rm Ti}]=2.47[ roman_Ti ] = 2.47 was found with Ti iv λλ 1 451.74, 1 467.34Å𝜆𝜆1451.741467.34̊A\lambda\lambda\ 1\,451.74,\,1\,467.34\,\mathring{\rm A}italic_λ italic_λ 1 451.74 , 1 467.34 over̊ start_ARG roman_A end_ARG and [V]=2.69delimited-[]V2.69[{\rm V}]=2.69[ roman_V ] = 2.69 could be derived using V iv λ 1 680.20Å𝜆1680.20̊A\lambda\ 1\,680.20\,\mathring{\rm A}italic_λ 1 680.20 over̊ start_ARG roman_A end_ARG and V v λ 1 157.58Å𝜆1157.58̊A\lambda\ 1\,157.58\,\mathring{\rm A}italic_λ 1 157.58 over̊ start_ARG roman_A end_ARG. An upper limit of [Sc]<2.64delimited-[]Sc2.64[{\rm Sc}]<2.64[ roman_Sc ] < 2.64 was determined with Sc iii λ 1 603.06Å𝜆1603.06̊A\lambda\ 1\,603.06\,\mathring{\rm A}italic_λ 1 603.06 over̊ start_ARG roman_A end_ARG. In the case of Cr - Ni, many isolated absorption lines could be identified.
To obtain more precise abundances and to investigate absorption-line properties, an automatic procedure was established with MATLAB (version 9.7.0, MATLAB 2019). As an input, the synthetic spectra calculated with TMAP, the observation, and Kurucz’s line lists (for identification of the corresponding transitions) are needed. At first, the local continuum is determined, then, for individual synthetic spectra consisting of HHeCNOSiS +++ IG element, all IG-element absorption lines are automatically fitted by Gaussians444Although absorption lines take the shape of a Voigt profile, at least for the IG-elements, a Gaussian fit provides a very close approximation., whereat line properties, such as the line center λ𝜆\lambdaitalic_λ, the line width, and the equivalent width Wλsubscript𝑊𝜆W_{\lambda}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT, are obtained. A line was considered isolated if at least 90 % of its equivalent width was caused by a single transition. After some reduction, which was necessary to ensure that investigated isolated lines obtained from the synthetic spectra relate to the observed ones, the respective equivalent widths were compared (Fig. 6). More details on the procedure and the full code can be found at GitHub555https://github.com/iaatue/LandstorferPhD.

Refer to caption
Figure 6: Fe v λ 1448.488𝜆1448.488\lambda\,1448.488italic_λ 1448.488 Å in the synthetic and observed spectra of Feige 110, fitted with Gaussians. The equivalent widths are indicated.

The abundances of Cr – Ni were then adjusted until, for each of the elements, the distribution of the observed and synthetic equivalent widths, log(Wλobs/Wλsyn)logsuperscriptsubscript𝑊𝜆obssuperscriptsubscript𝑊𝜆syn{\rm log}\,(W_{\lambda}^{\,\rm obs}/W_{\lambda}^{\,\rm syn})roman_log ( italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT ), was equal to 1 (Fig. 7). [Cr]=2.54delimited-[]Cr2.54[{\rm Cr}]=2.54[ roman_Cr ] = 2.54, [Mn]=2.74delimited-[]Mn2.74[{\rm Mn}]=2.74[ roman_Mn ] = 2.74, [Fe]=0.65delimited-[]Fe0.65[{\rm Fe}]=0.65[ roman_Fe ] = 0.65, [Co]=2.58delimited-[]Co2.58[{\rm Co}]=2.58[ roman_Co ] = 2.58, and [Ni]=1.52delimited-[]Ni1.52[{\rm Ni}]=1.52[ roman_Ni ] = 1.52 were more precisely determined this way (Table 2). Again, we estimate the uncertainty to be dependent on the line count n𝑛nitalic_n, that is proportional to the standard error of the mean 1/n1𝑛1/\sqrt{n}1 / square-root start_ARG italic_n end_ARG.

Refer to caption
Figure 7: Observed and synthetic equivalent widths of isolated Cr – Ni lines (color labeled) in Feige 110. After abundance adjustments, the values scatter around the ideal value of Wλobs=Wλsynsuperscriptsubscript𝑊𝜆obssuperscriptsubscript𝑊𝜆synW_{\lambda}^{\rm obs}=W_{\lambda}^{\rm syn}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT = italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT.
Table 2: Similar to Table 1, but for Feige 110.
Element Line counta𝑎aitalic_aa𝑎aitalic_aa𝑎aitalic_aOnly for Cr, Mn, Fe, Co, and Ni. The line count refers to the number of isolated lines used for the automatic abundance determination method. Mass fraction [X]
H 8.99×1018.99superscript1018.99\times 10^{-1}8.99 × 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT 0.090.090.090.09
He 7.83×1027.83superscript1027.83\times 10^{-2}7.83 × 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT 0.500.50-0.50- 0.50
C <5.49×1010absent5.49superscript1010<5.49\times 10^{-10}\!\!\!\!\;< 5.49 × 10 start_POSTSUPERSCRIPT - 10 end_POSTSUPERSCRIPT <6.63absent6.63<-6.63< - 6.63
N 1.02×1041.02superscript1041.02\times 10^{-4}1.02 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 0.830.83-0.83- 0.83
O <1.46×106absent1.46superscript106<1.46\times 10^{-6}< 1.46 × 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT <3.59absent3.59<-3.59< - 3.59
Si <5.12×108absent5.12superscript108<5.12\times 10^{-8}< 5.12 × 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT <4.11absent4.11<-4.11< - 4.11
S 1.69×1041.69superscript1041.69\times 10^{-4}1.69 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 0.260.26-0.26- 0.26
Ca 1.28×1031.28superscript1031.28\times 10^{-3}1.28 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 1.321.321.321.32
Sc <2.05×105absent2.05superscript105<2.05\times 10^{-5}< 2.05 × 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT <2.64absent2.64<2.64< 2.64
Ti 8.74×1048.74superscript1048.74\times 10^{-4}8.74 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 2.472.472.472.47
V 1.42×1041.42superscript1041.42\times 10^{-4}1.42 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 2.692.692.692.69
Cr 28 5.45×1035.45superscript1035.45\times 10^{-3}5.45 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.542.542.542.54
Mn 22 5.76×1035.76superscript1035.76\times 10^{-3}5.76 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.742.742.742.74
Fe 166 5.44×1035.44superscript1035.44\times 10^{-3}5.44 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 0.650.650.650.65
Co 74 1.41×1031.41superscript1031.41\times 10^{-3}1.41 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.582.582.582.58
Ni 98 2.26×1032.26superscript1032.26\times 10^{-3}2.26 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 1.521.521.521.52
666 

4.3 PG 0909+276

Again, we first calculated an NLTE atmosphere model containing the light metals, this time H, He, C, N, Si, S, and Ar, using the parameters and abundances determined with an LTE model by Wild & Jeffery (2018). However, to achieve consistency of some C iii and C iv lines in the STIS spectrum, Teffsubscript𝑇effT_{\mathrm{eff}}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT had to be decreased by about 4000 K and the C abundance was reduced (Fig. 8). The newly determined values are in no worse agreement with optical spectra (Fig. 9). So, again, a synthetic spectrum in the range of λ=11401709Å𝜆11401709̊A\lambda=1140-1709\,\mathring{\rm A}italic_λ = 1140 - 1709 over̊ start_ARG roman_A end_ARG was created as a basic model, and an individual atmosphere model and synthetic spectrum was calculated for each of the IG elements, where an absorption line comparison provided the rough IG-element abundance. Then, the final model considering HHeCNSiSArCaScTiVCrMnFeCoNi was calculated and compared with the observation, whereby the above-mentioned automatic procedure was used to provide more precise IG-element abundances.

