Inferring Neutron Star Properties via r-mode Gravitational Wave Signals

Dhanvarsh Annamalai dhanvarshannamalai2002@gmail.com    Rana Nandi rana.nandi@snu.edu.in Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida 201314, Uttar Pradesh, India
(June 18, 2024)
Abstract

We present two frameworks to infer some of the properties of neutron stars from their electromagnetic radiation and the emission of continuous gravitational waves due to r-mode oscillations. In the first framework, assuming a distance measurement via electromagnetic observations, we infer three neutron star properties: the moment of inertia, a parameter related to the r-mode saturation amplitude, and the component of magnetic dipole moment perpendicular to the rotation axis. Unlike signals from mountains, r-mode oscillations provide additional information through a parameter (κ𝜅\kappaitalic_κ) that satisfies a universal relation with the star’s compactness. In the second framework, we utilize this and the relation between the moment of inertia and compactness, in addition to assuming an equation of state and utilizing pulsar frequency measurements, to directly measure the neutron star’s distance along with the aforementioned parameters. We employ a Fisher information matrix-based approach for quantitative error estimation in both frameworks. We find that the error in the distance measurement dominates the errors in the first framework for any reasonable observation time. In contrast, due to the low errors in pulsar frequency measurements, parameters can be inferred accurately via the second framework but work only in a restricted parameter space. We finally address potential ways to overcome critical drawbacks of our analyses and discuss directions for future work.

preprint: APS/123-QED

I Introduction

The new age of gravitational wave astronomy has the potential to provide more information than traditional astronomy or complement it in a useful way. Ever since the first detection of gravitational waves from a binary black hole merger event, GW150914, in 2015 Abbott et al. (2016), a plethora of compact binary inspirals has been detected (Abbott et al. (2019a, 2021, 2020)). These detections have given us vital astrophysical insights such as confirming the existence of stellar-mass black holes and providing an association between binary neutron star mergers, gamma-ray bursts, kilonovae, and the production of heavy elements in the universe Abbott et al. (2017), constraining the equation of state high-density nuclear matter Nandi and Char (2018); Nandi et al. (2019); Biswas et al. (2021), etc.

Continuous gravitational waves (CGW), as yet an undiscovered type of gravitational wave, are weak pseudo-monochromatic signals that last over long time scales, produced by tiny mountains or velocity perturbations in the star. An important potential source for CGW is r-mode oscillations in neutron stars. These are quasi-normal modes driven unstable by gravitational radiation via the CFS instability (Friedman and Schutz (1978); Andersson and Kokkotas (2001)) with a frequency approximately equal to 4/3rd of the rotation frequency of the star. While we expect the modes to grow due to the instability Owen et al. (1998) and eventually saturate because of damping, there are still uncertainties associated with the amplitude achievable by r-modes because of the non-linear hydrodynamics related to the damping mechanisms that limit the growth of the modes (Bondarescu et al. (2007, 2009); Alford and Schwenzer (2014)). We expect that the saturation phase will last a long time, consequently generating CGW.

Although CGW signals have not been detected yet, the prospects for future detection continue to improve with the increase in sensitivity of the upcoming detectors and the refinement of the data analysis techniques Riles (2023). Current CGW searches have only set upper limits on the saturation amplitude αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, a parameter that characterises r-modes during the saturation phase, from all-sky Steltner et al. (2023), directed Abbott et al. (2019b) and narrow-band searches (Fesik and Papa (2020); Rajbhandari et al. (2021)).

As the prospects of detection improve, it becomes important to address what can be learnt from such a detection. Under the assumption that a pulsar spins down just due to CGW, a recent study Sieniawska and Jones (2021) showed that one can only infer the ratio of a macroscopic parameter (e.g. moment of Inertia, ellipticity) and the distance to the star. Thereafter, another study Lu et al. (2023), explored inferring the properties of the star assuming the existence of an electromagnetic distance measurement, and, that the star spins down due to a dipolar magnetic field and CGW. They also assumed that the detected signals are produced by mountains in the neutron star. This can be known with certainty, only in the case of targeted searches (when the rotation frequency of the star is known)Jones (2022). The potential source could also be r-modes or other exotic possibilities D’Antonio et al. (2018); Miller et al. (2022) for candidates detected via directed or all-sky searches. It has also been shown by Ghosh (2023) that one can directly measure the distance to the neutron star for signals produced by r-modes when the rotation frequency of the star is known. Based on these works, we investigate the parameter inference of a detected CGW signal produced by r-modes. In particular, we explore two different inference frameworks, assuming that the star spins down due to a dipolar magnetic field and CGW. In the first framework, similar to Lu et al. (2023), we assume the existence of an electromagnetic distance measurement to the star post which we infer three neutron star properties: its moment of inertia (I𝐼Iitalic_I), the component of magnetic dipole moment perpendicular to the rotation axis (mpsubscript𝑚𝑝m_{p}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT) and a parameter alpha (α𝛼\alphaitalic_α) which is related to the saturation amplitude (Check Section II). In the second framework, we explore the case of signals detected particularly via narrow-band searches, where the distance to the star can be directly measured from the CGW signal along with the other macroscopic properties mentioned before.

This paper is organised as follows. Section II introduces the basics of CGW and their detection. Section III provides the two different theoretical frameworks used to infer neutron star properties. In Section IV, we discuss the Monte Carlo simulation used to present an error estimation study on the inferred parameters for both frameworks. Section V presents the results of these simulations. Section VI provides a summary of the work, and discusses key assumptions in this work, some drawbacks and potential ways to overcome them.

II Preliminaries

In this section, we present the preliminary information relevant to this work. We introduce the signal model of a continuous gravitational wave (CGW) in section II.1 and the parameter estimation of the phase and amplitude parameters in section II.2.

II.1 Continuous Gravitational Wave Signal Model

During the saturation phase, the r-mode oscillations produce a continuous gravitational wave (CGW) signal dominated by l=m=2𝑙𝑚2l=m=2italic_l = italic_m = 2 current quadrupole Owen et al. (1998). In this period, the noise-free strain h(t)𝑡h(t)italic_h ( italic_t ) in the detector is of the form Jaranowski et al. (1998):

h(t)=Σi=14𝒜ihi(t,λ),𝑡superscriptsubscriptΣ𝑖14subscript𝒜𝑖subscript𝑖𝑡𝜆h(t)=\Sigma_{i=1}^{4}{\cal A}_{i}h_{i}(t,\vec{\lambda}),italic_h ( italic_t ) = roman_Σ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT caligraphic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_t , over→ start_ARG italic_λ end_ARG ) , (1)

where 𝒜isubscript𝒜𝑖{\mathcal{A}}_{i}caligraphic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT are functions of the amplitude parameters: the characteristic strain amplitude (h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT), the inclination angle (ι𝜄\iotaitalic_ι) between the Neutron star’s rotation axis and line of sight, the polarization (ψ𝜓\psiitalic_ψ) and initial phase (ϕ0subscriptitalic-ϕ0\phi_{0}italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT). The parameters represented by λ𝜆\vec{\lambda}over→ start_ARG italic_λ end_ARG are called the phase parameters; they include the star’s sky position, the gravitational wave frequency (f𝑓fitalic_f), the frequency derivatives (fksuperscript𝑓𝑘f^{k}italic_f start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT), and if the star is in a binary system, its orbital parameters. The signal model is similar to the one produced by mountains, except the polarization ψ𝜓\psiitalic_ψ must be reinterpreted as ψ+π4𝜓𝜋4\psi+\frac{\pi}{4}italic_ψ + divide start_ARG italic_π end_ARG start_ARG 4 end_ARG for a signal produced by the r-mode oscillations Owen (2010).

The characteristic strain amplitude for r-mode oscillations is given by Owen (2010):

h0=512π75Grc5f3αsMR3J~,subscript0512superscript𝜋75𝐺𝑟superscript𝑐5superscript𝑓3subscript𝛼𝑠𝑀superscript𝑅3~𝐽h_{0}=\sqrt{\frac{512\pi^{7}}{5}}\frac{G}{rc^{5}}f^{3}\alpha_{s}MR^{3}\tilde{J},italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = square-root start_ARG divide start_ARG 512 italic_π start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT end_ARG start_ARG 5 end_ARG end_ARG divide start_ARG italic_G end_ARG start_ARG italic_r italic_c start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT end_ARG italic_f start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_M italic_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT over~ start_ARG italic_J end_ARG , (2)

where r𝑟ritalic_r is the distance to the star from SSB, M𝑀Mitalic_M is the mass of the star, R𝑅Ritalic_R is the radius of the star, αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is the r-mode saturation amplitude, f𝑓fitalic_f is the gravitational frequency which is approximately related to the rotational frequency of the neutron star by f43frot𝑓43subscript𝑓𝑟𝑜𝑡f\approx\frac{4}{3}f_{rot}italic_f ≈ divide start_ARG 4 end_ARG start_ARG 3 end_ARG italic_f start_POSTSUBSCRIPT italic_r italic_o italic_t end_POSTSUBSCRIPT, with corrections depending on the nuclear equation of state of the star Idrisy et al. (2015), and J~~𝐽\tilde{J}over~ start_ARG italic_J end_ARG is a dimensionless parameter that also depends on the equation of state of the star and is given by Owen et al. (1998):

J~=1MR40Rε(r)r6𝑑r,~𝐽1𝑀superscript𝑅4superscriptsubscript0𝑅𝜀𝑟superscript𝑟6differential-d𝑟\tilde{J}=\frac{1}{MR^{4}}\int_{0}^{R}\varepsilon(r)\,r^{6}\,dr,over~ start_ARG italic_J end_ARG = divide start_ARG 1 end_ARG start_ARG italic_M italic_R start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT italic_ε ( italic_r ) italic_r start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT italic_d italic_r , (3)

where ε(r)𝜀𝑟\varepsilon(r)italic_ε ( italic_r ) is the energy density inside the neutron star.

Various mechanisms including gravitational waves and electromagnetic radiation could cause a Neutron star to spin down. Since the timescale of the observation of continuous gravitational waves is much less than the intrinsic timescale of the spin-down of the star, we can model the spin-down as a Taylor series Jaranowski et al. (1998). Therefore, we model the evolution of the phase of the gravitational wave as a second-order Taylor series Jaranowski and Królak (1999) (here f˙,f¨f1,f2formulae-sequence˙𝑓¨𝑓superscript𝑓1superscript𝑓2\dot{f},\ddot{f}\equiv f^{1},f^{2}over˙ start_ARG italic_f end_ARG , over¨ start_ARG italic_f end_ARG ≡ italic_f start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT):

ϕ(t)=ϕ0+2π[ft+12f˙t2+16f¨t3].italic-ϕ𝑡subscriptitalic-ϕ02𝜋delimited-[]𝑓𝑡12˙𝑓superscript𝑡216¨𝑓superscript𝑡3\phi(t)=\phi_{0}+2\pi\left[ft+\frac{1}{2}\dot{f}t^{2}+\frac{1}{6}\ddot{f}t^{3}% \right].italic_ϕ ( italic_t ) = italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + 2 italic_π [ italic_f italic_t + divide start_ARG 1 end_ARG start_ARG 2 end_ARG over˙ start_ARG italic_f end_ARG italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 6 end_ARG over¨ start_ARG italic_f end_ARG italic_t start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ] . (4)

In Eq.(4), we have ignored the detector motion w.r.t the solar system barycenter (SSB), which is a satisfactory assumption when the star’s sky position is known (Jaranowski and Królak, 1999), which is the case in this work. An important parameter that is relevant in the study of the spin-down of the star is the breaking index n𝑛nitalic_n given by:

n=ff¨f˙2.𝑛𝑓¨𝑓superscript˙𝑓2n=\frac{f\ddot{f}}{\dot{f}^{2}}.italic_n = divide start_ARG italic_f over¨ start_ARG italic_f end_ARG end_ARG start_ARG over˙ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (5)

The value of n𝑛nitalic_n contains information regarding the spin-down mechanism of the neutron star (Riles, 2023). If the star is just spinning down due to a current quadrupole moment produced by the r-modes, then n=7𝑛7n=7italic_n = 7. If it is spinning down purely due to a dipolar magnetic field, then n=3𝑛3n=3italic_n = 3. If the neutron star is spinning down just due to a mass quadrupole moment (mountains in the star), then n=5𝑛5n=5italic_n = 5.

II.2 Gravitational Wave Parameter Estimation

Assuming that a true CGW signal is not appreciably different from the signal model in section II.1, we expect to estimate the (h0,f,f˙,f¨subscript0𝑓˙𝑓¨𝑓h_{0},f,\dot{f},\ddot{f}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_f , over˙ start_ARG italic_f end_ARG , over¨ start_ARG italic_f end_ARG) from the signal as they are the key parameters for inferring neutron star properties. As an initial attempt to study the errors in these parameters from a CGW detection, we use a simple Fisher information matrix approach similar to Lu et al. (2023); Ghosh (2023); Sieniawska and Jones (2021). This approach is strictly valid only in the case of high-signal-to-noise ratios. It has other issues like the possibility of a singular or ill-conditioned Fisher information matrix Vallisneri (2008). Nevertheless, due to its computational simplicity, we use this approach to get a quantitative picture. A comprehensive study using Bayesian inference is expected to give more robust results and is left to future work.

