Exact solutions for differentially rotating galaxies in general relativity

Marco Galoppo Marco.Galoppo@pg.canterbury.ac.nz School of Physical & Chemical Sciences, University of Canterbury,
Private Bag 4800, Christchurch 8140, New Zealand
   David L. Wiltshire David.Wiltshire@canterbury.ac.nz School of Physical & Chemical Sciences, University of Canterbury,
Private Bag 4800, Christchurch 8140, New Zealand
Abstract

A class of stationary axisymmetric solutions of Einstein’s equations for isolated differentially rotating dust sources is presented. The low-energy asymptotic regime is extracted, requiring a self-consistent coupling of quasilocal energy and angular momentum. The Raychaudhuri equation reduces to a balance equation, with two important limits. These limits can be interpreted empirically for rotationally supported configurations such as galaxies. The net energy including quasilocal kinetic contributions vanishes on the inner vortex surface, and the outer rotosurface. These new geometrical objects potentially shed light on virialization. Whether or not abundant collisionless dark matter exists, the new solutions suggest that the phenomenology of galactic rotation curves be fundamentally reconsidered, for consistency with general relativity.

An exact solution of Einstein’s equations for an isolated galaxy sourced by a realistic distribution of stars, treated as a pressureless fluid—dust—is a decades-old open problem that has confounded mathematical relativists for decades. In this Letter we present a new solution to this problem, which unlike previous unsuccessful attempts incorporates the essential physical feature that radial distributions of stars in galaxies rotate by varying amounts. This statement will be precisely defined – but, roughly, each ring of stars in an axially symmetric distribution rotates at slightly different speeds to its neighbours. A consequence of our result is that the amount of collisionless dark matter particles that is conventionally inferred needs to be fundamentally revisited, with profound implications for astrophysics and cosmology.

This problem has been the subject of controversy on account of researchers artificially treating galaxies as rigidly rotating objects [1, 2, 3], which is not only physically unrealistic but is also compounded by mathematical problems [4, 5]. Remarkably, we will find that these issues can be sidestepped by a refinement in understanding the consistent treatment of taking Newtonian limits. In particular, conventionally researchers have naïvely applied nonrelativistic limiting procedures to the gravitational metric before attempting to include nonlinear terms. By contrast, we will include all essential nonlinearities for stationary axisymmetric dust spacetimes before considering the low–energy limit.

The nonlinearity of general relativity arises from the self–interaction of matter and geometry via Einstein’s equations. In place of additive gravitational potentials on a fixed background, the time–averaged motion of matter sources defines regional backgrounds with their own quasilocal energy and angular momentum content [6, 7]. Understanding the hierarchy of regional scales, or the fitting of one regional geometry into another, is an important foundational question in cosmology [8]. Conventionally one assumes the existence of a global asymptotic Minkowski background before applying nonrelativistic limits. Mass and angular momentum are then defined by ideal asymptotic Killing vectors, which obscures their essential quasilocal origin in general relativity. The manner in which quasilocal energy and angular momentum approach asymptotic values in a nonempty universe is little appreciated. It may nonetheless be key to understanding the biggest open problems in physical cosmology.

In this Letter we derive new solutions with self-consistent coupling between quasilocal energy and angular momentum, which can be applied in the low-energy limit to systems at different scales in the fitting problem. Here our primary interest is rotating galaxies. However, our approach will likely further inform other attempts to model the dynamical properties of coarse-grained, cosmological structures in general relativity [9, 10, 11, 12, 13].

Let us consider stationary axisymmetric solutions of the Einstein equations with a dust source. Our solutions will thus apply to numerous astrophysical systems including stellar systems, galaxies and putative dark matter halos on larger scales. As applied to galaxies assuming stationarity—i.e., the presence of a timelike Killing vector, /t𝑡\partial/\partial t∂ / ∂ italic_t—means the solutions apply to short time scales relative to those involving galaxy formation and evolution, denoted tevosubscript𝑡evot_{\text{evo}}italic_t start_POSTSUBSCRIPT evo end_POSTSUBSCRIPT. Likewise, imposing axisymmetry—i.e., an axial Killing vector, /ϕitalic-ϕ\partial/\partial\phi∂ / ∂ italic_ϕ—means that our solutions then apply to an effective dust fluid for time-averaged oscillatory motion, toscsubscript𝑡osct_{\text{osc}}italic_t start_POSTSUBSCRIPT osc end_POSTSUBSCRIPT, of individual stars and gas above and below the galactic plane. At the present epoch tosc10subscript𝑡oscsimilar-to10t_{\text{osc}}\mathop{\sim}\limits 10\,italic_t start_POSTSUBSCRIPT osc end_POSTSUBSCRIPT ∼ 10Myr and tevo1subscript𝑡evosimilar-to1t_{\text{evo}}\mathop{\sim}\limits 1\,italic_t start_POSTSUBSCRIPT evo end_POSTSUBSCRIPT ∼ 1Gyr. Thus the effective dust fluid applies on time scales, 107<t<109superscript107FRACOPsimilar-to𝑡FRACOPsimilar-tosuperscript10910^{7}\mathop{\hbox{${\lower 3.8pt\hbox{$<$}}\atop{\raise 0.2pt\hbox{$\sim$}}$% }}t\mathop{\hbox{${\lower 3.8pt\hbox{$<$}}\atop{\raise 0.2pt\hbox{$\sim$}}$}}1% 0^{9}\,10 start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT start_BIGOP FRACOP start_ARG < end_ARG start_ARG ∼ end_ARG end_BIGOP italic_t start_BIGOP FRACOP start_ARG < end_ARG start_ARG ∼ end_ARG end_BIGOP 10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPTyr for nearby galaxies.

The spacetime metrics we consider can thus be written in the Lewis–Papapetrou–Weyl form, viz.

ds2=c2e2Φ(r,z)/c2(dt+A(r,z)dϕ)2+e2Φ(r,z)/c2[r2dϕ2+e2k(r,z)/c2(dr2+dz2)],dsuperscript𝑠2superscript𝑐2superscript𝑒2Φ𝑟𝑧superscript𝑐2superscriptd𝑡𝐴𝑟𝑧ditalic-ϕ2superscript𝑒2Φ𝑟𝑧superscript𝑐2delimited-[]superscript𝑟2dsuperscriptitalic-ϕ2superscript𝑒2𝑘𝑟𝑧superscript𝑐2dsuperscript𝑟2dsuperscript𝑧2\mathop{\text{d}\!}s^{2}=-c^{2}e^{2\Phi(r,z)/c^{2}}(\mathop{\text{d}\!}t+A(r,z% )\mathop{\text{d}\!}\phi)^{2}+e^{-2\Phi(r,z)/c^{2}}\left[r^{2}\mathop{\text{d}% \!}\phi^{2}+e^{2k(r,z)/c^{2}}(\mathop{\text{d}\!}r^{2}+\mathop{\text{d}\!}z^{2% })\right]\,,start_BIGOP d end_BIGOP italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = - italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT 2 roman_Φ ( italic_r , italic_z ) / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( start_BIGOP d end_BIGOP italic_t + italic_A ( italic_r , italic_z ) start_BIGOP d end_BIGOP italic_ϕ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_e start_POSTSUPERSCRIPT - 2 roman_Φ ( italic_r , italic_z ) / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT [ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_BIGOP d end_BIGOP italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_e start_POSTSUPERSCRIPT 2 italic_k ( italic_r , italic_z ) / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( start_BIGOP d end_BIGOP italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + start_BIGOP d end_BIGOP italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ] , (1)

where r𝑟ritalic_r is a radial coordinate, z𝑧zitalic_z is an axial coordinate, Φ(r,z)Φ𝑟𝑧\Phi(r,z)roman_Φ ( italic_r , italic_z ) is related to the conventional Newtonian potential, A(r,z)𝐴𝑟𝑧A(r,z)italic_A ( italic_r , italic_z ) is related to frame-dragging, and k(r,z)𝑘𝑟𝑧k(r,z)italic_k ( italic_r , italic_z ) is a conformal factor on the 2–dimensional space of orbits of the isometry group generated by the Killing vectors.