Refer to caption
Figure 8: Comparison of selected C iii and C iv lines in PG 0909+276. The model of Wild & Jeffery (2018) is shown in blue, TMAP in red, and the STIS observation in gray.
Refer to caption
Figure 9: Comparison of selected He i and He ii lines in the optical spectrum of PG 0909+276. Our model with parameters by Wild & Jeffery (2018, Teff=36 900Ksubscript𝑇eff36900K\mbox{$T_{\mathrm{eff}}$}=36\,900\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 36 900 roman_K, [[[[C]]]] = 0.383) is shown in blue, our model with Teff=32 900Ksubscript𝑇eff32900K\mbox{$T_{\mathrm{eff}}$}=32\,900\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 32 900 roman_K and [C] = 0.197 in red, and the FOCES spectrum in gray.

4.3.1 Atmospheric parameters

Teff=32 900Ksubscript𝑇eff32900K\mbox{$T_{\mathrm{eff}}$}=32\,900\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 32 900 roman_K was adopted to achieve the best match for the C lines (Fig. 8). logg=6.1±0.2𝑔plus-or-minus6.10.2\log g=6.1\pm 0.2roman_log italic_g = 6.1 ± 0.2 determined by Wild & Jeffery (2018) was verified. NHi=1.1×1020cm2subscript𝑁Hi1.1superscript1020superscriptcm2N_{{\rm H}\,\textsc{i}}=1.1\times 10^{20}\,{\rm cm}^{-2}italic_N start_POSTSUBSCRIPT roman_H i end_POSTSUBSCRIPT = 1.1 × 10 start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT and vrad,Hi=5km/ssubscript𝑣radHi5kmsv_{\rm rad,H\,\textsc{i}}=5\,{\rm km/s}italic_v start_POSTSUBSCRIPT roman_rad , roman_H i end_POSTSUBSCRIPT = 5 roman_km / roman_s were determined by fitting the Ly α𝛼\alphaitalic_α line. vrad=18.0km/ssubscript𝑣rad18.0kmsv_{\rm rad}=18.0\,{\rm km/s}italic_v start_POSTSUBSCRIPT roman_rad end_POSTSUBSCRIPT = 18.0 roman_km / roman_s and vrot2km/ssubscript𝑣rot2kmsv_{\rm rot}\approx 2\,{\rm km/s}italic_v start_POSTSUBSCRIPT roman_rot end_POSTSUBSCRIPT ≈ 2 roman_km / roman_s were determined, and EBV=0.040.015+0.010subscript𝐸BVsubscriptsuperscript0.040.0100.015E_{\rm B-V}=0.04^{+0.010}_{-0.015}italic_E start_POSTSUBSCRIPT roman_B - roman_V end_POSTSUBSCRIPT = 0.04 start_POSTSUPERSCRIPT + 0.010 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.015 end_POSTSUBSCRIPT was obtained. Additionally, some interstellar absorption lines of C, N, O, Si, S, Al, and Fe were found.

4.3.2 Abundances

The H and He abundances from Wild & Jeffery (2018) were adopted, as they provided the best fit for the optical and STIS spectrum, hence the number ratio is He / H =0.219absent0.219=0.219= 0.219. As already shown, the C abundance was determined to [C]=0.19delimited-[]C0.19[{\rm C}]=0.19[ roman_C ] = 0.19 based on some C iii and C iv lines (Fig. 8). [N]=0.43delimited-[]N0.43[{\rm N}]=-0.43[ roman_N ] = - 0.43 was found with N iii λλ 1 183.03, 1 184.55Å𝜆𝜆1183.031184.55̊A\lambda\lambda\ 1\,183.03,\,1\,184.55\,\mathring{\rm A}italic_λ italic_λ 1 183.03 , 1 184.55 over̊ start_ARG roman_A end_ARG, and [Si]=2.68delimited-[]Si2.68[{\rm Si}]=-2.68[ roman_Si ] = - 2.68 was determined with Si iii λ 1 298.96Å𝜆1298.96̊A\lambda\ 1\,298.96\,\mathring{\rm A}italic_λ 1 298.96 over̊ start_ARG roman_A end_ARG and Si iv λλ 1 393.76, 1 403.77Å𝜆𝜆1393.761403.77̊A\lambda\lambda\ 1\,393.76,\,1\,403.77\,\mathring{\rm A}italic_λ italic_λ 1 393.76 , 1 403.77 over̊ start_ARG roman_A end_ARG. [S]=1.22delimited-[]S1.22[{\rm S}]=1.22[ roman_S ] = 1.22 was determined based on some S iii lines, for example S iii λλ 1 194.46, 1 200.97Å𝜆𝜆1194.461200.97̊A\lambda\lambda\ 1\,194.46,\,1\,200.97\,\mathring{\rm A}italic_λ italic_λ 1 194.46 , 1 200.97 over̊ start_ARG roman_A end_ARG, and S iv λλ 1 623.59, 1 623.95Å𝜆𝜆1623.591623.95̊A\lambda\lambda\ 1\,623.59,\,1\,623.95\,\mathring{\rm A}italic_λ italic_λ 1 623.59 , 1 623.95 over̊ start_ARG roman_A end_ARG, and [Ar]=1.13delimited-[]Ar1.13[{\rm Ar}]=1.13[ roman_Ar ] = 1.13 with some Ar iii lines, for example Ar iii λλ 1 669.67, 1 675.48Å𝜆𝜆1669.671675.48̊A\lambda\lambda\ 1\,669.67,\,1\,675.48\,\mathring{\rm A}italic_λ italic_λ 1 669.67 , 1 675.48 over̊ start_ARG roman_A end_ARG.

[Ca]=2.00delimited-[]Ca2.00[{\rm Ca}]=2.00[ roman_Ca ] = 2.00 was found using Ca iii λλ 1 463.34, 1 496.88Å𝜆𝜆1463.341496.88̊A\lambda\lambda\ 1\,463.34,\,1\,496.88\,\mathring{\rm A}italic_λ italic_λ 1 463.34 , 1 496.88 over̊ start_ARG roman_A end_ARG, [Sc]=4.24delimited-[]Sc4.24[{\rm Sc}]=4.24[ roman_Sc ] = 4.24 was determined with Sc iii λλ 1 603.06,𝜆𝜆1603.06\lambda\lambda\ 1\,603.06,italic_λ italic_λ 1 603.06 ,1 610.19Å1610.19̊A1\,610.19\,\mathring{\rm A}1 610.19 over̊ start_ARG roman_A end_ARG, and [Ti]=2.88delimited-[]Ti2.88[{\rm Ti}]=2.88[ roman_Ti ] = 2.88 was found with several lines, such as Ti iv λλ 1 451.74,𝜆𝜆1451.74\lambda\lambda\ 1\,451.74,italic_λ italic_λ 1 451.74 ,1 467.34Å1467.34̊A1\,467.34\,\mathring{\rm A}1 467.34 over̊ start_ARG roman_A end_ARG. [V]=3.53delimited-[]V3.53[{\rm V}]=3.53[ roman_V ] = 3.53 was determined with some lines, such as V iii λ 1 694.78Å𝜆1694.78̊A\lambda\ 1\,694.78\,\mathring{\rm A}italic_λ 1 694.78 over̊ start_ARG roman_A end_ARG and V iv λ 1 226.52Å𝜆1226.52̊A\lambda\ 1\,226.52\,\mathring{\rm A}italic_λ 1 226.52 over̊ start_ARG roman_A end_ARG, and [Mn]=1.98delimited-[]Mn1.98[{\rm Mn}]=1.98[ roman_Mn ] = 1.98 was found with several lines, such as Mn iv λλ 1 653.83, 1 664.73Å𝜆𝜆1653.831664.73̊A\lambda\lambda\ 1\,653.83,\,1\,664.73\,\mathring{\rm A}italic_λ italic_λ 1 653.83 , 1 664.73 over̊ start_ARG roman_A end_ARG. For Cr, Fe, Co, and Ni, many isolated absorption lines were identified, hence their abundances could be more precisely determined to [Cr]=2.51delimited-[]Cr2.51[{\rm Cr}]=2.51[ roman_Cr ] = 2.51, [Fe]=0.03delimited-[]Fe0.03[{\rm Fe}]=0.03[ roman_Fe ] = 0.03, [Co]=3.21delimited-[]Co3.21[{\rm Co}]=3.21[ roman_Co ] = 3.21, and [Ni]=2.48delimited-[]Ni2.48[{\rm Ni}]=2.48[ roman_Ni ] = 2.48 with the procedure described in Sect. 4.2 (Table 3). Again, the uncertainty is estimated to be proportional to the standard error of the mean 1/n1𝑛1/\sqrt{n}1 / square-root start_ARG italic_n end_ARG, for the line count n𝑛nitalic_n.

