General Relativity and Quantum Cosmology
[Submitted on 20 Jun 2024]
Title:Post-Newtonian expansions of extreme mass ratio inspirals of spinning bodies into Schwarzschild black holes
View PDF HTML (experimental)Abstract:Space-based gravitational-wave detectors such as LISA are expected to detect inspirals of stellar-mass compact objects into massive black holes. Modeling such inspirals requires fully relativistic computations to achieve sufficient accuracy at leading order. However, subleading corrections such as the effects of the spin of the inspiraling compact object may potentially be treated in weak-field expansions such as the post-Newtonian (PN) approach.
In this work, we calculate the PN expansion of eccentric orbits of spinning bodies around Schwarzschild black holes. Then we use the Teukolsky equation to compute the energy and angular momentum fluxes from these orbits up to the 5PN order. Some of these PN orders are exact in eccentricity, while others are expanded up to the tenth power in eccentricity. Then we use the fluxes to construct a hybrid inspiral model, where the leading part of the fluxes is calculated numerically in the fully relativistic regime, while the part linear in the small spin is analytically approximated using the PN series. We calculate LISA-relevant inspirals and respective waveforms with this model and a fully relativistic model. Through the calculation of mismatch between the waveforms from both models we conclude that the PN approximation of the linear-in-spin part of the fluxes is sufficient for lower eccentricities.
Current browse context:
gr-qc
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.