Potential Flow Formulation of Parker’s Unsteady Solar Wind Model and Nonlinear Stability Aspects Near the Parker Sonic Critical Point

Bhimsen K. Shivamoggi111Permanent Address: University of Central Florida, Orlando, FL, 32816 California Institute of Technology
Pasadena, CA 91125
Abstract

The purpose of this paper is to present the first ever systematic theoretical formulation to address the long-standing issue of regularization of the singularity associated with the Parker sonic critical point in the linear perturbation problem for Parker’s unsteady solar wind model. This is predicated on the necessity to go outside the framework of the linear perturbation problem and incorporate the dominant nonlinearities in this dynamical system. For this purpose, a whole new theoretical formulation of Parker’s unsteady solar wind model based on the potential flow theory in ideal gas dynamics is given, which provides an appropriate optimal theoretical framework to accomplish this task. The stability of Parker’s steady solar wind solution is shown to extend also to the neighborhood of the Parker sonic critical point by going to the concomitant nonlinear problem.

1 Introduction

The solar wind is a hot tenuous magnetized plasma outflowing continually from the sun which carries off a huge amount of angular momentum from the sun while causing only a negligible mass loss. The bulk of the solar wind is known to emerge from coronal holes (Sakao et al. [1]) and to fill the heliosphere (Dialynas et al. [2]). Coronal heating along with high thermal conduction is believed to be the cause of weak to moderate-speed solar wind. But some additional acceleration mechanism operating beyond the coronal base seems to be needed for high-speed solar wind (Parker [3] [4]). Parker [3] gave an ingenious model to accomplish this by continually converting the thermal energy into kinetic energy of the wind and accelerating the latter from subsonic to supersonic speeds. The various physical properties in the solar wind have been confirmed by in situ observations (Meyer-Vernet [5]). The Parker Solar Probe (Shivamoggi [6]) has been collecting a lot of significant information on the conditions in the solar corona (Fisk and Casper [7], Bowen et al. [8], and others) some of which were at variance with previous belief (like the coupling of the solar wind with solar rotation (Kasper et al. [9]), which was shown (Shivamoggi [10]) to cause enhanced angular momentum loss from the sun).

Parker’s steady-solar wind solution is peculiar,

  • in being the one solution that describes a smooth acceleration of the solar wind through the sonic conditions at the Parker sonic critical point, given by r=r=GMS/2a2𝑟subscript𝑟𝐺subscript𝑀𝑆2superscript𝑎2r=r_{*}=GM_{S}/2a^{2}italic_r = italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = italic_G italic_M start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT / 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, G𝐺Gitalic_G being the gravitational constant, MSsubscript𝑀𝑆M_{S}italic_M start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT is the mass of the sun, and a𝑎aitalic_a is the speed of sound;

  • in corresponding to a special boundary condition prescribing the pressure to decrease away from the sun to zero at infinity in the interstellar space.

On the other hand, solar wind observations (Schrijver [11]) indicated that the large-scale behavior of the solar wind, on the average, its local noisiness (Feldman et al. [12]) notwithstanding, is apparently close to Parker’s solar wind solution. This indicates that Parker’s solar wind solution exhibits a certain robustness and an ability to sustain itself against any small perturbations acting on this system. Parker [13] therefore proposed that his solution possesses an intrinsic stability like a ”stable attractor” of this dynamical system (Cranmer and Winebarger [14]). So, any deviations in flow variables from Parker’s solar wind solution, Parker [13] argued, would be convected out by the wind flow and damped out.

This poses the stability of Parker’s solar wind solution as an important issue, though still not completely resolved. This issue was investigated by Parker [15] via formal considerations of the dynamical equations governing the solar wind flow. Parker [15] advocated that the stability of the flow in the subcritical region inside the Parker sonic critical point may be considered by approximating the solar corona in this region by a static atmosphere on the grounds that no intrinsic shear-flow instabilities may be generated in the corona during its expansion in this region222This is compatible with the absence of coronal-flow shear in the spherically symmetric flow situation posited in Parker’s solar wind model [3], which would otherwise become a free-energy source of these shear-flow instabilities (Shivamoggi [16]).. Shivamoggi [17] followed up on Parker’s proposition for the subcritical region, and gave a systematic analytical development of this issue, by posing a Sturm-Liouville problem for the linearized perturbations about Parker’s solar wind solution, to demonstrate its intrinsic stability.

On the other hand, Parker [15], Carovillano and King [18], and Jockers [19] initiated the investigation of stability of Parker’s solar wind solution with respect to linearized perturbations by including solar wind flow in the basic state and found that the singularity at the Parker sonic critical point makes this linear perturbation problem ill-posed. This precludes well-behaved solutions of the linear perturbation problem in the transonic flow region (where the wind flow-speed is near the speed of sound in the gas) near the Parker sonic critical point.

We wish to point out that a regularization of this singularity necessitates going outside of the framework of the linear perturbation problem and incorporating the dominant nonlinearities in this dynamical system (akin to the situation in transonic aerodynamics (Shivamoggi [20])). The straightforward unsteady version of Parker’s solar wind model used so far for stability considerations lends a rather cumbersome mathematical approach toward this objective. The purpose of this paper is to present a whole new theoretical formulation of Parker’s unsteady solar wind model based on the potential flow theory in ideal gas dynamics, which provides an optimal theoretical framework to analyze various aspects of Parker’s unsteady solar wind model in general, and regularization of the singularity at the Parker sonic critical point by going to the concomitant nonlinear problem.

2 Potential-Flow Formulation of Parker’s Unsteady Solar Wind Model

Consider an ideal gas flow in the presence of a central gravitating point mass representing the sun. The solar wind is represented by a spherically symmetric flow so the flow variables depend only on the distance r𝑟ritalic_r from the sun and time t𝑡titalic_t, and the flow velocity is taken to be only in the radial direction.