For long observation duration compared to a day, the parameter space metric over the phase parameters (f,f˙,f¨𝑓˙𝑓¨𝑓f,\dot{f},\ddot{f}italic_f , over˙ start_ARG italic_f end_ARG , over¨ start_ARG italic_f end_ARG) is approximately given by the ”phase metric” (Prix, 2007):

gij(λ)=ϕfiϕfjϕfiϕfj,subscript𝑔𝑖𝑗𝜆delimited-⟨⟩italic-ϕsuperscript𝑓𝑖italic-ϕsuperscript𝑓𝑗delimited-⟨⟩italic-ϕsuperscript𝑓𝑖delimited-⟨⟩italic-ϕsuperscript𝑓𝑗g_{ij}(\lambda)=\left<\frac{\partial\phi}{\partial f^{i}}\frac{\partial\phi}{% \partial f^{j}}\right>-\left<\frac{\partial\phi}{\partial f^{i}}\right>\left<% \frac{\partial\phi}{\partial f^{j}}\right>\,,italic_g start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ( italic_λ ) = ⟨ divide start_ARG ∂ italic_ϕ end_ARG start_ARG ∂ italic_f start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG divide start_ARG ∂ italic_ϕ end_ARG start_ARG ∂ italic_f start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT end_ARG ⟩ - ⟨ divide start_ARG ∂ italic_ϕ end_ARG start_ARG ∂ italic_f start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG ⟩ ⟨ divide start_ARG ∂ italic_ϕ end_ARG start_ARG ∂ italic_f start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT end_ARG ⟩ , (6)

where (f,f˙,f¨)(f0,f1,f2(f,\dot{f},\ddot{f})\equiv(f^{0},f^{1},f^{2}( italic_f , over˙ start_ARG italic_f end_ARG , over¨ start_ARG italic_f end_ARG ) ≡ ( italic_f start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT , italic_f start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT) and the time average operator \langle\quad\rangle⟨ ⟩ is defined as:

x(t)=1TT/2T/2x(t)𝑑t,delimited-⟨⟩𝑥𝑡1𝑇superscriptsubscript𝑇2𝑇2𝑥𝑡differential-d𝑡\langle x(t)\rangle=\frac{1}{T}\int_{-T/2}^{T/2}x(t)dt,⟨ italic_x ( italic_t ) ⟩ = divide start_ARG 1 end_ARG start_ARG italic_T end_ARG ∫ start_POSTSUBSCRIPT - italic_T / 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T / 2 end_POSTSUPERSCRIPT italic_x ( italic_t ) italic_d italic_t , (7)

where T𝑇Titalic_T is the total observation time (assuming 100% duty cycle). The metric quantifies the ”distance” between two points in the parameter space. The inverse of the Fisher information matrix (which is also the covariance matrix), in terms of the metric, is:

Γij=gijρ2.superscriptΓ𝑖𝑗superscript𝑔𝑖𝑗superscript𝜌2\Gamma^{ij}=\frac{g^{ij}}{\rho^{2}}.roman_Γ start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT = divide start_ARG italic_g start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (8)

In Eq (8) ρ𝜌\rhoitalic_ρ is the signal-to-noise ratio, which for a year or longer observation time, can be averaged over ι𝜄\iotaitalic_ι and ψ𝜓\psiitalic_ψ and sky position Jaranowski et al. (1998):

ρ2=425h02TSh(f),superscript𝜌2425superscriptsubscript02𝑇subscript𝑆𝑓\rho^{2}=\frac{4}{25}\frac{h_{0}^{2}T}{S_{h}(f)}\,,italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG 4 end_ARG start_ARG 25 end_ARG divide start_ARG italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T end_ARG start_ARG italic_S start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT ( italic_f ) end_ARG , (9)
ρ2=425T𝒟2,superscript𝜌2425𝑇superscript𝒟2\rho^{2}=\frac{4}{25}\frac{T}{\mathcal{D}^{2}}\,,italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG 4 end_ARG start_ARG 25 end_ARG divide start_ARG italic_T end_ARG start_ARG caligraphic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , (10)

where Shsubscript𝑆S_{h}italic_S start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT is the single-sided spectral density of the strain noise in the detector, and in Eq (10), 𝒟𝒟\mathcal{D}caligraphic_D is the ”sensitivity depth” Dreissigacker et al. (2018); Behnke et al. (2015):

𝒟=Sh(f)h0.𝒟subscript𝑆𝑓subscript0\mathcal{D}=\frac{\sqrt{S_{h}(f)}}{h_{0}}.caligraphic_D = divide start_ARG square-root start_ARG italic_S start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT ( italic_f ) end_ARG end_ARG start_ARG italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG . (11)

The covariance matrix is calculated from Eq (8), using Eq (6) and Eq (10):

Σ(f,f˙,f¨)=𝒟2π2(187516T3078752T501125T5078752T50157500T7.)Σ𝑓˙𝑓¨𝑓superscript𝒟2superscript𝜋2187516superscript𝑇3078752superscript𝑇501125superscript𝑇5078752superscript𝑇50157500superscript𝑇7\Sigma(f,\dot{f},\ddot{f})=\frac{\mathcal{D}^{2}}{\pi^{2}}\left(\begin{array}[% ]{ccc}\frac{1875}{16T^{3}}&0&-\frac{7875}{2T^{5}}\\ 0&\frac{1125}{T^{5}}&0\\ -\frac{7875}{2T^{5}}&0&\frac{157500}{T^{7}}.\end{array}\right)roman_Σ ( italic_f , over˙ start_ARG italic_f end_ARG , over¨ start_ARG italic_f end_ARG ) = divide start_ARG caligraphic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( start_ARRAY start_ROW start_CELL divide start_ARG 1875 end_ARG start_ARG 16 italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG end_CELL start_CELL 0 end_CELL start_CELL - divide start_ARG 7875 end_ARG start_ARG 2 italic_T start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT end_ARG end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL divide start_ARG 1125 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT end_ARG end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL - divide start_ARG 7875 end_ARG start_ARG 2 italic_T start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT end_ARG end_CELL start_CELL 0 end_CELL start_CELL divide start_ARG 157500 end_ARG start_ARG italic_T start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT end_ARG . end_CELL end_ROW end_ARRAY ) (12)

Now, the only relevant amplitude parameter is h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. The error in h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is calculated using the Fisher information matrix over the amplitude parameters 𝒜isubscript𝒜𝑖\mathcal{A}_{i}caligraphic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT’s and the coordinate transformation from 𝒜isubscript𝒜𝑖\mathcal{A}_{i}caligraphic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT to (ho,ι,ψ,ϕ0subscript𝑜𝜄𝜓subscriptitalic-ϕ0h_{o},\iota,\psi,\phi_{0}italic_h start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT , italic_ι , italic_ψ , italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT)(Prix, 2011). For year-long observation, the error can be averaged over the sky position and ψ𝜓\psiitalic_ψ (Lu et al., 2023):

σ(h0)4.08𝒟h0T2.59+cos(ι)21cos(ι)2.\sigma(h_{0})\approx\frac{4.08\mathcal{D}h_{0}}{\sqrt{T}}\frac{\sqrt{2.59+\cos% (\iota)^{2}}}{1-\cos(\iota)^{2}}.italic_σ ( italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≈ divide start_ARG 4.08 caligraphic_D italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG italic_T end_ARG end_ARG divide start_ARG square-root start_ARG 2.59 + roman_cos ( italic_ι ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG start_ARG 1 - roman_cos ( italic_ι ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (13)

Note that Eq (13) is singular at (ι=0𝜄0\iota=0italic_ι = 0 or π𝜋\piitalic_π) due to the coordinate transformation from 𝒜isubscript𝒜𝑖\mathcal{A}_{i}caligraphic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT to (ho,ι,ψ,ϕ0subscript𝑜𝜄𝜓subscriptitalic-ϕ0h_{o},\iota,\psi,\phi_{0}italic_h start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT , italic_ι , italic_ψ , italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT). For this reason, we can’t average over ι𝜄\iotaitalic_ι with a prior range that includes 00 and π𝜋\piitalic_π. Thus, In this work, we assume cos(ι)𝑐𝑜𝑠𝜄cos(\iota)italic_c italic_o italic_s ( italic_ι ) lies in the range of [0.9,0.9]0.90.9[-0.9,0.9][ - 0.9 , 0.9 ], ignoring the small probability of cases where |cos(ι)|1𝑐𝑜𝑠𝜄1|cos(\iota)|\approx 1| italic_c italic_o italic_s ( italic_ι ) | ≈ 1.

III Parameter Estimation Framework

In this section we develop two different frameworks based on Lu et al. (2023) and Ghosh (2023), to infer three neutron star properties: its principal moment of inertia (I𝐼Iitalic_I), the component of magnetic dipole moment perpendicular to the rotation axis (mpsubscript𝑚𝑝m_{p}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT) and a parameter (α𝛼\alphaitalic_α) which is related to the saturation amplitude (αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT) by α=αsMR3J~𝛼subscript𝛼𝑠𝑀superscript𝑅3~𝐽\alpha=\alpha_{s}MR^{3}\tilde{J}italic_α = italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_M italic_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT over~ start_ARG italic_J end_ARG. In both cases, we assume that the spin-down of the star is due to magnetic dipole radiation and gravitational wave emission (via r-mode current quadrupole). We ignore the minor effects of magnetic fields of the order 1015superscript101510^{15}10 start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT G or less, see section (VI) for more details. In the first scenario, we explore a framework similar to Lu et al. (2023), where the distance is estimated from electromagnetic observations to 20% accuracy. The second scenario is relevant for targeted searches, where the rotational frequency of the star is known. As mentioned earlier the frequency of a r-mode signal varies slightly from f=43frot𝑓43subscript𝑓𝑟𝑜𝑡f=\frac{4}{3}f_{rot}italic_f = divide start_ARG 4 end_ARG start_ARG 3 end_ARG italic_f start_POSTSUBSCRIPT italic_r italic_o italic_t end_POSTSUBSCRIPT. This variation in frequency is quantified in terms of κ𝜅\kappaitalic_κ (see section III.2), which satisfies universal relations with compactness (Idrisy et al., 2015) and the dimensionless tidal deformability (Ghosh et al., 2023). We use the first universal relation to infer the distance of the star from CGW signals directly (Ghosh, 2023) along with the macroscopic properties mentioned above.

III.1 Framework 1: Distance estimated from electromagnetic observations

Balancing the spin-down power with the luminosity of electromagnetic and gravitational radiation gives:

dEdt|EM+dEdt|GW=dEdt|rot.evaluated-at𝑑𝐸𝑑𝑡EMevaluated-at𝑑𝐸𝑑𝑡GWevaluated-at𝑑𝐸𝑑𝑡rot{\frac{dE}{dt}}\Big{|}_{\rm EM}+{\frac{dE}{dt}}\Big{|}_{\rm GW}=-{\frac{dE}{dt% }}\Big{|}_{\rm rot}.divide start_ARG italic_d italic_E end_ARG start_ARG italic_d italic_t end_ARG | start_POSTSUBSCRIPT roman_EM end_POSTSUBSCRIPT + divide start_ARG italic_d italic_E end_ARG start_ARG italic_d italic_t end_ARG | start_POSTSUBSCRIPT roman_GW end_POSTSUBSCRIPT = - divide start_ARG italic_d italic_E end_ARG start_ARG italic_d italic_t end_ARG | start_POSTSUBSCRIPT roman_rot end_POSTSUBSCRIPT . (14)

The rotational kinetic energy is taken to be that of a rotating sphere:

dEdt|rot=94π2Iff˙.evaluated-at𝑑𝐸𝑑𝑡rot94superscript𝜋2𝐼𝑓˙𝑓{\frac{dE}{dt}}\Big{|}_{\rm rot}=\frac{9}{4}\pi^{2}If\dot{f}.divide start_ARG italic_d italic_E end_ARG start_ARG italic_d italic_t end_ARG | start_POSTSUBSCRIPT roman_rot end_POSTSUBSCRIPT = divide start_ARG 9 end_ARG start_ARG 4 end_ARG italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_I italic_f over˙ start_ARG italic_f end_ARG . (15)

The luminosity of an electromagnetic dipole is given by:

dEdt|EM=27π48c3μ0mp2f4I,evaluated-at𝑑𝐸𝑑𝑡EM27superscript𝜋48superscript𝑐3subscript𝜇0superscriptsubscript𝑚𝑝2superscript𝑓4𝐼{\frac{dE}{dt}}\Big{|}_{\rm EM}=\frac{27\pi^{4}}{8c^{3}\mu_{0}}\frac{m_{p}^{2}% f^{4}}{I},divide start_ARG italic_d italic_E end_ARG start_ARG italic_d italic_t end_ARG | start_POSTSUBSCRIPT roman_EM end_POSTSUBSCRIPT = divide start_ARG 27 italic_π start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 8 italic_c start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG divide start_ARG italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_I end_ARG , (16)

where μ0subscript𝜇0\mu_{0}italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is vacuum permeability. The gravitational wave luminosity for r-mode is Riles (2023):

dEdt|GW=1024π925Gc7α2f8.evaluated-at𝑑𝐸𝑑𝑡GW1024superscript𝜋925𝐺superscript𝑐7superscript𝛼2superscript𝑓8{\frac{dE}{dt}}\Big{|}_{\rm GW}=\frac{1024\pi^{9}}{25}\frac{G}{c^{7}}\alpha^{2% }f^{8}.divide start_ARG italic_d italic_E end_ARG start_ARG italic_d italic_t end_ARG | start_POSTSUBSCRIPT roman_GW end_POSTSUBSCRIPT = divide start_ARG 1024 italic_π start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT end_ARG start_ARG 25 end_ARG divide start_ARG italic_G end_ARG start_ARG italic_c start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT end_ARG italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT . (17)