The energy-momentum tensor takes the form

Tμν=c2ρ(r,z)UμUν,superscript𝑇𝜇𝜈superscript𝑐2𝜌𝑟𝑧superscript𝑈𝜇superscript𝑈𝜈T^{\mu\nu}=c^{2}\rho(r,z)\,U^{\mu}U^{\nu}\,,italic_T start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT = italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ ( italic_r , italic_z ) italic_U start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_U start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT , (2)

where ρ(r,z)𝜌𝑟𝑧\rho(r,z)italic_ρ ( italic_r , italic_z ) is the density of particles, each with a 4–velocity Uμsuperscript𝑈𝜇U^{\mu}italic_U start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT, given by

Uμμ=(H)1/2(t+Ωϕ),superscript𝑈𝜇subscript𝜇superscript𝐻12subscript𝑡Ωsubscriptitalic-ϕU^{\mu}\partial_{\mu}=(-H)^{-1/2}\left(\partial_{t}+\Omega\,\partial_{\phi}% \right)\,,italic_U start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT = ( - italic_H ) start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT ( ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + roman_Ω ∂ start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ) , (3)

where dϕ/dt=Ω(r,z)𝑑italic-ϕ𝑑𝑡Ω𝑟𝑧d\phi/dt=\Omega(r,z)italic_d italic_ϕ / italic_d italic_t = roman_Ω ( italic_r , italic_z ) uniquely defines the angular speed of rotation at any point, and H(r,z)𝐻𝑟𝑧H(r,z)italic_H ( italic_r , italic_z ) is a normalization factor. Since UμUμ=c2superscript𝑈𝜇subscript𝑈𝜇superscript𝑐2U^{\mu}U_{\mu}=-c^{2}italic_U start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_U start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT = - italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, it follows that

H=e2Φ/c2(1+AΩ)2+e2Φ/c2r2Ω2/c2.𝐻superscript𝑒2Φsuperscript𝑐2superscript1𝐴Ω2superscript𝑒2Φsuperscript𝑐2superscript𝑟2superscriptΩ2superscript𝑐2H=-e^{2\Phi/c^{2}}(1+A\,\Omega)^{2}+e^{-2\Phi/c^{2}}r^{2}\,\Omega^{2}/c^{2}\,.italic_H = - italic_e start_POSTSUPERSCRIPT 2 roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( 1 + italic_A roman_Ω ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_e start_POSTSUPERSCRIPT - 2 roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (4)

Einstein’s equations are solved by a hierarchy of quadratures [14, 15, 16]. One finds that H=H(η)𝐻𝐻𝜂H=H(\eta)italic_H = italic_H ( italic_η ) and Ω=Ω(η)ΩΩ𝜂\Omega=\Omega(\eta)roman_Ω = roman_Ω ( italic_η ), where η(r,z)𝜂𝑟𝑧\eta(r,z)italic_η ( italic_r , italic_z ) is the angular momentum of the dust particles measured by Zero Angular Momentum Observers (ZAMOs), and

dΩ=c2dH/(2η).dΩsuperscript𝑐2d𝐻2𝜂\mathop{\text{d}\!}\Omega=c^{2}\mathop{\text{d}\!}H/({2\eta})\,.start_BIGOP d end_BIGOP roman_Ω = italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_BIGOP d end_BIGOP italic_H / ( 2 italic_η ) . (5)

In view of (5) we call H𝐻Hitalic_H the differential rotation state function, since a choice of H𝐻Hitalic_H fixes ΩΩ\Omegaroman_Ω. The norms of the two Killing vectors, ξμμ=tsuperscript𝜉𝜇subscript𝜇subscript𝑡\xi^{\mu}\partial_{\mu}=\partial_{t}italic_ξ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT = ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT and ζμμ=ϕsuperscript𝜁𝜇subscript𝜇subscriptitalic-ϕ\zeta^{\mu}\partial_{\mu}=\partial_{\phi}italic_ζ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT = ∂ start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT, and their inner product are then respectively given by

ξμξμ=c2e2Φ/c2=c2(HηΩ/c2)2(rΩ/c)2H,superscript𝜉𝜇subscript𝜉𝜇superscript𝑐2superscript𝑒2Φsuperscript𝑐2superscript𝑐2superscript𝐻𝜂Ωsuperscript𝑐22superscript𝑟Ω𝑐2𝐻\displaystyle\xi^{\mu}\xi_{\mu}=-c^{2}e^{2\Phi/c^{2}}=c^{2}\frac{\left(H-\eta% \,\Omega/c^{2}\right)^{2}-\left(r\,\Omega/c\right)^{2}}{H}\,,italic_ξ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_ξ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT = - italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT 2 roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT = italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG ( italic_H - italic_η roman_Ω / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( italic_r roman_Ω / italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H end_ARG , (6)
ζμζμ=r2e2Φ/c2c2A2e2Φ/c2=r2(η/c)2(H),superscript𝜁𝜇subscript𝜁𝜇superscript𝑟2superscript𝑒2Φsuperscript𝑐2superscript𝑐2superscript𝐴2superscript𝑒2Φsuperscript𝑐2superscript𝑟2superscript𝜂𝑐2𝐻\displaystyle\zeta^{\mu}\zeta_{\mu}=r^{2}e^{-2\Phi/c^{2}}-c^{2}A^{2}e^{2\Phi/c% ^{2}}=\frac{r^{2}-(\eta/c)^{2}}{(-H)}\,,italic_ζ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_ζ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT = italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - 2 roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT - italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT 2 roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT = divide start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( italic_η / italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( - italic_H ) end_ARG , (7)
ξμζμ=c2Ae2Φ/c2=η(η/c)2r2HΩ.superscript𝜉𝜇subscript𝜁𝜇superscript𝑐2𝐴superscript𝑒2Φsuperscript𝑐2𝜂superscript𝜂𝑐2superscript𝑟2𝐻Ω\displaystyle\xi^{\mu}\zeta_{\mu}=-c^{2}Ae^{2\Phi/c^{2}}=\eta-\frac{(\eta/c)^{% 2}-r^{2}}{H}\,\Omega\,.italic_ξ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_ζ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT = - italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A italic_e start_POSTSUPERSCRIPT 2 roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT = italic_η - divide start_ARG ( italic_η / italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H end_ARG roman_Ω . (8)

The remaining Einstein equations yield

Ξ,r=12r[gtt,zgϕϕ,zgtt,rgϕϕ,r(gtϕ,z)2+(gtϕ,r)2]\displaystyle\Xi_{,r}=\frac{1}{2r}\left[g_{tt,z}g_{\phi\phi,z}-g_{tt,r}g_{\phi% \phi,r}-(g_{t\phi,z})^{2}+(g_{t\phi,r})^{2}\right]\,roman_Ξ start_POSTSUBSCRIPT , italic_r end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 italic_r end_ARG [ italic_g start_POSTSUBSCRIPT italic_t italic_t , italic_z end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_ϕ italic_ϕ , italic_z end_POSTSUBSCRIPT - italic_g start_POSTSUBSCRIPT italic_t italic_t , italic_r end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_ϕ italic_ϕ , italic_r end_POSTSUBSCRIPT - ( italic_g start_POSTSUBSCRIPT italic_t italic_ϕ , italic_z end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_g start_POSTSUBSCRIPT italic_t italic_ϕ , italic_r end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ]
Ξ,z=12r[2gtϕ,rgtϕ,z+gtt,rgϕϕ,zgtt,zgϕϕ,r],\displaystyle\Xi_{,z}=\frac{1}{2r}\left[2g_{t\phi,r}g_{t\phi,z}+g_{tt,r}g_{% \phi\phi,z}-g_{tt,z}g_{\phi\phi,r}\right],roman_Ξ start_POSTSUBSCRIPT , italic_z end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 italic_r end_ARG [ 2 italic_g start_POSTSUBSCRIPT italic_t italic_ϕ , italic_r end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_t italic_ϕ , italic_z end_POSTSUBSCRIPT + italic_g start_POSTSUBSCRIPT italic_t italic_t , italic_r end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_ϕ italic_ϕ , italic_z end_POSTSUBSCRIPT - italic_g start_POSTSUBSCRIPT italic_t italic_t , italic_z end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT italic_ϕ italic_ϕ , italic_r end_POSTSUBSCRIPT ] , (9)

where Ξ(r,z)=[Φ(r,z)k(r,z)]/c2Ξ𝑟𝑧delimited-[]Φ𝑟𝑧𝑘𝑟𝑧superscript𝑐2\Xi(r,z)=[\Phi(r,z)-k(r,z)]/c^{2}roman_Ξ ( italic_r , italic_z ) = [ roman_Φ ( italic_r , italic_z ) - italic_k ( italic_r , italic_z ) ] / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Finally, further requiring that Ξ,rz=Ξ,zr\Xi_{,rz}=\Xi_{,zr}roman_Ξ start_POSTSUBSCRIPT , italic_r italic_z end_POSTSUBSCRIPT = roman_Ξ start_POSTSUBSCRIPT , italic_z italic_r end_POSTSUBSCRIPT we find that the entire class of solutions is fully determined by a choice of H𝐻Hitalic_H and a solution of the homogeneous Grad–Shafranov equation [17, 18]