The equations expressing the conservation of mass and momentum balance for the ideal gas flow constituting the solar wind are (in usual notations),

ρt+1r2r(ρr2v)=0𝜌𝑡1superscript𝑟2𝑟𝜌superscript𝑟2𝑣0\frac{\partial\rho}{\partial t}+\frac{1}{r^{2}}\frac{\partial}{\partial r}% \left(\rho r^{2}v\right)=0divide start_ARG ∂ italic_ρ end_ARG start_ARG ∂ italic_t end_ARG + divide start_ARG 1 end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG ∂ end_ARG start_ARG ∂ italic_r end_ARG ( italic_ρ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_v ) = 0 (1)
ρ(vt+vvr)=prdUdr𝜌𝑣𝑡𝑣𝑣𝑟𝑝𝑟𝑑𝑈𝑑𝑟\rho\left(\frac{\partial v}{\partial t}+v\frac{\partial v}{\partial r}\right)=% -\frac{\partial p}{\partial r}-\frac{dU}{dr}italic_ρ ( divide start_ARG ∂ italic_v end_ARG start_ARG ∂ italic_t end_ARG + italic_v divide start_ARG ∂ italic_v end_ARG start_ARG ∂ italic_r end_ARG ) = - divide start_ARG ∂ italic_p end_ARG start_ARG ∂ italic_r end_ARG - divide start_ARG italic_d italic_U end_ARG start_ARG italic_d italic_r end_ARG (2)

where U𝑈Uitalic_U is the gravitational potential associated with the sun (of mass MSsubscript𝑀𝑆M_{S}italic_M start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT),

U=GMSr𝑈𝐺subscript𝑀𝑆𝑟U=-\frac{GM_{S}}{r}italic_U = - divide start_ARG italic_G italic_M start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_ARG start_ARG italic_r end_ARG (3)

We assume the ideal gas flow under consideration to be modeled by a potential flow, so we have

v=Φr𝑣Φ𝑟v=\frac{\partial\Phi}{\partial r}italic_v = divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG (4)

Furthermore, we assume for analytical simplicity that the gas flow occurs under isothermal conditions, so

p=a2ρ𝑝superscript𝑎2𝜌p=a^{2}\rhoitalic_p = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ (5)

where a𝑎aitalic_a is the constant speed of sound in the gas333SOHO observations (Cho et al. [21]) indicated that the solar wind expands isothermally to considerable distances.. In the same vein, we assume that the flow variables as well as their derivatives vary continuously so there are no shocks occurring anywhere in the region under consideration.

Using (4) and (5), equations (1) and (2) become

1ρρt+(2Φr2+2rΦr)+1ρΦrρr=01𝜌𝜌𝑡superscript2Φsuperscript𝑟22𝑟Φ𝑟1𝜌Φ𝑟𝜌𝑟0\frac{1}{\rho}\frac{\partial\rho}{\partial t}+\left(\frac{\partial^{2}\Phi}{% \partial r^{2}}+\frac{2}{r}\frac{\partial\Phi}{\partial r}\right)+\frac{1}{% \rho}\frac{\partial\Phi}{\partial r}\frac{\partial\rho}{\partial r}=0divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG divide start_ARG ∂ italic_ρ end_ARG start_ARG ∂ italic_t end_ARG + ( divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ end_ARG start_ARG ∂ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 2 end_ARG start_ARG italic_r end_ARG divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG ) + divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG divide start_ARG ∂ italic_ρ end_ARG start_ARG ∂ italic_r end_ARG = 0 (6)
t(Φr)+Φr2Φr2=a2ρρrdUdr.𝑡Φ𝑟Φ𝑟superscript2Φsuperscript𝑟2superscript𝑎2𝜌𝜌𝑟𝑑𝑈𝑑𝑟\frac{\partial}{\partial t}\left(\frac{\partial\Phi}{\partial r}\right)+\frac{% \partial\Phi}{\partial r}\frac{\partial^{2}\Phi}{\partial r^{2}}=-\frac{a^{2}}% {\rho}\frac{\partial\rho}{\partial r}-\frac{dU}{dr}.divide start_ARG ∂ end_ARG start_ARG ∂ italic_t end_ARG ( divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG ) + divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ end_ARG start_ARG ∂ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = - divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ end_ARG divide start_ARG ∂ italic_ρ end_ARG start_ARG ∂ italic_r end_ARG - divide start_ARG italic_d italic_U end_ARG start_ARG italic_d italic_r end_ARG . (7)

Equation (7) may be rewritten as

1a2Φr(2Φtr+Φr2Φr2)1a2ΦrUr=1ρΦrρr.1superscript𝑎2Φ𝑟superscript2Φ𝑡𝑟Φ𝑟superscript2Φsuperscript𝑟21superscript𝑎2Φ𝑟𝑈𝑟1𝜌Φ𝑟𝜌𝑟-\frac{1}{a^{2}}\frac{\partial\Phi}{\partial r}\left(\frac{\partial^{2}\Phi}{% \partial t\partial r}+\frac{\partial\Phi}{\partial r}\frac{\partial^{2}\Phi}{% \partial r^{2}}\right)-\frac{1}{a^{2}}\frac{\partial\Phi}{\partial r}\frac{% \partial U}{\partial r}=\frac{1}{\rho}\frac{\partial\Phi}{\partial r}\frac{% \partial\rho}{\partial r}.- divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG ( divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ end_ARG start_ARG ∂ italic_t ∂ italic_r end_ARG + divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ end_ARG start_ARG ∂ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) - divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG divide start_ARG ∂ italic_U end_ARG start_ARG ∂ italic_r end_ARG = divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG divide start_ARG ∂ italic_ρ end_ARG start_ARG ∂ italic_r end_ARG . (8)

On the other hand, the Bernoulli integral of equation (7),

Φt+12(Φr)2+dpρ+U=constΦ𝑡12superscriptΦ𝑟2𝑑𝑝𝜌𝑈𝑐𝑜𝑛𝑠𝑡\frac{\partial\Phi}{\partial t}+\frac{1}{2}\left(\frac{\partial\Phi}{\partial r% }\right)^{2}+\int\frac{dp}{\rho}+U=constdivide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_t end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ∫ divide start_ARG italic_d italic_p end_ARG start_ARG italic_ρ end_ARG + italic_U = italic_c italic_o italic_n italic_s italic_t (9)

gives,

1ρρt=1a2(2Φt2+Φr2Φtr)1𝜌𝜌𝑡1superscript𝑎2superscript2Φsuperscript𝑡2Φ𝑟superscript2Φ𝑡𝑟\frac{1}{\rho}\frac{\partial\rho}{\partial t}=-\frac{1}{a^{2}}\left(\frac{% \partial^{2}\Phi}{\partial t^{2}}+\frac{\partial\Phi}{\partial r}\frac{% \partial^{2}\Phi}{\partial t\partial r}\right)divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG divide start_ARG ∂ italic_ρ end_ARG start_ARG ∂ italic_t end_ARG = - divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ end_ARG start_ARG ∂ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ end_ARG start_ARG ∂ italic_t ∂ italic_r end_ARG ) (10)

