Mildly boosted dark matter annihilation and reconciling indirect galactic signals

Steven J. Clark sclark@hood.edu Hood College, Frederick, MD 21701, USA
Abstract

The galactic center excess is a possible non-gravitational observation of dark matter; however, the canonical dark matter model (thermal freeze-out) is in conflict with other gamma-ray observations, in particular those made of the Milky Way’s satellite dwarf galaxies. Here we consider the effects of a two-component dark matter model which results in minimally boosted particles that must remain bound to their host galaxy in order to produce an observational signal. This leads to a signal that is heavily dependent on galactic scale and can help reconcile the differences in the galactic center and dwarf galaxy measurements under the dark matter paradigm.

I Introduction

The galactic center excess (GCE) [1, 2, 3] is a flux of gamma rays originating from the center of the Milky Way galaxy that is higher than predictions from astrophysical processes. One possible interpretation is that it is due to dark matter (DM) interactions with Standard Model particles (SM); if correct, this interpretation would be the first non-gravitational detection of DM [4, 5, 6]. However, the DM parameter space that best correlates with the DM interpretation is also in conflict with other measurements; in particular, it is in conflict with similar gamma-ray measurements of the Milky Way’s satellite spherical dwarf galaxies (dSph) [7, 8, 9, 10, 11, 12].

If the GCE does originate from DM interactions, then reconciling these two observations can shed light on DM properties. Multiple models have attempted to address this difference in light of the DM proposal. Approaches frequently revolve around modifying the SM spectra through different particle productions [13, 14] and adjusting the astrophysical interaction rates (commonly termed the J-factor). Some approaches for altering the J-factor include interactions with various velocity dependencies [15, 16, 17, 18, 19, 20] or signals originating from secondary highly boosted DM [21, 22, 23, 24]. For approaches that modify the J-factor, the central concept is that there is an inherent difference in the two environments (small and large galaxies) which leads to galactic dependencies not captured in the canonical value [24]. In order to reconcile the GCE and dSph signals, this would require either an enhancement in larger galaxies or a suppression in smaller ones.

Expanded dark sectors offer a possible approach at addressing these signals by introducing dynamics that play a crucial role in DM distributions. Note that galactic DM is non-relativistic; this implies that processes that impart small increases to a particle’s kinetic energy, compared with its rest mass, can lead to the particle achieving escape velocity, vescsubscript𝑣escv_{\rm esc}italic_v start_POSTSUBSCRIPT roman_esc end_POSTSUBSCRIPT, from the host galaxy. Because vescsubscript𝑣escv_{\rm esc}italic_v start_POSTSUBSCRIPT roman_esc end_POSTSUBSCRIPT is dependent on galactic size, the requisite energy is lower in smaller galaxies and thus easier to escape. If this “boosted” DM particle is SM active, larger fractions of escaping boosted DM correspond with lower observational galactic signals. This leads to an overall suppression in the observed rates that is more pronounced in smaller galaxies, thus providing a mechanism to reconcile the GCE and dSph results.

In this work, we investigate galactic signal rates from multi-component DM models where the SM active components are created with a mild boost from a dominant SM inert portion. These types of models lead to a strong galactic dependence in observational rates with a rapid transition where galaxies above a critical scale experience minimal alterations to canonical rates while those below can experience strong to total suppression.

II Model and Bounded Fraction

For illustrative purposes, we consider a basic two component dark matter toy model similar to [24] consisting of χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with mass relationships m1>m2subscript𝑚1subscript𝑚2m_{1}>m_{2}italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT > italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and m1/m21subscript𝑚1subscript𝑚21m_{1}/m_{2}\approx 1italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≈ 1. χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT annihilates to χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT while χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT annihilates to standard model particles.

χ1χ1subscript𝜒1subscript𝜒1\displaystyle\chi_{1}\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT χ2bχ2babsentsuperscriptsubscript𝜒2bsuperscriptsubscript𝜒2b\displaystyle\rightarrow\chi_{2}^{\mathrm{b}}\chi_{2}^{\mathrm{b}}→ italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_b end_POSTSUPERSCRIPT italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_b end_POSTSUPERSCRIPT (1)
χ2χ2subscript𝜒2subscript𝜒2\displaystyle\chi_{2}\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT SMabsentSM\displaystyle\rightarrow{\rm SM}→ roman_SM (2)

where the “b” superscript indicates that the χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPTs are produced with extra kinetic energy. We assume χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT annihilation is weak allowing for χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT to serve as the dark matter candidate while the χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT annihilation rate is comparatively much stronger. From the perspective of a galaxy, χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPTs comprise the majority of the dark matter, and χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPTs are produced through χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT annihilation. These χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT will either be produced with sufficient velocity to overcome the gravitational potential and escape the galaxy, or they will remain bound. We will assume that if they achieve escape velocity, the χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT annihilation coupling is small enough that they escape without further interaction (for annihilation occurring while escaping the galaxy, see Ref. [24]). If χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPTs do not achieve escape velocity, they persist in the host galaxy until they annihilate with another χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. In this setup, the galactic χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT population fluctuates until it reaches a steady state solution, balancing between χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT injections from the first interaction (Eq. (1) adjusted by the fraction that escape the galaxy) and depletion from the second annihilation (Eq. (2)) producing a SM signal similar to canonical DM annihilation.111Because χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT will only experience a mild boost, their annihilation spectra will be identical to similar final products as canonical DM annihilation. For this work, we assume that cross-sections are sufficient for all galaxies to reach this equilibrium state. The observable signal is directly proportional to the rate of χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT annihilation, and when at equilibrium, it is also proportional to the χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT injection rate.

