Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 18 Jun 2024]
Title:Predicting the 21 cm field with a Hybrid Effective Field Theory approach
View PDF HTML (experimental)Abstract:A detection of the 21 cm signal can provide a unique window of opportunity for uncovering complex astrophysical phenomena at the epoch of reionization and placing constraints on cosmology at high redshifts, which are usually elusive to large-scale structure surveys. In this work, we provide a theoretical model based on a quadratic bias expansion capable of recovering the 21 cm power spectrum with high accuracy sufficient for upcoming ground-based radio interferometer experiments. In particular, we develop a hybrid effective field theory (HEFT) model in redshift space that leverages the accuracy of $N$-body simulations with the predictive power of analytical bias expansion models, and test it against the Thesan suite of radiative transfer hydrodynamical simulations. We make predictions of the 21 cm brightness temperature field at several distinct redshifts, ranging between $z = 6.5$ and 11, thus probing a large fraction of the reionization history of the Universe ($x_{\rm HI} = 0.3 \sim 0.9$), and compare our model to the `true' 21 cm brightness in terms of the correlation coefficient, power spectrum and modeling error. We find percent-level agreement at large and intermediate scales, $k \lesssim 0.5 h/{\rm Mpc}$, and favorable behavior down to small scales, $k \sim 1 h/{\rm Mpc}$, outperforming pure perturbation-theory-based models. To put our findings into context, we show that even in the absence of any foreground contamination the thermal noise of a futuristic HERA-like experiment is comparable with the theoretical uncertainty in our model in the allowed `wedge' of observations, providing further evidence in support of using HEFT-based models to approximate a range of cosmological observables.
Submission history
From: Danial Baradaran [view email][v1] Tue, 18 Jun 2024 21:57:44 UTC (3,084 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.