To simplify the expressions we introduce the following constants,

Kd=3π22c2μ0Kgw=4096π7G225c7Kh0=512π75Gc5.formulae-sequencesubscript𝐾𝑑3superscript𝜋22superscript𝑐2subscript𝜇0formulae-sequencesubscript𝐾𝑔𝑤4096superscript𝜋7𝐺225superscript𝑐7subscript𝐾subscript0512superscript𝜋75𝐺superscript𝑐5K_{d}=\frac{3\pi^{2}}{2c^{2}\mu_{0}}\quad K_{gw}=\frac{4096\pi^{7}G}{225c^{7}}% \quad K_{h_{0}}=\sqrt{\frac{512\pi^{7}}{5}}\frac{G}{c^{5}}.italic_K start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT = divide start_ARG 3 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_μ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG italic_K start_POSTSUBSCRIPT italic_g italic_w end_POSTSUBSCRIPT = divide start_ARG 4096 italic_π start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT italic_G end_ARG start_ARG 225 italic_c start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT end_ARG italic_K start_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = square-root start_ARG divide start_ARG 512 italic_π start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT end_ARG start_ARG 5 end_ARG end_ARG divide start_ARG italic_G end_ARG start_ARG italic_c start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT end_ARG . (18)

The spin-down equations are then given by:

f˙=Kdmp2If3Kgwα2If7.˙𝑓subscript𝐾𝑑superscriptsubscript𝑚𝑝2𝐼superscript𝑓3subscript𝐾𝑔𝑤superscript𝛼2𝐼superscript𝑓7\dot{f}=-\frac{K_{d}m_{p}^{2}}{I}f^{3}-\frac{K_{gw}\alpha^{2}}{I}f^{7}.over˙ start_ARG italic_f end_ARG = - divide start_ARG italic_K start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_I end_ARG italic_f start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - divide start_ARG italic_K start_POSTSUBSCRIPT italic_g italic_w end_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_I end_ARG italic_f start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT . (19)

Differentiating (19) we get:

f¨=3Kdmp2If2f˙7Kgwα2If6f˙.¨𝑓3subscript𝐾𝑑superscriptsubscript𝑚𝑝2𝐼superscript𝑓2˙𝑓7subscript𝐾𝑔𝑤superscript𝛼2𝐼superscript𝑓6˙𝑓\ddot{f}=-3\frac{K_{d}m_{p}^{2}}{I}f^{2}\dot{f}-7\frac{K_{gw}\alpha^{2}}{I}f^{% 6}\dot{f}.over¨ start_ARG italic_f end_ARG = - 3 divide start_ARG italic_K start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_I end_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over˙ start_ARG italic_f end_ARG - 7 divide start_ARG italic_K start_POSTSUBSCRIPT italic_g italic_w end_POSTSUBSCRIPT italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_I end_ARG italic_f start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT over˙ start_ARG italic_f end_ARG . (20)

As (h0,f,f˙,f¨subscript0𝑓˙𝑓¨𝑓h_{0},f,\dot{f},\ddot{f}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_f , over˙ start_ARG italic_f end_ARG , over¨ start_ARG italic_f end_ARG) are independently estimated from the CGW signal, we can solve Eq (2), Eq (19), and Eq (20) to get:

α=rh0Kh0f3,𝛼𝑟subscript0subscript𝐾subscript0superscript𝑓3\alpha=\frac{rh_{0}}{K_{h_{0}}f^{3}},italic_α = divide start_ARG italic_r italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_K start_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_f start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG , (21)
I=4Kgwh02r2fKh0f˙(n3),𝐼4subscript𝐾𝑔𝑤superscriptsubscript02superscript𝑟2𝑓subscript𝐾subscript0˙𝑓𝑛3I=\frac{-4K_{gw}h_{0}^{2}r^{2}f}{K_{h_{0}}\dot{f}(n-3)},italic_I = divide start_ARG - 4 italic_K start_POSTSUBSCRIPT italic_g italic_w end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f end_ARG start_ARG italic_K start_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT over˙ start_ARG italic_f end_ARG ( italic_n - 3 ) end_ARG , (22)
mp=Kgwh02r2(7n)KdKh02f2(n3).subscript𝑚𝑝subscript𝐾𝑔𝑤superscriptsubscript02superscript𝑟27𝑛subscript𝐾𝑑superscriptsubscript𝐾subscript02superscript𝑓2𝑛3m_{p}=\sqrt{\frac{K_{gw}h_{0}^{2}r^{2}(7-n)}{K_{d}K_{h_{0}}^{2}f^{2}(n-3)}}.italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = square-root start_ARG divide start_ARG italic_K start_POSTSUBSCRIPT italic_g italic_w end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 7 - italic_n ) end_ARG start_ARG italic_K start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_n - 3 ) end_ARG end_ARG . (23)

Note that r𝑟ritalic_r is the distance to the star and the parameter α𝛼\alphaitalic_α is independent of n𝑛nitalic_n and is related to the saturation amplitude by:

α=αsMR3J~.𝛼subscript𝛼𝑠𝑀superscript𝑅3~𝐽\alpha=\alpha_{s}MR^{3}\tilde{J}.italic_α = italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_M italic_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT over~ start_ARG italic_J end_ARG . (24)

One requires mass and radius measurements from electromagnetic observations to estimate the saturation amplitude from observation. The negative sign in Eq (22) exists as f˙<0˙𝑓0\dot{f}<0over˙ start_ARG italic_f end_ARG < 0. Eqs (21) - (23) are valid only when 3<n<73𝑛73<n<73 < italic_n < 7. This reflects the assumption that the spin-down of the star is due to magnetic dipole radiation and r-mode gravitational wave emission.

The differential error of any quantity is given by Lu et al. (2023):

σ(A)2=Σx,yAxAycov(x,y),𝜎superscript𝐴2subscriptΣ𝑥𝑦𝐴𝑥𝐴𝑦𝑐𝑜𝑣𝑥𝑦\sigma(A)^{2}=\Sigma_{x,y}\frac{\partial A}{\partial x}\frac{\partial A}{% \partial y}cov(x,y),italic_σ ( italic_A ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = roman_Σ start_POSTSUBSCRIPT italic_x , italic_y end_POSTSUBSCRIPT divide start_ARG ∂ italic_A end_ARG start_ARG ∂ italic_x end_ARG divide start_ARG ∂ italic_A end_ARG start_ARG ∂ italic_y end_ARG italic_c italic_o italic_v ( italic_x , italic_y ) , (25)

where x,y𝑥𝑦x,yitalic_x , italic_y \in (h0,f,f˙,f¨subscript0𝑓˙𝑓¨𝑓h_{0},f,\dot{f},\ddot{f}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_f , over˙ start_ARG italic_f end_ARG , over¨ start_ARG italic_f end_ARG) and ”cov𝑐𝑜𝑣covitalic_c italic_o italic_v” represents the covariance of x and y. The errors of the neutron star properties can be calculated from Eq (25), (12), and (13) (Lu et al., 2023):

σ(α)2α2=σ(r)2r2+σ(h0)2h02+16875𝒟216π2f2T3,𝜎superscript𝛼2superscript𝛼2𝜎superscript𝑟2superscript𝑟2𝜎superscriptsubscript02superscriptsubscript0216875superscript𝒟216superscript𝜋2superscript𝑓2superscript𝑇3\frac{\sigma(\alpha)^{2}}{\alpha^{2}}=\frac{\sigma(r)^{2}}{r^{2}}+\frac{\sigma% (h_{0})^{2}}{h_{0}^{2}}+\frac{16875\mathcal{D}^{2}}{16\pi^{2}f^{2}T^{3}},divide start_ARG italic_σ ( italic_α ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = divide start_ARG italic_σ ( italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG italic_σ ( italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 16875 caligraphic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 16 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG , (26)
σ(I)2I2=4σ(r)2r2+4σ(h0)2h02+16875𝒟216π2f2(n3)2T3,𝜎superscript𝐼2superscript𝐼24𝜎superscript𝑟2superscript𝑟24𝜎superscriptsubscript02superscriptsubscript0216875superscript𝒟216superscript𝜋2superscript𝑓2superscript𝑛32superscript𝑇3\frac{\sigma\left(I\right)^{2}}{I^{2}}=\frac{4\sigma(r)^{2}}{r^{2}}+\frac{4% \sigma\left(h_{0}\right)^{2}}{h_{0}^{2}}+\frac{16875\mathcal{D}^{2}}{16\pi^{2}% f^{2}(n-3)^{2}T^{3}},divide start_ARG italic_σ ( italic_I ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_I start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = divide start_ARG 4 italic_σ ( italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 4 italic_σ ( italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 16875 caligraphic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 16 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_n - 3 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG , (27)
σ(mp)2mp2=σ(r)2r2+σ(h0)2h02+1875𝒟2(n29n+15)216π2f2(n5)2(n3)2T3.𝜎superscriptsubscript𝑚𝑝2superscriptsubscript𝑚𝑝2𝜎superscript𝑟2superscript𝑟2𝜎superscriptsubscript02superscriptsubscript021875superscript𝒟2superscriptsuperscript𝑛29𝑛15216superscript𝜋2superscript𝑓2superscript𝑛52superscript𝑛32superscript𝑇3\frac{\sigma\left(m_{p}\right)^{2}}{m_{p}^{2}}=\frac{\sigma(r)^{2}}{r^{2}}+% \frac{\sigma\left(h_{0}\right)^{2}}{h_{0}^{2}}+\frac{1875\mathcal{D}^{2}\left(% n^{2}-9n+15\right)^{2}}{16\pi^{2}f^{2}(n-5)^{2}(n-3)^{2}T^{3}}.divide start_ARG italic_σ ( italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = divide start_ARG italic_σ ( italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG italic_σ ( italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 1875 caligraphic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 9 italic_n + 15 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 16 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_n - 5 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_n - 3 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG . (28)

Note that the error in strain amplitude is inversely proportional to observation time (σ(h0)T1/2similar-to𝜎subscript0superscript𝑇12\sigma(h_{0})\sim T^{-1/2}italic_σ ( italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ∼ italic_T start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT, see Eq (13)), therefore the errors asymptote to the error in distance as T𝑇T\to\inftyitalic_T → ∞:

limTσ(α)α=σ(r)r,subscript𝑇𝜎𝛼𝛼𝜎𝑟𝑟\lim_{T\to\infty}\frac{\sigma(\alpha)}{\alpha}=\frac{\sigma(r)}{r},roman_lim start_POSTSUBSCRIPT italic_T → ∞ end_POSTSUBSCRIPT divide start_ARG italic_σ ( italic_α ) end_ARG start_ARG italic_α end_ARG = divide start_ARG italic_σ ( italic_r ) end_ARG start_ARG italic_r end_ARG , (29)
limTσ(I)I=2σ(r)r,subscript𝑇𝜎𝐼𝐼2𝜎𝑟𝑟\lim_{T\to\infty}\frac{\sigma(I)}{I}=\frac{2\sigma(r)}{r},roman_lim start_POSTSUBSCRIPT italic_T → ∞ end_POSTSUBSCRIPT divide start_ARG italic_σ ( italic_I ) end_ARG start_ARG italic_I end_ARG = divide start_ARG 2 italic_σ ( italic_r ) end_ARG start_ARG italic_r end_ARG , (30)
limTσ(mp)mp=σ(r)r.subscript𝑇𝜎subscript𝑚𝑝subscript𝑚𝑝𝜎𝑟𝑟\lim_{T\to\infty}\frac{\sigma(m_{p})}{m_{p}}=\frac{\sigma(r)}{r}.roman_lim start_POSTSUBSCRIPT italic_T → ∞ end_POSTSUBSCRIPT divide start_ARG italic_σ ( italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_σ ( italic_r ) end_ARG start_ARG italic_r end_ARG . (31)

The factor of 2 in Eq (30) exists as I𝐼Iitalic_I is proportional to r2superscript𝑟2r^{2}italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, whereas α𝛼\alphaitalic_α and mpsubscript𝑚𝑝m_{p}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT are proportional to r𝑟ritalic_r.