Two quantities are required to determine the rate of χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT injection into the host galaxy: the base rate of χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT annihilation producing χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPTs and the χ2bsuperscriptsubscript𝜒2b\chi_{2}^{\rm b}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_b end_POSTSUPERSCRIPT fraction from any particular χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT annihilation that does not achieve escape velocity. We first discuss the fraction that does not reach vescsubscript𝑣escv_{\rm esc}italic_v start_POSTSUBSCRIPT roman_esc end_POSTSUBSCRIPT. Fig. (1) shows χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT annihilation in the center of mass frame (COM). v1,2subscript𝑣12v_{1,2}italic_v start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT corresponds to the velocity of χ1,2subscript𝜒12\chi_{1,2}italic_χ start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT in the frame while vcsubscript𝑣𝑐v_{c}italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT is the velocity of the center of mass with respect to the galactic frame. θ𝜃\thetaitalic_θ is the angle between vcsubscript𝑣𝑐v_{c}italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT and v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

{feynman}\vertex\vertex\vertex\vertex\vertex\vertex\vertexθ𝜃\thetaitalic_θχ1:v1:subscript𝜒1subscript𝑣1\chi_{1}\colon\,v_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPTχ1:v1:subscript𝜒1subscript𝑣1\chi_{1}\colon\,v_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPTχ2:v2:subscript𝜒2subscript𝑣2\chi_{2}\colon\,v_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPTχ2:v2:subscript𝜒2subscript𝑣2\chi_{2}\colon\,v_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT\diagramvcsubscript𝑣𝑐v_{c}italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT
Figure 1: χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT annihilation in the center of mass (COM) frame. Annihilation products that move in the same direction as the COM receive an increase to their velocity when converting to the galactic reference frame while those moving in the opposite direction are decreased. Depending on v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, vcsubscript𝑣𝑐v_{c}italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, and the gravitational potential ΦΦ\Phiroman_Φ, a minimum θ𝜃\thetaitalic_θ is required to remain bound to the galaxy. If the boosting velocity is too large, all χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT particles achieve vescsubscript𝑣escv_{\rm esc}italic_v start_POSTSUBSCRIPT roman_esc end_POSTSUBSCRIPT.

Using conservation of energy, it is easy to show that

v22superscriptsubscript𝑣22\displaystyle v_{2}^{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT =v12+(1v12c2)(1m22m12)c2absentsuperscriptsubscript𝑣121superscriptsubscript𝑣12superscript𝑐21superscriptsubscript𝑚22superscriptsubscript𝑚12superscript𝑐2\displaystyle=v_{1}^{2}+\left(1-\frac{v_{1}^{2}}{c^{2}}\right)\left(1-\frac{m_% {2}^{2}}{m_{1}^{2}}\right)c^{2}= italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( 1 - divide start_ARG italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ( 1 - divide start_ARG italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
=v12+Δv2absentsuperscriptsubscript𝑣12Δsuperscript𝑣2\displaystyle=v_{1}^{2}+\Delta v^{2}= italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_Δ italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (3)

where Δv2(1m22/m12)c2Δsuperscript𝑣21superscriptsubscript𝑚22superscriptsubscript𝑚12superscript𝑐2\Delta v^{2}\approx(1-m_{2}^{2}/m_{1}^{2})\,c^{2}roman_Δ italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≈ ( 1 - italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT in the non-relativistic limit. In the COM frame, both χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPTs have the same velocity; however, in the galactic reference frame, a difference develops depending on their orientation with vcsubscript𝑣𝑐v_{c}italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT. In the galactic frame, denoted by subscript “g𝑔gitalic_g”, the daughter particle velocity is

v2,g2=v22+vc2+2v2vccosθsuperscriptsubscript𝑣2𝑔2superscriptsubscript𝑣22superscriptsubscript𝑣𝑐22subscript𝑣2subscript𝑣𝑐𝜃v_{2,g}^{2}=v_{2}^{2}+v_{c}^{2}+2v_{2}v_{c}\cos\thetaitalic_v start_POSTSUBSCRIPT 2 , italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT roman_cos italic_θ (4)

where we have assumed that all velocities are non-relativistic. It should also be noted that in the non-relativistic limit v1=vr/2subscript𝑣1subscript𝑣𝑟2v_{1}=v_{r}/2italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_v start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT / 2 where vrsubscript𝑣𝑟v_{r}italic_v start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT is the relative velocity between the two parent χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT particles. This is true for both the COM and galactic reference frames.

For χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT to remain bound to the galaxy, the total energy must be negative; this leads to the relationship Φ+v2,g2/2<0Φsuperscriptsubscript𝑣2𝑔220\Phi+v_{2,g}^{2}/2<0roman_Φ + italic_v start_POSTSUBSCRIPT 2 , italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 2 < 0 where ΦΦ\Phiroman_Φ is the gravitational potential of the host galaxy. Combining this relationship with Eqs. (3) and (4) as well as v1=vr/2subscript𝑣1subscript𝑣𝑟2v_{1}=v_{r}/2italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_v start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT / 2, we arrive at the condition

cosθ<cosθmin=2Φ+vc2+vr2/4+Δv22vcvr2/4+Δv2𝜃subscript𝜃min2Φsuperscriptsubscript𝑣𝑐2superscriptsubscript𝑣𝑟24Δsuperscript𝑣22subscript𝑣𝑐superscriptsubscript𝑣𝑟24Δsuperscript𝑣2\cos\theta<\cos\theta_{\rm min}=-\frac{2\Phi+v_{c}^{2}+v_{r}^{2}/4+\Delta v^{2% }}{2v_{c}\sqrt{v_{r}^{2}/4+\Delta v^{2}}}roman_cos italic_θ < roman_cos italic_θ start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT = - divide start_ARG 2 roman_Φ + italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_v start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 4 + roman_Δ italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT square-root start_ARG italic_v start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 4 + roman_Δ italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG (5)

where θminsubscript𝜃min\theta_{\rm min}italic_θ start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT is the minimum angle that v2subscript𝑣2v_{2}italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT must make with vcsubscript𝑣𝑐v_{c}italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT in order for the χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT to remain bound to the galaxy. If the right hand side of Eq. (5) is greater than 1, then the condition is always satisfied, all products are bound, and cosθmin=1subscript𝜃min1\cos\theta_{\rm min}=1roman_cos italic_θ start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT = 1; if it is less than 11-1- 1, cosθmin=1subscript𝜃min1\cos\theta_{\rm min}=-1roman_cos italic_θ start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT = - 1 and all products escape. Note that Eq. (5) is valid only for vc>0subscript𝑣𝑐0v_{c}>0italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT > 0. For vc=0subscript𝑣𝑐0v_{c}=0italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 0, the binding condition is 2Φ>vr2/4+Δv22Φsuperscriptsubscript𝑣𝑟24Δsuperscript𝑣2-2\Phi>v_{r}^{2}/4+\Delta v^{2}- 2 roman_Φ > italic_v start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 4 + roman_Δ italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT; otherwise, all products escape.