Table 3: Similar to Table,1, but for PG 0909+276.
Element Line counta𝑎aitalic_aa𝑎aitalic_aa𝑎aitalic_aOnly for Cr, Fe, Co, and Ni. The line count refers to the number of isolated lines used for the automatic abundance determination method. Mass fraction [X]
H 5.06×1015.06superscript1015.06\times 10^{-1}5.06 × 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT 0.160.16-0.16- 0.16
He 4.40×1014.40superscript1014.40\times 10^{-1}4.40 × 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT 0.250.250.250.25
C 3.69×1033.69superscript1033.69\times 10^{-3}3.69 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 0.190.190.190.19
N 2.58×1042.58superscript1042.58\times 10^{-4}2.58 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 0.430.43-0.43- 0.43
Si 1.38×1061.38superscript1061.38\times 10^{-6}1.38 × 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT 2.682.68-2.68- 2.68
S 5.09×1035.09superscript1035.09\times 10^{-3}5.09 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 1.221.221.221.22
Ar 9.80×1049.80superscript1049.80\times 10^{-4}9.80 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 1.131.131.131.13
Ca 6.08×1036.08superscript1036.08\times 10^{-3}6.08 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.002.002.002.00
Sc 8.27×1048.27superscript1048.27\times 10^{-4}8.27 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 4.244.244.244.24
Ti 2.25×1032.25superscript1032.25\times 10^{-3}2.25 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.882.882.882.88
V 9.72×1049.72superscript1049.72\times 10^{-4}9.72 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 3.533.533.533.53
Cr 10 5.10×1035.10superscript1035.10\times 10^{-3}5.10 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.512.512.512.51
Mn 1.01×1031.01superscript1031.01\times 10^{-3}1.01 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 1.981.981.981.98
Fe 9 1.29×1031.29superscript1031.29\times 10^{-3}1.29 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 0.030.030.030.03
Co 24 5.89×1035.89superscript1035.89\times 10^{-3}5.89 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 3.213.213.213.21
Ni 20 2.04×1022.04superscript1022.04\times 10^{-2}2.04 × 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT 2.482.482.482.48
777 

5 Stellar parameters

With parallaxes from the Gaia data release 3888https://gea.esac.esa.int/archive (DR3, Gaia Collaboration et al. 2023; Babusiaux et al. 2023), stellar distances can be calculated (Bailer-Jones et al. 2021). On the other hand, spectroscopic parameters can be used to calculate the distance999http://astro.uni-tuebingen.de/~rauch/SpectroscopicDistanceDetermination.gif, assuming the stellar radius or mass are known (Heber et al. 1984). It is then

D=1.9×1010RHν100.4mv0pc𝐷1.9superscript1010𝑅subscript𝐻𝜈superscript100.4subscript𝑚subscriptv0pcD=1.9\times 10^{10}\,R\sqrt{H_{\nu}\cdot 10^{0.4\cdot m_{\rm v_{0}}}}\,\rm pcitalic_D = 1.9 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT italic_R square-root start_ARG italic_H start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ⋅ 10 start_POSTSUPERSCRIPT 0.4 ⋅ italic_m start_POSTSUBSCRIPT roman_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG roman_pc

or

D=7.11×104MHν100.4mv0loggpc𝐷7.11superscript104𝑀subscript𝐻𝜈superscript100.4subscript𝑚subscriptv0log𝑔pcD=7.11\times 10^{4}\sqrt{M\cdot H_{\nu}\cdot 10^{0.4\cdot m_{\rm v_{0}}-\text{% log}\,g}}\,\rm pcitalic_D = 7.11 × 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT square-root start_ARG italic_M ⋅ italic_H start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ⋅ 10 start_POSTSUPERSCRIPT 0.4 ⋅ italic_m start_POSTSUBSCRIPT roman_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT - log italic_g end_POSTSUPERSCRIPT end_ARG roman_pc

with the stellar mass M𝑀Mitalic_M in Msubscript𝑀direct-productM_{\odot}italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, the stellar radius R𝑅Ritalic_R, the Eddington flux Hνsubscript𝐻𝜈H_{\nu}italic_H start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT, and the extinction-corrected apparent magnitude mV0=mv3.2EBVsubscript𝑚subscriptV0subscript𝑚v3.2subscript𝐸BVm_{\rm V_{0}}=m_{\rm v}-3.2\,E_{\rm B-V}italic_m start_POSTSUBSCRIPT roman_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_m start_POSTSUBSCRIPT roman_v end_POSTSUBSCRIPT - 3.2 italic_E start_POSTSUBSCRIPT roman_B - roman_V end_POSTSUBSCRIPT (mVsubscript𝑚Vm_{\rm V}italic_m start_POSTSUBSCRIPT roman_V end_POSTSUBSCRIPT was taken from the NOMAD catalogue, Zacharias et al. 2004). Both equations are connected by a relation for the surface gravity g𝑔gitalic_g. Hνsubscript𝐻𝜈H_{\nu}italic_H start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT was taken from the TMAP atmosphere model (Hν=Fν/4subscript𝐻𝜈subscript𝐹𝜈4H_{\nu}=F_{\nu}/4italic_H start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT = italic_F start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT / 4) at λ=5454Å𝜆5454̊A\lambda=5454\,\mathring{\rm A}italic_λ = 5454 over̊ start_ARG roman_A end_ARG.

Taking D𝐷Ditalic_D from Gaia DR3 and using other relevant parameters from the spectral analyses, M𝑀Mitalic_M and R𝑅Ritalic_R can be calculated, which provides a solid reference point for the consistency of the analysis (Table 4). Interestingly, while for EC 11481--2303 the value for R𝑅Ritalic_R is somewhat reasonable, M𝑀Mitalic_M is relatively low, which favors logglog𝑔{\rm log}\,groman_log italic_g to be at the upper end of the 1σ1𝜎1\,\sigma1 italic_σ error interval for a mass of M=0.5M𝑀0.5subscript𝑀direct-productM=0.5\,M_{\odot}italic_M = 0.5 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT. The canonical hot subdwarf mass of M=0.5M𝑀0.5subscript𝑀direct-productM=0.5\,M_{\odot}italic_M = 0.5 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT is obtained for logg=6.1log𝑔6.1{\rm log}\,g=6.1roman_log italic_g = 6.1 when fixing all other parameters at their means. For Feige 110 and PG 0909+276, obtained R𝑅Ritalic_R and M𝑀Mitalic_M are consistent with hot subdwarf formation theory (Heber 2016).