III.2 Framework 2: Using universal relation to estimate distance

The frequency of the relevant (l=m=2𝑙𝑚2l=m=2italic_l = italic_m = 2) r-mode oscillation, under the slow-rotation approximation, is given by:

f=|2κ|frot,𝑓2𝜅subscript𝑓𝑟𝑜𝑡f=|2-\kappa|f_{rot},italic_f = | 2 - italic_κ | italic_f start_POSTSUBSCRIPT italic_r italic_o italic_t end_POSTSUBSCRIPT , (32)

where frotsubscript𝑓𝑟𝑜𝑡f_{rot}italic_f start_POSTSUBSCRIPT italic_r italic_o italic_t end_POSTSUBSCRIPT is the rotational frequency of the neutron star. For a slow-rotating Newtonian star: κ=23𝜅23\kappa=\frac{2}{3}italic_κ = divide start_ARG 2 end_ARG start_ARG 3 end_ARG. Various factors like relativistic effects, rapid rotation and magnetic field affect the value of κ𝜅\kappaitalic_κ. It has been shown that the relativistic effect is the strongest factor Idrisy et al. (2015) and that κ𝜅\kappaitalic_κ satisfies a universal relation with the compactness (C=MR𝐶𝑀𝑅C=\frac{M}{R}italic_C = divide start_ARG italic_M end_ARG start_ARG italic_R end_ARG) of the star, given by (Idrisy et al. (2015); Ghosh et al. (2023)):

κ=0.6670.478C1.11C2.𝜅0.6670.478𝐶1.11superscript𝐶2\kappa=0.667-0.478C-1.11C^{2}.italic_κ = 0.667 - 0.478 italic_C - 1.11 italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (33)

The compactness of the star also satisfies a universal relation with the normalised moment of inertia (I¯=IM3¯𝐼𝐼superscript𝑀3\bar{I}=\frac{I}{M^{3}}over¯ start_ARG italic_I end_ARG = divide start_ARG italic_I end_ARG start_ARG italic_M start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG) for slowly rotating stars (Breu and Rezzolla (2016)):

ln(I¯)¯𝐼\displaystyle\ln(\bar{I})roman_ln ( over¯ start_ARG italic_I end_ARG ) =\displaystyle== 0.8314C1+0.2101C2+3.175×103C30.8314superscript𝐶10.2101superscript𝐶23.175superscript103superscript𝐶3\displaystyle 0.8314C^{-1}+0.2101C^{-2}+3.175\times 10^{-3}C^{-3}0.8314 italic_C start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + 0.2101 italic_C start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT + 3.175 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_C start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT (34)
2.717×104C4,2.717superscript104superscript𝐶4\displaystyle-2.717\times 10^{-4}C^{-4},- 2.717 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT italic_C start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT ,

where Eq (34) is in geometric units (G=c=1𝐺𝑐1G=c=1italic_G = italic_c = 1).

For the case of targeted searches, we can use Eq (32) to calculate κ𝜅\kappaitalic_κ from a CGW detection. The universal relations can then be used to calculate the compactness and normalised moment of inertia. At this point assuming an equation of state of the neutron star lets us calculate its moment of inertia by varying the central density to match the compactness and the normalised moment of inertia. Note that the I¯¯𝐼\bar{I}over¯ start_ARG italic_I end_ARG - C𝐶Citalic_C relation (34) is not actually required to determine the moment of inertia as there exists a one-to-one relation between the moment of inertia and compactness for a given equation of state. We still use Eq (34) in this framework as in the case where mass measurements are available for the star, Eq (34) allows us to measure the moment of inertia independent of the EOS. Check section VI.3 for a more detailed discussion. We can then get the distance to the star by rearranging Eq (22), using which the remaining parameters are calculated. This is similar to Ghosh (2023), where they use universal relations with normalised tidal deformability instead of the compactness of the star.

The error in κ𝜅\kappaitalic_κ is given by (Ghosh (2023)):

σ(κ)2=f2frot2[σ(f)2f2+σ(frot)2frot2].𝜎superscript𝜅2superscript𝑓2superscriptsubscript𝑓𝑟𝑜𝑡2delimited-[]𝜎superscript𝑓2superscript𝑓2𝜎superscriptsubscript𝑓𝑟𝑜𝑡2superscriptsubscript𝑓𝑟𝑜𝑡2\sigma(\kappa)^{2}=\frac{f^{2}}{f_{rot}^{2}}\left[\frac{\sigma(f)^{2}}{f^{2}}+% \frac{{\sigma(f_{rot})^{2}}}{{f_{rot}}^{2}}\right].italic_σ ( italic_κ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_f start_POSTSUBSCRIPT italic_r italic_o italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG [ divide start_ARG italic_σ ( italic_f ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG italic_σ ( italic_f start_POSTSUBSCRIPT italic_r italic_o italic_t end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_f start_POSTSUBSCRIPT italic_r italic_o italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] . (35)

Then using the universal relations the error in the normalised moment of inertia is:

σ(I¯)2I¯2𝜎superscript¯𝐼2superscript¯𝐼2\displaystyle\frac{\sigma(\bar{I})^{2}}{\bar{I}^{2}}divide start_ARG italic_σ ( over¯ start_ARG italic_I end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG over¯ start_ARG italic_I end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG =\displaystyle== 1C2(0.831C1+0.420C2+9.525×103C3\displaystyle\frac{1}{C^{2}}\left(0.831C^{-1}+0.420C^{-2}+9.525\times 10^{-3}C% ^{-3}\right.divide start_ARG 1 end_ARG start_ARG italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( 0.831 italic_C start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + 0.420 italic_C start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT + 9.525 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_C start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT (36)
1.087×103C4)2×σ(κ)2(0.478+2.22C)2,\displaystyle\left.-1.087\times 10^{-3}C^{-4}\right)^{2}\times\,\frac{\sigma(% \kappa)^{2}}{(0.478+2.22C)^{2}},- 1.087 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_C start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT × divide start_ARG italic_σ ( italic_κ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( 0.478 + 2.22 italic_C ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ,

which is equal to the error in σ(I)/I𝜎𝐼𝐼\sigma(I)/Iitalic_σ ( italic_I ) / italic_I given an equation of state. The error in the distance of the star, calculated from Eq (27) is then:

σ(r)2r2=σ(I)24I2σ(h0)2h0216875𝒟264π2f2(n3)2T3.𝜎superscript𝑟2superscript𝑟2𝜎superscript𝐼24superscript𝐼2𝜎superscriptsubscript02superscriptsubscript0216875superscript𝒟264superscript𝜋2superscript𝑓2superscript𝑛32superscript𝑇3\frac{\sigma(r)^{2}}{r^{2}}=\frac{\sigma\left(I\right)^{2}}{4I^{2}}-\frac{% \sigma\left(h_{0}\right)^{2}}{h_{0}^{2}}-\frac{16875\mathcal{D}^{2}}{64\pi^{2}% f^{2}(n-3)^{2}T^{3}}.divide start_ARG italic_σ ( italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = divide start_ARG italic_σ ( italic_I ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_I start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG italic_σ ( italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG 16875 caligraphic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 64 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_n - 3 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG . (37)

We can also estimate the error in α𝛼\alphaitalic_α and mpsubscript𝑚𝑝m_{p}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT via Eq’s (26) - (28):

σ(α)2α2=σ(I)24I2+(4n224n+35)4(n3)216875𝒟216π2f2T3,𝜎superscript𝛼2superscript𝛼2𝜎superscript𝐼24superscript𝐼24superscript𝑛224𝑛354superscript𝑛3216875superscript𝒟216superscript𝜋2superscript𝑓2superscript𝑇3\frac{\sigma(\alpha)^{2}}{\alpha^{2}}=\frac{\sigma(I)^{2}}{4I^{2}}+\frac{(4n^{% 2}-24n+35)}{4(n-3)^{2}}\frac{16875\mathcal{D}^{2}}{16\pi^{2}f^{2}T^{3}},divide start_ARG italic_σ ( italic_α ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = divide start_ARG italic_σ ( italic_I ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_I start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG ( 4 italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 24 italic_n + 35 ) end_ARG start_ARG 4 ( italic_n - 3 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG 16875 caligraphic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 16 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG , (38)
σ(mp)2mp2𝜎superscriptsubscript𝑚𝑝2superscriptsubscript𝑚𝑝2\displaystyle\frac{\sigma\left(m_{p}\right)^{2}}{m_{p}^{2}}divide start_ARG italic_σ ( italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG =\displaystyle== σ(I)24I2+1875𝒟2(n29n+15)216π2f2(n5)2(n3)2T316875𝒟264π2f2(n3)2T3.𝜎superscript𝐼24superscript𝐼21875superscript𝒟2superscriptsuperscript𝑛29𝑛15216superscript𝜋2superscript𝑓2superscript𝑛52superscript𝑛32superscript𝑇316875superscript𝒟264superscript𝜋2superscript𝑓2superscript𝑛32superscript𝑇3\displaystyle\frac{\sigma(I)^{2}}{4I^{2}}+\frac{1875\mathcal{D}^{2}\left(n^{2}% -9n+15\right)^{2}}{16\pi^{2}f^{2}(n-5)^{2}(n-3)^{2}T^{3}}-\frac{16875\mathcal{% D}^{2}}{64\pi^{2}f^{2}(n-3)^{2}T^{3}}.divide start_ARG italic_σ ( italic_I ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_I start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 1875 caligraphic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 9 italic_n + 15 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 16 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_n - 5 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_n - 3 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG - divide start_ARG 16875 caligraphic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 64 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_n - 3 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG . (39)

Note that all the neutron star properties except the distance are independent of the signal strain amplitude (h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT).

IV Monte Carlo Simulation

In this section we explain how we use Monte Carlo simulations to study the errors in the three inferred parameters. In Section IV.1, we talk about Monte Carlo simulations for the first framework (Section III.1). Then, in Section IV.2, we discuss the procedure of Monte Carlo simulations for the second framework (Section III.1).

IV.1 Framework 1

Here the parameters h0,f,f˙,n,subscript0𝑓˙𝑓𝑛h_{0},f,\dot{f},n,italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_f , over˙ start_ARG italic_f end_ARG , italic_n , and r𝑟ritalic_r are required for inference and their errors depend on 𝒟,T,ι,h0,𝒟𝑇𝜄subscript0\mathcal{D},T,\iota,h_{0},caligraphic_D , italic_T , italic_ι , italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , and ΔrΔ𝑟\Delta rroman_Δ italic_r. We assume a distance of 1111 Kpc is estimated via electromagnetic observations with a 20% observational error, which is consistent with the previous study Lu et al. (2023).

We also choose to input values of I𝐼Iitalic_I, instead of h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT through rearrangement of Eq (22), similar to Lu et al. (2023). This is because the results that directly depend on h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT can be viewed as a stronger or weaker signal. On the other hand, choices of I𝐼Iitalic_I relate to the internal physics of the star. Even though a larger I𝐼Iitalic_I means a stronger signal (as IMR2similar-to𝐼𝑀superscript𝑅2I\sim MR^{2}italic_I ∼ italic_M italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT), the strength also depends on other factors like αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and r𝑟ritalic_r. A signal from a neutron star is simulated by 9 parameters fin,f˙in,f¨in,Iin,rin,Tin,𝒟in,cos(ι)in,f_{\rm in},\dot{f}_{\rm in},\ddot{f}_{\rm in},I_{\rm in},r_{\rm in},T_{\rm in}% ,\mathcal{D}_{\rm in},\cos(\iota)_{\rm in},italic_f start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , over˙ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , over¨ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_I start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , caligraphic_D start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , roman_cos ( italic_ι ) start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , and ΔrΔ𝑟\Delta rroman_Δ italic_r. Using these we calculate the input properties Iin,αin,subscript𝐼insubscript𝛼inI_{\rm in},\alpha_{\rm in},italic_I start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , and mpinsubscriptsubscript𝑚𝑝in{m_{p}}_{\rm in}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT using Eqs (21) - (23). Then the errors (δf,δf˙,δf¨𝛿𝑓𝛿˙𝑓𝛿¨𝑓\delta f,\delta\dot{f},\delta\ddot{f}italic_δ italic_f , italic_δ over˙ start_ARG italic_f end_ARG , italic_δ over¨ start_ARG italic_f end_ARG) are drawn from a multivariate normal distribution whose covariance matrix is given by Eq (12). Similarly, the error (δh0𝛿subscript0\delta h_{0}italic_δ italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT) is drawn from a normal distribution with the standard deviation given by Eq (13). All other covariances are assumed to be zero. Then the output parameters are given by:

fout =fin +δf,f˙out =f˙in +δf˙,f¨out =f¨in +δf¨,h0out =h0in +δh0.superscript𝑓out superscript𝑓in 𝛿𝑓superscript˙𝑓out superscript˙𝑓in 𝛿˙𝑓missing-subexpressionsuperscript¨𝑓out superscript¨𝑓in 𝛿¨𝑓superscriptsubscript0out superscriptsubscript0in 𝛿subscript0missing-subexpression\begin{array}[]{lll}f^{\text{out }}=f^{\text{in }}+\delta f,&\dot{f}^{\text{% out }}=\dot{f}^{\text{in }}+\delta\dot{f},\\ \ddot{f}^{\text{out }}=\ddot{f}^{\text{in }}+\delta\ddot{f},&h_{0}^{\text{out % }}=h_{0}^{\text{in }}+\delta h_{0}.\end{array}start_ARRAY start_ROW start_CELL italic_f start_POSTSUPERSCRIPT out end_POSTSUPERSCRIPT = italic_f start_POSTSUPERSCRIPT in end_POSTSUPERSCRIPT + italic_δ italic_f , end_CELL start_CELL over˙ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT out end_POSTSUPERSCRIPT = over˙ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT in end_POSTSUPERSCRIPT + italic_δ over˙ start_ARG italic_f end_ARG , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL over¨ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT out end_POSTSUPERSCRIPT = over¨ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT in end_POSTSUPERSCRIPT + italic_δ over¨ start_ARG italic_f end_ARG , end_CELL start_CELL italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT out end_POSTSUPERSCRIPT = italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT in end_POSTSUPERSCRIPT + italic_δ italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT . end_CELL start_CELL end_CELL end_ROW end_ARRAY (40)

Using these output parameters we calculate Iout,αout,subscript𝐼𝑜𝑢𝑡subscript𝛼𝑜𝑢𝑡I_{out},\alpha_{out},italic_I start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT , and mpoutsubscriptsubscript𝑚𝑝𝑜𝑢𝑡{m_{p}}_{out}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT, which is then compared with Iin,αin,subscript𝐼insubscript𝛼inI_{\rm in},\alpha_{\rm in},italic_I start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , and mpinsubscriptsubscript𝑚𝑝in{m_{p}}_{\rm in}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT . This process is iterated 106superscript10610^{6}10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT times.