For simplicity, we assume that χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT annihilation is isotropic in the COM frame. In this isotropic example, the bound on cosθ𝜃\cos\thetaroman_cos italic_θ translates to the fraction of bounded annihilation products (fboundsubscript𝑓boundf_{\rm bound}italic_f start_POSTSUBSCRIPT roman_bound end_POSTSUBSCRIPT) through the fractional area of a 2-sphere between θminθπsubscript𝜃min𝜃𝜋\theta_{\rm min}\leq\theta\leq\piitalic_θ start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ≤ italic_θ ≤ italic_π.

fbound=12θminπsinθdθ=1+cosθmin2subscript𝑓bound12superscriptsubscriptsubscript𝜃min𝜋𝜃d𝜃1subscript𝜃min2f_{\rm bound}=\frac{1}{2}\int_{\theta_{\rm min}}^{\pi}\sin\theta\,{\rm d}% \theta=\frac{1+\cos\theta_{\rm min}}{2}italic_f start_POSTSUBSCRIPT roman_bound end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ start_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_π end_POSTSUPERSCRIPT roman_sin italic_θ roman_d italic_θ = divide start_ARG 1 + roman_cos italic_θ start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG (6)

III Initial Annihilation Rate

To determine the initial annihilation rate from χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, we follow the approach from Ref. [18] with the addition of fboundsubscript𝑓boundf_{\rm bound}italic_f start_POSTSUBSCRIPT roman_bound end_POSTSUBSCRIPT as discussed above to restrict the effective rate to include just the fraction of daughter particles which remain bound to the galaxy. For this work, the relevant quantity is Pn2(r^)superscriptsubscript𝑃𝑛2^𝑟P_{n}^{2}(\hat{r})italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( over^ start_ARG italic_r end_ARG ). In canonical velocity independent annihilation rates, Pn2(r^)superscriptsubscript𝑃𝑛2^𝑟P_{n}^{2}(\hat{r})italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( over^ start_ARG italic_r end_ARG ) is analogous to the square of the DM density (ρ2superscript𝜌2\rho^{2}italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT) and evaluated from the DM velocity distribution, capturing the relative rate of annihilation occurring at a particular position in the galaxy.

Pn2(r^)subscriptsuperscript𝑃2𝑛^𝑟absent\displaystyle P^{2}_{n}(\hat{r})\equivitalic_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( over^ start_ARG italic_r end_ARG ) ≡ d3v^1d3v^2|𝒗^1𝒗^2|nsuperscript𝑑3subscript^𝑣1superscript𝑑3subscript^𝑣2superscriptsubscript^𝒗1subscript^𝒗2𝑛\displaystyle\int d^{3}\hat{v}_{1}d^{3}\hat{v}_{2}|\hat{\bm{v}}_{1}-\hat{\bm{v% }}_{2}|^{n}∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | over^ start_ARG bold_italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - over^ start_ARG bold_italic_v end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT
×f^(r^,v^1)f^(r^,v^2)fbound(𝒗^1,𝒗^2,Δv^)absent^𝑓^𝑟subscript^𝑣1^𝑓^𝑟subscript^𝑣2subscript𝑓boundsubscript^𝒗1subscript^𝒗2Δ^𝑣\displaystyle\times\hat{f}(\hat{r},\hat{v}_{1})\hat{f}(\hat{r},\hat{v}_{2})f_{% \rm bound}(\hat{\bm{v}}_{1},\hat{\bm{v}}_{2},\Delta\hat{v})× over^ start_ARG italic_f end_ARG ( over^ start_ARG italic_r end_ARG , over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) over^ start_ARG italic_f end_ARG ( over^ start_ARG italic_r end_ARG , over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_f start_POSTSUBSCRIPT roman_bound end_POSTSUBSCRIPT ( over^ start_ARG bold_italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , over^ start_ARG bold_italic_v end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , roman_Δ over^ start_ARG italic_v end_ARG )
=\displaystyle==  8π20𝑑v^10𝑑v^2|v^1v^2|v^1+v^2𝑑v^rv^1v^2v^rn+18superscript𝜋2superscriptsubscript0differential-dsubscript^𝑣1superscriptsubscript0differential-dsubscript^𝑣2superscriptsubscriptsubscript^𝑣1subscript^𝑣2subscript^𝑣1subscript^𝑣2differential-dsubscript^𝑣𝑟subscript^𝑣1subscript^𝑣2superscriptsubscript^𝑣𝑟𝑛1\displaystyle\;8\pi^{2}\int_{0}^{\infty}d\hat{v}_{1}\int_{0}^{\infty}d\hat{v}_% {2}\int_{|\hat{v}_{1}-\hat{v}_{2}|}^{\hat{v}_{1}+\hat{v}_{2}}d\hat{v}_{r}\;% \hat{v}_{1}\hat{v}_{2}\hat{v}_{r}^{n+1}8 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_d over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_d over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT | over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | end_POSTSUBSCRIPT start_POSTSUPERSCRIPT over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT
×f^(r^,v^1)f^(r^,v^2)fbound(v^1,v^2,v^r,Δv^)absent^𝑓^𝑟subscript^𝑣1^𝑓^𝑟subscript^𝑣2subscript𝑓boundsubscript^𝑣1subscript^𝑣2subscript^𝑣𝑟Δ^𝑣\displaystyle\times\hat{f}(\hat{r},\hat{v}_{1})\hat{f}(\hat{r},\hat{v}_{2})f_{% \rm bound}(\hat{v}_{1},\hat{v}_{2},\hat{v}_{r},\Delta\hat{v})× over^ start_ARG italic_f end_ARG ( over^ start_ARG italic_r end_ARG , over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) over^ start_ARG italic_f end_ARG ( over^ start_ARG italic_r end_ARG , over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_f start_POSTSUBSCRIPT roman_bound end_POSTSUBSCRIPT ( over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , roman_Δ over^ start_ARG italic_v end_ARG ) (7)