Table 4: Relevant parameters for spectroscopic distance calculation.
EC 11481--2303 Feige 110 PG 0909+276
parallaxa𝑎aitalic_aa𝑎aitalic_aa𝑎aitalic_aGaia DR3, / mas 3.40±0.05plus-or-minus3.400.053.40\pm 0.053.40 ± 0.05 3.69±0.05plus-or-minus3.690.053.69\pm 0.053.69 ± 0.05 3.58±0.06plus-or-minus3.580.063.58\pm 0.063.58 ± 0.06
D/pc𝐷pcD\,/\,\rm pcitalic_D / roman_pcb𝑏bitalic_bb𝑏bitalic_bb𝑏bitalic_bBailer-Jones et al. (2021), 289±5plus-or-minus2895289\pm 5289 ± 5 265±4plus-or-minus2654265\pm 4265 ± 4 275±4plus-or-minus2754275\pm 4275 ± 4
Hν/erg/cm2/s/Hzsubscript𝐻𝜈ergsuperscriptcm2sHzH_{\nu}\,\rm/\,erg/cm^{2}/s/Hzitalic_H start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT / roman_erg / roman_cm start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / roman_s / roman_Hz 9.40×1049.40superscript1049.40\times 10^{-4}9.40 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 6.88×1046.88superscript1046.88\times 10^{-4}6.88 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 4.97×1044.97superscript1044.97\times 10^{-4}4.97 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT
mVsubscript𝑚Vm_{\rm V}italic_m start_POSTSUBSCRIPT roman_V end_POSTSUBSCRIPTc𝑐citalic_cc𝑐citalic_cc𝑐citalic_cNOMAD catalogue (Zacharias et al. 2004), 11.778±0.1plus-or-minus11.7780.111.778\pm 0.111.778 ± 0.1 11.496±0.1plus-or-minus11.4960.111.496\pm 0.111.496 ± 0.1 12.091±0.1plus-or-minus12.0910.112.091\pm 0.112.091 ± 0.1
log(g/cm/s2)log𝑔cmsuperscripts2{\rm log}\,(g\,/\,{\rm cm}/{\rm s}^{2})roman_log ( italic_g / roman_cm / roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) 5.8±0.3plus-or-minus5.80.35.8\pm 0.35.8 ± 0.3 6.0±0.2plus-or-minus6.00.26.0\pm 0.26.0 ± 0.2 6.1±0.2plus-or-minus6.10.26.1\pm 0.26.1 ± 0.2
EBVsubscript𝐸BVE_{\rm B-V}italic_E start_POSTSUBSCRIPT roman_B - roman_V end_POSTSUBSCRIPTd𝑑ditalic_dd𝑑ditalic_dd𝑑ditalic_dThis work 0.035 0.010+ 0.005superscriptsubscript0.0350.0100.0050.035\,_{-\,0.010}^{+\,0.005}0.035 start_POSTSUBSCRIPT - 0.010 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.005 end_POSTSUPERSCRIPT 0.020±0.005plus-or-minus0.0200.0050.020\pm 0.0050.020 ± 0.005 0.040 0.015+ 0.010superscriptsubscript0.0400.0150.0100.040\,_{-\,0.015}^{+\,0.010}0.040 start_POSTSUBSCRIPT - 0.015 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.010 end_POSTSUPERSCRIPT
R/km𝑅kmR\,/\,\rm kmitalic_R / roman_km 71 100±5 100plus-or-minus71100510071\,100\pm 5\,10071 100 ± 5 100 84 800±4 000plus-or-minus84800400084\,800\pm 4\,00084 800 ± 4 000 81 100±6 300plus-or-minus81100630081\,100\pm 6\,30081 100 ± 6 300
R/R𝑅subscript𝑅direct-productR\,/\,R_{\odot}italic_R / italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT 0.102±0.007plus-or-minus0.1020.0070.102\pm 0.0070.102 ± 0.007 0.122±0.006plus-or-minus0.1220.0060.122\pm 0.0060.122 ± 0.006 0.117±0.009plus-or-minus0.1170.0090.117\pm 0.0090.117 ± 0.009
M/M𝑀subscript𝑀direct-productM\,/\,M_{\odot}italic_M / italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT 0.239 0.129+ 0.310superscriptsubscript0.2390.1290.3100.239\,_{-\,0.129}^{+\,0.310}0.239 start_POSTSUBSCRIPT - 0.129 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.310 end_POSTSUPERSCRIPT 0.540 0.234+ 0.412superscriptsubscript0.5400.2340.4120.540\,_{-\,0.234}^{+\,0.412}0.540 start_POSTSUBSCRIPT - 0.234 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.412 end_POSTSUPERSCRIPT 0.621 0.279+ 0.509superscriptsubscript0.6210.2790.5090.621\,_{-\,0.279}^{+\,0.509}0.621 start_POSTSUBSCRIPT - 0.279 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.509 end_POSTSUPERSCRIPT
101010 

6 Iron-group element line strengths

Hot subdwarf spectra can be used to evaluate the quality of atomic data used as an input for the spectral analysis. Regarding the IG elements Ca – Ni, atomic data are available, for example, from NIST, the OP, or Kurucz’s line lists, whereby the latter contains by far the most data. Energy levels, cross-sections (or weighted oscillator strengths gf𝑔𝑓gfitalic_g italic_f with the statistical weight g𝑔gitalic_g) and transition probabilities are usually determined with the help of quantum mechanical calculations. The database by Kurucz (2018) contains weighted oscillator strengths for more than 850 million LIN lines, of which approx. 330 million belong to the IG elements. Additionally, around 900 000 IG-element POS lines are available, giving a LIN/POS ratio of about 370. Kurucz uses a semi-empirical method (Kurucz 1973) to calculate the weighted oscillator strengths gf𝑔𝑓gfitalic_g italic_f. However, depending on the calculation method, deviations can arise. This has already been shown by Massacrier & Artru (2012) for Sc, where for some lines large deviations (factor 1000absent1000\approx 1000≈ 1000 for Sc iv) were found between Kurucz’s calculations and the flexible atomic code (Gu 2002), which is a relativistic atomic configuration interaction program based on jj𝑗𝑗jjitalic_j italic_j-coupling. Additionally, we could also show systematic deviations for the trans-iron-element (TIE) Cu iv ion between calculations by Kurucz and the Tübingen Oscillator Strength Service (TOSS111111http://dc.g-vo.org/TOSS, Fig. 10), which provides oscillator strengths for 14 TIEs. For TOSS calculations, a pseudo-relativistic Hartree-Fock method with core-polarization corrections was used (Cowan 1981; Quinet et al. 1999, 2002).

Refer to caption
Figure 10: Comparison of the calculated oscillator strengths of Cu ivvi obtained from TOSS and Kurucz, with color labeled ions.

As we were able to quantitatively compare line strengths between the models and the observations for a total of 457 isolated Cr – Ni lines in Feige 110 and PG 0909+276, we could use the stellar atmospheres as “laboratories” to evaluate the quality of weighted oscillator strengths gf𝑔𝑓gfitalic_g italic_f for Kurucz’s POS lines. As the calculation method is the same for the LIN lines, this procedure even enables their accuracy to be tested to some extent.