IV.1.1 Choice of input parameters

Here we discuss the choice of the ranges/values of the 9 input parameters mentioned above. We consider an observation time of 0.540.540.5-40.5 - 4 years, as gravitational wave detectors observing runs last at least a year. A fixed rinsubscript𝑟inr_{\rm in}italic_r start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT of 1111 Kpc is assumed. This is expected to be within the range where all-sky searches are sensitive to neutron stars with αs>104subscript𝛼𝑠superscript104\alpha_{s}>10^{-4}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT > 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT and f>100𝑓100f>100italic_f > 100 Hz. An error of 20% is assumed in the distance measurement, which is not unreasonable for current and next-generation radio telescopes (Taylor and Cordes, 1993; Smits et al., 2011).

Unlike Lu et al. (2023), we only explore a sensitivity depth of 𝒟in=30subscript𝒟𝑖𝑛30\mathcal{D}_{in}=30caligraphic_D start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT = 30 Hz-1/2, which is typical for all-sky searches Dreissigacker et al. (2018). This must be interpreted as a signal being detected with a relatively low computational cost. A more sensitive follow-up analysis would significantly increase the signal-to-noise ratio. Check Lu et al. (2023) for details on how stability time, the time taken for the parameter errors to reach within 10% of the distance error, varies as a function of sensitivity depth. One could also use Sh(f)subscript𝑆𝑓S_{h}(f)italic_S start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT ( italic_f ) of current and future gravitational wave detectors Ghosh (2023), but we don’t take this approach.

We draw the moment of inertia from the widely accepted range for neutron stars of Iin=[1,3]×1038subscript𝐼in13superscript1038I_{\rm in}=[1,3]\times 10^{38}italic_I start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = [ 1 , 3 ] × 10 start_POSTSUPERSCRIPT 38 end_POSTSUPERSCRIPT Kg-m2 Mølnvik and Østgaard (1985); Miao et al. (2022); Kramer (2021), cos(ι)in{\cos(\iota)}_{\rm in}roman_cos ( italic_ι ) start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT is drawn from [0.9,0.9]0.90.9[-0.9,0.9][ - 0.9 , 0.9 ] and ninsubscript𝑛inn_{\rm in}italic_n start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT is drawn from [3,7]37[3,7][ 3 , 7 ], based on our assumption of the spin-down mechanism. The range of values assumed for finsubscript𝑓inf_{\rm in}italic_f start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT and f˙insubscript˙𝑓in\dot{f}_{\rm in}over˙ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT is given by:

fin=[30,700]Hz,f˙in=[108,1012]Hz s1,formulae-sequencesubscript𝑓in30700Hzsubscript˙𝑓insuperscript108superscript1012superscriptHz s1f_{\rm in}=[30,700]\,\text{Hz},\quad\dot{f}_{\rm in}=[-10^{-8},-10^{-12}]\,% \text{Hz s}^{-1},italic_f start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = [ 30 , 700 ] Hz , over˙ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = [ - 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT , - 10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT ] Hz s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , (41)

where the range of f𝑓fitalic_f is slightly smaller than current all-sky surveys Abbott, R. and Abbott et. al (2021), as for higher frequencies we would have to include the corrections to r-mode frequency due to rapid rotation Idrisy et al. (2015). These ranges almost translate to surface magnetic fields of the order 10111015superscript1011superscript101510^{11}-10^{15}10 start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT G. We also restrict saturation amplitude to values between [107,101]superscript107superscript101[10^{-7},10^{-1}][ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ], which is consistent with current numerical simulations Arras et al. (2003); Bondarescu et al. (2009). For each iteration we draw Iin,fin,f˙in,nin,subscript𝐼insubscript𝑓insubscript˙𝑓insubscript𝑛inI_{\rm in},f_{\rm in},\dot{f}_{\rm in},n_{\rm in},italic_I start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , over˙ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_n start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , and cos(ι)in{\cos(\iota)}_{\rm in}roman_cos ( italic_ι ) start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT from a uniform distribution, calculate hinsubscriptinh_{\rm in}italic_h start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT via Eq (22) and then use it to calculate αinsubscript𝛼in\alpha_{\rm in}italic_α start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT, and mpinsubscriptsubscript𝑚𝑝in{m_{p}}_{\rm in}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT via Eq (21) and Eq (23).

IV.1.2 Output Parameters

Post choosing values for the input parameters, we convert α𝛼\alphaitalic_α into estimates of αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT by using Eq (24) and fiducial values for M=1.4M𝑀1.4subscript𝑀direct-productM=1.4M_{\odot}italic_M = 1.4 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, R=(5Iin/2M)1/2𝑅superscript5subscript𝐼in2𝑀12R=(5I_{\rm in}/2M)^{1/2}italic_R = ( 5 italic_I start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT / 2 italic_M ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT and J~=0.01635~𝐽0.01635\tilde{J}=0.01635over~ start_ARG italic_J end_ARG = 0.01635 (Owen et al., 1998). The output parameters hout,fout,f˙out,subscriptoutsubscript𝑓outsubscript˙𝑓outh_{\rm out},f_{\rm out},\dot{f}_{\rm out},italic_h start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT , over˙ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT , and f¨outsubscript¨𝑓out\ddot{f}_{\rm out}over¨ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT are then calculated via Eq (40). The output braking index noutsubscript𝑛outn_{\rm out}italic_n start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT is then calculated using Eq (5). We ignore cases where αs[108,101]subscript𝛼𝑠superscript108superscript101\alpha_{s}\not\in[10^{-8},10^{-1}]italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∉ [ 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ] and nout[3,7]subscript𝑛out37n_{\rm out}\not\in[3,7]italic_n start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT ∉ [ 3 , 7 ]. The condition on noutsubscript𝑛outn_{\rm out}italic_n start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT is required for the calculation of (Iout,αout,mpoutsubscript𝐼outsubscript𝛼outsubscriptsubscript𝑚𝑝outI_{\rm out},\alpha_{\rm out},{m_{p}}_{\rm out}italic_I start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT) and only a small fraction of the data is lost ( 1%similar-toabsentpercent1\sim 1\%∼ 1 %), for observation time greater than a year. Due to the restriction on αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, we lose around 8% to 16% of data as ninsubscript𝑛inn_{\rm in}italic_n start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT increases from 3333 to 7777. This is due to an increase in the number of cases where αs>101subscript𝛼𝑠superscript101\alpha_{s}>10^{-1}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT > 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT as ninsubscript𝑛inn_{\rm in}italic_n start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT is close to 7777. Although a significant chunk of data is lost, we still obtain key quantitative trends (section [V]).

To compare the output and input parameters we use the median relative error:

ϵ(P)median{|PoutPin|Pin|withP{I,mp,α,r}},italic-ϵ𝑃medianconditionalsubscript𝑃outsubscript𝑃insubscript𝑃inwith𝑃𝐼subscript𝑚𝑝𝛼𝑟\epsilon(P)\equiv\operatorname{median}\left\{\left.\frac{\left|P_{\text{out}}-% P_{\text{in}}\right|}{P_{\text{in}}}\right|\,\,\text{with}\,\,P\in\{I,m_{p},% \alpha,r\}\right\},italic_ϵ ( italic_P ) ≡ roman_median { divide start_ARG | italic_P start_POSTSUBSCRIPT out end_POSTSUBSCRIPT - italic_P start_POSTSUBSCRIPT in end_POSTSUBSCRIPT | end_ARG start_ARG italic_P start_POSTSUBSCRIPT in end_POSTSUBSCRIPT end_ARG | with italic_P ∈ { italic_I , italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_α , italic_r } } , (42)

following Lu et al. (2023). For framework 1, we also normalise the error of (I,mp,α𝐼subscript𝑚𝑝𝛼I,m_{p},\alphaitalic_I , italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_α) by the median error in the distance (ϵ(r)0.135italic-ϵ𝑟0.135\epsilon(r)\approx 0.135italic_ϵ ( italic_r ) ≈ 0.135) Lu et al. (2023):

ϵ~(I)=ϵ(I)2ϵ(r),ϵ~(α)=ϵ(α)ϵ(r),ϵ~(mp)=ϵ(mp)ϵ(r).formulae-sequence~italic-ϵ𝐼italic-ϵ𝐼2italic-ϵ𝑟formulae-sequence~italic-ϵ𝛼italic-ϵ𝛼italic-ϵ𝑟~italic-ϵsubscript𝑚𝑝italic-ϵsubscript𝑚𝑝italic-ϵ𝑟\tilde{\epsilon}(I)=\frac{\epsilon(I)}{2\epsilon(r)},\quad\tilde{\epsilon}(% \alpha)=\frac{\epsilon(\alpha)}{\epsilon(r)},\quad\tilde{\epsilon}(m_{p})=% \frac{\epsilon(m_{p})}{\epsilon(r)}.over~ start_ARG italic_ϵ end_ARG ( italic_I ) = divide start_ARG italic_ϵ ( italic_I ) end_ARG start_ARG 2 italic_ϵ ( italic_r ) end_ARG , over~ start_ARG italic_ϵ end_ARG ( italic_α ) = divide start_ARG italic_ϵ ( italic_α ) end_ARG start_ARG italic_ϵ ( italic_r ) end_ARG , over~ start_ARG italic_ϵ end_ARG ( italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) = divide start_ARG italic_ϵ ( italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) end_ARG start_ARG italic_ϵ ( italic_r ) end_ARG . (43)

IV.2 Framework 2

In this section, we discuss how we modify the Monte Carlo simulation for the second framework. Unlike the previous section, this framework depends on the choice of an equation of state of the star and is only relevant for targeted narrow-band searches.

The key parameters required for inference in this case are h0,f,f˙,n,subscript0𝑓˙𝑓𝑛h_{0},f,\dot{f},n,italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_f , over˙ start_ARG italic_f end_ARG , italic_n , and κ𝜅\kappaitalic_κ and their errors depend on 𝒟,T,ι,h0,𝒟𝑇𝜄subscript0\mathcal{D},T,\iota,h_{0},caligraphic_D , italic_T , italic_ι , italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , and ΔfrotΔsubscript𝑓𝑟𝑜𝑡\Delta f_{rot}roman_Δ italic_f start_POSTSUBSCRIPT italic_r italic_o italic_t end_POSTSUBSCRIPT. Here ΔfrotΔsubscript𝑓𝑟𝑜𝑡\Delta f_{rot}roman_Δ italic_f start_POSTSUBSCRIPT italic_r italic_o italic_t end_POSTSUBSCRIPT refers to the measurement error in the neutron star’s rotation frequency from electromagnetic measurements. In this case, we directly input values of h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, as we can’t directly input values of any inherent neutron star properties. The 9 input parameters are then fin,f˙in,f¨in,h0in,κin,Tin,𝒟in,cos(ι)inf_{\rm in},\dot{f}_{\rm in},\ddot{f}_{\rm in},{h_{0}}_{\rm in},\kappa_{\rm in}% ,T_{\rm in},\mathcal{D}_{\rm in},\cos(\iota)_{\rm in}italic_f start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , over˙ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , over¨ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_κ start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_T start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , caligraphic_D start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , roman_cos ( italic_ι ) start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT, and ΔfrotΔsubscript𝑓𝑟𝑜𝑡\Delta f_{rot}roman_Δ italic_f start_POSTSUBSCRIPT italic_r italic_o italic_t end_POSTSUBSCRIPT, using which we calculate the normalised moment of inertia I¯¯𝐼\bar{I}over¯ start_ARG italic_I end_ARG via Eq (34). An equation of state is then assumed to calculate the input properties Iin,rin,αin,subscript𝐼insubscript𝑟insubscript𝛼inI_{\rm in},r_{\rm in},\alpha_{\rm in},italic_I start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , and mpinsubscriptsubscript𝑚𝑝in{m_{p}}_{\rm in}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT via Eq’s (21) - (23). We then calculate the output parameters similar to section IV.1 and this is iterated 105superscript10510^{5}10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT times (An order less than the previous case due to computational cost).