Using equations (8) and (10), equation (6) leads to the equation governing the potential flows of an ideal gas constituting the solar wind,

[a2(Φr)2]2Φr2+2a2rΦr=2Φt2+2Φr2Φtr+ΦrdUdr.delimited-[]superscript𝑎2superscriptΦ𝑟2superscript2Φsuperscript𝑟22superscript𝑎2𝑟Φ𝑟superscript2Φsuperscript𝑡22Φ𝑟superscript2Φ𝑡𝑟Φ𝑟𝑑𝑈𝑑𝑟\left[a^{2}-\left(\frac{\partial\Phi}{\partial r}\right)^{2}\right]\frac{% \partial^{2}\Phi}{\partial r^{2}}+\frac{2a^{2}}{r}\frac{\partial\Phi}{\partial r% }=\frac{\partial^{2}\Phi}{\partial t^{2}}+2\frac{\partial\Phi}{\partial r}% \frac{\partial^{2}\Phi}{\partial t\partial r}+\frac{\partial\Phi}{\partial r}% \frac{dU}{dr}.[ italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ end_ARG start_ARG ∂ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r end_ARG divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG = divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ end_ARG start_ARG ∂ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + 2 divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ end_ARG start_ARG ∂ italic_t ∂ italic_r end_ARG + divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG divide start_ARG italic_d italic_U end_ARG start_ARG italic_d italic_r end_ARG . (11)

Equation (11) provides an optimal theoretical framework to extrapolate the Parker solar wind model to unsteady situations and investigate the long-standing issue of stability of the Parker steady solar wind solution.

3 Parker Steady Solar Wind Model

For a steady wind flow, equation (11) describes Parker’s solar wind model [3],

[a2(dΦdr)2]d2Φdr2+2a2r2(rr)dΦdr=0delimited-[]superscript𝑎2superscript𝑑Φ𝑑𝑟2superscript𝑑2Φ𝑑superscript𝑟22superscript𝑎2superscript𝑟2𝑟subscript𝑟𝑑Φ𝑑𝑟0\left[a^{2}-\left(\frac{d\Phi}{dr}\right)^{2}\right]\frac{d^{2}\Phi}{dr^{2}}+% \frac{2a^{2}}{r^{2}}\left(r-r_{*}\right)\frac{d\Phi}{dr}=0[ italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( divide start_ARG italic_d roman_Φ end_ARG start_ARG italic_d italic_r end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ end_ARG start_ARG italic_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_r - italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) divide start_ARG italic_d roman_Φ end_ARG start_ARG italic_d italic_r end_ARG = 0 (12)

where r=rGMS/2a2𝑟subscript𝑟𝐺subscript𝑀𝑆2superscript𝑎2r=r_{*}\equiv GM_{S}/2a^{2}italic_r = italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≡ italic_G italic_M start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT / 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT locates the Parker sonic critical point.

Equation (12) gives a physically acceptable smooth solution (Parker [3]),

[dΦ/dra]2log[dΦ/dra]2=4log(rr)+4(rr)3\left[\frac{d\Phi/dr}{a}\right]^{2}-\log\left[\frac{d\Phi/dr}{a}\right]^{2}=4% \log\left(\frac{r}{r_{*}}\right)+4\left(\frac{r}{r_{*}}\right)-3[ divide start_ARG italic_d roman_Φ / italic_d italic_r end_ARG start_ARG italic_a end_ARG ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - roman_log [ divide start_ARG italic_d roman_Φ / italic_d italic_r end_ARG start_ARG italic_a end_ARG ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 4 roman_log ( divide start_ARG italic_r end_ARG start_ARG italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ) + 4 ( divide start_ARG italic_r end_ARG start_ARG italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ) - 3 (13)

which complies with the smoothness condition at the Parker sonic critical point,

r=r:v=a.:𝑟subscript𝑟𝑣𝑎r=r_{*}:\hskip 7.22743ptv=a.italic_r = italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT : italic_v = italic_a . (14)

4 Linear Perturbation Problem for Parker’s Solar Wind Model

We assume solutions of time-dependent perturbations (denoted by subscript 00) to be of the form,

Φ(r,t)=ϕ0(r)+ϵϕ1(r,t),ϵ1formulae-sequenceΦ𝑟𝑡subscriptitalic-ϕ0𝑟italic-ϵsubscriptitalic-ϕ1𝑟𝑡much-less-thanitalic-ϵ1\Phi(r,t)=\phi_{0}(r)+\epsilon\phi_{1}(r,t),\hskip 7.22743pt\epsilon\ll 1roman_Φ ( italic_r , italic_t ) = italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ) + italic_ϵ italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r , italic_t ) , italic_ϵ ≪ 1 (15)

and assume the perturbations characterized by the small parameter ϵitalic-ϵ\epsilonitalic_ϵ to be small. Equation (11) then yields for the basic state,

[a2(dϕ0dr)2]d2ϕ0dr2+2a2r2(rr)dϕ0dr=0delimited-[]superscript𝑎2superscript𝑑subscriptitalic-ϕ0𝑑𝑟2superscript𝑑2subscriptitalic-ϕ0𝑑superscript𝑟22superscript𝑎2superscript𝑟2𝑟subscript𝑟𝑑subscriptitalic-ϕ0𝑑𝑟0\left[a^{2}-\left(\frac{d\phi_{0}}{dr}\right)^{2}\right]\frac{d^{2}\phi_{0}}{% dr^{2}}+\frac{2a^{2}}{r^{2}}(r-r_{*})\frac{d\phi_{0}}{dr}=0[ italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( divide start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_r end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_r - italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) divide start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_r end_ARG = 0 (16)

which represents Parker’s steady solar wind model given by equation (12), and for the linearized perturbations,