7 Atomic-data quality

To estimate the statistical uncertainty σKuruczsubscript𝜎Kurucz\sigma_{\rm Kurucz}italic_σ start_POSTSUBSCRIPT roman_Kurucz end_POSTSUBSCRIPT of Kurucz’s gf𝑔𝑓gfitalic_g italic_f values for the investigated isolated lines, at first, the uncertainty σaesubscript𝜎ae\sigma_{\rm ae}italic_σ start_POSTSUBSCRIPT roman_ae end_POSTSUBSCRIPT of this work’s analysis and evaluation procedure and inherent assumptions needs to be known. Then, it is

σW2=σKurucz2+σae2,superscriptsubscript𝜎𝑊2superscriptsubscript𝜎Kurucz2superscriptsubscript𝜎ae2\sigma_{W}^{2}=\sigma_{\rm Kurucz}^{2}+\sigma_{\rm ae}^{2}\quad,italic_σ start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_σ start_POSTSUBSCRIPT roman_Kurucz end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_σ start_POSTSUBSCRIPT roman_ae end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ,

where σWsubscript𝜎𝑊\sigma_{W}italic_σ start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT is the final uncertainty of the line strengths and is obtained from the distribution log(Wλobs/Wλsyn)logsuperscriptsubscript𝑊𝜆obssuperscriptsubscript𝑊𝜆syn{\rm log}\,(W_{\lambda}^{\,\rm obs}/W_{\lambda}^{\,\rm syn})roman_log ( italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT ) from Sect. 4.2. The weighted uncertainty of 392 lines from Feige 110 and 65 lines from PG 0909+276 is σW=49%subscript𝜎𝑊percent49\sigma_{W}=49\,\%italic_σ start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT = 49 % (non-logarithmic).
σaesubscript𝜎ae\sigma_{\rm ae}italic_σ start_POSTSUBSCRIPT roman_ae end_POSTSUBSCRIPT is comprised of two components. First, approximations and possible uncertainties in the analysis procedure have to be accounted for. Second, our assumption that Wλobs/Wλsynsuperscriptsubscript𝑊𝜆obssuperscriptsubscript𝑊𝜆synW_{\lambda}^{\,\rm obs}/W_{\lambda}^{\,\rm syn}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT is a correct measure for the deviation of a single absorption line needs to be verified. Thus, we have to investigate that Wλobssuperscriptsubscript𝑊𝜆obsW_{\lambda}^{\,\rm obs}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT is a correct reference value and independent from the specific stellar spectrum.

Considering the analysis procedure, 10 % uncertainty was allowed when constraining the criterion for an absorption line to be isolated. Other sources of uncertainty in Sect. 4.2 might be the determination of the local continuum or non-identified line blends. Hence, we obtain a lower limit of 10 % for the analysis uncertainty. Considering the uncertainty of Wλobssuperscriptsubscript𝑊𝜆obsW_{\lambda}^{\,\rm obs}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT as a reference value, we could compare correction factors Wλobs/Wλsynsuperscriptsubscript𝑊𝜆obssuperscriptsubscript𝑊𝜆synW_{\lambda}^{\,\rm obs}/W_{\lambda}^{\,\rm syn}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT for absorption lines identified in both stars Feige 110 and PG 0909+276. Deviations between both stellar spectra are not attributed to analysis or atomic data uncertainties, but to the fact that Wλobssuperscriptsubscript𝑊𝜆obsW_{\lambda}^{\,\rm obs}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT is, for one or another reason, not a stable reference. For 21 evaluated absorption lines found in both stars (Table 6), the statistical uncertainty amounts to 23 %. Altogether, we obtain a lower limit of σae25%subscript𝜎aepercent25\sigma_{\rm ae}\geq 25\,\%italic_σ start_POSTSUBSCRIPT roman_ae end_POSTSUBSCRIPT ≥ 25 %.

Knowing both σWsubscript𝜎𝑊\sigma_{W}italic_σ start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT and σaesubscript𝜎ae\sigma_{\rm ae}italic_σ start_POSTSUBSCRIPT roman_ae end_POSTSUBSCRIPT, an upper limit for the statistical uncertainty of the input data can be estimated to

σKurucz,%σW2σae2=42%orσKurucz0.38dex.\sigma_{\rm Kurucz,\%}\leq\sqrt{\sigma_{W}^{2}-\sigma_{\rm ae}^{2}}=42\,\%% \quad\mathrm{or}\hskip 14.22636pt\sigma_{\rm Kurucz}\leq 0.38\,{\rm dex}\quad.italic_σ start_POSTSUBSCRIPT roman_Kurucz , % end_POSTSUBSCRIPT ≤ square-root start_ARG italic_σ start_POSTSUBSCRIPT italic_W end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_σ start_POSTSUBSCRIPT roman_ae end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = 42 % roman_or italic_σ start_POSTSUBSCRIPT roman_Kurucz end_POSTSUBSCRIPT ≤ 0.38 roman_dex .

We emphasize that the real uncertainty (σKuruczsubscript𝜎Kurucz\sigma_{\rm Kurucz}italic_σ start_POSTSUBSCRIPT roman_Kurucz end_POSTSUBSCRIPT) may be much lower. Additionally, no systematic uncertainty of Kurucz’s gf𝑔𝑓gfitalic_g italic_f values was found among the investigated lines, neither when plotting Wλsynsuperscriptsubscript𝑊𝜆synW_{\lambda}^{\,\rm syn}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT against Wλobssuperscriptsubscript𝑊𝜆obsW_{\lambda}^{\,\rm obs}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT (Fig. 7) nor against the wavelength (Fig. 11).

Refer to caption
Figure 11: log(Wλobs/Wλsyn)logsuperscriptsubscript𝑊𝜆obssuperscriptsubscript𝑊𝜆syn{\rm log}(W_{\lambda}^{\rm obs}/W_{\lambda}^{\rm syn})roman_log ( italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT ) in Feige 110. The IG elements are color labeled, and the value for Wλobs=Wλsynsuperscriptsubscript𝑊𝜆obssuperscriptsubscript𝑊𝜆synW_{\lambda}^{\rm obs}=W_{\lambda}^{\rm syn}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT = italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT is indicated by the black horizontal line.

8 Line-strength corrections

With the normalized distributions of equivalent widths obtained from Sect. 4.2, the deviation Wλobs/Wλsynsuperscriptsubscript𝑊𝜆obssuperscriptsubscript𝑊𝜆synW_{\lambda}^{\,\rm obs}/W_{\lambda}^{\,\rm syn}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT for each of the isolated absorption lines in Feige 110 and PG 0909+++276 could be taken as a correction factor, which in theory needed to be applied to obtain agreement between model and observation for the respective line strength (keeping in mind that this might reduce the overall uncertainty to 23 %, as shown in Sect. 7, but not completely abolish it, because Wλobssuperscriptsubscript𝑊𝜆obsW_{\lambda}^{\rm obs}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT is not a stable reference). As naively a linear relationship to the equivalent width is expected, it is

gfcorr=gfKuruczWλobs/Wλsyn𝑔subscript𝑓corr𝑔subscript𝑓Kuruczsuperscriptsubscript𝑊𝜆obssuperscriptsubscript𝑊𝜆syngf_{\rm corr}=gf_{\rm Kurucz}\cdot W_{\lambda}^{\rm obs}/W_{\lambda}^{\rm syn}italic_g italic_f start_POSTSUBSCRIPT roman_corr end_POSTSUBSCRIPT = italic_g italic_f start_POSTSUBSCRIPT roman_Kurucz end_POSTSUBSCRIPT ⋅ italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT

for each line. The respective transitions in Kurucz’s LIN and POS lists were then corrected by substitution of gfKurucz𝑔subscript𝑓Kuruczgf_{\rm Kurucz}italic_g italic_f start_POSTSUBSCRIPT roman_Kurucz end_POSTSUBSCRIPT with gfcorr𝑔subscript𝑓corrgf_{\rm corr}italic_g italic_f start_POSTSUBSCRIPT roman_corr end_POSTSUBSCRIPT. Afterwards, new atmosphere models and synthetic spectra were calculated for Feige 110 and PG 0909+276 based on the new atomic data. Then, the evaluation was repeated.

As expected, this procedure significantly reduced the statistical spread of the data shown in Fig. 7 by a factor of about 1.8, which is shown in Fig. 12. However, it could not completely eradicate a spread, which hints to a more complex relation between Wλsubscript𝑊𝜆W_{\lambda}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT and gf𝑔𝑓gfitalic_g italic_f. From a theoretical point of view, this can be understood by stepping back from the individual transition probabilities and by having a look at a specific ion and its energy levels (with corresponding transition probabilities) as a whole, which is, for instance, described in a Grotrian diagram121212E.g., http://astro.uni-tuebingen.de/~TMAD/elements/NE/grotrian_NE.jpg.. Changing oscillator strengths for specific transitions has always an impact on other transitions (as probabilities sum to unity) and therefore introduces errors.