Ψ,rr1rΨ,r+Ψ,zz=0,\Psi_{,rr}-\frac{1}{r}\Psi_{,r}+\Psi_{,zz}=0,roman_Ψ start_POSTSUBSCRIPT , italic_r italic_r end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG italic_r end_ARG roman_Ψ start_POSTSUBSCRIPT , italic_r end_POSTSUBSCRIPT + roman_Ψ start_POSTSUBSCRIPT , italic_z italic_z end_POSTSUBSCRIPT = 0 , (10)

where

Ψ=η+c2r22HHdηη12HHη𝑑η.Ψ𝜂superscript𝑐2superscript𝑟22superscript𝐻𝐻𝑑𝜂𝜂12superscript𝐻𝐻𝜂differential-d𝜂\Psi=\eta+c^{2}\frac{r^{2}}{2}\int\frac{H^{\prime}}{H}\frac{d\eta}{\eta}-\frac% {1}{2}\int\frac{H^{\prime}}{H}\eta\,d\eta\,.roman_Ψ = italic_η + italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ∫ divide start_ARG italic_H start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_H end_ARG divide start_ARG italic_d italic_η end_ARG start_ARG italic_η end_ARG - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ divide start_ARG italic_H start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_H end_ARG italic_η italic_d italic_η . (11)

Eq. (11) is an integrability condition for the dust geodesic equations in the absence of pressure in the effective fluid. Furthermore, to model galaxies, we are interested in solutions with reflection symmetry with respect to the z=0𝑧0z=0italic_z = 0 plane. The solution to (10) is then given by

Ψ(r,z)=𝒞0+Ψ𝑟𝑧limit-fromsubscript𝒞0\displaystyle\Psi(r,z)=\,{\mathpzc C}_{0}\;+\;roman_Ψ ( italic_r , italic_z ) = italic_script_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + rn=0𝒜nI1(𝒶nr)cos(𝒶nz)𝑟superscriptsubscript𝑛0subscript𝒜𝑛subscript𝐼1subscript𝒶𝑛𝑟subscript𝒶𝑛𝑧\displaystyle r\sum_{n=0}^{\infty}{\mathpzc A}_{n}I_{1}({\mathpzc a}_{n}r)\cos% ({\mathpzc a}_{n}z)italic_r ∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_script_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_script_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_r ) roman_cos ( italic_script_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_z )
+rm=0mK1(𝒷mr)cos(𝒷mz),𝑟superscriptsubscript𝑚0subscript𝑚subscript𝐾1subscript𝒷𝑚𝑟subscript𝒷𝑚𝑧\displaystyle+r\sum_{m=0}^{\infty}{\mathpzc B}_{m}K_{1}({\mathpzc b}_{m}r)\cos% ({\mathpzc b}_{m}z),+ italic_r ∑ start_POSTSUBSCRIPT italic_m = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_script_B start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_script_b start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_r ) roman_cos ( italic_script_b start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_z ) , (12)

where I1subscript𝐼1I_{1}italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and K1subscript𝐾1K_{1}italic_K start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT are the modified Bessel functions of the first and second kind, the constants 𝒶n,𝒷msubscript𝒶𝑛subscript𝒷𝑚{\mathpzc a}_{n},{\mathpzc b}_{m}italic_script_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_script_b start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT are positive, whilst the constants 𝒞0subscript𝒞0{\mathpzc C}_{0}italic_script_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, 𝒜nsubscript𝒜𝑛{\mathpzc A}_{n}italic_script_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT and msubscript𝑚{\mathpzc B}_{m}italic_script_B start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT are arbitrary.

The trace of the Einstein equations gives

8πGρ=η,r2+η,z24η2r2[η2Δ2(η)c4r4(η)2]e2Ξ,8\pi G\rho=\frac{\eta_{,r}^{2}+\eta_{,z}^{2}}{4\eta^{2}r^{2}}\left[\eta^{2}% \Delta^{2}(\eta)-c^{4}r^{4}\ell(\eta)^{2}\right]e^{2\Xi}\!,8 italic_π italic_G italic_ρ = divide start_ARG italic_η start_POSTSUBSCRIPT , italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_η start_POSTSUBSCRIPT , italic_z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG [ italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Δ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) - italic_c start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT roman_ℓ ( italic_η ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] italic_e start_POSTSUPERSCRIPT 2 roman_Ξ end_POSTSUPERSCRIPT , (13)

where (η)=H/H𝜂superscript𝐻𝐻\ell(\eta)=H^{\prime}/Hroman_ℓ ( italic_η ) = italic_H start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT / italic_H and Δ(η)=2η(η)Δ𝜂2𝜂𝜂\Delta(\eta)=2-\eta\,\ell(\eta)roman_Δ ( italic_η ) = 2 - italic_η roman_ℓ ( italic_η ), with H=dH/dηsuperscript𝐻𝑑𝐻𝑑𝜂H^{\prime}=dH/d\etaitalic_H start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_d italic_H / italic_d italic_η, while the Raychaudhuri equation reduces to

Θ˙UννΘ=13Θ2+ω2σ2RμνUμUν,˙Θsuperscript𝑈𝜈subscript𝜈Θ13superscriptΘ2superscript𝜔2superscript𝜎2subscript𝑅𝜇𝜈superscript𝑈𝜇superscript𝑈𝜈\dot{\Theta}\equiv U^{\nu}\nabla_{\nu}\Theta=-\frac{1}{3}\Theta^{2}+\omega^{2}% -\sigma^{2}-R_{\mu\nu}U^{\mu}U^{\nu},over˙ start_ARG roman_Θ end_ARG ≡ italic_U start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT ∇ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT roman_Θ = - divide start_ARG 1 end_ARG start_ARG 3 end_ARG roman_Θ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_R start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT italic_U start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_U start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT , (14)

where Θ=μUμΘsubscript𝜇superscript𝑈𝜇\Theta=\nabla_{\mu}U^{\mu}roman_Θ = ∇ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_U start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT, ω2=ωμνωμνsuperscript𝜔2superscript𝜔𝜇𝜈subscript𝜔𝜇𝜈\omega^{2}=\omega^{\mu\nu}\omega_{\mu\nu}italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_ω start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT and σ2=σμνσμνsuperscript𝜎2superscript𝜎𝜇𝜈subscript𝜎𝜇𝜈\sigma^{2}=\sigma^{\mu\nu}\sigma_{\mu\nu}italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_σ start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT are the expansion, vorticity and shear scalars respectively. Here ωμν=U[μ;ν]subscript𝜔𝜇𝜈subscript𝑈𝜇𝜈\omega_{\mu\nu}=U_{[\mu;\nu]}italic_ω start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT = italic_U start_POSTSUBSCRIPT [ italic_μ ; italic_ν ] end_POSTSUBSCRIPT, σμν=U(μ;ν)13hμνΘsubscript𝜎𝜇𝜈subscript𝑈𝜇𝜈13subscript𝜇𝜈Θ\sigma_{\mu\nu}=U_{(\mu;\nu)}-\frac{1}{3}h_{\mu\nu}\Thetaitalic_σ start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT = italic_U start_POSTSUBSCRIPT ( italic_μ ; italic_ν ) end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 3 end_ARG italic_h start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT roman_Θ, hμν=gμν+c2UμUνsubscript𝜇𝜈subscript𝑔𝜇𝜈superscript𝑐2subscript𝑈𝜇subscript𝑈𝜈h_{\mu\nu}=g_{\mu\nu}+c^{-2}U_{\mu}U_{\nu}italic_h start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT = italic_g start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT + italic_c start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_U start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_U start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT. The dust is non-expanding, Θ=0Θ0\Theta=0roman_Θ = 0, Θ˙=0˙Θ0\dot{\Theta}=0over˙ start_ARG roman_Θ end_ARG = 0, and RμνUμUν=4πGρsubscript𝑅𝜇𝜈superscript𝑈𝜇superscript𝑈𝜈4𝜋𝐺𝜌R_{\mu\nu}U^{\mu}U^{\nu}=4\pi\,G\rhoitalic_R start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT italic_U start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_U start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT = 4 italic_π italic_G italic_ρ, so that (14) reduces to a balance condition

ω2σ2=4πGρ.superscript𝜔2superscript𝜎24𝜋𝐺𝜌\omega^{2}-\sigma^{2}=4\pi G\rho\,.italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 4 italic_π italic_G italic_ρ . (15)

Significantly, since the effective dust energy density contains quasilocal kinetic energy, ρ𝜌\rhoitalic_ρ may be negative when shear dominates over vorticity. Indeed,