Subscripts correspond to the two individual parent χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT particles involved in the annihilation. (Note that this differs from the preceding section where subscripts indicated different particle species.) f^(r^,v^)^𝑓^𝑟^𝑣\hat{f}(\hat{r},\hat{v})over^ start_ARG italic_f end_ARG ( over^ start_ARG italic_r end_ARG , over^ start_ARG italic_v end_ARG ) is the phase-space distribution for χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT in the galaxy assumed here to be isotropic. v^r=|𝒗^1𝒗^2|subscript^𝑣𝑟subscript^𝒗1subscript^𝒗2\hat{v}_{r}=|\hat{\bm{v}}_{1}-\hat{\bm{v}}_{2}|over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = | over^ start_ARG bold_italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - over^ start_ARG bold_italic_v end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | is the relative velocity between the two parent particles with n𝑛nitalic_n being a model parameter. fbound(v^1,v^2,v^r,Δv^)=fbound(𝒗^1,𝒗^2,Δv^)subscript𝑓boundsubscript^𝑣1subscript^𝑣2subscript^𝑣𝑟Δ^𝑣subscript𝑓boundsubscript^𝒗1subscript^𝒗2Δ^𝑣f_{\rm bound}(\hat{v}_{1},\hat{v}_{2},\hat{v}_{r},\Delta\hat{v})=f_{\rm bound}% (\hat{\bm{v}}_{1},\hat{\bm{v}}_{2},\Delta\hat{v})italic_f start_POSTSUBSCRIPT roman_bound end_POSTSUBSCRIPT ( over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , roman_Δ over^ start_ARG italic_v end_ARG ) = italic_f start_POSTSUBSCRIPT roman_bound end_POSTSUBSCRIPT ( over^ start_ARG bold_italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , over^ start_ARG bold_italic_v end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , roman_Δ over^ start_ARG italic_v end_ARG ) is the fraction of χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT daughters bound to the host galaxy in an annihilation. Also note the relationship 4v^c+v^r=2(v^1+v^2)4subscript^𝑣𝑐subscript^𝑣𝑟2subscript^𝑣1subscript^𝑣24\hat{v}_{c}+\hat{v}_{r}=2(\hat{v}_{1}+\hat{v}_{2})4 over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT + over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = 2 ( over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).

For convenience in analyzing multiple galaxies later in this work, we have introduced the scaled distances, densities, and velocities in Eq. (7)

r^rrs,ρ^ρρs,andv^v4πGρsrs2formulae-sequence^𝑟𝑟subscript𝑟𝑠formulae-sequence^𝜌𝜌subscript𝜌𝑠and^𝑣𝑣4𝜋𝐺subscript𝜌𝑠superscriptsubscript𝑟𝑠2\hat{r}\equiv\frac{r}{r_{s}},\quad\hat{\rho}\equiv\frac{\rho}{\rho_{s}},\quad{% \rm and}\quad\hat{v}\equiv\frac{v}{\sqrt{4\pi G\rho_{s}r_{s}^{2}}}over^ start_ARG italic_r end_ARG ≡ divide start_ARG italic_r end_ARG start_ARG italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG , over^ start_ARG italic_ρ end_ARG ≡ divide start_ARG italic_ρ end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG , roman_and over^ start_ARG italic_v end_ARG ≡ divide start_ARG italic_v end_ARG start_ARG square-root start_ARG 4 italic_π italic_G italic_ρ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG (8)

where rssubscript𝑟𝑠r_{s}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and ρssubscript𝜌𝑠\rho_{s}italic_ρ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT are the galactic scale and density parameters, and G𝐺Gitalic_G is the gravitational constant. Furthermore, the scaled phase-space distribution and gravitational potential are

f^(r^,v^)^𝑓^𝑟^𝑣\displaystyle\hat{f}(\hat{r},\hat{v})over^ start_ARG italic_f end_ARG ( over^ start_ARG italic_r end_ARG , over^ start_ARG italic_v end_ARG ) =(4πG)3/2ρ1/2rs3f(r,v)absentsuperscript4𝜋𝐺32superscript𝜌12superscriptsubscript𝑟𝑠3𝑓𝑟𝑣\displaystyle=\left(4\pi G\right)^{3/2}\rho^{1/2}r_{s}^{3}f(r,v)= ( 4 italic_π italic_G ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT italic_ρ start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_f ( italic_r , italic_v ) (9)
Φ^^Φ\displaystyle\hat{\Phi}over^ start_ARG roman_Φ end_ARG =Φ4πGρsrs2absentΦ4𝜋𝐺subscript𝜌𝑠superscriptsubscript𝑟𝑠2\displaystyle=\frac{\Phi}{4\pi G\rho_{s}r_{s}^{2}}= divide start_ARG roman_Φ end_ARG start_ARG 4 italic_π italic_G italic_ρ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG (10)

where ρ^(r^)=d3vf^(r^,v^)^𝜌^𝑟superscript𝑑3𝑣^𝑓^𝑟^𝑣\hat{\rho}(\hat{r})=\int d^{3}v\hat{f}(\hat{r},\hat{v})over^ start_ARG italic_ρ end_ARG ( over^ start_ARG italic_r end_ARG ) = ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_v over^ start_ARG italic_f end_ARG ( over^ start_ARG italic_r end_ARG , over^ start_ARG italic_v end_ARG ).

