Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 18 Jun 2024]
Title:Inferring Neutron Star Properties via r-mode Gravitational Wave Signals
View PDF HTML (experimental)Abstract:We present two frameworks to infer some of the properties of neutron stars from their electromagnetic radiation and the emission of continuous gravitational waves due to r-mode oscillations. In the first framework, assuming a distance measurement via electromagnetic observations, we infer three neutron star properties: the moment of inertia, a parameter related to the r-mode saturation amplitude, and the component of magnetic dipole moment perpendicular to the rotation axis. Unlike signals from mountains, r-mode oscillations provide additional information through a parameter (\kappa) that satisfies a universal relation with the star's compactness. In the second framework, we utilize this and the relation between the moment of inertia and compactness, in addition to assuming an equation of state and utilizing pulsar frequency measurements, to directly measure the neutron star's distance along with the aforementioned parameters. We employ a Fisher information matrix-based approach for quantitative error estimation in both frameworks. We find that the error in the distance measurement dominates the errors in the first framework for any reasonable observation time. In contrast, due to the low errors in pulsar frequency measurements, parameters can be inferred accurately via the second framework but work only in a restricted parameter space. We finally address potential ways to overcome critical drawbacks of our analyses and discuss directions for future work.
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.