Refer to caption
Figure 12: Like Fig. 7, with corrected oscillator strengths.

As the consequences of these changes on the model spectrum are not yet possible to predict with the available methods, an iterative procedure would be necessary to correctly change the oscillator strength of a specific transition while not simultaneously introducing errors on other transitions. In this procedure, a specific oscillator strength would be corrected in a way that Wλobssuperscriptsubscript𝑊𝜆obsW_{\lambda}^{\rm obs}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT and Wλsynsuperscriptsubscript𝑊𝜆synW_{\lambda}^{\rm syn}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT coincide for that absorption line. Then, the atmosphere model and model spectrum need to be recalculated, correcting all the line strengths that now deviate from the original model. After a few iterations, the oscillator strength of the specific transition should be correctly adjusted and all subsequent errors should be eliminated. Then, one may proceed to the next transition, and so on. As several iterations are to be expected for each absorption line, thousands of steps would be necessary in total, which would be unacceptably time expensive, as the calculation of the atmosphere model for each step takes at least several hours.

To come back to the non-iterative procedure performed in this work, additionally to the still existing deviations after applying the corrections (Fig. 12), Wλsynsuperscriptsubscript𝑊𝜆synW_{\lambda}^{\rm syn}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT become systematically too weak in Feige 110, especially for stronger lines (Fig. 12).

As those are more relevant for abundance determinations, we do not recommend such a non-iterative correction of gf𝑔𝑓gfitalic_g italic_f values to improve statistics. In PG 0909+276 no such shift shows. As the line count is significantly larger for Feige 110, however, we still conclude that this correction procedure is not applicable.

9 Improving abundance determinations

As has been shown, corrections on weighted oscillator strengths in a non-iterative manner do not lead to an optimal agreement between models and observations, while a (probably correct) iterative procedure would be too time-expensive to be realised with the available methods. Hence, we give another recommendation to improve abundance determinations in objects similar to Feige 110 and PG 0909+276 by finding strong, isolated absorption lines with little to no deviations occurring between observed and modeled line strengths, which can serve as prime reference points for the respective element’s abundance determination. In the case of stars that are highly enriched in IG elements, as a result of which a large part of their lines overlap, statistical methods such as the χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT method are well-suited to determine abundances. To achieve a reasonable computing time with NLTE models, however, good starting values for these abundances are important, which can only be obtained from clearly visible, isolated lines. In stars that have lower IG-element abundances, these can only be determined using a few lines anyway, which means that their accuracy is also decisive here.

Among the investigated lines, we found 58 strong, “reliable” isolated absorption lines (Table LABEL:tab:Rel_lines) with Wλobs40mÅsuperscriptsubscript𝑊𝜆obs40m̊AW_{\lambda}^{\rm obs}\geq 40\,{\rm m}\mathring{\rm A}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT ≥ 40 roman_m over̊ start_ARG roman_A end_ARG and 0.90Wλobs/Wλsyn1.100.90superscriptsubscript𝑊𝜆obssuperscriptsubscript𝑊𝜆syn1.100.90\leq W_{\lambda}^{\rm obs}/W_{\lambda}^{\rm syn}\leq 1.100.90 ≤ italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT ≤ 1.10, which, with σaesubscript𝜎ae\sigma_{\rm ae}italic_σ start_POSTSUBSCRIPT roman_ae end_POSTSUBSCRIPT from Sect. 7, leads to an uncertainty of

σ0.252+0.12=27%𝜎superscript0.252superscript0.12percent27\sigma\approx\sqrt{0.25^{2}+0.1^{2}}=27\,\%italic_σ ≈ square-root start_ARG 0.25 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 0.1 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = 27 %

per line. Typically using multiple (n𝑛nitalic_n) lines per element, the abundance uncertainty will reduce by a factor of 1/n1𝑛1/\sqrt{n}1 / square-root start_ARG italic_n end_ARG, as shown in Sect. 4.2. Depending on the analysis method, these lines can either serve as solid starting points or, if few lines are available only, the accuracy of the abundance determination can then be estimated.

10 Results and conclusions

With very high-resolution and high-S/N STIS spectra, we were able to perform an NLTE spectral analysis of the three subdwarf stars EC 11481--2303, Feige 110, and PG 0909+276.

For EC 11481--2303, the previously determined Teff=55 000±5000Ksubscript𝑇effplus-or-minus550005000K\mbox{$T_{\mathrm{eff}}$}=55\,000\pm 5000\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 55 000 ± 5000 roman_K and He / H = 0.0025 was confirmed by our analysis. Due to rotational broadening, many of the identified absorption lines are blended. In the case of C, O, and the IG-elements Ca – V, upper limits for the atmospheric abundances could be derived. For the other IG-elements Cr – Ni, abundances were determined.

For Feige 110, we could also confirm the previously determined Teff=47 250±2000Ksubscript𝑇effplus-or-minus472502000K\mbox{$T_{\mathrm{eff}}$}=47\,250\pm 2000\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 47 250 ± 2000 roman_K, logg=6.0±0.2𝑔plus-or-minus6.00.2\log g=6.0\pm 0.2roman_log italic_g = 6.0 ± 0.2, and He / H = 0.022. Despite the absence of rotational broadening, the plethora of IG-element absorption lines lead to frequent blends, hence for C, O, Si, and Sc, upper limits were derived. As many isolated lines were identified for Cr – Ni, an automatic method was established to determine their abundances more precisely, as well as absorption-line properties.

For PG 0909+276, we determined Teff=32 900Ksubscript𝑇eff32900K\mbox{$T_{\mathrm{eff}}$}=32\,900\,\mathrm{K}italic_T start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 32 900 roman_K by evaluation if the C iii/C iv ionization equilibrium in the STIS observation. logg=6.1±0.2𝑔plus-or-minus6.10.2\log g=6.1\pm 0.2roman_log italic_g = 6.1 ± 0.2 and He / H = 0.219, as previously determined, are consistent with our analysis. The abundances of all considered elements were determined, and for Cr, Fe, Co, and Ni, the above-mentioned automatic method could be used for precise abundance determination.

With the Gaia DR3 distance measurements for EC 11481--2303, we either conclude that logglog𝑔{\rm log}\,groman_log italic_g is at its upper limit of logg=6.1log𝑔6.1{\rm log}\,g=6.1roman_log italic_g = 6.1 or that EC 11481--2303 is an unusually low-mass sdO, with M=0.239 0.129+ 0.310M𝑀superscriptsubscript0.2390.1290.310subscript𝑀direct-productM=0.239\,_{-\,0.129}^{+\,0.310}\,M_{\odot}italic_M = 0.239 start_POSTSUBSCRIPT - 0.129 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.310 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT.

With the detailed spectral analyses of Feige 110 and PG 0909+276, we were able to investigate isolated absorption lines and compare line strengths between models and observations for a total of 457 lines, using the stellar atmospheres as laboratories to evaluate the quality of weighted oscillator strengths gf𝑔𝑓gfitalic_g italic_f for Kurucz’s POS lines. Considering uncertainties of the analysis and the evaluation procedure, we found an upper limit for the statistical uncertainty of Kurucz’s gf𝑔𝑓gfitalic_g italic_f values of σKurucz0.15dexsubscript𝜎Kurucz0.15dex\sigma_{\rm Kurucz}\leq 0.15\,{\rm dex}italic_σ start_POSTSUBSCRIPT roman_Kurucz end_POSTSUBSCRIPT ≤ 0.15 roman_dex, whereby the real uncertainty might be considerably lower.