[a2(dϕ0dr)2]2ϕ1r2+[2dϕ0drd2ϕ0dr2+2a2(rr)]ϕ1r=2dϕ0dr2ϕ1tr+2ϕ1t2.delimited-[]superscript𝑎2superscript𝑑subscriptitalic-ϕ0𝑑𝑟2superscript2subscriptitalic-ϕ1superscript𝑟2delimited-[]2𝑑subscriptitalic-ϕ0𝑑𝑟superscript𝑑2subscriptitalic-ϕ0𝑑superscript𝑟22superscript𝑎2𝑟subscript𝑟subscriptitalic-ϕ1𝑟2𝑑subscriptitalic-ϕ0𝑑𝑟superscript2subscriptitalic-ϕ1𝑡𝑟superscript2subscriptitalic-ϕ1superscript𝑡2\left[a^{2}-\left(\frac{d\phi_{0}}{dr}\right)^{2}\right]\frac{\partial^{2}\phi% _{1}}{\partial r^{2}}+\left[-2\frac{d\phi_{0}}{dr}\frac{d^{2}\phi_{0}}{dr^{2}}% +2a^{2}(r-r_{*})\right]\frac{\partial\phi_{1}}{\partial r}=2\frac{d\phi_{0}}{% dr}\frac{\partial^{2}\phi_{1}}{\partial t\partial r}+\frac{\partial^{2}\phi_{1% }}{\partial t^{2}}.[ italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( divide start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_r end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + [ - 2 divide start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_r end_ARG divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_r - italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) ] divide start_ARG ∂ italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_r end_ARG = 2 divide start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_r end_ARG divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_t ∂ italic_r end_ARG + divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (17)

We consider the subcritical region, where

[a2(dϕ0dr)2]>0,r<rformulae-sequencedelimited-[]superscript𝑎2superscript𝑑subscriptitalic-ϕ0𝑑𝑟20𝑟subscript𝑟\left[a^{2}-\left(\frac{d\phi_{0}}{dr}\right)^{2}\right]>0,\hskip 7.22743ptr<r% _{*}[ italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( divide start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_r end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] > 0 , italic_r < italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT (18)

and assume normal-mode solutions of the form,

ϕ1(r,t)=ϕ^1(r)eiωt.subscriptitalic-ϕ1𝑟𝑡subscript^italic-ϕ1𝑟superscript𝑒𝑖𝜔𝑡\phi_{1}(r,t)=\hat{\phi}_{1}(r)e^{-i\omega t}.italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r , italic_t ) = over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω italic_t end_POSTSUPERSCRIPT . (19)

Equation (17) then gives

d2ϕ^1dr2+[d2ϕ0/dr2dϕ0/dr2(dϕ0/dr)(d2ϕ0/dr2)a2(dϕ0/dr)2+2iωdϕ0/dra2(dϕ0/dr)2]dϕ^1dr+ω2[1a2(dϕ0/dr)2]ϕ1=0.superscript𝑑2subscript^italic-ϕ1𝑑superscript𝑟2delimited-[]superscript𝑑2subscriptitalic-ϕ0𝑑superscript𝑟2𝑑subscriptitalic-ϕ0𝑑𝑟2𝑑subscriptitalic-ϕ0𝑑𝑟superscript𝑑2subscriptitalic-ϕ0𝑑superscript𝑟2superscript𝑎2superscript𝑑subscriptitalic-ϕ0𝑑𝑟22𝑖𝜔𝑑subscriptitalic-ϕ0𝑑𝑟superscript𝑎2superscript𝑑subscriptitalic-ϕ0𝑑𝑟2𝑑subscript^italic-ϕ1𝑑𝑟superscript𝜔2delimited-[]1superscript𝑎2superscript𝑑subscriptitalic-ϕ0𝑑𝑟2subscriptitalic-ϕ10\frac{d^{2}\hat{\phi}_{1}}{dr^{2}}+\left[-\frac{d^{2}\phi_{0}/dr^{2}}{d\phi_{0% }/dr}-2\frac{(d\phi_{0}/dr)(d^{2}\phi_{0}/dr^{2})}{a^{2}-(d\phi_{0}/dr)^{2}}+2% i\omega\frac{d\phi_{0}/dr}{a^{2}-(d\phi_{0}/dr)^{2}}\right]\frac{d\hat{\phi}_{% 1}}{dr}\\ +\omega^{2}\left[\frac{1}{a^{2}-(d\phi_{0}/dr)^{2}}\right]\phi_{1}=0.start_ROW start_CELL divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + [ - divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r end_ARG - 2 divide start_ARG ( italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r ) ( italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + 2 italic_i italic_ω divide start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] divide start_ARG italic_d over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_r end_ARG end_CELL end_ROW start_ROW start_CELL + italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 . end_CELL end_ROW (20)

Equation (20) may be written as the Sturm-Liouville equation,

ddr[f(r)dϕ^1dr]+ω2g(r)ϕ^1=0,rS<r<rformulae-sequence𝑑𝑑𝑟delimited-[]𝑓𝑟𝑑subscript^italic-ϕ1𝑑𝑟superscript𝜔2𝑔𝑟subscript^italic-ϕ10subscript𝑟𝑆𝑟subscript𝑟\frac{d}{dr}\left[f(r)\frac{d\hat{\phi}_{1}}{dr}\right]+\omega^{2}g(r)\hat{% \phi}_{1}=0,\hskip 7.22743ptr_{S}<r<r_{*}divide start_ARG italic_d end_ARG start_ARG italic_d italic_r end_ARG [ italic_f ( italic_r ) divide start_ARG italic_d over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_r end_ARG ] + italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_g ( italic_r ) over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 , italic_r start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT < italic_r < italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT (21)