IV.2.1 Choice of input parameters

Now we discuss the choice of the ranges/values of the input parameters mentioned above. We consider a similar observation time to the previous case. A range of [10251027]delimited-[]superscript1025superscript1027[10^{-25}-10^{-27}][ 10 start_POSTSUPERSCRIPT - 25 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 27 end_POSTSUPERSCRIPT ] is explored for h0insubscriptsubscript0in{h_{0}}_{\rm in}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT, as this range includes signals that current and future detectors can potentially detect on narrow band searches Abbott and Abbott (2022); Riles (2023). The range of h0insubscriptsubscript0in{h_{0}}_{\rm in}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT can be interpreted as a range in the input distance (rinsubscript𝑟inr_{\rm in}italic_r start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT) of the star since it is the sole parameter that depends on the strain amplitude (h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT). The value of κ𝜅\kappaitalic_κ is drawn from [0.45,0.60]0.450.60[0.45,0.60][ 0.45 , 0.60 ], based on theoretical considerations (Idrisy et al., 2015). We explore a sensitivity depth of 𝒟in=100subscript𝒟in100\mathcal{D}_{\rm in}=100caligraphic_D start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 100 Hz-1/2, which is reasonable for narrow-band searches Wette (2023); Dreissigacker et al. (2018). Similar to the previous case, cos(ι)𝜄\cos(\iota)roman_cos ( italic_ι ) is drawn from [0.9,0.9]0.90.9[-0.9,0.9][ - 0.9 , 0.9 ] and ninsubscript𝑛inn_{\rm in}italic_n start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT is drawn from [3,7]37[3,7][ 3 , 7 ]. The range of values assumed for finsubscript𝑓inf_{\rm in}italic_f start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT and f˙insubscript˙𝑓in\dot{f}_{\rm in}over˙ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT is given by:

fin=[30,500]Hz,f˙in=[108,1012]Hz s1,formulae-sequencesubscript𝑓in30500Hzsubscript˙𝑓insuperscript108superscript1012superscriptHz s1f_{\rm in}=[30,500]\,\,\text{Hz},\quad\dot{f}_{\rm in}=[-10^{-8},-10^{-12}]\,% \text{Hz s}^{-1},italic_f start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = [ 30 , 500 ] Hz , over˙ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = [ - 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT , - 10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT ] Hz s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , (44)

which is a smaller parameter space in f𝑓fitalic_f in comparison to the previous case, as the universal relation (Eq (34)) is only valid for slow rotations. We estimate the rotation frequency of the star from Eq (32) and assume a measurement error (ΔfrotΔsubscript𝑓𝑟𝑜𝑡\Delta f_{rot}roman_Δ italic_f start_POSTSUBSCRIPT italic_r italic_o italic_t end_POSTSUBSCRIPT) of 0.1%, although pulsar frequencies are measured with much higher accuracy Desvignes et al. (2016). These ranges almost translate to similar values of magnetic field and saturation amplitude as found in section IV.1. For each iteration we draw (κin,h0in,fin,f˙in,nin,cos(ι)in\kappa_{\rm in},{h_{0}}_{\rm in},f_{\rm in},\dot{f}_{\rm in},n_{\rm in},{\cos(% \iota)}_{\rm in}italic_κ start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , over˙ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_n start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , roman_cos ( italic_ι ) start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT) from a uniform distribution, calculate I¯insubscript¯𝐼in\bar{I}_{\rm in}over¯ start_ARG italic_I end_ARG start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT via Eq (34) and then use it to calculate (rin,Iin,αin,mpinsubscript𝑟insubscript𝐼insubscript𝛼insubscriptsubscript𝑚𝑝inr_{\rm in},I_{\rm in},\alpha_{\rm in},{m_{p}}_{\rm in}italic_r start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_I start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT). Note that one can estimate M𝑀Mitalic_M and R𝑅Ritalic_R from I¯¯𝐼\bar{I}over¯ start_ARG italic_I end_ARG and thus calculate the saturation amplitude αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT directly. This is used to ignore the cases where the saturation amplitude is not within [107,101]superscript107superscript101[10^{-7},10^{-1}][ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ].

Refer to caption
Figure 1: Moment of inertia (I𝐼Iitalic_I) as a function of κ𝜅\kappaitalic_κ for the BSR4 equation of state.

In this work, we use the BSR4 (Dhiman et al. (2007); Nandi and Pal (2021)) equation of state to calculate the moment of inertia via the RNS code Nozawa et al. (1998). Figure 1 shows the dependence of moment of inertia as a function of κ𝜅\kappaitalic_κ for the BSR4 equation of state. This dependency is calculated by varying the central density to match the normalised moment of inertia for each κ𝜅\kappaitalic_κ value. Check Ghosh (2023) to see how this dependence varies for other realistic equations of state.

IV.2.2 Output parameters

Similar to section IV.1, we ignore cases where αs[108,101]subscript𝛼𝑠superscript108superscript101\alpha_{s}\not\in[10^{-8},10^{-1}]italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∉ [ 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ] and nout[3,7]subscript𝑛𝑜𝑢𝑡37n_{out}\not\in[3,7]italic_n start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT ∉ [ 3 , 7 ]. Due to this, we again lose around 8% to 16% of data as ninsubscript𝑛𝑖𝑛n_{in}italic_n start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT increases from 3333 to 7777. We again use the median relative error (Eq (42)) to compare the input and output parameters, but we don’t normalise the error with the 0.1% error assumed for the rotational frequency. This is because the error depends on other input parameters, as T𝑇T\to\inftyitalic_T → ∞:

limTσ(I¯)I¯subscript𝑇𝜎¯𝐼¯𝐼\displaystyle\lim_{T\to\infty}\frac{\sigma(\bar{I})}{\bar{I}}roman_lim start_POSTSUBSCRIPT italic_T → ∞ end_POSTSUBSCRIPT divide start_ARG italic_σ ( over¯ start_ARG italic_I end_ARG ) end_ARG start_ARG over¯ start_ARG italic_I end_ARG end_ARG =\displaystyle== 1C(0.831C1+0.420C2+9.525×103C31.087×103C4)ffrotσ(frot)(0.478+2.22C).1𝐶0.831superscript𝐶10.420superscript𝐶29.525superscript103superscript𝐶31.087superscript103superscript𝐶4𝑓subscript𝑓rot𝜎subscript𝑓rot0.4782.22𝐶\displaystyle\frac{1}{C}\left(0.831C^{-1}+0.420C^{-2}+9.525\times 10^{-3}C^{-3% }-1.087\times 10^{-3}C^{-4}\right)\frac{f}{f_{\text{rot}}}\frac{\sigma(f_{% \text{rot}})}{(0.478+2.22C)}\,.divide start_ARG 1 end_ARG start_ARG italic_C end_ARG ( 0.831 italic_C start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + 0.420 italic_C start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT + 9.525 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_C start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT - 1.087 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_C start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT ) divide start_ARG italic_f end_ARG start_ARG italic_f start_POSTSUBSCRIPT rot end_POSTSUBSCRIPT end_ARG divide start_ARG italic_σ ( italic_f start_POSTSUBSCRIPT rot end_POSTSUBSCRIPT ) end_ARG start_ARG ( 0.478 + 2.22 italic_C ) end_ARG .

V Results

Refer to caption
Figure 2: Inference via framework 1: (Iout,αsout,mpoutsubscript𝐼outsubscriptsubscript𝛼𝑠outsubscriptsubscript𝑚𝑝outI_{\rm out},{{\alpha_{s}}_{\rm out}},{m_{p}}_{\rm out}italic_I start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT) converges to (Iin,αsin,mpinsubscript𝐼insubscriptsubscript𝛼𝑠insubscriptsubscript𝑚𝑝inI_{\rm in},{{\alpha_{s}}_{\rm in}},{m_{p}}_{\rm in}italic_I start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT) with increase in observation time. Here the input parameters are f=300𝑓300f=300italic_f = 300 Hz , f˙=109˙𝑓superscript109\dot{f}=-10^{-9}over˙ start_ARG italic_f end_ARG = - 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT Hz s-1, n=3.1𝑛3.1n=3.1italic_n = 3.1, 𝒟=30𝒟30\mathcal{D}=30caligraphic_D = 30 Hz-1/2, cos(ι)=0𝜄0\cos(\iota)=0roman_cos ( italic_ι ) = 0 and I=2×1038𝐼2superscript1038I=2\times 10^{38}italic_I = 2 × 10 start_POSTSUPERSCRIPT 38 end_POSTSUPERSCRIPT kg-m2. We convert the value of α𝛼\alphaitalic_α into fiducial estimates of αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT by setting M=1.4M𝑀1.4subscript𝑀direct-productM=1.4M_{\odot}italic_M = 1.4 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, J~=0.01635~𝐽0.01635\tilde{J}=0.01635over~ start_ARG italic_J end_ARG = 0.01635 and R=5I/2M𝑅5𝐼2𝑀R=\sqrt{5I/2M}italic_R = square-root start_ARG 5 italic_I / 2 italic_M end_ARG.

In this section, we present the results of the Monte Carlo error estimation study mentioned in section IV. We analyse the dependence of errors on various factors like observation time and breaking index and, also present a comparative analysis between both frameworks.

Refer to caption
Figure 3: Inference via framework 1: Normalised relative errors (ϵ~~italic-ϵ\tilde{\epsilon}over~ start_ARG italic_ϵ end_ARG) as a function of the braking index n𝑛nitalic_n post-down-sampling. Here the input parameters are f=300𝑓300f=300italic_f = 300 Hz , f˙=109˙𝑓superscript109\dot{f}=-10^{-9}over˙ start_ARG italic_f end_ARG = - 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT Hz s-1, T=1𝑇1T=1italic_T = 1 year, 𝒟=30𝒟30\mathcal{D}=30caligraphic_D = 30 Hz-1/2, cos(ι)=0𝜄0\cos(\iota)=0roman_cos ( italic_ι ) = 0 and I=2×1038𝐼2superscript1038I=2\times 10^{38}italic_I = 2 × 10 start_POSTSUPERSCRIPT 38 end_POSTSUPERSCRIPT Kg-m2.

Unlike Lu et al. (2023), the errors inferred via the first framework are dominated by the error in distance for even an observation time of T=0.5𝑇0.5T=0.5italic_T = 0.5 years. This feature is seen for all values of the braking index except close to the extremes (3333 or 7777). Figure 2 shows how the neutron star properties inferred via the first framework, converge to their actual values as observation time increases for n=3.1𝑛3.1n=3.1italic_n = 3.1. The input values for the parameters are I=2×1038𝐼2superscript1038I=2\times 10^{38}italic_I = 2 × 10 start_POSTSUPERSCRIPT 38 end_POSTSUPERSCRIPT Kg-m2 , α=3.69×1037𝛼3.69superscript1037\alpha=3.69\times 10^{37}italic_α = 3.69 × 10 start_POSTSUPERSCRIPT 37 end_POSTSUPERSCRIPT ( converted into fiducial estimates: αs=3.37×104subscript𝛼𝑠3.37superscript104\alpha_{s}=3.37\times 10^{-4}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 3.37 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT) and mp=1.27×1020subscript𝑚𝑝1.27superscript1020m_{p}=1.27\times 10^{20}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = 1.27 × 10 start_POSTSUPERSCRIPT 20 end_POSTSUPERSCRIPT Tesla-m2. As expected from theoretical considerations (Eqs (26) - (31)), the errors in the parameters (I,mp𝐼subscript𝑚𝑝I,m_{p}italic_I , italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT) decrease with observation time and for T>1𝑇1T>1italic_T > 1 years we see the error saturates to the error in the distance measurement. We do not observe this pattern for alpha (α𝛼\alphaitalic_α) as it is independent of the breaking index and the error in the distance measurement dominates the error in alpha even for an observation time of T=0.5𝑇0.5T=0.5italic_T = 0.5 years. We can check this by substituting all the assumed input parameters in Eq (26):

σ(α)2α2𝜎superscript𝛼2superscript𝛼2\displaystyle\frac{\sigma(\alpha)^{2}}{\alpha^{2}}divide start_ARG italic_σ ( italic_α ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG =\displaystyle== σ(r)2r2+σ(h0)2h02+16875𝒟216π2f2T3𝜎superscript𝑟2superscript𝑟2𝜎superscriptsubscript02superscriptsubscript0216875superscript𝒟216superscript𝜋2superscript𝑓2superscript𝑇3\displaystyle\frac{\sigma(r)^{2}}{r^{2}}+\frac{\sigma(h_{0})^{2}}{h_{0}^{2}}+% \frac{16875\mathcal{D}^{2}}{16\pi^{2}f^{2}T^{3}}divide start_ARG italic_σ ( italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG italic_σ ( italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 16875 caligraphic_D start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 16 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG (45)
=\displaystyle== 0.04+0.0025+2.75×1022,0.040.00252.75superscript1022\displaystyle 0.04+0.0025+2.75\times 10^{-22}\,,0.04 + 0.0025 + 2.75 × 10 start_POSTSUPERSCRIPT - 22 end_POSTSUPERSCRIPT ,

where the observation time is T=0.5𝑇0.5T=0.5italic_T = 0.5 years.

Figure 3 shows the dependence of normalised relative errors (ϵ~~italic-ϵ\tilde{\epsilon}over~ start_ARG italic_ϵ end_ARG) on the neutron star’s braking index (n𝑛nitalic_n), where signals are inferred via the first framework. It is for signals with fin=300subscript𝑓in300f_{\rm in}=300italic_f start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 300 Hz, f˙in=109subscript˙𝑓insuperscript109\dot{f}_{\rm in}=-10^{-9}over˙ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = - 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT Hz s-1, Tin=1subscript𝑇in1T_{\rm in}=1italic_T start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 1 year, 𝒟in=30subscript𝒟in30\mathcal{D}_{\rm in}=30caligraphic_D start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 30 Hz-1/2, and Iinsubscript𝐼inI_{\rm in}italic_I start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 2×10382superscript10382\times 10^{38}2 × 10 start_POSTSUPERSCRIPT 38 end_POSTSUPERSCRIPT Kg-m2. The moment of inertia (I𝐼Iitalic_I) is best estimated at (n7𝑛7n\approx 7italic_n ≈ 7), where the spin-down is caused mostly due to gravitational waves. The perpendicular component of the dipole moment is estimated with the best accuracy when the spin-down is caused by both electromagnetic radiation and gravitational waves. As expected, the median error in the parameter alpha (α𝛼\alphaitalic_α) does not depend on the breaking index.

