Astrophysics > Solar and Stellar Astrophysics
[Submitted on 18 Jun 2024]
Title:Why are (almost) all the protostellar outflows aligned in Serpens Main?
View PDF HTML (experimental)Abstract:We present deep 1.4-4.8 um JWST-NIRCam imaging of the Serpens Main star-forming region and identify 20 candidate protostellar outflows, most with bipolar structure and identified driving sources. The outflow position angles (PAs) are strongly correlated, and aligned within +/- 24 degrees of the major axis of the Serpens filament. These orientations are further aligned with the angular momentum vectors of the two disk shadows in this region. We estimate that the probability of this number of young stars being co-aligned if sampled from a uniform PA distribution is 10^-4. This in turn suggests that the aligned protostars, which seem to be at similar evolutionary stages based on their outflow dynamics, formed at similar times with a similar spin inherited from a local cloud filament. Further, there is tentative evidence for a systematic change in average position angle between the north-western and south-eastern cluster, as well as increased scatter in the PAs of the south-eastern protostars. SOFIA-HAWC+ archival dust polarization observations of Serpens Main at 154 and 214 um are perpendicular to the dominant jet orientation in NW region in particular. We measure and locate shock knots and edges for all of the outflows and provide an identifying catalog. We suggest that Serpens main is a cluster that formed from an isolated filament, and due to its youth retains its primordial outflow alignment.
Current browse context:
astro-ph.SR
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.