where

f(r)[a2(dϕ0/dr)2dϕ0/dr]e2iωrSrdϕ0/dra2(dϕ0/dr)2𝑑r𝑓𝑟delimited-[]superscript𝑎2superscript𝑑subscriptitalic-ϕ0𝑑𝑟2𝑑subscriptitalic-ϕ0𝑑𝑟superscript𝑒2𝑖𝜔superscriptsubscriptsubscript𝑟𝑆𝑟𝑑subscriptitalic-ϕ0𝑑𝑟superscript𝑎2superscript𝑑subscriptitalic-ϕ0𝑑𝑟2differential-d𝑟f(r)\equiv\left[\frac{a^{2}-(d\phi_{0}/dr)^{2}}{d\phi_{0}/dr}\right]e^{2i% \omega\int_{r_{S}}^{r}\frac{d\phi_{0}/dr}{a^{2}-(d\phi_{0}/dr)^{2}}dr}italic_f ( italic_r ) ≡ [ divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r end_ARG ] italic_e start_POSTSUPERSCRIPT 2 italic_i italic_ω ∫ start_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT divide start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_d italic_r end_POSTSUPERSCRIPT
g(r)1dϕ0/dre2iωrSrdϕ0/dra2(dϕ0/dr)2𝑑r𝑔𝑟1𝑑subscriptitalic-ϕ0𝑑𝑟superscript𝑒2𝑖𝜔superscriptsubscriptsubscript𝑟𝑆𝑟𝑑subscriptitalic-ϕ0𝑑𝑟superscript𝑎2superscript𝑑subscriptitalic-ϕ0𝑑𝑟2differential-d𝑟g(r)\equiv\frac{1}{d\phi_{0}/dr}e^{2i\omega\int_{r_{S}}^{r}\frac{d\phi_{0}/dr}% {a^{2}-(d\phi_{0}/dr)^{2}}dr}italic_g ( italic_r ) ≡ divide start_ARG 1 end_ARG start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r end_ARG italic_e start_POSTSUPERSCRIPT 2 italic_i italic_ω ∫ start_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT divide start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_d italic_r end_POSTSUPERSCRIPT

rSsubscript𝑟𝑆r_{S}italic_r start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT being sun’s radius.

Taking the complex conjugate of equation (21) we have

ddr[f¯(r)dϕ^¯1dr]+ω2(^g)(r)ϕ^¯1=0,\frac{d}{dr}\left[\bar{f}(r)\frac{d\bar{\hat{\phi}}_{1}}{dr}\right]+\omega^{2}% \hat{(}g)(r)\bar{\hat{\phi}}_{1}=0,\hskip 7.22743ptdivide start_ARG italic_d end_ARG start_ARG italic_d italic_r end_ARG [ over¯ start_ARG italic_f end_ARG ( italic_r ) divide start_ARG italic_d over¯ start_ARG over^ start_ARG italic_ϕ end_ARG end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_r end_ARG ] + italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG ( end_ARG italic_g ) ( italic_r ) over¯ start_ARG over^ start_ARG italic_ϕ end_ARG end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 , (22)

If ω𝜔\omegaitalic_ω is pure imaginary, ω=iΩ𝜔𝑖Ω\omega=i\Omegaitalic_ω = italic_i roman_Ω, we obtain from equations (21) and (22),

rSrf(r)|dϕ^1dr|2𝑑rΩ2rSrg(r)|ϕ^1|2𝑑r=0,rS<r<rformulae-sequencesuperscriptsubscriptsubscript𝑟𝑆𝑟𝑓𝑟superscript𝑑subscript^italic-ϕ1𝑑𝑟2differential-d𝑟superscriptΩ2superscriptsubscriptsubscript𝑟𝑆𝑟𝑔𝑟superscriptsubscript^italic-ϕ12differential-d𝑟0subscript𝑟𝑆𝑟subscript𝑟-\int_{r_{S}}^{r}f(r)\left|\frac{d\hat{\phi}_{1}}{dr}\right|^{2}dr-\Omega^{2}% \int_{r_{S}}^{r}g(r)\left|\hat{\phi}_{1}\right|^{2}dr=0,\hskip 7.22743ptr_{S}<% r<r_{*}- ∫ start_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_f ( italic_r ) | divide start_ARG italic_d over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_r end_ARG | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_r - roman_Ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_g ( italic_r ) | over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_r = 0 , italic_r start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT < italic_r < italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT (23)

where we have taken the perturbations or their gradients to vanish at the coronal base r=rS𝑟subscript𝑟𝑆r=r_{S}italic_r = italic_r start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT, and f(r)𝑓𝑟f(r)italic_f ( italic_r ) and g(r)𝑔𝑟g(r)italic_g ( italic_r ) now become

f(r)=[a2(dϕ0/dr)2dϕ0/dr]e2ΩrSrdϕ0/dra2(dϕ0/dr)2𝑑r>0𝑓𝑟delimited-[]superscript𝑎2superscript𝑑subscriptitalic-ϕ0𝑑𝑟2𝑑subscriptitalic-ϕ0𝑑𝑟superscript𝑒2Ωsuperscriptsubscriptsubscript𝑟𝑆𝑟𝑑subscriptitalic-ϕ0𝑑𝑟superscript𝑎2superscript𝑑subscriptitalic-ϕ0𝑑𝑟2differential-d𝑟0f(r)=\left[\frac{a^{2}-(d\phi_{0}/dr)^{2}}{d\phi_{0}/dr}\right]e^{-2\Omega\int% _{r_{S}}^{r}\frac{d\phi_{0}/dr}{a^{2}-(d\phi_{0}/dr)^{2}}dr}>0italic_f ( italic_r ) = [ divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r end_ARG ] italic_e start_POSTSUPERSCRIPT - 2 roman_Ω ∫ start_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT divide start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_d italic_r end_POSTSUPERSCRIPT > 0
g(r)=1dϕ0/dre2ΩrSrdϕ0/dra2(dϕ0/dr)2𝑑r>0.𝑔𝑟1𝑑subscriptitalic-ϕ0𝑑𝑟superscript𝑒2Ωsuperscriptsubscriptsubscript𝑟𝑆𝑟𝑑subscriptitalic-ϕ0𝑑𝑟superscript𝑎2superscript𝑑subscriptitalic-ϕ0𝑑𝑟2differential-d𝑟0g(r)=\frac{1}{d\phi_{0}/dr}e^{-2\Omega\int_{r_{S}}^{r}\frac{d\phi_{0}/dr}{a^{2% }-(d\phi_{0}/dr)^{2}}dr}>0.italic_g ( italic_r ) = divide start_ARG 1 end_ARG start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r end_ARG italic_e start_POSTSUPERSCRIPT - 2 roman_Ω ∫ start_POSTSUBSCRIPT italic_r start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT divide start_ARG italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( italic_d italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_d italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_d italic_r end_POSTSUPERSCRIPT > 0 .

Equation (23) is impossible to satisfy, so ω𝜔\omegaitalic_ω is real444In non-dissipative systems (like the one under consideration) the transition from stability to instability may be expected to occur via a marginal state exhibiting oscillatory motions (Eddington [22], see also Chandrasekhar [23])., and the Parker solar wind solution is linearly stable in the subcritical region.