As stated before, Eq. (7) encapsulates the relative rate of DM annihilation, and n𝑛nitalic_n captures the velocity dependence. For this work, we consider only the velocity independent interaction n=0𝑛0n=0italic_n = 0 and leave n0𝑛0n\neq 0italic_n ≠ 0 for future studies. For n=0𝑛0n=0italic_n = 0 and fbound=1subscript𝑓bound1f_{\rm bound}=1italic_f start_POSTSUBSCRIPT roman_bound end_POSTSUBSCRIPT = 1, Eq. (7) reduces to ρ^2superscript^𝜌2\hat{\rho}^{2}over^ start_ARG italic_ρ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT as expected.

J-factors (a measure of the expected flux) adjust the annihilation rate by accounting for the distance to the object and the observation window through a line of sight (l.o.s.) and region of interest (ROI) integration over Pn2superscriptsubscript𝑃𝑛2P_{n}^{2}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.

J-factor=ρs2l.o.s.𝑑ROI𝑑ΩPn2(r/rs)J-factorsuperscriptsubscript𝜌𝑠2subscriptformulae-sequencelosdifferential-dsubscriptROIdifferential-dΩsuperscriptsubscript𝑃𝑛2𝑟subscript𝑟𝑠{\text{J-factor}}=\rho_{s}^{2}\int_{\rm l.o.s.}d\ell\int_{\rm ROI}d\Omega\;P_{% n}^{2}(r/r_{s})J-factor = italic_ρ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT roman_l . roman_o . roman_s . end_POSTSUBSCRIPT italic_d roman_ℓ ∫ start_POSTSUBSCRIPT roman_ROI end_POSTSUBSCRIPT italic_d roman_Ω italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_r / italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) (11)

III.1 Potentials and Phase-Space Distributions

From a known DM distribution, the potential can be calculated using Newtonian gravity. If the distribution is spherically symmetric, then the scaled potential is [25, 26, 18]

Φ^(r^)=r^dxx20x𝑑yy2ρ^(y)^Φ^𝑟superscriptsubscript^𝑟𝑑𝑥superscript𝑥2superscriptsubscript0𝑥differential-d𝑦superscript𝑦2^𝜌𝑦\hat{\Phi}(\hat{r})=-\int_{\hat{r}}^{\infty}\frac{dx}{x^{2}}\int_{0}^{x}dyy^{2% }\hat{\rho}(y)over^ start_ARG roman_Φ end_ARG ( over^ start_ARG italic_r end_ARG ) = - ∫ start_POSTSUBSCRIPT over^ start_ARG italic_r end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_d italic_x end_ARG start_ARG italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT italic_d italic_y italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ρ end_ARG ( italic_y ) (12)

In addition, if the DM velocity distribution is assumed to be isotropic and the halo is in equilibrium, the velocity distribution can also be determined from the density and the potential in terms of E𝐸Eitalic_E, the energy per unit mass through [18]

f^(E^)^𝑓^𝐸\displaystyle\hat{f}(\hat{E})over^ start_ARG italic_f end_ARG ( over^ start_ARG italic_E end_ARG ) =18π2E^0d2ρ^dΦ^2dΦ^Φ^E^absent18superscript𝜋2superscriptsubscript^𝐸0superscript𝑑2^𝜌𝑑superscript^Φ2𝑑^Φ^Φ^𝐸\displaystyle=\frac{1}{\sqrt{8}\pi^{2}}\int_{\hat{E}}^{0}\frac{d^{2}\hat{\rho}% }{d\hat{\Phi}^{2}}\frac{d\hat{\Phi}}{\hat{\Phi}-\hat{E}}= divide start_ARG 1 end_ARG start_ARG square-root start_ARG 8 end_ARG italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT over^ start_ARG italic_E end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ρ end_ARG end_ARG start_ARG italic_d over^ start_ARG roman_Φ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG italic_d over^ start_ARG roman_Φ end_ARG end_ARG start_ARG over^ start_ARG roman_Φ end_ARG - over^ start_ARG italic_E end_ARG end_ARG (13)
E^(r^,v^)^𝐸^𝑟^𝑣\displaystyle\hat{E}(\hat{r},\hat{v})over^ start_ARG italic_E end_ARG ( over^ start_ARG italic_r end_ARG , over^ start_ARG italic_v end_ARG ) =E4πGρsrs2=v^22+Φ^(r^)absent𝐸4𝜋𝐺subscript𝜌𝑠superscriptsubscript𝑟𝑠2superscript^𝑣22^Φ^𝑟\displaystyle=\frac{E}{4\pi G\rho_{s}r_{s}^{2}}=\frac{\hat{v}^{2}}{2}+\hat{% \Phi}(\hat{r})= divide start_ARG italic_E end_ARG start_ARG 4 italic_π italic_G italic_ρ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = divide start_ARG over^ start_ARG italic_v end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + over^ start_ARG roman_Φ end_ARG ( over^ start_ARG italic_r end_ARG ) (14)

where we assume v𝑣vitalic_v and E𝐸Eitalic_E go to zero at r=𝑟r=\inftyitalic_r = ∞. In this manner, we are able to define a fully self-consistent velocity distribution for the DM halo. The density can be found from the velocity distribution through

