Astrophysics > Astrophysics of Galaxies
[Submitted on 18 Jun 2024]
Title:Hidden Population III Descendants in Ultra-Faint Dwarf Galaxies
View PDF HTML (experimental)Abstract:The elusive properties of the first (Pop III) stars can be indirectly unveiled by uncovering their true descendants. To this aim, we exploit our data-calibrated model for the best-studied ultra-faint dwarf (UFD) galaxy, Boötes I, which tracks the chemical evolution (from carbon to zinc) of individual stars from their formation to the present day. We explore the chemical imprint of Pop III supernovae (SNe), with different explosion energies and masses, showing that they leave distinct chemical signatures in their descendants. We find that UFDs are strongly affected by SNe-driven feedback resulting in a very low fraction of metals retained by their gravitational potential well (< 2.5 %). Furthermore, the higher the Pop III SN explosion energy, the lower the fraction of metals retained. Thus, the probability to find descendants of energetic Pair Instability SNe is extremely low in these systems. Conversely, UFDs are ideal cosmic laboratories to identify the fingerprints of less massive and energetic Pop III SNe through their [X/Fe] abundance ratios. Digging into the literature data of Boötes I, we uncover three hidden Pop III descendants: one mono-enriched and two multi-enriched. These stars show the chemical signature of Pop III SNe in the mass range $[20-60]\rm M_{\odot}$, spanning a wide range in explosion energies $[0.3-5] 10^{51}$ erg. In conclusion, Pop III descendants are hidden in ancient UFDs but those mono-enriched by a single Pop III SN are extremely rare. Thus, self-consistent models such as the one presented here are required to uncover these precious fossils and probe the properties of the first Pop III supernovae.
Submission history
From: Martina Rossi Mrs [view email][v1] Tue, 18 Jun 2024 18:00:00 UTC (6,538 KB)
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.