It is to be noted, as previously mentioned by Parker [15], Carovillano and King [18] and Jockers [19], that the linearized perturbation problem, described by equation (20), exhibits a singularity at the Parker sonic critical point given by (14)555It may be mentioned, as Parker [15] pointed out, that this coincidence will not hold for more general non-isothermal cases.. Consequently, the above linearized development, which is valid in the subcritical region, becomes ill-posed and breaks down near the Parker sonic critical point. This drawback may be remedied via a proper treatment of the transonic flow region around the Parker sonic critical point. This necessitates going outside the linearized framework and adopting the nonlinear formulation (akin to the situation in transonic aerodynamics (Shivamoggi [20])). This task can be accomplished in an expeditious way by using the potential-flow formulation, namely equation (11), given in this paper.

5 Nonlinear Perturbation Problem for the Parker Solar Wind Model

Equation (11) governing the potential flows of an ideal gas constituting the solar wind may be rewritten as,

[a2(Φr)2]2Φr2+2a2r2(rr)Φr=2Φt2+2Φr2Φtrdelimited-[]superscript𝑎2superscriptΦ𝑟2superscript2Φsuperscript𝑟22superscript𝑎2superscript𝑟2𝑟subscript𝑟Φ𝑟superscript2Φsuperscript𝑡22Φ𝑟superscript2Φ𝑡𝑟\left[a^{2}-\left(\frac{\partial\Phi}{\partial r}\right)^{2}\right]\frac{% \partial^{2}\Phi}{\partial r^{2}}+\frac{2a^{2}}{r^{2}}(r-r_{*})\frac{\partial% \Phi}{\partial r}=\frac{\partial^{2}\Phi}{\partial t^{2}}+2\frac{\partial\Phi}% {\partial r}\frac{\partial^{2}\Phi}{\partial t\partial r}[ italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ end_ARG start_ARG ∂ italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_r - italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG = divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ end_ARG start_ARG ∂ italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + 2 divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ end_ARG start_ARG ∂ italic_t ∂ italic_r end_ARG (24)

In order to treat the region near the Parker sonic critical point, described by Φ/raΦ𝑟𝑎\partial\Phi/\partial r\approx a∂ roman_Φ / ∂ italic_r ≈ italic_a, we follow the treatment of thin airfoil in transonic flows (Cole and Messiter [24]), and put, following method of multiple scales (Shivamoggi [25]),

Φr=a(1+ϵϕ1r),r=r(1+ϵx),t~=ϵt,ϵ1formulae-sequenceΦ𝑟𝑎1italic-ϵsubscriptitalic-ϕ1𝑟formulae-sequence𝑟subscript𝑟1italic-ϵ𝑥formulae-sequence~𝑡italic-ϵ𝑡much-less-thanitalic-ϵ1\begin{gathered}\frac{\partial\Phi}{\partial r}=a\left(1+\epsilon\frac{% \partial\phi_{1}}{\partial r}\right),\\ r=r_{*}(1+\epsilon x),\hskip 7.22743pt\tilde{t}=\epsilon t,\hskip 7.22743pt% \epsilon\ll 1\end{gathered}start_ROW start_CELL divide start_ARG ∂ roman_Φ end_ARG start_ARG ∂ italic_r end_ARG = italic_a ( 1 + italic_ϵ divide start_ARG ∂ italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_r end_ARG ) , end_CELL end_ROW start_ROW start_CELL italic_r = italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ( 1 + italic_ϵ italic_x ) , over~ start_ARG italic_t end_ARG = italic_ϵ italic_t , italic_ϵ ≪ 1 end_CELL end_ROW (25)

where ϵitalic-ϵ\epsilonitalic_ϵ is a small parameter characterizing the deviation of the flow speed from the speed of sound in the gas. The slow (or shrunken) time scale t~~𝑡\tilde{t}over~ start_ARG italic_t end_ARG characterizes the slowly varying dynamics under the influence of gravitational choking operational near the Parker sonic critical point. Equation (24)then yields

1rϕ1x2ϕ1x2xϕ1x=ra2ϕ1xt~.1subscript𝑟subscriptitalic-ϕ1𝑥superscript2subscriptitalic-ϕ1superscript𝑥2𝑥subscriptitalic-ϕ1𝑥subscript𝑟𝑎superscript2subscriptitalic-ϕ1𝑥~𝑡\frac{1}{r_{*}}\frac{\partial\phi_{1}}{\partial x}\frac{\partial^{2}\phi_{1}}{% \partial x^{2}}-x\frac{\partial\phi_{1}}{\partial x}=-\frac{r_{*}}{a}\frac{% \partial^{2}\phi_{1}}{\partial x\partial\tilde{t}}.divide start_ARG 1 end_ARG start_ARG italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG divide start_ARG ∂ italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_x end_ARG divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - italic_x divide start_ARG ∂ italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_x end_ARG = - divide start_ARG italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_a end_ARG divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_x ∂ over~ start_ARG italic_t end_ARG end_ARG . (26)

Putting further,

u1ϕ1x,τar2t~formulae-sequencesubscript𝑢1subscriptitalic-ϕ1𝑥𝜏𝑎superscriptsubscript𝑟2~𝑡u_{1}\equiv\frac{\partial\phi_{1}}{\partial x},\hskip 7.22743pt\tau\equiv\frac% {a}{r_{*}^{2}}\tilde{t}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≡ divide start_ARG ∂ italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_x end_ARG , italic_τ ≡ divide start_ARG italic_a end_ARG start_ARG italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG over~ start_ARG italic_t end_ARG (27)

equation (26) becomes

u1τ+u1u1x=rxu1.subscript𝑢1𝜏subscript𝑢1subscript𝑢1𝑥subscript𝑟𝑥subscript𝑢1\frac{\partial u_{1}}{\partial\tau}+u_{1}\frac{\partial u_{1}}{\partial x}=r_{% *}xu_{1}.divide start_ARG ∂ italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_τ end_ARG + italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT divide start_ARG ∂ italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_x end_ARG = italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_x italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT . (28)

In order to determine a solution of this nonlinear hyperbolic equation, note first that the characteristics of equation (28) are given by