σ2=e2Ξc4r2(η,r2+η,z2)2(η)8η2,\sigma^{2}=\frac{e^{2\Xi}c^{4}r^{2}(\eta_{,r}^{2}+\eta_{,z}^{2})\,\ell^{2}(% \eta)}{8\eta^{2}},italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG italic_e start_POSTSUPERSCRIPT 2 roman_Ξ end_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT , italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_η start_POSTSUBSCRIPT , italic_z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_ℓ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG start_ARG 8 italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , (16)

which combined with (13) yields

ω2=e2Ξ(η,r2+η,z2)Δ2(η)8r2.\omega^{2}=\frac{e^{2\Xi}(\eta_{,r}^{2}+\eta_{,z}^{2})\,\Delta^{2}(\eta)}{8r^{% 2}}\,.italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG italic_e start_POSTSUPERSCRIPT 2 roman_Ξ end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT , italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_η start_POSTSUBSCRIPT , italic_z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_Δ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG start_ARG 8 italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (17)

Physical measurements are defined by relevant classes of observers. We first introduce the ZAMO coframe [19]

ωZ=(rdtgϕϕ,gϕϕ\displaystyle{\mathbf{\omega}}_{\lower 2.0pt\hbox{$\scriptstyle Z$}}=\Bigl{(}% \frac{r\mathop{\text{d}\!}t}{\sqrt{g_{\phi\phi}}}\,,\sqrt{g_{\phi\phi}}italic_ω start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT = ( divide start_ARG italic_r start_BIGOP d end_BIGOP italic_t end_ARG start_ARG square-root start_ARG italic_g start_POSTSUBSCRIPT italic_ϕ italic_ϕ end_POSTSUBSCRIPT end_ARG end_ARG , square-root start_ARG italic_g start_POSTSUBSCRIPT italic_ϕ italic_ϕ end_POSTSUBSCRIPT end_ARG (dϕχdt),ditalic-ϕ𝜒d𝑡\displaystyle\left(\mathop{\text{d}\!}\phi\,-\,\chi\mathop{\text{d}\!}t\right)\,,( start_BIGOP d end_BIGOP italic_ϕ - italic_χ start_BIGOP d end_BIGOP italic_t ) ,
e(kΦ)/c2dr,e(kΦ)/c2dz),\displaystyle e^{(k-\Phi)/c^{2}}\mathop{\text{d}\!}r\,,e^{(k-\Phi)/c^{2}}% \mathop{\text{d}\!}z\Bigr{)}\,,italic_e start_POSTSUPERSCRIPT ( italic_k - roman_Φ ) / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT start_BIGOP d end_BIGOP italic_r , italic_e start_POSTSUPERSCRIPT ( italic_k - roman_Φ ) / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT start_BIGOP d end_BIGOP italic_z ) , (18)

gϕϕ=e2Φ/c2r2c2A2e2Φ/c2subscript𝑔italic-ϕitalic-ϕsuperscript𝑒2Φsuperscript𝑐2superscript𝑟2superscript𝑐2superscript𝐴2superscript𝑒2Φsuperscript𝑐2g_{\phi\phi}=e^{-2\Phi/c^{2}}r^{2}-c^{2}A^{2}e^{2\Phi/c^{2}}italic_g start_POSTSUBSCRIPT italic_ϕ italic_ϕ end_POSTSUBSCRIPT = italic_e start_POSTSUPERSCRIPT - 2 roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT 2 roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT, and χ=gtϕ/gϕϕ𝜒subscript𝑔𝑡italic-ϕsubscript𝑔italic-ϕitalic-ϕ\chi=-g_{t\phi}/g_{\phi\phi}italic_χ = - italic_g start_POSTSUBSCRIPT italic_t italic_ϕ end_POSTSUBSCRIPT / italic_g start_POSTSUBSCRIPT italic_ϕ italic_ϕ end_POSTSUBSCRIPT with gtϕ=c2Ae2Φ/c2subscript𝑔𝑡italic-ϕsuperscript𝑐2𝐴superscript𝑒2Φsuperscript𝑐2g_{t\phi}=-c^{2}\,A\,e^{2\Phi/c^{2}}italic_g start_POSTSUBSCRIPT italic_t italic_ϕ end_POSTSUBSCRIPT = - italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A italic_e start_POSTSUPERSCRIPT 2 roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT. The dual ZAMO tetrad frame is then

𝐞Z=(1rgϕϕ\displaystyle{\mathbf{e}}_{\lower 2.0pt\hbox{$\scriptstyle Z$}}=\Bigl{(}\frac{% 1}{r}{\sqrt{g_{\phi\phi}}}bold_e start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT = ( divide start_ARG 1 end_ARG start_ARG italic_r end_ARG square-root start_ARG italic_g start_POSTSUBSCRIPT italic_ϕ italic_ϕ end_POSTSUBSCRIPT end_ARG (t+χϕ),1gϕϕϕ,subscript𝑡𝜒subscriptitalic-ϕ1subscript𝑔italic-ϕitalic-ϕsubscriptitalic-ϕ\displaystyle\left(\partial_{t}\,+\,\chi\partial_{\phi}\right)\,,\frac{1}{% \sqrt{g_{\phi\phi}}}\partial_{\phi}\,,( ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_χ ∂ start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ) , divide start_ARG 1 end_ARG start_ARG square-root start_ARG italic_g start_POSTSUBSCRIPT italic_ϕ italic_ϕ end_POSTSUBSCRIPT end_ARG end_ARG ∂ start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ,
e(kΦ)/c2r,e(kΦ)/c2z).\displaystyle\qquad e^{-(k-\Phi)/c^{2}}\partial_{r}\,,e^{-(k-\Phi)/c^{2}}% \partial_{z}\Bigr{)}\,.italic_e start_POSTSUPERSCRIPT - ( italic_k - roman_Φ ) / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , italic_e start_POSTSUPERSCRIPT - ( italic_k - roman_Φ ) / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ) . (19)

Starting from the formula for the dust particles’ velocity measured by ZAMOs, vZ=(𝐞Z1𝐔)/(𝐞Z0𝐔)subscript𝑣𝑍superscriptsubscript𝐞𝑍1𝐔superscriptsubscript𝐞𝑍0𝐔v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}=({{{\mathbf{e}}_{\lower 2.0pt\hbox{$% \scriptstyle Z$}}}^{1}}\cdot{\mathbf{U}})/({{{\mathbf{e}}_{\lower 2.0pt\hbox{$% \scriptstyle Z$}}}^{0}}\cdot{\mathbf{U}})italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT = ( bold_e start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ⋅ bold_U ) / ( bold_e start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ⋅ bold_U ), we find

η(r,z)=rvZ(r,z).𝜂𝑟𝑧𝑟subscript𝑣𝑍𝑟𝑧\eta(r,z)=r\,v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}(r,z)\,.italic_η ( italic_r , italic_z ) = italic_r italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT ( italic_r , italic_z ) . (20)

Furthermore, let us define an effective Lorentz factor γZ:=𝐞Z0𝐔assignsubscript𝛾𝑍superscriptsubscript𝐞𝑍0𝐔\gamma_{\lower 2.0pt\hbox{$\scriptstyle Z$}}:={{\mathbf{e}}_{\lower 2.0pt\hbox% {$\scriptstyle Z$}}}^{0}\cdot{\mathbf{U}}italic_γ start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT := bold_e start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ⋅ bold_U, so that

HγZ2vZ=r(Ωχ).𝐻superscriptsubscript𝛾Z2subscript𝑣𝑍𝑟Ω𝜒-H\,\gamma_{\mathrm{Z}}^{2}\,v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}=r\,(% \Omega-\chi)\,.- italic_H italic_γ start_POSTSUBSCRIPT roman_Z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT = italic_r ( roman_Ω - italic_χ ) . (21)

The second congruence of relevance are ideal Stationary Observers (SOs), with coframe [20]

ωS=(eΦ/c2\displaystyle{\mathbf{\omega}}_{\lower 2.0pt\hbox{$\scriptstyle S$}}=\Bigl{(}e% ^{\Phi/c^{2}}italic_ω start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT = ( italic_e start_POSTSUPERSCRIPT roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT (dt+Adϕ),reΦ/c2dϕ,d𝑡𝐴ditalic-ϕ𝑟superscript𝑒Φsuperscript𝑐2ditalic-ϕ\displaystyle\left(\mathop{\text{d}\!}t\,+\,A\mathop{\text{d}\!}\phi\right)\,,% r\,e^{\Phi/c^{2}}\mathop{\text{d}\!}\phi\,,( start_BIGOP d end_BIGOP italic_t + italic_A start_BIGOP d end_BIGOP italic_ϕ ) , italic_r italic_e start_POSTSUPERSCRIPT roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT start_BIGOP d end_BIGOP italic_ϕ ,
e(kΦ)/c2dr,e(kΦ)/c2dz),\displaystyle\qquad e^{(k-\Phi)/c^{2}}\mathop{\text{d}\!}r\,,e^{(k-\Phi)/c^{2}% }\mathop{\text{d}\!}z\Bigr{)}\,,italic_e start_POSTSUPERSCRIPT ( italic_k - roman_Φ ) / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT start_BIGOP d end_BIGOP italic_r , italic_e start_POSTSUPERSCRIPT ( italic_k - roman_Φ ) / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT start_BIGOP d end_BIGOP italic_z ) , (22)