ρ^(r^)^𝜌^𝑟\displaystyle\hat{\rho}(\hat{r})over^ start_ARG italic_ρ end_ARG ( over^ start_ARG italic_r end_ARG ) =4π02Φ^(r^)𝑑v^v^2f^(r^,v^)absent4𝜋superscriptsubscript02^Φ^𝑟differential-d^𝑣superscript^𝑣2^𝑓^𝑟^𝑣\displaystyle=4\pi\int_{0}^{\sqrt{-2\hat{\Phi}(\hat{r})}}d\hat{v}\hat{v}^{2}% \hat{f}(\hat{r},\hat{v})= 4 italic_π ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT square-root start_ARG - 2 over^ start_ARG roman_Φ end_ARG ( over^ start_ARG italic_r end_ARG ) end_ARG end_POSTSUPERSCRIPT italic_d over^ start_ARG italic_v end_ARG over^ start_ARG italic_v end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_f end_ARG ( over^ start_ARG italic_r end_ARG , over^ start_ARG italic_v end_ARG ) (15)
=42πΦ^(r^)0𝑑E^f^(E^)E^Φ(r^)absent42𝜋superscriptsubscript^Φ^𝑟0differential-d^𝐸^𝑓^𝐸^𝐸Φ^𝑟\displaystyle=4\sqrt{2}\pi\int_{\hat{\Phi}(\hat{r})}^{0}d\hat{E}\hat{f}(\hat{E% })\sqrt{\hat{E}-\Phi(\hat{r})}= 4 square-root start_ARG 2 end_ARG italic_π ∫ start_POSTSUBSCRIPT over^ start_ARG roman_Φ end_ARG ( over^ start_ARG italic_r end_ARG ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_d over^ start_ARG italic_E end_ARG over^ start_ARG italic_f end_ARG ( over^ start_ARG italic_E end_ARG ) square-root start_ARG over^ start_ARG italic_E end_ARG - roman_Φ ( over^ start_ARG italic_r end_ARG ) end_ARG (16)

where f^(E^)=f^(r^,v^)^𝑓^𝐸^𝑓^𝑟^𝑣\hat{f}(\hat{E})=\hat{f}(\hat{r},\hat{v})over^ start_ARG italic_f end_ARG ( over^ start_ARG italic_E end_ARG ) = over^ start_ARG italic_f end_ARG ( over^ start_ARG italic_r end_ARG , over^ start_ARG italic_v end_ARG ). For this work, we assume the NFW profile ρ^(r^)={r^(1+r^2)}1^𝜌^𝑟superscript^𝑟1superscript^𝑟21\hat{\rho}(\hat{r})=\{\hat{r}(1+\hat{r}^{2})\}^{-1}over^ start_ARG italic_ρ end_ARG ( over^ start_ARG italic_r end_ARG ) = { over^ start_ARG italic_r end_ARG ( 1 + over^ start_ARG italic_r end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) } start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT [27] for all galaxies. This leads to the gravitation potential Φ^(r^)=ln(1+r^)/r^^Φ^𝑟1^𝑟^𝑟\hat{\Phi}(\hat{r})=-\ln{(1+\hat{r})/\hat{r}}over^ start_ARG roman_Φ end_ARG ( over^ start_ARG italic_r end_ARG ) = - roman_ln ( 1 + over^ start_ARG italic_r end_ARG ) / over^ start_ARG italic_r end_ARG where ln(x)𝑥\ln(x)roman_ln ( italic_x ) is the natural logarithm. From ρ^(r^)^𝜌^𝑟\hat{\rho}(\hat{r})over^ start_ARG italic_ρ end_ARG ( over^ start_ARG italic_r end_ARG ) and Φ^(r^)^Φ^𝑟\hat{\Phi}(\hat{r})over^ start_ARG roman_Φ end_ARG ( over^ start_ARG italic_r end_ARG ), we solve for f^(r^,v^)^𝑓^𝑟^𝑣\hat{f}(\hat{r},\hat{v})over^ start_ARG italic_f end_ARG ( over^ start_ARG italic_r end_ARG , over^ start_ARG italic_v end_ARG ) numerically.

IV Adjusted Annihilation Rates

Due to the boost received during the first annihilation, only a fraction of χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT remains bound to the galaxy. Fig. (2) shows Pn2/ρ^2superscriptsubscript𝑃𝑛2superscript^𝜌2P_{n}^{2}/\hat{\rho}^{2}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / over^ start_ARG italic_ρ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for various kick velocities. The ratio between Pn(r^)2subscript𝑃𝑛superscript^𝑟2P_{n}(\hat{r})^{2}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( over^ start_ARG italic_r end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and ρ(r^)2𝜌superscript^𝑟2\rho(\hat{r})^{2}italic_ρ ( over^ start_ARG italic_r end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is effectively the number of χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT daughters that remain bound to the galaxy and the number that are produced. This ratio captures the fraction of the first annihilation products that are bound to the galaxy and which can participate in future interactions.

Refer to caption
Figure 2: Fraction of χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT products from a χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT annihilation that remain gravitationally bound to the host galaxy (Pn2/ρ^2superscriptsubscript𝑃𝑛2superscript^𝜌2P_{n}^{2}/\hat{\rho}^{2}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / over^ start_ARG italic_ρ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT) for various kick velocities, Δv^Δ^𝑣\Delta\hat{v}roman_Δ over^ start_ARG italic_v end_ARG. “Can” refers to the canonical dark matter model with Pn2=ρ^2superscriptsubscript𝑃𝑛2superscript^𝜌2P_{n}^{2}=\hat{\rho}^{2}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = over^ start_ARG italic_ρ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and is also equal to the total number of χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT annihilation events in all models. As Δv^Δ^𝑣\Delta\hat{v}roman_Δ over^ start_ARG italic_v end_ARG increases, the level of suppression increases at all scales with larger radial distances more strongly affected. For Δv^1greater-than-or-equivalent-toΔ^𝑣1\Delta\hat{v}\gtrsim 1roman_Δ over^ start_ARG italic_v end_ARG ≳ 1, shorter distances also become heavily suppressed due to a lack of vcsubscript𝑣𝑐v_{c}italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT to allow adequate back-scattering. At Δv^=8Δ^𝑣8\Delta\hat{v}=\sqrt{8}roman_Δ over^ start_ARG italic_v end_ARG = square-root start_ARG 8 end_ARG, all annihilation products escape the galaxy.