C:dτdξ=1,dxdξ=u1:𝐶formulae-sequence𝑑𝜏𝑑𝜉1𝑑𝑥𝑑𝜉subscript𝑢1C:\hskip 7.22743pt\frac{d\tau}{d\xi}=1,\hskip 7.22743pt\frac{dx}{d\xi}=u_{1}italic_C : divide start_ARG italic_d italic_τ end_ARG start_ARG italic_d italic_ξ end_ARG = 1 , divide start_ARG italic_d italic_x end_ARG start_ARG italic_d italic_ξ end_ARG = italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT (29)

Equation (28) then reduces to the following ordinary differential equation,

du1dξ=rx(ξ)u1(ξ),along C.𝑑subscript𝑢1𝑑𝜉subscript𝑟𝑥𝜉subscript𝑢1𝜉along C.\frac{du_{1}}{d\xi}=r_{*}x(\xi)u_{1}(\xi),\hskip 7.22743pt\text{along C.}divide start_ARG italic_d italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_ξ end_ARG = italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_x ( italic_ξ ) italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ξ ) , along C. (30)

Equation (29) yields the solution,

τ=ξ,x(x0,τ)=f(x0,τ)formulae-sequence𝜏𝜉𝑥subscript𝑥0𝜏𝑓subscript𝑥0𝜏\tau=\xi,\hskip 7.22743ptx(x_{0},\tau)=f(x_{0},\tau)italic_τ = italic_ξ , italic_x ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_τ ) = italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_τ ) (31)

where,

x0x(x0,0).subscript𝑥0𝑥subscript𝑥00x_{0}\equiv x(x_{0},0).italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≡ italic_x ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , 0 ) .

Using (31), equation (30) yields the solution,

u1(x,τ)=u10er0τf(x0,S)𝑑S.subscript𝑢1𝑥𝜏subscript𝑢subscript10superscript𝑒subscript𝑟superscriptsubscript0𝜏𝑓subscript𝑥0𝑆differential-d𝑆u_{1}(x,\tau)=u_{1_{0}}e^{r_{*}\int_{0}^{\tau}f(x_{0},S)dS}.italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_τ ) = italic_u start_POSTSUBSCRIPT 1 start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_S ) italic_d italic_S end_POSTSUPERSCRIPT . (32)

where,

u10u1(x,0).subscript𝑢subscript10subscript𝑢1𝑥0u_{1_{0}}\equiv u_{1}(x,0).italic_u start_POSTSUBSCRIPT 1 start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≡ italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , 0 ) .

Introduce,

ψ(τ)r0τf(x0,S)𝑑S𝜓𝜏subscript𝑟superscriptsubscript0𝜏𝑓subscript𝑥0𝑆differential-d𝑆\psi(\tau)\equiv r_{*}\int_{0}^{\tau}f(x_{0},S)dSitalic_ψ ( italic_τ ) ≡ italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_S ) italic_d italic_S (33)

which yields, on using (31),

dψdτ=rf(x0,τ)=rx.𝑑𝜓𝑑𝜏subscript𝑟𝑓subscript𝑥0𝜏subscript𝑟𝑥\frac{d\psi}{d\tau}=r_{*}f(x_{0},\tau)=r_{*}x.divide start_ARG italic_d italic_ψ end_ARG start_ARG italic_d italic_τ end_ARG = italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_τ ) = italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_x . (34)

(33) and (34) imply the initial conditions,

τ=0:ψ=0,dψdτ=rx0.:𝜏0formulae-sequence𝜓0𝑑𝜓𝑑𝜏subscript𝑟subscript𝑥0\tau=0:\hskip 7.22743pt\psi=0,\hskip 7.22743pt\frac{d\psi}{d\tau}=r_{*}x_{0}.italic_τ = 0 : italic_ψ = 0 , divide start_ARG italic_d italic_ψ end_ARG start_ARG italic_d italic_τ end_ARG = italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT . (35)

Furthermore, on using equations (29), (32), and (34), we have

d2ψdτ2=rdxdτ=ru1=ru1eψsuperscript𝑑2𝜓𝑑superscript𝜏2subscript𝑟𝑑𝑥𝑑𝜏subscript𝑟subscript𝑢1subscript𝑟subscript𝑢1superscript𝑒𝜓\frac{d^{2}\psi}{d\tau^{2}}=r_{*}\frac{dx}{d\tau}=r_{*}u_{1}=r_{*}u_{1}e^{\psi}divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ψ end_ARG start_ARG italic_d italic_τ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT divide start_ARG italic_d italic_x end_ARG start_ARG italic_d italic_τ end_ARG = italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_ψ end_POSTSUPERSCRIPT (36)

from which, we obtain

dψdτ=2ru10eψ/2.𝑑𝜓𝑑𝜏2subscript𝑟subscript𝑢subscript10superscript𝑒𝜓2\frac{d\psi}{d\tau}=\sqrt{2r_{*}u_{1_{0}}}e^{\psi/2}.divide start_ARG italic_d italic_ψ end_ARG start_ARG italic_d italic_τ end_ARG = square-root start_ARG 2 italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_u start_POSTSUBSCRIPT 1 start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG italic_e start_POSTSUPERSCRIPT italic_ψ / 2 end_POSTSUPERSCRIPT . (37)

Equation (37) yields the solution,

eψ/2=112rx0τ.superscript𝑒𝜓2112subscript𝑟subscript𝑥0𝜏e^{-\psi/2}=1-\frac{1}{2}r_{*}x_{0}\tau.italic_e start_POSTSUPERSCRIPT - italic_ψ / 2 end_POSTSUPERSCRIPT = 1 - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_τ . (38)

Using (38), (32) and (33) give

u1(x,τ)=u10(1rx0τ/2)2.subscript𝑢1𝑥𝜏subscript𝑢subscript10superscript1subscript𝑟subscript𝑥0𝜏22u_{1}(x,\tau)=\frac{u_{1_{0}}}{(1-r_{*}x_{0}\tau/2)^{2}}.italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_τ ) = divide start_ARG italic_u start_POSTSUBSCRIPT 1 start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG ( 1 - italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_τ / 2 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (39)

Furthermore, (35) and (37) yield

u10=rx022subscript𝑢subscript10subscript𝑟superscriptsubscript𝑥022u_{1_{0}}=\frac{r_{*}x_{0}^{2}}{2}italic_u start_POSTSUBSCRIPT 1 start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = divide start_ARG italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG (40)

and (39) becomes

u1(x,τ)=rx02/2(1rx0τ/2)2.subscript𝑢1𝑥𝜏subscript𝑟superscriptsubscript𝑥022superscript1subscript𝑟subscript𝑥0𝜏22u_{1}(x,\tau)=\frac{r_{*}x_{0}^{2}/2}{(1-r_{*}x_{0}\tau/2)^{2}}.italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_τ ) = divide start_ARG italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 2 end_ARG start_ARG ( 1 - italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_τ / 2 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (41)