Refer to caption
Figure 4: Inference via framework 2 : Relative errors (ϵitalic-ϵ\epsilonitalic_ϵ) as a function of braking index n𝑛nitalic_n post-down-sampling. Here the input parameters are h0=1×1026subscript01superscript1026h_{0}=1\times 10^{-26}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 1 × 10 start_POSTSUPERSCRIPT - 26 end_POSTSUPERSCRIPT, f=300𝑓300f=300italic_f = 300 Hz , f˙=109˙𝑓superscript109\dot{f}=-10^{-9}over˙ start_ARG italic_f end_ARG = - 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT Hz s-1, T=1𝑇1T=1italic_T = 1 year, 𝒟=100𝒟100\mathcal{D}=100caligraphic_D = 100 Hz-1/2, cos(ι)=0𝜄0\cos(\iota)=0roman_cos ( italic_ι ) = 0 and κ=0.56𝜅0.56\kappa=0.56italic_κ = 0.56.

Figure 4 shows the sharp contrast in the dependence of median errors (ϵitalic-ϵ\epsilonitalic_ϵ) on the breaking index (n𝑛nitalic_n) when we infer parameters via the second framework. This is shown for signals with h0in=1×1026subscriptsubscript0in1superscript1026{h_{0}}_{\rm in}=1\times 10^{-26}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 1 × 10 start_POSTSUPERSCRIPT - 26 end_POSTSUPERSCRIPT, fin=300subscript𝑓in300f_{\rm in}=300italic_f start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 300 Hz, f˙in=109subscript˙𝑓insuperscript109\dot{f}_{\rm in}=-10^{-9}over˙ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = - 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT Hz s-1 , Tin=1subscript𝑇in1T_{\rm in}=1italic_T start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 1 year, 𝒟in=100subscript𝒟in100\mathcal{D}_{\rm in}=100caligraphic_D start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 100 Hz-1/2, and κin=0.56subscript𝜅in0.56\kappa_{\rm in}=0.56italic_κ start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 0.56 (which implies Iin2×1038subscript𝐼in2superscript1038I_{\rm in}\approx 2\times 10^{38}italic_I start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT ≈ 2 × 10 start_POSTSUPERSCRIPT 38 end_POSTSUPERSCRIPT Kg-m2). In this framework, the moment of inertia is independent of the breaking index as it is directly inferred from the frequency of the signal. The distance of the star (r𝑟ritalic_r) and the parameter α𝛼\alphaitalic_α are best estimated at n7𝑛7n\approx 7italic_n ≈ 7, and the perpendicular component of the dipole moment can be best estimated at around n3𝑛3n\approx 3italic_n ≈ 3. We also observe the median error in distance saturates at a greater value than other parameters as it is the only parameter that directly depends on the strain amplitude (h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT). For inference via the second framework, the median errors in α𝛼\alphaitalic_α can be interpreted as median errors in αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, as one can directly estimate (αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT) in this framework (Section IV.2.2).

Refer to caption
Figure 5: Inference via framework 2: (rout,αoutsubscript𝑟outsubscript𝛼outr_{\rm out},\alpha_{\rm out}italic_r start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT) converges to (rout,αoutsubscript𝑟outsubscript𝛼outr_{\rm out},\alpha_{\rm out}italic_r start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT). Here the inputs are h0in=1×1026subscriptsubscript0in1superscript1026{h_{0}}_{\rm in}=1\times 10^{-26}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 1 × 10 start_POSTSUPERSCRIPT - 26 end_POSTSUPERSCRIPT, f=300𝑓300f=300italic_f = 300 Hz , f˙=109˙𝑓superscript109\dot{f}=-10^{-9}over˙ start_ARG italic_f end_ARG = - 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT Hz s-1, n=3.1𝑛3.1n=3.1italic_n = 3.1, 𝒟=100𝒟100\mathcal{D}=100caligraphic_D = 100 Hz-1/2, cos(ι)=0𝜄0\cos(\iota)=0roman_cos ( italic_ι ) = 0 and κ=0.56𝜅0.56\kappa=0.56italic_κ = 0.56.

In figure 5, we show the convergence of (rout,αsoutsubscript𝑟outsubscriptsubscript𝛼𝑠outr_{\rm out},{\alpha_{s}}_{\rm out}italic_r start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT) to (rin,αsinsubscript𝑟insubscriptsubscript𝛼𝑠inr_{\rm in},{\alpha_{s}}_{\rm in}italic_r start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT , italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT) for signals with h0=1×1026subscript01superscript1026h_{0}=1\times 10^{-26}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 1 × 10 start_POSTSUPERSCRIPT - 26 end_POSTSUPERSCRIPT, fin=300subscript𝑓in300f_{\rm in}=300italic_f start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 300 Hz , f˙in=109subscript˙𝑓insuperscript109\dot{f}_{\rm in}=-10^{-9}over˙ start_ARG italic_f end_ARG start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = - 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT Hz s-1, ninsubscript𝑛inn_{\rm in}italic_n start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 3.1, 𝒟in=100subscript𝒟in100\mathcal{D}_{\rm in}=100caligraphic_D start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 100 Hz-1/2, cos(ι)in=0\cos(\iota)_{\rm in}=0roman_cos ( italic_ι ) start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 0 and κin=0.56subscript𝜅in0.56\kappa_{\rm in}=0.56italic_κ start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT = 0.56. We observe the expected convergence of the parameters with the increase in observation time. The parameter αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT saturates at an observation time of T>2𝑇2T>2italic_T > 2 years due to the 0.1% error in the rotation frequency. In comparison, the distance measurement is dominated by the error in h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT even for T>4𝑇4T>4italic_T > 4 years.

Refer to caption
(a) n=3.01𝑛3.01n=3.01italic_n = 3.01
Refer to caption
(b) n=3.1𝑛3.1n=3.1italic_n = 3.1
Refer to caption
(c) n=6.99𝑛6.99n=6.99italic_n = 6.99
Figure 6: Inference via framework 1: normalised relative errors ϵ~(I)~italic-ϵ𝐼\tilde{\epsilon}(I)over~ start_ARG italic_ϵ end_ARG ( italic_I ), ϵ~(α)~italic-ϵ𝛼\tilde{\epsilon}(\alpha)over~ start_ARG italic_ϵ end_ARG ( italic_α ), ϵ~(mp)~italic-ϵsubscript𝑚𝑝\tilde{\epsilon}(m_{p})over~ start_ARG italic_ϵ end_ARG ( italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ), for braking index n=3.01, 3.1, 6.99𝑛3.013.16.99n=3.01,\,3.1,\,6.99italic_n = 3.01 , 3.1 , 6.99, as function of frequency (f𝑓fitalic_f) and it’s derivative (f˙˙𝑓\dot{f}over˙ start_ARG italic_f end_ARG). Plotted are median errors for T=1𝑇1T=1italic_T = 1 year and 𝒟=30𝒟30\mathcal{D}=30caligraphic_D = 30 Hz-1/2. The white areas indicate regions where ϵ~>30~italic-ϵ30\tilde{\epsilon}>30over~ start_ARG italic_ϵ end_ARG > 30 or nout[3,7]subscript𝑛out37n_{\rm out}\not\in[3,7]italic_n start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT ∉ [ 3 , 7 ] or αs[106,101]subscript𝛼𝑠superscript106superscript101\alpha_{s}\not\in[10^{-6},10^{-1}]italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∉ [ 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ]. We used a total of 106superscript10610^{6}10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT points.

Figure 6 shows the normalised relative errors ϵ~(I)~italic-ϵ𝐼\tilde{\epsilon}(I)over~ start_ARG italic_ϵ end_ARG ( italic_I ), ϵ~(α)~italic-ϵ𝛼\tilde{\epsilon}(\alpha)over~ start_ARG italic_ϵ end_ARG ( italic_α ), ϵ~(mp)~italic-ϵsubscript𝑚𝑝\tilde{\epsilon}(m_{p})over~ start_ARG italic_ϵ end_ARG ( italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) as function of frequency (f𝑓fitalic_f) and it’s derivative (f˙˙𝑓\dot{f}over˙ start_ARG italic_f end_ARG), for three values of braking index. The median errors are for parameters inferred via the first framework and have been taken over the sampled region of I𝐼Iitalic_I and cos(ι)𝜄\cos(\iota)roman_cos ( italic_ι ) mentioned in section IV.1.1. These errors are for signals with an observation time of T=1𝑇1T=1italic_T = 1 year and detected with 𝒟=30Hz1/2𝒟30𝐻superscript𝑧12\mathcal{D}=30Hz^{-1/2}caligraphic_D = 30 italic_H italic_z start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT, which is relevant for a signal detected in an all-sky search.

Refer to caption
(a) n=3.01𝑛3.01n=3.01italic_n = 3.01
Refer to caption
(b) n=4.0𝑛4.0n=4.0italic_n = 4.0
Refer to caption
(c) n=6.99𝑛6.99n=6.99italic_n = 6.99
Figure 7: Inference via framework 2: Relative errors ϵ~(I)~italic-ϵ𝐼\tilde{\epsilon}(I)over~ start_ARG italic_ϵ end_ARG ( italic_I ), ϵ~(α)~italic-ϵ𝛼\tilde{\epsilon}(\alpha)over~ start_ARG italic_ϵ end_ARG ( italic_α ), ϵ~(mp)~italic-ϵsubscript𝑚𝑝\tilde{\epsilon}(m_{p})over~ start_ARG italic_ϵ end_ARG ( italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ), for braking index n=3.01,4,6.99𝑛3.0146.99n=3.01,4,6.99italic_n = 3.01 , 4 , 6.99, as function of frequency (f𝑓fitalic_f) and it’s derivative (f˙˙𝑓\dot{f}over˙ start_ARG italic_f end_ARG). Plotted are median errors for T=1𝑇1T=1italic_T = 1 year and 𝒟=100𝒟100\mathcal{D}=100caligraphic_D = 100 Hz-1/2. The white areas indicate regions where ϵ>10italic-ϵ10\epsilon>10italic_ϵ > 10 or nout[3,7]subscript𝑛𝑜𝑢𝑡37n_{out}\not\in[3,7]italic_n start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT ∉ [ 3 , 7 ] or αs[106,101]subscript𝛼𝑠superscript106superscript101\alpha_{s}\not\in[10^{-6},10^{-1}]italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∉ [ 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ]. Here we have used 105superscript10510^{5}10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT points.

In figure 7 we plot the relative errors ϵ(r)italic-ϵ𝑟\epsilon(r)italic_ϵ ( italic_r ), ϵ(α)italic-ϵ𝛼\epsilon(\alpha)italic_ϵ ( italic_α ), ϵ(mp)italic-ϵsubscript𝑚𝑝\epsilon(m_{p})italic_ϵ ( italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) (ϵ(I)italic-ϵ𝐼\epsilon(I)italic_ϵ ( italic_I ) is not shown) as function of braking index (n𝑛nitalic_n), frequency (f𝑓fitalic_f) and it’s derivative (f˙˙𝑓\dot{f}over˙ start_ARG italic_f end_ARG), for parameters inferred via the second framework. As mentioned earlier ϵ(α)ϵ(αs)italic-ϵ𝛼italic-ϵsubscript𝛼𝑠\epsilon(\alpha)\equiv\epsilon(\alpha_{s})italic_ϵ ( italic_α ) ≡ italic_ϵ ( italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ). These median errors are also taken over the sampled region of h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and cos(ι)𝜄\cos(\iota)roman_cos ( italic_ι ) mentioned in section IV.2.1. These errors are for signals with an observation time of T=1𝑇1T=1italic_T = 1 year and detected with 𝒟=100𝒟100\mathcal{D}=100caligraphic_D = 100 Hz-1/2, which is relevant for a signal detected in a narrow band search.

Both fig 6 and fig 7 show that the errors in all inferred properties are minimum for high spin-down rates (f˙108˙𝑓superscript108\dot{f}\approx-10^{-8}over˙ start_ARG italic_f end_ARG ≈ - 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT Hz s-1 and low frequency (f100𝑓100f\approx 100italic_f ≈ 100 Hz ). For stars which are spinning down slowly (f˙<1011˙𝑓superscript1011\dot{f}<-10^{-11}over˙ start_ARG italic_f end_ARG < - 10 start_POSTSUPERSCRIPT - 11 end_POSTSUPERSCRIPT), the errors are so high that the condition 3<nout<73subscript𝑛out73<n_{\rm out}<73 < italic_n start_POSTSUBSCRIPT roman_out end_POSTSUBSCRIPT < 7 cannot be satisfied. These features that are common among both frameworks are also the case for signals produced due to mountains on a neutron star and when an inference strategy similar to the first framework is used (Lu et al., 2023). In addition, we identify a white region characterized by low frequencies (f<100Hz𝑓100𝐻𝑧f<100Hzitalic_f < 100 italic_H italic_z) and high spin-down rates (f˙>109˙𝑓superscript109\dot{f}>-10^{-9}over˙ start_ARG italic_f end_ARG > - 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT Hz s-1), whose size is minimal for n3𝑛3n\approx 3italic_n ≈ 3 but gets larger as n7𝑛7n\approx 7italic_n ≈ 7. This region corresponds to instances where the condition [αsin<101]delimited-[]subscriptsubscript𝛼𝑠insuperscript101[{\alpha_{s}}_{\text{in}}<10^{-1}][ italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUBSCRIPT in end_POSTSUBSCRIPT < 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ] is not met.