As would be expected from Eqs. (3 - 5), for Δv^1much-less-thanΔ^𝑣1\Delta\hat{v}\ll 1roman_Δ over^ start_ARG italic_v end_ARG ≪ 1, all products remain in the host galaxy. This is due to the minimal changes to the energy distribution in the system. As Δv^Δ^𝑣\Delta\hat{v}roman_Δ over^ start_ARG italic_v end_ARG increases, escape occurs at large galactic radii due to the lower gravitational potential where even a small velocity change can provide the required energy. With increasing Δv^Δ^𝑣\Delta\hat{v}roman_Δ over^ start_ARG italic_v end_ARG, the outer edges continue to become suppressed with the development of a critical radius above which there is total suppression.

This total suppression is due to the kick velocity providing the required energy for all valid velocity combinations to escape at the particular radius. From Eq. (4), vc,max(r)=Φ(r)subscript𝑣𝑐max𝑟Φ𝑟v_{c,{\rm max}}(r)=\Phi(r)italic_v start_POSTSUBSCRIPT italic_c , roman_max end_POSTSUBSCRIPT ( italic_r ) = roman_Φ ( italic_r ), and cosθ=1𝜃1\cos\theta=-1roman_cos italic_θ = - 1, it is easy to find this maximum kick velocity where all annihilation products are unbound from the galaxy,

Δv^max2<8Φ^.Δsubscriptsuperscript^𝑣2max8^Φ\Delta\hat{v}^{2}_{\rm max}<-8\hat{\Phi}.roman_Δ over^ start_ARG italic_v end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT < - 8 over^ start_ARG roman_Φ end_ARG . (17)

For each curve shown in Fig. (2), this value is observed by the location of the sharp right cutoff.

This pattern continues until Δv^1Δ^𝑣1\Delta\hat{v}\approx 1roman_Δ over^ start_ARG italic_v end_ARG ≈ 1 where increased suppression begins at small radii. This suppression is due to a lack of vcsubscript𝑣𝑐v_{c}italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT to allow for back-scattering events (cosθ<0𝜃0\cos\theta<0roman_cos italic_θ < 0) that sufficiently reduce their energy. At Δv^=2Δ^𝑣2\Delta\hat{v}=\sqrt{2}roman_Δ over^ start_ARG italic_v end_ARG = square-root start_ARG 2 end_ARG, the increase in kinetic energy is equal to the deepest portion of the NFW potential. This requires all bound products to be back-scattered with respect to vcsubscript𝑣𝑐v_{c}italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT in order to reduce their speed. The amount of energy reduction in back-scattering is more pronounced for larger vcsubscript𝑣𝑐v_{c}italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT. At small galactic radii in the NFW distribution, a large proportion of the velocity distribution has low velocities compared with distributions at larger radii. This results in parent particles having lower average vcsubscript𝑣𝑐v_{c}italic_v start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT at small radii, leading to an incapability to sufficiently back-scatter to keep products bound to the galaxy even with the larger gravitational potential. Instead, these back-scattering events still have sufficient energy to escape. Rates at small radii thus experience a more dramatic suppression when compared to larger distances, and a peak in the rates is introduced for large Δv^Δ^𝑣\Delta\hat{v}roman_Δ over^ start_ARG italic_v end_ARG as observed in Fig. (2).

For Δv^2>8Φ^maxΔsuperscript^𝑣28subscript^Φmax\Delta\hat{v}^{2}>-8\hat{\Phi}_{\rm max}roman_Δ over^ start_ARG italic_v end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT > - 8 over^ start_ARG roman_Φ end_ARG start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT, all products escape and the galaxy is completely suppressed to 0. For the NFW profile, this kick velocity corresponds to Δv^max,NFW2=8Δsubscriptsuperscript^𝑣2maxNFW8\Delta\hat{v}^{2}_{\rm max,\;NFW}=8roman_Δ over^ start_ARG italic_v end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_max , roman_NFW end_POSTSUBSCRIPT = 8 (log10Δv^max,NFW0.45subscript10Δsubscript^𝑣maxNFW0.45\log_{10}\Delta\hat{v}_{\rm max,\;NFW}\approx 0.45roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT roman_Δ over^ start_ARG italic_v end_ARG start_POSTSUBSCRIPT roman_max , roman_NFW end_POSTSUBSCRIPT ≈ 0.45).

IV.1 Total Rates

The total scaled annihilation rate for a galaxy can be found through d3r^Pn2(r^)=Pn,tot2superscript𝑑3^𝑟superscriptsubscript𝑃𝑛2^𝑟superscriptsubscript𝑃𝑛tot2\int d^{3}\hat{r}P_{n}^{2}(\hat{r})=P_{n,{\rm\;tot}}^{2}∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT over^ start_ARG italic_r end_ARG italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( over^ start_ARG italic_r end_ARG ) = italic_P start_POSTSUBSCRIPT italic_n , roman_tot end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. In Fig. (3), we show the ratio between the galactic rate and the canonical result for the NFW distribution. Due to the assumption that χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are in equilibrium, this ratio is equal to the change in expected signal from the second annihilation and the canonical result. For Δv^1much-less-thanΔ^𝑣1\Delta\hat{v}\ll 1roman_Δ over^ start_ARG italic_v end_ARG ≪ 1, there is minimal variation from the canonical result as expected. At Δv^0.5Δ^𝑣0.5\Delta\hat{v}\approx 0.5roman_Δ over^ start_ARG italic_v end_ARG ≈ 0.5, the rate begins to dramatically decrease such that it is negligible by Δv^2Δ^𝑣2\Delta\hat{v}\approx 2roman_Δ over^ start_ARG italic_v end_ARG ≈ 2. At Δv^=8Φ^maxΔ^𝑣8subscript^Φmax\Delta\hat{v}=\sqrt{-8\hat{\Phi}_{\rm max}}roman_Δ over^ start_ARG italic_v end_ARG = square-root start_ARG - 8 over^ start_ARG roman_Φ end_ARG start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT end_ARG, the rate reaches zero as no annihilation products are bound to the galaxy. As discussed earlier, for the NFW distribution, this occurs at Δv^=82.83Δ^𝑣82.83\Delta\hat{v}=\sqrt{8}\approx 2.83roman_Δ over^ start_ARG italic_v end_ARG = square-root start_ARG 8 end_ARG ≈ 2.83.