Using (41), equation (29) yields,

x(x0,τ)=x01rx0τ/2𝑥subscript𝑥0𝜏subscript𝑥01subscript𝑟subscript𝑥0𝜏2x(x_{0},\tau)=\frac{x_{0}}{1-r_{*}x_{0}\tau/2}italic_x ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_τ ) = divide start_ARG italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG 1 - italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_τ / 2 end_ARG (42)

from which, we obtain

x0=x1+rxτ/2.subscript𝑥0𝑥1subscript𝑟𝑥𝜏2x_{0}=\frac{x}{1+r_{*}x\tau/2}.italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG italic_x end_ARG start_ARG 1 + italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_x italic_τ / 2 end_ARG . (43)

Using (43), (41) becomes

u1(x,τ)=12rx2.subscript𝑢1𝑥𝜏12subscript𝑟superscript𝑥2u_{1}(x,\tau)=\frac{1}{2}r_{*}x^{2}.italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_τ ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (44)

(44) implies that the dynamics in the nonlinear perturbation problem near the Parker sonic critical point is essentially frozen in time. Physically this seems to be traceable to the gravitational choking (described by the term on the right in equation (28)) operational in the nonlinear hyperbolic dynamics near the Parker sonic critical point. Indeed, in the time-independent limit, equation (28) becomes

u1(u1xrx)=0subscript𝑢1subscript𝑢1𝑥subscript𝑟𝑥0u_{1}(u_{1x}-r_{*}x)=0italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_u start_POSTSUBSCRIPT 1 italic_x end_POSTSUBSCRIPT - italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_x ) = 0 (45)

from which, (ruling out the trivial solution u0𝑢0u\equiv 0italic_u ≡ 0),

u1(x,τ)=12rx2subscript𝑢1𝑥𝜏12subscript𝑟superscript𝑥2u_{1}(x,\tau)=\frac{1}{2}r_{*}x^{2}italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x , italic_τ ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (46)

in agreement with (44).

6 Discussion

Contrary to the assumptions made in the theoretical models, the solar wind is, in reality, far from being steady and structureless, as revealed by spatial and temporal variabilities apparent in in situ observations of the solar wind. Nonetheless, Parker’s solar wind solution has been found to provide an excellent first-order approximation to the large-scale behavior, on the average, of the solar wind. This indicates it has a certain robustness and an ability to sustain itself against any small perturbations acting on this system. This poses stability of Parker’s solar wind solution as an important issue, though still not completely resolved. Previous investigations ([15], [18], [19]) of stability of Parker’s solar wind solution with respect to linearized perturbations were plagued by the singularity at the Parker sonic critical point, where the wind flow equals the speed of sound in the gas. This paper seeks to regularize this singularity by going outside the framework of the linear perturbation problem, and incorporating the dominant nonlinearities in this dynamical system. This is implemented by introducing a whole new theoretical formulation of Parker’s solar wind model based on the potential flow theory in ideal gas dynamics, which provides an appropriate optimal theoretical framework for this purpose. The stability of Parker’s solar wind solution is shown to extend also to the neighborhood of the Parker sonic critical point by going to the concomitant nonlinear problem.

7 Acknowledgments

This work was carried out during my sabbatical leave at California Institute of Technology. My thanks are due to Professor Shrinivas Kulkarni for his enormous hospitality and valuable discussions. I am thankful to late Professor Eugene Parker for his helpful advice and suggestions on the solar wind problem.

References

  • [1] T. Sakao et al.: Science 318, 1585, (2007).
  • [2] K. Dialynas et al.: Nature Astronomy 1, 0115, (2017).
  • [3] E. N. Parker: Astrophys. J. 128, 664, (1958).
  • [4] E. N. Parker: Space Sci. Rev. 4, 666, (1965).
  • [5] N. Meyer-Vernet: Basics of the Solar Wind, Cambridge Univ. Press, (2007).
  • [6] B. K. Shivamoggi: Amer. Scientist, 112, 108, (2024).
  • [7] L. A. Fisk and J. C. Kasper: Astrophys. J. Lett. 894, L4, (2020).
  • [8] T. A. Bowen et al.: Phys. Rev. Lett. 129, 165101, (2022).
  • [9] J. C. Kasper et al.: Nature 576, 228, (2019).
  • [10] B. K. Shivamoggi: Phys. Plasmas 27, 012902 , (2020).
  • [11] C. J. Schrijver: Solar and Stellar Magnetic Activity, Cambridge Univ. Press, (2000).
  • [12] W. C. Feldman et al.: in The Solar Output and its Variations (Ed. O. R. White), Colorado Associated University Press, (1977).
  • [13] E. N. Parker: Astrophys. J. 132, 821, (1960).
  • [14] S. R. Cranmer and A. R. Winebarger: Ann. Rev. Astron. Astrophys. 57, 157, (2019).
  • [15] E. N. Parker: Astrophys. J. 143, 32, (1966).
  • [16] B. K. Shivamoggi: Stability of Parallel Gas Flows, Ellis Horwood, (1986).
  • [17] B. K. Shivamoggi: Astrophys. J. 944, 96, (2023).
  • [18] R. L. Carovillano and J. H. King: Astrophys. J. 145, 426, (1966).
  • [19] K. Jockers: Solar Phys. 3, 603, (1968).
  • [20] B. K. Shivamoggi: Introduction to Theoretical and Mathematical Fluid Dynamics, Wiley, (2023).
  • [21] B. H. Cho et al.: Phys. Rev. Lett. 121, 075101, (2018).
  • [22] A. S. Eddington: The Internal Constitution of stars, Cambridge Univ. Press (1926).
  • [23] S. Chandrasakhar: Hydrodynamic and Hydromagnetic Stability, Clarendon Press, (1961).
  • [24] J. D. Cole and A. F. Messiter: Z. Angew. Math. Phys. 8, 1, (1957).
  • [25] B. K. Shivamoggi: Perturbation Methods for Differential Equations, Birkhauser, (2003).