Fig 6 also suggests that a normalised relative error ϵ~1.2~italic-ϵ1.2\tilde{\epsilon}\leq 1.2over~ start_ARG italic_ϵ end_ARG ≤ 1.2 can be achieved for most of the parameter space (f,f˙𝑓˙𝑓f,\dot{f}italic_f , over˙ start_ARG italic_f end_ARG) for all sky searches. This implies (via Eqn (43)) an error of 32% in I𝐼Iitalic_I and a 16% error in α𝛼\alphaitalic_α and mpsubscript𝑚𝑝m_{p}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT. The errors in α𝛼\alphaitalic_α are sufficiently small that converting the measured α𝛼\alphaitalic_α into fiducial estimates of αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT (as mentioned in section IV.1.2) would provide valuable insights into the damping mechanisms that limit the growth of the r-modes (Arras et al. (2003); Bondarescu et al. (2009, 2007); Alford and Schwenzer (2014)). On the other hand, Fig 7 shows that framework 2 leads to much lower errors due to the high accuracy in pulsar frequency measurements. An error of 16% can be achieved in distance measurements which is comparable to electromagnetic observations (Taylor and Cordes, 1993). We also note a sufficiently low error of at least 2%percent22\%2 % for I𝐼Iitalic_I and at least 1%percent11\%1 % for both α𝛼\alphaitalic_α and mpsubscript𝑚𝑝m_{p}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT (refer to Fig. 7), achievable with a sufficiently high spin-down rate. This is because the errors displayed in all properties, except the distance, do not directly depend on the strength h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT of the detected signal (as we have assumed 𝒟=100𝒟100\mathcal{D}=100caligraphic_D = 100 Hz1212{}^{\frac{1}{2}}start_FLOATSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_FLOATSUPERSCRIPT). However, this approach comes with the drawback of assuming a specific equation of state and works only for slowly rotating neutron stars. check VI.2 for the potential effects of magnetic field on this analysis.

VI Discussion and Conclusion

VI.1 Summary

In this article, we present an analysis similar to Lu et al. (2023) of what properties can be inferred from neutron stars that radiate electromagnetic waves and detectable continuous gravitational waves produced by r-mode oscillations. We investigate two different frameworks. In the first framework, we assume the distance of the star is measured via electromagnetic observations with 20% accuracy. We then infer three neutron star properties: its principal moment of inertia (I𝐼Iitalic_I), the component of magnetic dipole moment perpendicular to the rotation axis (mpsubscript𝑚𝑝m_{p}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT), and a parameter (α𝛼\alphaitalic_α) which is related to the saturation amplitude by α=αsMR3J~𝛼subscript𝛼𝑠𝑀superscript𝑅3~𝐽\alpha=\alpha_{s}MR^{3}\tilde{J}italic_α = italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_M italic_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT over~ start_ARG italic_J end_ARG. Unlike the signals produced due to mountains, for narrow-band searches, the signals due to r-mode oscillations give us information on an additional parameter (κ𝜅\kappaitalic_κ) which satisfies universal relations with the compactness of the star (Ghosh et al., 2023; Idrisy et al., 2015). In the second framework, we use this and the IC𝐼𝐶I-Citalic_I - italic_C universal relations to directly measure the distance (r𝑟ritalic_r) of the neutron star, along with the three parameters mentioned above. We then use a simple Fisher information matrix-based approach to present a quantitative error estimation study for parameters inferred via both frameworks.

Refer to caption
(a) n=4.0𝑛4.0n=4.0italic_n = 4.0
Refer to caption
(b) n=6.99𝑛6.99n=6.99italic_n = 6.99
Figure 8: Inference via framework 2: Relative errors ϵ~(I)~italic-ϵ𝐼\tilde{\epsilon}(I)over~ start_ARG italic_ϵ end_ARG ( italic_I ), ϵ~(α)~italic-ϵ𝛼\tilde{\epsilon}(\alpha)over~ start_ARG italic_ϵ end_ARG ( italic_α ), ϵ~(mp)~italic-ϵsubscript𝑚𝑝\tilde{\epsilon}(m_{p})over~ start_ARG italic_ϵ end_ARG ( italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ), for braking index n=4, 6.99𝑛46.99n=4,\,6.99italic_n = 4 , 6.99, as function of frequency (f𝑓fitalic_f) and its derivative (f˙˙𝑓\dot{f}over˙ start_ARG italic_f end_ARG). Plotted are median errors for T=1𝑇1T=1italic_T = 1 year and 𝒟=100 Hz1/2𝒟100superscript Hz12\mathcal{D}=100\text{ Hz}^{-1/2}caligraphic_D = 100 Hz start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT. The white areas indicate regions where ϵ>10italic-ϵ10\epsilon>10italic_ϵ > 10 or nout[3,7]subscript𝑛out37n_{\text{out}}\not\in[3,7]italic_n start_POSTSUBSCRIPT out end_POSTSUBSCRIPT ∉ [ 3 , 7 ] or αs[106,101]subscript𝛼𝑠superscript106superscript101\alpha_{s}\not\in[10^{-6},10^{-1}]italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∉ [ 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT , 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ], B<1012𝐵superscript1012B<10^{12}italic_B < 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT G, and a total of 105superscript10510^{5}10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT points was used.

Monte Carlo simulations typical for all-sky searches are done for the first framework, whereas simulations typical for narrow-band searches are done for the second framework. When inferring properties via the first framework, for detected signals with a year-long observation time (which could be higher depending on the detector duty cycle), it is possible to achieve an accuracy of 32% for I𝐼Iitalic_I and 16% for α𝛼\alphaitalic_α and mpsubscript𝑚𝑝m_{p}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT. On the other hand, for inference via the second framework under similar conditions, we observe a comparatively higher accuracy of 12%1percent21-2\%1 - 2 % or less is achievable for I𝐼Iitalic_I, α𝛼\alphaitalic_α, and mpsubscript𝑚𝑝m_{p}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, and 16% accuracy for r𝑟ritalic_r. A key drawback of this framework is that it requires an assumption of a neutron star equation of state and works only in the slow rotation limit. In contrast, no such requirements are needed for the first framework. The most accurate estimates are when the breaking index is in the region n[4,6]𝑛46n\in[4,6]italic_n ∈ [ 4 , 6 ], f𝑓fitalic_f is small, and f˙˙𝑓\dot{f}over˙ start_ARG italic_f end_ARG is large.

VI.2 Assumptions

In this section, we present further discussion on the key assumptions made in our analysis. Firstly, we assume that a supposed CGW detection can be identified as a signal due to r-mode oscillations. It might not be possible if the rotational frequency of the star is not known Jones (2022). In that case, only the value of the breaking index (n𝑛nitalic_n) can give us an idea of the spin-down mechanism. The CGW signal detected in an all-sky survey could also be due to more exotic sources (D’Antonio et al., 2018; Miller et al., 2022). However, a successful detection with the gravitational wave frequency (f43frot𝑓43subscript𝑓𝑟𝑜𝑡f\approx\frac{4}{3}f_{rot}italic_f ≈ divide start_ARG 4 end_ARG start_ARG 3 end_ARG italic_f start_POSTSUBSCRIPT italic_r italic_o italic_t end_POSTSUBSCRIPT) in targeted/narrow-band searches would strongly imply that the signal is produced by r-modes.

We assume that the spin-down of the star is due to dipolar magnetic field and r-mode oscillations. This leads to a breaking index of n[3,7]𝑛37n\in[3,7]italic_n ∈ [ 3 , 7 ], which is inconsistent with current observations (Lower et al., 2021). Recent NICER measurements also provide evidence for non-dipolar magnetic fields (Riley et al., 2021). Alternative spin-down mechanisms and complex magnetic field models consistent with current observations are still works in progress (Igoshev and Popov, 2020). Numerous factors other than relativistic effects, such as the magnetic field, influence the r-mode frequency (Chirenti and Skákala, 2013). However, we have ignored these factors due to their negligible effects (Idrisy et al., 2015). Additionally, it’s worth noting that r-modes themselves could potentially amplify the magnetic field (Friedman et al., 2017), a consideration which we have chosen to disregard. In this work, we also don’t consider stratification, which is shown to be important for realistic mature neutron stars (Gittins and Andersson, 2023).

The universal relations used in the second framework are valid only in a restricted parameter space. The κC𝜅𝐶\kappa-Citalic_κ - italic_C relation is valid only in the slow-rotation approximation (Ghosh et al., 2023) and has corrections of the order of (ffk)2superscript𝑓subscript𝑓𝑘2(\frac{f}{f_{k}})^{2}( divide start_ARG italic_f end_ARG start_ARG italic_f start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (Idrisy et al., 2015), where fksubscript𝑓𝑘f_{k}italic_f start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is the Kepler frequency. The I¯C¯𝐼𝐶\bar{I}-Cover¯ start_ARG italic_I end_ARG - italic_C relation is also not valid for rapidly rotating stars (Breu and Rezzolla, 2016) and must be affected by magnetic fields. Similar universal relations called the ”I-Love-Q” relation (Yagi and Yunes, 2013), have been shown to become EOS dependent for magnetic fields B>1012𝐵superscript1012B>10^{12}italic_B > 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPTG Haskell et al. (2014). Although to the best of our knowledge, no similar study exists for IC𝐼𝐶I-Citalic_I - italic_C relations used here, such a limit would further restrict the region where the second inference framework can be used. Figure 8 shows the effect of limiting to cases where B<1012𝐵superscript1012B<10^{12}italic_B < 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPTG. Only regions close to n7𝑛7n\approx 7italic_n ≈ 7 have a significant parameter space to estimate. This is mainly because the smaller the magnetic field and the braking index, the smaller the f˙˙𝑓\dot{f}over˙ start_ARG italic_f end_ARG. As shown in the results, for cases where |f˙|<1011˙𝑓superscript1011|\dot{f}|<10^{-11}| over˙ start_ARG italic_f end_ARG | < 10 start_POSTSUPERSCRIPT - 11 end_POSTSUPERSCRIPT, the condition 3<nout<73subscript𝑛𝑜𝑢𝑡73<n_{out}<73 < italic_n start_POSTSUBSCRIPT italic_o italic_u italic_t end_POSTSUBSCRIPT < 7 can not be satisfied.

Kindly note that one could have proceeded with a similar analysis to framework 2 without the I¯C¯𝐼𝐶\bar{I}-Cover¯ start_ARG italic_I end_ARG - italic_C relations. As the κC𝜅𝐶\kappa-Citalic_κ - italic_C relation and an EOS assumption, will give a moment of inertia estimate. In that case, the above-mentioned restriction of parameter space would not be an issue. We opted not to proceed this way as using I¯C¯𝐼𝐶\bar{I}-Cover¯ start_ARG italic_I end_ARG - italic_C relations has the potential to infer the moment of inertia directly and thus all the other parameters, without an assumption of EOS (Check VI.3).

VI.3 Mitigating Drawbacks: Potential Solutions.

In this section, we discuss the drawbacks of our work, propose potential solutions to address them and outline future directions for further improvement. The parameter α𝛼\alphaitalic_α (α=αsMR3J~𝛼subscript𝛼𝑠𝑀superscript𝑅3~𝐽\alpha=\alpha_{s}MR^{3}\tilde{J}italic_α = italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_M italic_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT over~ start_ARG italic_J end_ARG) is inferred through the first framework. Even if mass and radius measurements become available from electromagnetic observations, there remains an equation of state-dependent parameter J~~𝐽\tilde{J}over~ start_ARG italic_J end_ARG necessary for estimating the saturation amplitude (αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT). It was demonstrated Alford and Schwenzer (2014) that this parameter is bounded within a factor of 2, suggesting that a fiducial value of J~0.01635~𝐽0.01635\tilde{J}\approx 0.01635over~ start_ARG italic_J end_ARG ≈ 0.01635 could provide a reasonable rough estimate.

In inference via the second framework, an accurate estimation of all parameters, including the saturation amplitude and distance, can be obtained after assuming an equation of state. It is noteworthy that while the values of the parameters change with the equation of state, the errors remain largely consistent (Ghosh, 2023). A prudent approach would involve considering a set of realistic equations of state to calculate potential limits on these parameters.

Low-mass X-ray binaries (LXMBs) represent crucial candidates for signals generated by r-modes (Kokkotas and Schwenzer, 2016). Accurate mass measurements through electromagnetic observations are possible for such systems. Consequently, if we detect a CGW, and such mass measurements exist, one can directly substitute it in the IC𝐼𝐶I-Citalic_I - italic_C relation to estimate I𝐼Iitalic_I, mpsubscript𝑚𝑝m_{p}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, and r𝑟ritalic_r without assuming any specific equation of state. However, αssubscript𝛼𝑠\alpha_{s}italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT still necessitates knowledge of J~~𝐽\tilde{J}over~ start_ARG italic_J end_ARG and the radius of the star, which could also be measured for LXMBs, but possibly not that accurately.

We plan to perform parameter inference by adopting a Bayesian framework in the future, as it would yield robust conclusions and incorporate priors from electromagnetic observations of neutron stars. One could also explore alternate spin-down models encompassing current braking index observations (Igoshev and Popov, 2020) and study more complex magnetic field models rather than a simple dipolar magnetic field to expand on this work (Pili et al., 2015).

References