The dual SO tetrad frame is then

𝐞S=(eΦ/c2\displaystyle{\mathbf{e}}_{\lower 2.0pt\hbox{$\scriptstyle S$}}=\Bigl{(}e^{-% \Phi/c^{2}}bold_e start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT = ( italic_e start_POSTSUPERSCRIPT - roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT t,eΦ/c2r(ϕAt),subscript𝑡superscript𝑒Φsuperscript𝑐2𝑟subscriptitalic-ϕ𝐴subscript𝑡\displaystyle\partial_{t}\,,\frac{e^{\Phi/c^{2}}}{r}\left(\partial_{\phi}-A\,% \partial_{t}\right)\,,∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT , divide start_ARG italic_e start_POSTSUPERSCRIPT roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT end_ARG start_ARG italic_r end_ARG ( ∂ start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT - italic_A ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) ,
e(kΦ)/c2r,e(kΦ)/c2z).\displaystyle\qquad e^{-(k-\Phi)/c^{2}}\partial_{r}\,,e^{-(k-\Phi)/c^{2}}% \partial_{z}\Bigr{)}\,.italic_e start_POSTSUPERSCRIPT - ( italic_k - roman_Φ ) / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , italic_e start_POSTSUPERSCRIPT - ( italic_k - roman_Φ ) / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ) . (23)

By analogy to the ZAMO case for SOs we define,vS=(𝐞S1𝐔)/(𝐞S0𝐔)subscript𝑣𝑆superscriptsubscript𝐞𝑆1𝐔superscriptsubscript𝐞𝑆0𝐔v_{\lower 2.0pt\hbox{$\scriptstyle S$}}=({{\mathbf{e}}_{\lower 2.0pt\hbox{$% \scriptstyle S$}}^{1}}\cdot{\mathbf{U}})/({{\mathbf{e}}_{\lower 2.0pt\hbox{$% \scriptstyle S$}}^{0}}\cdot{\mathbf{U}})italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT = ( bold_e start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ⋅ bold_U ) / ( bold_e start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ⋅ bold_U ) and γS:=𝐞S0𝐔assignsubscript𝛾𝑆superscriptsubscript𝐞𝑆0𝐔\gamma_{\lower 2.0pt\hbox{$\scriptstyle S$}}:={{\mathbf{e}}_{\lower 2.0pt\hbox% {$\scriptstyle S$}}}^{0}\cdot{\mathbf{U}}italic_γ start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT := bold_e start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ⋅ bold_U, so that

rvS(r,z)=γS1eΦ/c2r2Ω.𝑟subscript𝑣𝑆𝑟𝑧superscriptsubscript𝛾S1superscript𝑒Φsuperscript𝑐2superscript𝑟2Ωr\,v_{\lower 2.0pt\hbox{$\scriptstyle S$}}(r,z)=\gamma_{\mathrm{S}}^{-1}e^{-% \Phi/c^{2}}r^{2}\Omega\,.italic_r italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_r , italic_z ) = italic_γ start_POSTSUBSCRIPT roman_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Ω . (24)

We can define ηS=vSrsubscript𝜂𝑆subscript𝑣𝑆𝑟\eta_{\lower 2.0pt\hbox{$\scriptstyle S$}}=v_{\lower 2.0pt\hbox{$\scriptstyle S% $}}ritalic_η start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT = italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT italic_r by analogy to (20). However, it plays no particular role here. Equivalently, we have

vSvZ=𝐞S1𝐞Z0𝐞S0𝐞Z0=gϕϕr2rχ=gtϕr,subscript𝑣𝑆subscript𝑣𝑍superscriptsubscript𝐞𝑆1superscriptsubscript𝐞𝑍0superscriptsubscript𝐞𝑆0superscriptsubscript𝐞𝑍0subscript𝑔italic-ϕitalic-ϕsuperscript𝑟2𝑟𝜒subscript𝑔𝑡italic-ϕ𝑟v_{\lower 2.0pt\hbox{$\scriptstyle S$}}-v_{\lower 2.0pt\hbox{$\scriptstyle Z$}% }=\frac{{{\mathbf{e}}_{\lower 2.0pt\hbox{$\scriptstyle S$}}^{1}}\cdot{{\mathbf% {e}}_{\lower 2.0pt\hbox{$\scriptstyle Z$}}^{0}}}{{{\mathbf{e}}_{\lower 2.0pt% \hbox{$\scriptstyle S$}}^{0}}\cdot{{\mathbf{e}}_{\lower 2.0pt\hbox{$% \scriptstyle Z$}}^{0}}}=\frac{g_{\phi\phi}}{r^{2}}r\chi=\frac{-g_{t\phi}}{r},italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT - italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT = divide start_ARG bold_e start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ⋅ bold_e start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT end_ARG start_ARG bold_e start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ⋅ bold_e start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT end_ARG = divide start_ARG italic_g start_POSTSUBSCRIPT italic_ϕ italic_ϕ end_POSTSUBSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_r italic_χ = divide start_ARG - italic_g start_POSTSUBSCRIPT italic_t italic_ϕ end_POSTSUBSCRIPT end_ARG start_ARG italic_r end_ARG , (25)

so that

e2Φ/c2γSvS=HγZ2(vZ+rχ).superscript𝑒2Φsuperscript𝑐2subscript𝛾𝑆subscript𝑣𝑆𝐻superscriptsubscript𝛾Z2subscript𝑣𝑍𝑟𝜒e^{2\Phi/c^{2}}\gamma_{\lower 2.0pt\hbox{$\scriptstyle S$}}v_{\lower 2.0pt% \hbox{$\scriptstyle S$}}=-H\,\gamma_{\mathrm{Z}}^{2}\,(v_{\lower 2.0pt\hbox{$% \scriptstyle Z$}}+r\,\chi)\,.italic_e start_POSTSUPERSCRIPT 2 roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_γ start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT = - italic_H italic_γ start_POSTSUBSCRIPT roman_Z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT + italic_r italic_χ ) . (26)

Eq. (25) shows that ZAMOs and SOs measure differentdust velocities at any spacetime event, with a difference directly proportional to the frame-dragging contribution.

In the present framework it is clear how observations have been misapplied to theoretical observables in the past. In particular, several analyses [1, 2, 3] misapply vZsubscript𝑣𝑍v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT to the rotation curves of distant galaxies, when vSsubscript𝑣𝑆v_{\lower 2.0pt\hbox{$\scriptstyle S$}}italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT given by (24) is the relevant velocity, since

vSc=1+(2e2Φ/c2rΩ/c)212e2Φ/c2rΩ/crΩce2Φ/c2+subscript𝑣𝑆𝑐1superscript2superscript𝑒2Φsuperscript𝑐2𝑟Ω𝑐212superscript𝑒2Φsuperscript𝑐2𝑟Ω𝑐similar-to-or-equals𝑟Ω𝑐superscript𝑒2Φsuperscript𝑐2\frac{v_{\lower 2.0pt\hbox{$\scriptstyle S$}}}{c}=\frac{\sqrt{1+\left(2e^{2% \Phi/c^{2}}r\Omega/c\right)^{2}}-1}{2e^{2\Phi/c^{2}}r\Omega/c}\simeq\frac{r% \Omega}{c}e^{2\Phi/c^{2}}+\dotsdivide start_ARG italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_ARG start_ARG italic_c end_ARG = divide start_ARG square-root start_ARG 1 + ( 2 italic_e start_POSTSUPERSCRIPT 2 roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_r roman_Ω / italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - 1 end_ARG start_ARG 2 italic_e start_POSTSUPERSCRIPT 2 roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT italic_r roman_Ω / italic_c end_ARG ≃ divide start_ARG italic_r roman_Ω end_ARG start_ARG italic_c end_ARG italic_e start_POSTSUPERSCRIPT 2 roman_Φ / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT + … (27)

coinciding, at leading order, with the widely used special relativistic interpretation of the redshift.