Refer to caption
Figure 3: Ratio between the total injection rate of bound χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT daughter particles from χ1subscript𝜒1\chi_{1}italic_χ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT annihilation (Pn,tot2superscriptsubscript𝑃𝑛tot2P_{n,{\rm\;tot}}^{2}italic_P start_POSTSUBSCRIPT italic_n , roman_tot end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT) and the canonical annihilation rate. For Δv^1much-less-thanΔ^𝑣1\Delta\hat{v}\ll 1roman_Δ over^ start_ARG italic_v end_ARG ≪ 1, the two are identical; however, there is a sharp drop at Δv^1Δ^𝑣1\Delta\hat{v}\approx 1roman_Δ over^ start_ARG italic_v end_ARG ≈ 1 and the ratio reaches zero (no bound χ2subscript𝜒2\chi_{2}italic_χ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are injected) at Δv^=8Δ^𝑣8\Delta\hat{v}=\sqrt{8}roman_Δ over^ start_ARG italic_v end_ARG = square-root start_ARG 8 end_ARG for the NFW distribution. Also shown are Δv^Δ^𝑣\Delta\hat{v}roman_Δ over^ start_ARG italic_v end_ARG for the Milky Way (MW) and Draco galaxies for Δv=200km/sΔ𝑣200kms\Delta v=200{\rm\;km/s}roman_Δ italic_v = 200 roman_km / roman_s. For this value of ΔvΔ𝑣\Delta vroman_Δ italic_v, MW is close to the canonical result while Draco is deep in the totally suppressed regime. Other commonly studied dSph have Δv^Δ^𝑣\Delta\hat{v}roman_Δ over^ start_ARG italic_v end_ARG similar to Draco and would also be totally suppressed.

For a single model, the kick velocity (ΔvΔ𝑣\Delta vroman_Δ italic_v) will be constant for all galaxies; however, scaled velocities (Δv^Δ^𝑣\Delta\hat{v}roman_Δ over^ start_ARG italic_v end_ARG) are galaxy dependent. Due to the sharp transition from full canonical expectations and a complete reduction to zero, some galaxies may experience almost no variation while others could experience dramatic departures from the canonical value. The main contributor to how different galaxies behave is their physical dimensions. In Fig. (3), we have included Δv^Δ^𝑣\Delta\hat{v}roman_Δ over^ start_ARG italic_v end_ARG for the Milky Way (0.451) and the dwarf galaxy Draco (4.232) assuming Δv=200km/sΔ𝑣200kms\Delta v=200{\rm\;km/s}roman_Δ italic_v = 200 roman_km / roman_s.222For the Milky Way (Draco), we used ρs=0.345(2.96)GeV/cm3subscript𝜌𝑠0.3452.96GeVsuperscriptcm3\rho_{s}=0.345\;(2.96){\rm\;GeV/cm^{3}}italic_ρ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 0.345 ( 2.96 ) roman_GeV / roman_cm start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT and rs=20(0.728)kpcsubscript𝑟𝑠200.728kpcr_{s}=20\;(0.728){\rm\;kpc}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 20 ( 0.728 ) roman_kpc. [28] Other dSph galaxies commonly used in dark matter searches have similar values to Draco (4<Δv^<64Δ^𝑣64<\Delta\hat{v}<64 < roman_Δ over^ start_ARG italic_v end_ARG < 6). For this choice of ΔvΔ𝑣\Delta vroman_Δ italic_v, we would expect minimal alterations from the canonical signal for the Milky Way while expecting a complete suppression from Draco. Similar results will occur for other dSph galaxies. This suppression could account for the discrepancy between GC and Fermi dSph measurements.

Observing a signal from the Milky Way while experiencing a departure from the canonical result for dSph necessitates Δv10500km/ssimilar-toΔ𝑣10500kms\Delta v\sim 10-500{\rm\;km/s}roman_Δ italic_v ∼ 10 - 500 roman_km / roman_s, which corresponds to a mass splitting Δm/m1109106similar-toΔ𝑚subscript𝑚1superscript109superscript106\Delta m/m_{1}\sim 10^{-9}-10^{-6}roman_Δ italic_m / italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∼ 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT. This range is at the extreme of expected differences; a more conservative range would be Δm/m1108107similar-toΔ𝑚subscript𝑚1superscript108superscript107\Delta m/m_{1}\sim 10^{-8}-10^{-7}roman_Δ italic_m / italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∼ 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT to allow for a sizable Milky Way signal while experiencing large variations from the canonical result for dSphs. Interestingly, this is the same mass splitting range as the 2cDM model needed to explain the missing galaxy, core-cusp, and too-big-to-fail problems of N𝑁Nitalic_N-body simulations [29, 30, 31]; this is not completely unexpected due to the similarity in the models.

Care should be taken when interpreting these results, however, as they are a measure of the total annihilation rate of the galaxy. When converting to J-factors, they will be most accurate for distant galaxies, which the Milky Way is not. Further work is needed to understand how the secondary annihilation distribution in the galaxy will differ from canonical annihilation to identify if there are additional features when considering the angular J-factor along with the effect of galactic DM over-densities. In addition, more work is needed to better understand the equilibrium requirements necessary to reach the steady state situation assumed here and how it can differ in galactic environments.

Overall, this model introduces a mechanism that can explain the GCE as well as the lack of an observation in dSph under the DM interpretation. A characteristic feature to distinguish it from other models is a dramatic drop in excess SM products at a critical galactic scale. If measured, this scale can be used to measure the mass splitting between the two DM species.

Acknowledgements

We thank Bhaskar Dutta and Savvas Koushiappas for helpful discussion and suggestions in the preparation of this work.

References