To improve IG-element abundance determinations, we tried to apply Wλobs/Wλsynsuperscriptsubscript𝑊𝜆obssuperscriptsubscript𝑊𝜆synW_{\lambda}^{\rm obs}/W_{\lambda}^{\rm syn}italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT as a correction factor for each line’s gf𝑔𝑓gfitalic_g italic_f. Unfortunately, although significantly reducing the statistical uncertainty, this procedure introduced a systematic shift of the equivalent widths, so that we do not recommend such a correction of gf𝑔𝑓gfitalic_g italic_f values. Instead, to improve abundance determinations, we recommend to use strong, reliable isolated IG-element absorption lines from Table LABEL:tab:Rel_lines as solid starting points for a spectral analysis. These lines exhibit line-strength uncertainties of σ27%𝜎percent27\sigma\approx 27\,\%italic_σ ≈ 27 % each, whereby the abundance uncertainty significantly reduces when using multiple lines per element.

To summarize, substantial improvements could be made in the atomic data for the elements Cr, Mn, Fe, Co, and Ni in their ionization stages iii - vi. We expect that all atomic data (in all ionization stages) that are calculated analogously to the Kurucz data, that were investigated on here, could be improved by a critical evaluation similar to ours.

Acknowledgements.
AL had been supported by the German Aerospace Center (DLR, grant 50 OR 1704) and by the German Research Foundation (DFG, grant WE 1312/49-1). This work had been supported by the High Performance and Cloud Computing Group at the Zentrum für Datenverarbeitung of the University of Tübingen (https://www.binac.uni-tuebingen.de), the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through grant no INST 37/935-1 FUGG. The TOSS service (http://astro-uni-tuebingen.de/~TOSS), the TIRO (http://astro.uni-tuebingen.de/~TIRO), and the TMAD tool (http://astro.uni-tuebingen.de/~TMAD) used for this work were constructed as part of the Tübingen project of the German Astrophysical Virtual Observatory (GAVO, http://www.g-vo.org). This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This work is based on observations made with the NASA/ESA Hubble Space Telescope obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555. These observations are associated with program 14746. This research has made use of NASA’s Astrophysics Data System and the SIMBAD database, operated at CDS, Strasbourg, France. We thank our unknown referee for their comments that helped us to clarify this paper.

References

  • Babusiaux et al. (2023) Babusiaux, C., Fabricius, C., Khanna, S., et al. 2023, A&A, 674, A32
  • Bailer-Jones et al. (2021) Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M., & Andrae, R. 2021, AJ, 161, 147
  • Cowan (1981) Cowan, R. D. 1981, The theory of atomic structure and spectra (Berkeley, CA, University of California Press)
  • Dekker et al. (2000) Dekker, H., D’Odorico, S., Kaufer, A., Delabre, B., & Kotzlowski, H. 2000, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4008, Optical and IR Telescope Instrumentation and Detectors, ed. M. Iye & A. F. Moorwood, 534–545
  • Feige (1958) Feige, J. 1958, ApJ, 128, 267
  • Friedman et al. (2002) Friedman, S. D., Howk, J. C., Chayer, P., et al. 2002, ApJS, 140, 37
  • Gaia Collaboration et al. (2023) Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al. 2023, A&A, 674, A1
  • Green et al. (1986) Green, R. F., Schmidt, M., & Liebert, J. 1986, ApJS, 61, 305
  • Greenstein (1971) Greenstein, J. L. 1971, in White Dwarfs, ed. W. J. Luyten, Vol. 42, 46
  • Gu (2002) Gu, M. F. 2002, ApJ, 579, L103
  • Heber (2016) Heber, U. 2016, PASP, 128, 082001
  • Heber & Edelmann (2004) Heber, U. & Edelmann, H. 2004, Ap&SS, 291, 341
  • Heber et al. (1984) Heber, U., Hunger, K., Jonas, G., & Kudritzki, R. P. 1984, in Observational Tests of the Stellar Evolution Theory, ed. A. Maeder & A. Renzini, Vol. 105, 223
  • Hubeny & Mihalas (2014) Hubeny, I. & Mihalas, D. 2014, Theory of Stellar Atmospheres (Princeton University Press)
  • Kilkenny et al. (1997) Kilkenny, D., O’Donoghue, D., Koen, C., Stobie, R. S., & Chen, A. 1997, MNRAS, 287, 867
  • Kudritzki (1976) Kudritzki, R. P. 1976, A&A, 52, 11
  • Kurucz (1973) Kurucz, R. L. 1973, SAO Special Report, 351
  • Kurucz (1991) Kurucz, R. L. 1991, in NATO Advanced Study Institute (ASI) Series C, Vol. 341, Stellar Atmospheres - Beyond Classical Models, ed. L. Crivellari, I. Hubeny, & D. G. Hummer, 441
  • Kurucz (2018) Kurucz, R. L. 2018, in Astronomical Society of the Pacific Conference Series, Vol. 515, Workshop on Astrophysical Opacities, 47
  • Löbling et al. (2020) Löbling, L., Maney, M. A., Rauch, T., et al. 2020, MNRAS, 492, 528
  • Macchetto (1976) Macchetto, F. 1976, Mem. Soc. Astron. Italiana, 47, 431
  • Massacrier & Artru (2012) Massacrier, G. & Artru, M. C. 2012, A&A, 538, A52
  • MATLAB (2019) MATLAB. 2019, version 9.7.0 (R2019b) (Natick, Massachusetts: The MathWorks Inc.)
  • Naslim et al. (2011) Naslim, N., Jeffery, C. S., Behara, N. T., & Hibbert, A. 2011, MNRAS, 412, 363
  • Pfeiffer et al. (1998) Pfeiffer, M. J., Frank, C., Baumueller, D., Fuhrmann, K., & Gehren, T. 1998, A&AS, 130, 381
  • Quinet et al. (2002) Quinet, P., Palmeri, P., Biémont, É., et al. 2002, J. Alloys Comp., 344, 255
  • Quinet et al. (1999) Quinet, P., Palmeri, P., Biémont, É., et al. 1999, MNRAS, 307, 934
  • Ralchenko & Kramida (2020) Ralchenko, Y. & Kramida, A. 2020, Atoms, 8, 56
  • Rauch & Deetjen (2003) Rauch, T. & Deetjen, J. L. 2003, in Astronomical Society of the Pacific Conference Series, Vol. 288, Stellar Atmosphere Modeling, ed. I. Hubeny, D. Mihalas, & K. Werner, 103
  • Rauch et al. (2016a) Rauch, T., Quinet, P., Hoyer, D., et al. 2016a, A&A, 587, A39
  • Rauch et al. (2016b) Rauch, T., Quinet, P., Hoyer, D., et al. 2016b, A&A, 590, A128
  • Rauch et al. (2014) Rauch, T., Rudkowski, A., Kampka, D., et al. 2014, A&A, 566, A3
  • Rauch et al. (2010) Rauch, T., Werner, K., & Kruk, J. W. 2010, Ap&SS, 329, 133
  • Riley (2019) Riley, A. 2019, in STIS Instrument Handbook for Cycle 28 (STScI)
  • Ringat & Rauch (2012) Ringat, E. & Rauch, T. 2012, in Astronomical Society of the Pacific Conference Series, Vol. 452, Fifth Meeting on Hot Subdwarf Stars and Related Objects, ed. D. Kilkenny, C. S. Jeffery, & C. Koen, 71
  • Robertson (2013) Robertson, J. G. 2013, PASA, 30, e048
  • Saffer et al. (1994) Saffer, R. A., Bergeron, P., Koester, D., & Liebert, J. 1994, ApJ, 432, 351
  • Seaton et al. (1994) Seaton, M. J., Yan, Y., Mihalas, D., & Pradhan, A. K. 1994, MNRAS, 266, 805
  • Stys et al. (2000) Stys, D., Slevinsky, R., Sion, E. M., et al. 2000, PASP, 112, 354
  • Werner et al. (2003) Werner, K., Deetjen, J. L., Dreizler, S., et al. 2003, in Astronomical Society of the Pacific Conference Series, Vol. 288, Stellar Atmosphere Modeling, ed. I. Hubeny, D. Mihalas, & K. Werner, 31
  • Werner et al. (2012) Werner, K., Dreizler, S., & Rauch, T. 2012, TMAP: Tübingen NLTE Model-Atmosphere Package, Astrophysics Source Code Library [record ascl:1212.015]
  • Wild & Jeffery (2017) Wild, J. & Jeffery, C. S. 2017, Open Astronomy, 26, 246
  • Wild & Jeffery (2018) Wild, J. F. & Jeffery, C. S. 2018, MNRAS, 473, 4021
  • Zacharias et al. (2004) Zacharias, N., Monet, D. G., Levine, S. E., et al. 2004, in American Astronomical Society Meeting Abstracts, Vol. 205, American Astronomical Society Meeting Abstracts, 48.15
  • Ziegler et al. (2012) Ziegler, M., Rauch, T., Werner, K., Köppen, J., & Kruk, J. W. 2012, A&A, 548, A109