To complete our identification of physically relevant velocities in the general case we supplement the velocities vZsubscript𝑣𝑍v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT and vSsubscript𝑣𝑆v_{\lower 2.0pt\hbox{$\scriptstyle S$}}italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT by the kinetic and dragging velocities [21, 18]

vK:=rΩ,assignsubscript𝑣𝐾𝑟Ω\displaystyle v_{\lower 2.0pt\hbox{$\scriptstyle K$}}:=r\,\Omega\,,italic_v start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT := italic_r roman_Ω ,
vD:=rχ,assignsubscript𝑣𝐷𝑟𝜒\displaystyle v_{\lower 2.0pt\hbox{$\scriptstyle D$}}:=r\,\chi\,,italic_v start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT := italic_r italic_χ , (28)

respectively. While vSsubscript𝑣𝑆v_{\lower 2.0pt\hbox{$\scriptstyle S$}}italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT and vKsubscript𝑣𝐾v_{\lower 2.0pt\hbox{$\scriptstyle K$}}italic_v start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT coincide at low velocities, in general their differences can be physically important.

Let us now derive the functional form applicable to systems such as galaxies, with subrelativistic local relative speeds, vcmuch-less-than𝑣𝑐v\ll citalic_v ≪ italic_c, weak pseudo-Newtonian potentials, Φv2/c2Φsimilar-tosuperscript𝑣2superscript𝑐2\Phi\mathop{\sim}\limits v^{2}/c^{2}roman_Φ ∼ italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, and nonrelativistic frame-dragging.

From these conditions, we find A=rvD/c2+𝒪(v3/c3)𝐴𝑟subscript𝑣𝐷superscript𝑐2𝒪superscript𝑣3superscript𝑐3A=r\,v_{\lower 2.0pt\hbox{$\scriptstyle D$}}/c^{2}+\mathcal{O}({v^{3}/c^{3}})italic_A = italic_r italic_v start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + caligraphic_O ( italic_v start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT / italic_c start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ). Thus by (4), H=1+𝒪(v2/c2)𝐻1𝒪superscript𝑣2superscript𝑐2H=-1+\mathcal{O}({v^{2}/c^{2}})italic_H = - 1 + caligraphic_O ( italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ). Since H=H(η)𝐻𝐻𝜂H=H(\eta)italic_H = italic_H ( italic_η ), using (20) and noting that vZ=vKvD+𝒪(v3/c3)subscript𝑣𝑍subscript𝑣𝐾subscript𝑣𝐷𝒪superscript𝑣3superscript𝑐3v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}=v_{\lower 2.0pt\hbox{$\scriptstyle K$}% }-v_{\lower 2.0pt\hbox{$\scriptstyle D$}}+\mathcal{O}(v^{3}/c^{3})italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT = italic_v start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT - italic_v start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT + caligraphic_O ( italic_v start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT / italic_c start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ), we find

H(η)=1+ϵη2/(bϵc)2+𝒪(v3/c3),𝐻𝜂1italic-ϵsuperscript𝜂2superscriptsubscript𝑏italic-ϵ𝑐2𝒪superscript𝑣3superscript𝑐3H(\eta)=-1+\epsilon\,\eta^{2}/(b_{\epsilon}c)^{2}+\mathcal{O}(v^{3}/c^{3})\,,italic_H ( italic_η ) = - 1 + italic_ϵ italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + caligraphic_O ( italic_v start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT / italic_c start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) , (29)

where ϵ{1,0,1}italic-ϵ101\epsilon\in\{-1,0,1\}italic_ϵ ∈ { - 1 , 0 , 1 } and bϵsubscript𝑏italic-ϵb_{\epsilon}italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT are constant lengths which can be identified as impact parameters. We stress that the functional form of H(η)𝐻𝜂H(\eta)italic_H ( italic_η ) in (29) is the only possible choice that allows a dust system to be consistently considered in a low-energy regime. Substituting just the first two terms of (29) into (11) we obtain

η(r,z)=bϵc tann(bϵΨ(r,z)bϵ2cϵr2c),𝜂𝑟𝑧subscript𝑏italic-ϵ𝑐 tannsubscript𝑏italic-ϵΨ𝑟𝑧superscriptsubscript𝑏italic-ϵ2𝑐italic-ϵsuperscript𝑟2𝑐\eta(r,z)={b_{\epsilon}c}{\mathop{\text{\,tann}\!}}\left({\frac{b_{\epsilon}\,% \Psi(r,z)}{b_{\epsilon}^{2}c-\epsilon\,r^{2}c}}\right)\,,italic_η ( italic_r , italic_z ) = italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT italic_c start_BIGOP tann end_BIGOP ( divide start_ARG italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT roman_Ψ ( italic_r , italic_z ) end_ARG start_ARG italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c - italic_ϵ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c end_ARG ) , (30)

where

 tann(x)={tanh(x),ϵ=+1x,ϵ=0tan(x),ϵ=1. tann𝑥cases𝑥italic-ϵ1𝑥italic-ϵ0𝑥italic-ϵ1{\mathop{\text{\,tann}\!}}\,(x)=\begin{cases}\tanh(x),&\epsilon=+1\\ x,&\epsilon=0\\ \tan(x),&\epsilon=-1\\ \end{cases}.start_BIGOP tann end_BIGOP ( italic_x ) = { start_ROW start_CELL roman_tanh ( italic_x ) , end_CELL start_CELL italic_ϵ = + 1 end_CELL end_ROW start_ROW start_CELL italic_x , end_CELL start_CELL italic_ϵ = 0 end_CELL end_ROW start_ROW start_CELL roman_tan ( italic_x ) , end_CELL start_CELL italic_ϵ = - 1 end_CELL end_ROW . (31)

Moreover, by (5) it follows that

Ω=Ω0+ϵηbϵ2.ΩsubscriptΩ0italic-ϵ𝜂superscriptsubscript𝑏italic-ϵ2\Omega=\Omega_{0}+\epsilon\frac{\eta}{b_{\epsilon}^{2}}.roman_Ω = roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_ϵ divide start_ARG italic_η end_ARG start_ARG italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (32)

Furthermore, to ensure zero rotation on the symmetry axis we choose Ω0=0subscriptΩ00\Omega_{0}=0roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0. We thus find

vK=ϵrcbϵ tann(bϵΨ(r,z)bϵ2cϵr2c),subscript𝑣𝐾italic-ϵ𝑟𝑐subscript𝑏italic-ϵ tannsubscript𝑏italic-ϵΨ𝑟𝑧superscriptsubscript𝑏italic-ϵ2𝑐italic-ϵsuperscript𝑟2𝑐v_{\lower 2.0pt\hbox{$\scriptstyle K$}}=\epsilon\frac{rc}{b_{\epsilon}}\,{% \mathop{\text{\,tann}\!}}\left({\frac{b_{\epsilon}\,\Psi(r,z)}{b_{\epsilon}^{2% }c-\epsilon\,r^{2}c}}\right)\,,italic_v start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT = italic_ϵ divide start_ARG italic_r italic_c end_ARG start_ARG italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT end_ARG start_BIGOP tann end_BIGOP ( divide start_ARG italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT roman_Ψ ( italic_r , italic_z ) end_ARG start_ARG italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c - italic_ϵ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c end_ARG ) , (33)

and

vD=c(rbϵϵbϵr) tann(bϵΨ(r,z)bϵ2cϵr2c).subscript𝑣𝐷𝑐𝑟subscript𝑏italic-ϵitalic-ϵsubscript𝑏italic-ϵ𝑟 tannsubscript𝑏italic-ϵΨ𝑟𝑧superscriptsubscript𝑏italic-ϵ2𝑐italic-ϵsuperscript𝑟2𝑐v_{\lower 2.0pt\hbox{$\scriptstyle D$}}=c\left(\frac{r}{b_{\epsilon}}\epsilon-% \frac{b_{\epsilon}}{r}\right)\,{\mathop{\text{\,tann}\!}}\left({\frac{b_{% \epsilon}\,\Psi(r,z)}{b_{\epsilon}^{2}c-\epsilon\,r^{2}c}}\right).italic_v start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT = italic_c ( divide start_ARG italic_r end_ARG start_ARG italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT end_ARG italic_ϵ - divide start_ARG italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT end_ARG start_ARG italic_r end_ARG ) start_BIGOP tann end_BIGOP ( divide start_ARG italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT roman_Ψ ( italic_r , italic_z ) end_ARG start_ARG italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c - italic_ϵ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c end_ARG ) . (34)

The presence of differential rotation is crucial mathematically since the term ϵr2citalic-ϵsuperscript𝑟2𝑐\epsilon r^{2}citalic_ϵ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c in (30) regularizes potential divergences at infinity in (Exact solutions for differentially rotating galaxies in general relativity). In particular, we can choose solutions to (10) which are regular about the z𝑧zitalic_z-axis and diverge as ΨrαΨsimilar-tosuperscript𝑟𝛼\Psi\mathop{\sim}\limits r^{\alpha}roman_Ψ ∼ italic_r start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT, α<2𝛼2\alpha<2italic_α < 2 as r𝑟r\to\inftyitalic_r → ∞. All these cases are phenomenologically interesting as the sub-quadratic divergences in the modified Bessel function series I1(𝒶nr)subscript𝐼1subscript𝒶𝑛𝑟I_{1}({\mathpzc a}_{n}r)italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_script_a start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_r ) in (Exact solutions for differentially rotating galaxies in general relativity), are thereby regularized. This option was unavailable in the rigidly rotating Balasin-Grumiller (BG) model [3] where only the modified Bessel function series K1(𝒷nr)subscript𝐾1subscript𝒷𝑛𝑟K_{1}({\mathpzc b}_{n}r)italic_K start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_script_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_r ) in (Exact solutions for differentially rotating galaxies in general relativity) was chosen, being regular as r𝑟r\to\inftyitalic_r → ∞ but singular on the z𝑧zitalic_z-axis. Thus, we find solutions that display self-consistency in the low-velocity regime.

