General Relativity and Quantum Cosmology
[Submitted on 20 Jun 2024]
Title:Time-Delay Interferometry for ASTROD-GW
View PDF HTML (experimental)Abstract:In the detection of gravitational waves in space, the arm lengths between spacecraft are not equal due to their orbital motion. Consequently, the equal arm length Michelson interferometer used in Earth laboratories is not suitable for space. To achieve the necessary sensitivity for space gravitational wave detectors, laser frequency noise must be suppressed below secondary noise sources such as optical path noise and acceleration noise. To suppress laser frequency noise, time-delay interferometry (TDI) is employed to match the two optical paths and retain gravitational wave signals. Since planets and other solar system bodies perturb the orbits of spacecraft and affect TDI performance, we simulate the time delay numerically using the CGC2.7 ephemeris framework. To examine the feasibility of TDI for the ASTROD-GW mission, we devised a set of 10-year and a set of 20-year optimized mission orbits for the three spacecraft starting on June 21, 2028, and calculated the path mismatches in the first- and second-generation TDI channels. The results demonstrate that all second-generation TDI channels meet the ASTROD-GW requirements. A geometric approach is used in the analysis and synthesis of both first-generation and second-generation TDI to clearly illustrate the construction process.
Current browse context:
gr-qc
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.