Appendix A Additional Tables

Table 5: Observation log for our program stars.
Name Dataset Id. Exposure time / s Date of observation (GMT)
EC 11481--2303 OD5601010 2431 2017-04-17 00:40:31
Feige 110 OD5602010 2453 2016-12-03 22:29:01
PG 0909+276 OD5603010 2469 2017-03-28 09:52:00
Table 6: Evaluated lines in both Feige 110 and PG 0909+276, with their respective correction factors corr=Wλobs/Wλsyncorrsuperscriptsubscript𝑊𝜆obssuperscriptsubscript𝑊𝜆syn\mathrm{corr}=W_{\lambda}^{\rm obs}/W_{\lambda}^{\rm syn}roman_corr = italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT / italic_W start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_syn end_POSTSUPERSCRIPT.
λ𝜆\lambdaitalic_λ / Å̊A\mathring{\rm A}over̊ start_ARG roman_A end_ARG Ion log(gf)Kuruczlogsubscript𝑔𝑓Kurucz{\rm log}\,(gf)_{\rm Kurucz}roman_log ( italic_g italic_f ) start_POSTSUBSCRIPT roman_Kurucz end_POSTSUBSCRIPT corrFeisubscriptcorrFei\rm corr_{Fei}roman_corr start_POSTSUBSCRIPT roman_Fei end_POSTSUBSCRIPT corrPGsubscriptcorrPG\rm corr_{PG}roman_corr start_POSTSUBSCRIPT roman_PG end_POSTSUBSCRIPT
1213.00 Cr iv 0. 10 0.77 0.78
1263.86 Ni iv --0. 65 1.18 0.96
1304.52 Cr iv 0. 57 1.23 1.27
1413.42 Co v 0. 55 0.92 0.41
1510.11 Ni iv --0. 57 1.05 1.08
1540.56 Co iv 0. 34 1.24 1.17
1544.49 Fe iv 0. 48 0.90 1.29
1544.87 Co iv --0. 18 0.74 1.60
1562.75 Fe iv 0. 03 1.24 0.93
1569.61 Co iv --0. 14 0.72 1.14
1579.03 Ni iv --1. 21 1.30 0.73
1579.24 Fe iv --0. 82 0.83 1.10
1607.18 Co iv --0. 31 0.78 0.70
1621.57 Fe iv 0. 70 1.06 0.77
1623.11 Co iv --0. 97 1.28 0.65
1626.47 Fe iv 0. 55 1.08 1.01
1626.90 Fe iv 0. 05 1.22 0.81
1682.28 Co iv --0. 54 2.06 0.75
1683.13 Mn iv 0. 29 0.98 0.99
1693.99 Fe iv --0. 81 1.54 1.15
1702.38 Co iv --0. 57 0.66 0.64
Table 7: Strong, reliable IG-element absorption lines, found in Feige 110 or PG 0909+276, recommended to be employed for abundance determinations.
Ion λ/Å𝜆̊A\lambda\,/\,\mathring{\rm A}italic_λ / over̊ start_ARG roman_A end_ARG log(gf)Kuruczlogsubscript𝑔𝑓Kurucz{\rm log}\,(gf)_{\rm Kurucz}roman_log ( italic_g italic_f ) start_POSTSUBSCRIPT roman_Kurucz end_POSTSUBSCRIPT WλObs/mÅsubscriptsuperscript𝑊Obs𝜆m̊AW^{\rm Obs}_{\lambda}\,/\,{\rm m}\mathring{\rm A}italic_W start_POSTSUPERSCRIPT roman_Obs end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT / roman_m over̊ start_ARG roman_A end_ARG WλObs/WλSynsubscriptsuperscript𝑊Obs𝜆subscriptsuperscript𝑊Syn𝜆W^{\rm Obs}_{\lambda}/W^{\rm Syn}_{\lambda}italic_W start_POSTSUPERSCRIPT roman_Obs end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT / italic_W start_POSTSUPERSCRIPT roman_Syn end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT
Cr iv 1359.72 --0. 66 42. 09 1. 05
1465.86 --0. 03 73. 52 0. 98
1644.05 --0. 18 69. 37 1. 04
Mn v 1443.31 0. 17 54. 19 0. 93
1448.13 --0. 09 56. 03 0. 99
1475.97 --0. 24 59. 37 1. 04
Fe iv 1431.43 --0. 24 45. 09 0. 93
1560.71 --0. 48 41. 65 1. 04
1570.42 0. 27 51. 16 0. 96
1571.24 0. 16 58. 36 1. 02
1578.74 0. 14 50. 26 0. 92
1598.01 0. 48 50. 24 0. 98
1603.73 0. 15 54. 28 0. 96
1604.67 0. 08 44. 80 0. 93
1605.68 --0. 25 45. 32 0. 98
1605.97 0. 31 53. 96 0. 95
1606.34 --0. 65 40. 34 1. 01
1610.47 0. 21 58. 92 1. 08
1614.65 0. 04 55. 81 1. 01
1623.39 0. 37 47. 17 1. 00
1624.91 0. 12 54. 13 1. 02
1630.68 0. 06 49. 86 0. 95
1638.30 0. 12 46. 51 1. 08
1647.09 0. 18 71. 74 1. 07
1659.00 0. 12 52. 71 1. 08
1661.57 0. 47 47. 17 0. 99
1673.68 0. 51 63. 28 1. 01
1676.79 --0. 08 46. 67 1. 06
1677.12 --0. 18 43. 88 1. 01
1701.48 --0. 41 41. 26 0. 91
1707.61 --0. 14 47. 81 1. 02
1708.57 --0. 25 42. 31 1. 00
Fe v 1370.94 --0. 47 45. 54 0. 92
1440.79 --0. 24 53. 58 1. 07
1654.74 --0. 30 48. 36 0. 95
Co iii 1689.85 --0. 53 78. 47 1. 01
Co iv 1594.53 --0. 02 51. 23 1. 02
1636.40 0. 38 40. 75 1. 00
Co v 1294.02 0. 29 41. 95 1. 00
1342.44 0. 53 41. 89 0. 92
1352.06 0. 05 55. 08 1. 06
1375.21 --0. 06 42. 22 0. 93
Ni iv 1411.45 0. 45 61. 31 0. 95
1430.19 0. 16 55. 79 1. 00
1432.45 --0. 13 43. 12 0. 98
1444.91 0. 34 50. 87 0. 93
1463.67 0. 11 49. 84 0. 98
1476.82 0. 31 53. 58 1. 05
1487.88 --0. 02 45. 43 1. 03
1492.65 --0. 08 46. 02 1. 05
1509.10 0. 14 46. 29 1. 02
1536.84 --0. 27 42. 22 0. 92
1546.23 0. 05 64. 92 0. 94
1554.80 --0. 12 45. 97 0. 97
1559.92 --0. 33 46. 35 0. 91
1569.92 --0. 84 53. 71 0. 92
Ni v 1202.03 0. 12 40. 08 1. 08
1295.30 --0. 08 48. 40 1. 08
Table 7: *