By (13) and (29) in each limit the effective density is

8πGρϵ=η,r2+η,z22r2[bϵ4ϵ2r4(bϵ2η2/c2)2]e2Ξ,8\pi G\rho_{\epsilon}=\frac{\eta_{,r}^{2}+\eta_{,z}^{2}}{2r^{2}}\left[\frac{b_% {\epsilon}^{4}-\epsilon^{2}r^{4}}{\left(b_{\epsilon}^{2}-\eta^{2}/c^{2}\right)% ^{2}}\right]e^{2\Xi}\,,8 italic_π italic_G italic_ρ start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT = divide start_ARG italic_η start_POSTSUBSCRIPT , italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_η start_POSTSUBSCRIPT , italic_z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG [ divide start_ARG italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - italic_ϵ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] italic_e start_POSTSUPERSCRIPT 2 roman_Ξ end_POSTSUPERSCRIPT , (35)

which vanishes on the cylinders r=bϵ𝑟subscript𝑏italic-ϵr=b_{\epsilon}italic_r = italic_b start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT, independent of the choice of solution to (10). The global structure of the spacetime is now determined by: (i) choosing ρ=ρ+ρ𝜌subscript𝜌subscript𝜌\rho=\rho_{+}-\rho_{-}italic_ρ = italic_ρ start_POSTSUBSCRIPT + end_POSTSUBSCRIPT - italic_ρ start_POSTSUBSCRIPT - end_POSTSUBSCRIPT, b+>b>0subscript𝑏subscript𝑏0b_{+}>b_{-}>0italic_b start_POSTSUBSCRIPT + end_POSTSUBSCRIPT > italic_b start_POSTSUBSCRIPT - end_POSTSUBSCRIPT > 0 with an H(b+,b,η)=1+f(b+,b)η2𝐻subscript𝑏subscript𝑏𝜂1𝑓subscript𝑏subscript𝑏superscript𝜂2H(b_{+},b_{-},\eta)=-1+f(b_{+},b_{-})\eta^{2}italic_H ( italic_b start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_b start_POSTSUBSCRIPT - end_POSTSUBSCRIPT , italic_η ) = - 1 + italic_f ( italic_b start_POSTSUBSCRIPT + end_POSTSUBSCRIPT , italic_b start_POSTSUBSCRIPT - end_POSTSUBSCRIPT ) italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT such that limb0f=1/(b+c)2subscriptsubscript𝑏0𝑓1superscriptsubscript𝑏𝑐2\lim_{b_{-}\to 0}f=1/(b_{+}c)^{2}roman_lim start_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT - end_POSTSUBSCRIPT → 0 end_POSTSUBSCRIPT italic_f = 1 / ( italic_b start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and limbf=1/(bc)2subscriptsubscript𝑏𝑓1superscriptsubscript𝑏𝑐2\lim_{b_{-}\to\infty}f=-1/(b_{-}c)^{2}roman_lim start_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT - end_POSTSUBSCRIPT → ∞ end_POSTSUBSCRIPT italic_f = - 1 / ( italic_b start_POSTSUBSCRIPT - end_POSTSUBSCRIPT italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT; (ii) requiring consistent coupling of quasilocal energy and angular momentum in the ultraviolet and infrared limits that bound the interior and exterior respectively. The ultraviolet limit involves the relevant physics of the coarse-grained matter source, whilst the infrared limit involves the approach to asymptotic infinity far from the compact source. While r=b𝑟subscript𝑏r=b_{-}italic_r = italic_b start_POSTSUBSCRIPT - end_POSTSUBSCRIPT and r=b+𝑟subscript𝑏r=b_{+}italic_r = italic_b start_POSTSUBSCRIPT + end_POSTSUBSCRIPT are precisely defined boundaries, a smooth transition from the virial interior to exterior involves some phenomenological freedom. See Table 1.

Spacetime region vZsubscript𝑣𝑍\vphantom{\Big{|}}v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT vSsubscript𝑣𝑆v_{\lower 2.0pt\hbox{$\scriptstyle S$}}italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ρ𝜌\rhoitalic_ρ
UV limit: Vortex ϵ=1,r<bformulae-sequenceitalic-ϵ1𝑟subscript𝑏\vphantom{\Big{|}}\epsilon=-1,r<b_{-}italic_ϵ = - 1 , italic_r < italic_b start_POSTSUBSCRIPT - end_POSTSUBSCRIPT vZ<0subscript𝑣𝑍0v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}<0italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT < 0 vS>0subscript𝑣𝑆0v_{\lower 2.0pt\hbox{$\scriptstyle S$}}>0italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT > 0 ρ<0𝜌0\rho<0italic_ρ < 0
Virial interior ϵ=1,r>bformulae-sequenceitalic-ϵ1𝑟subscript𝑏\vphantom{\Big{|}}\epsilon=-1,r>b_{-}italic_ϵ = - 1 , italic_r > italic_b start_POSTSUBSCRIPT - end_POSTSUBSCRIPT vZ<0subscript𝑣𝑍0v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}<0italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT < 0 vS>0subscript𝑣𝑆0v_{\lower 2.0pt\hbox{$\scriptstyle S$}}>0italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT > 0 ρ>0𝜌0\rho>0italic_ρ > 0
Virial exterior ϵ=+1,r<b+formulae-sequenceitalic-ϵ1𝑟subscript𝑏\vphantom{\Big{|}}\epsilon=+1,r<b_{+}italic_ϵ = + 1 , italic_r < italic_b start_POSTSUBSCRIPT + end_POSTSUBSCRIPT vZ>0subscript𝑣𝑍0v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}>0italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT > 0 vS>0subscript𝑣𝑆0v_{\lower 2.0pt\hbox{$\scriptstyle S$}}>0italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT > 0 ρ>0𝜌0\rho>0italic_ρ > 0
IR limit: Virialized ϵ=+1,r>b+formulae-sequenceitalic-ϵ1𝑟subscript𝑏\vphantom{\Big{|}}\epsilon=+1,r>b_{+}italic_ϵ = + 1 , italic_r > italic_b start_POSTSUBSCRIPT + end_POSTSUBSCRIPT vZ<0subscript𝑣𝑍0v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}<0italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT < 0 vS<0subscript𝑣𝑆0v_{\lower 2.0pt\hbox{$\scriptstyle S$}}<0italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT < 0 ρ<0𝜌0\rho<0italic_ρ < 0
Table 1: ZAMO and SO velocities, vZsubscript𝑣𝑍v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT and vSsubscript𝑣𝑆v_{\lower 2.0pt\hbox{$\scriptstyle S$}}italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT, and effective compact quasilocal energy density, ρ𝜌\rhoitalic_ρ.

There are only two cases in which Θ=0Θ0\Theta=0roman_Θ = 0, ω=σ𝜔𝜎\omega=\sigmaitalic_ω = italic_σ and ρ=0𝜌0\rho=0italic_ρ = 0; i.e., the dust congruence has zero expansion, vorticity and shear exactly cancel, and the net quasilocal energy density, 4πGρ=RμνUμUν4𝜋𝐺𝜌subscript𝑅𝜇𝜈superscript𝑈𝜇superscript𝑈𝜈4\pi G\rho=R_{\mu\nu}U^{\mu}U^{\nu}4 italic_π italic_G italic_ρ = italic_R start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT italic_U start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_U start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT, vanishes.

In the interior (ϵ=1italic-ϵ1\epsilon=-1italic_ϵ = - 1), vZsubscript𝑣𝑍v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT and vSsubscript𝑣𝑆v_{\lower 2.0pt\hbox{$\scriptstyle S$}}italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT are antiparallel, since to maintain zero angular momentum a ZAMO must counter the dragging of the central rotation. The inner vortex surface arises when maintain this equilibrium requires the net quasilocal energy density to change sign, becoming shear-dominated. On the vortex boundary

gϕϕ=b2(112Ψ(r,z)2c2b2)+𝒪(v4/c4),subscript𝑔italic-ϕitalic-ϕsuperscriptsubscript𝑏2112Ψsuperscript𝑟𝑧2superscript𝑐2superscriptsubscript𝑏2𝒪superscript𝑣4superscript𝑐4g_{\phi\phi}=b_{-}^{2}\left(1-\frac{1}{2}\frac{\Psi(r,z)^{2}}{c^{2}b_{-}^{2}}% \right)+\mathcal{O}(v^{4}/c^{4})\,,italic_g start_POSTSUBSCRIPT italic_ϕ italic_ϕ end_POSTSUBSCRIPT = italic_b start_POSTSUBSCRIPT - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 1 - divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG roman_Ψ ( italic_r , italic_z ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) + caligraphic_O ( italic_v start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT / italic_c start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) , (36)

by (7), (30), and other metric components are also regular, all relative velocities, v𝑣vitalic_v, being subrelativistic. The inner vortex surface is found at r=bL𝑟subscript𝑏much-greater-than𝐿r=b_{-}\gg Litalic_r = italic_b start_POSTSUBSCRIPT - end_POSTSUBSCRIPT ≫ italic_L, where L𝐿Litalic_L is a typical scale length of the coarse-grained dust. E.g., for the Milky Way, L50𝐿similar-to50L\mathop{\sim}\limits 50\,italic_L ∼ 50kpc. This scale is not unique, and depends crucially on phenomenological interpretation. Crosta et al[22, 23] used the BG model to fit a rotation curve to the Milky Way, as inferred from the proper motion and redshifts of a sample of 7.2×1067.2superscript1067.2\times 10^{6}7.2 × 10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT young stars from the GAIA–DR3 survey, lying within r<19𝑟19r<19\,italic_r < 19kpc of the galactic centre and 1<z<11𝑧1-1<z<1\,- 1 < italic_z < 1kpc about the galactic plane. By (30) for large values of the impact parameter, b𝑏bitalic_b, almost rigid rotation is obtained. This explains why the K1(𝒷nr)subscript𝐾1subscript𝒷𝑛𝑟K_{1}({\mathpzc b}_{n}r)italic_K start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_script_b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_r ) series alone can be fit to observations close to the galactic plane and far from its centre. However, the BG model will inevitably fail globally on account of its axial singularity, which we sidestep via the differential rotation regularization term.

In the exterior (ϵ=+1italic-ϵ1\epsilon=+1italic_ϵ = + 1), vZsubscript𝑣𝑍v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT and vSsubscript𝑣𝑆v_{\lower 2.0pt\hbox{$\scriptstyle S$}}italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT are parallel. At large spatial distances vSvZsubscript𝑣𝑆subscript𝑣𝑍v_{\lower 2.0pt\hbox{$\scriptstyle S$}}-v_{\lower 2.0pt\hbox{$\scriptstyle Z$}}italic_v start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT - italic_v start_POSTSUBSCRIPT italic_Z end_POSTSUBSCRIPT does not vanish in general, even for asymptotically flat spacetimes. Their difference embodies the quasilocal angular momentum that integrates to a global asymptotic charge in the case of the Kerr geometry. However, the observed universe has zero global angular momentum. To enable direct embedding into a nonrotating cosmological background, differentially rotating distributed sources should consistently couple quasilocal energy and angular momentum.

Our class of exact solutions does indeed admit such geometries, with a bounding surface which we hereby name the rotosurface. It has the following novel geometric properties. In the limit rb+𝑟subscript𝑏r\to b_{+}italic_r → italic_b start_POSTSUBSCRIPT + end_POSTSUBSCRIPT at finite z𝑧zitalic_z, even though the Killing vector norms diverge, the vorticity, shear, Ricci and Kretschmann scalars converge to zero: ω2σ2RμναβRμναβe2ΞΨ2/(8|b+r|4])0\omega^{2}\mathop{\sim}\limits\sigma^{2}\mathop{\sim}\limits R_{\mu\nu\alpha% \beta}R^{\mu\nu\alpha\beta}\mathop{\sim}\limits e^{2\Xi}\Psi^{2}/(8|b_{+}-r|^{% 4}])\to 0italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∼ italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∼ italic_R start_POSTSUBSCRIPT italic_μ italic_ν italic_α italic_β end_POSTSUBSCRIPT italic_R start_POSTSUPERSCRIPT italic_μ italic_ν italic_α italic_β end_POSTSUPERSCRIPT ∼ italic_e start_POSTSUPERSCRIPT 2 roman_Ξ end_POSTSUPERSCRIPT roman_Ψ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( 8 | italic_b start_POSTSUBSCRIPT + end_POSTSUBSCRIPT - italic_r | start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ] ) → 0, as ΨΨ\Psiroman_Ψ is finite and e2ΞeΨ2/(bc2|b+r|)superscript𝑒2Ξsimilar-tosuperscript𝑒superscriptΨ2𝑏superscript𝑐2subscript𝑏𝑟e^{2\Xi}\mathop{\sim}\limits e^{-\Psi^{2}/(bc^{2}|b_{+}-r|)}italic_e start_POSTSUPERSCRIPT 2 roman_Ξ end_POSTSUPERSCRIPT ∼ italic_e start_POSTSUPERSCRIPT - roman_Ψ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( italic_b italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | italic_b start_POSTSUBSCRIPT + end_POSTSUBSCRIPT - italic_r | ) end_POSTSUPERSCRIPT as rb+𝑟subscript𝑏r\to b_{+}italic_r → italic_b start_POSTSUBSCRIPT + end_POSTSUBSCRIPT.

The rotosurface is a new mathematical object, whose topology, geometry, fundamental physics and cosmological implications remain to be fully explored. Analogously to an acceleration horizon for uniform linear acceleration in Minkowski space, it is a limiting rotating surface where a fictitious observer would need to rotate with vc𝑣𝑐v\to citalic_v → italic_c in order to have zero angular momentum with respect to the vanishing local dust. However, it is a timelike surface. Indeed, it provides a precise mathematical definition of one type of finite infinity surface [6, 24, 25]. Furthermore, since relevant curvature scalars vanish it provides a new mathematical setting for the concept of virialization, and the nomenclature adopted in Table 1.

Beyond the rotosurface other quasilocal energy sources will dominate: the effective thermal pressure of galaxies in clusters and the kinetic energy of expansion in a void dominated universe [26]. The fact that the quasilocal energy of the isolated system is negative beyond the rotosurface is consistent with: (i) positive spatial curvature energy and binding energy being negative relative to the background; (ii) a small kinematical backreaction, Ω𝒬subscriptΩ𝒬\Omega_{\cal Q}roman_Ω start_POSTSUBSCRIPT caligraphic_Q end_POSTSUBSCRIPT, of virialized structures that is negative in the Buchert averaging scheme [27, 28].

Since the new solutions successfully exhibit the essential physics of differential rotation they naturally apply to rotationally supported systems, e.g., disc galaxies. A sample exact solution for a Milky Way-like galaxy with a disc mass of 1011Msuperscript1011subscriptMdirect-product10^{11}{\rm M}_{\odot}10 start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT and rotosurface at 700700700\,700kpc (Fig. 1) produces a realistic rotation curve (Fig. 2) consistent with our quasilocal Newtonian limit. The interplay of central bulges and/or dark matter halos is more complex. Nonetheless, having uncovered a consistent incorporation of the low-energy regime in macroscopic general relativity, extensions to pressure-supported systems follow naturally [29]. While the scales of globular clusters, dwarf galaxies and virialized galaxy clusters are different—each involving different particles—the underlying equations are universal.

Finally, we note that since the rotosurface is regular but timelike it may provide a novel mathematical arena for understanding the asymptotic charges of the Bondi–Metzner–Sachs group.

Refer to caption
Figure 1: Angular momentum density for a Milky Way-like galaxy. The rotosurface is found at 700 kpc.
Refer to caption
Figure 2: Rotation velocity curve for the Milky Way-like galaxy of Fig. 1. The virial interior and exterior of Table 1 are found beyond the scales shown.

Acknowledgments DLW is supported by Marsden Fund grant M1271 administered by the Royal Society of New Zealand, Te Apārangi. We thank Roy Kerr,Federico Re, and Chris Stevens for important physical and mathematical insights that helped us refine our understanding. We thank John Forbes, Christopher Harvey-Hawes, Morag Hills, Emma Johnson, Zachary Lane, Antonia Seifert, Shreyas Tiruvaskar and Michael Williams for useful discussions, and Frederic Hessman for correspondence.

References