Beyond modified Urca: the nucleon width approximation for flavor-changing processes in dense matter

Mark G. Alford \XeTeXLinkBox alford@wustl.edu Physics Department, Washington University in Saint Louis, 63130 Saint Louis, MO, USA    Alexander Haber \XeTeXLinkBox ahaber@physics.wustl.edu Physics Department, Washington University in Saint Louis, 63130 Saint Louis, MO, USA    Ziyuan Zhang \XeTeXLinkBox ziyuan.z@wustl.edu Physics Department & McDonnell Center for the Space Sciences, Washington University in Saint Louis, 63130 Saint Louis, MO, USA
(June 19, 2024)
Abstract

Flavor-changing charged current (“Urca”) processes are of central importance in the astrophysics of neutron stars. Standard calculations approximate the Urca rate as the sum of two contributions, direct Urca and modified Urca. Attempts to make modified Urca calculations more accurate have been impeded by an unphysical divergence at the direct Urca threshold density. In this paper we describe a systematically improvable approach where, in the simplest approximation, instead of modified Urca we include an imaginary part of the nucleon mass (nucleon width). The total Urca rate is then obtained via a straightforward generalization of the direct Urca calculation, yielding results that agree with both direct and modified Urca at the densities where those approximations are valid. At low densities, we observe an enhancement of the rate by more than an order of magnitude, with important ramifications for neutron star cooling and other transport properties.

I Introduction

The emission and absorption of neutrinos via Urca (charged-current neutrino-nucleon) processes plays a crucial role in the formation Janka (2012) and thermal evolution Prakash et al. (1997); Page et al. (2006) of neutron stars, and in neutrino transport and proton fraction equilibration in supernovas and neutron star mergers Alford et al. (2021a); Foucart (2023); Most et al. (2024); Alford et al. (2024); Espino et al. (2024).

Refer to caption
Figure 1: Feynman diagrams for direct Urca and modified Urca contributions to the electron capture (neutrino creation) rate. The line labeled N is a spectator nucleon. The green dashed line represents a strong interaction. The modified Urca rate diverges when the internal nucleon (blue) goes on shell.

At densities and temperatures where neutrinos are trapped and equilibrated the dominant neutrino creation/absorption mechanism is the direct Urca process Lattimer et al. (1991), (Fig. 1(a)),

npeν¯e,nνepe,nabsentpsuperscript𝑒subscript¯𝜈𝑒nsubscript𝜈𝑒absentpsuperscript𝑒\begin{array}[]{rl}\text{n}&\leftrightarrow\text{p}\ \ e^{-}\ \ {\bar{\nu}_{e}% }\ ,\\ \text{n}\ \ {\nu_{e}}&\leftrightarrow\text{p}\ \ e^{-}\ ,\end{array}start_ARRAY start_ROW start_CELL n end_CELL start_CELL ↔ p italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT , end_CELL end_ROW start_ROW start_CELL n italic_ν start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_CELL start_CELL ↔ p italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT , end_CELL end_ROW end_ARRAY (1)

However, at lower temperatures where neutrinos are free-streaming, some nuclear equations of state have a direct Urca threshold density ndUrcasubscript𝑛dUrcan_{\text{dUrca}}italic_n start_POSTSUBSCRIPT dUrca end_POSTSUBSCRIPT. At baryon density nBsubscript𝑛𝐵n_{B}italic_n start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT below ndUrcasubscript𝑛dUrcan_{\text{dUrca}}italic_n start_POSTSUBSCRIPT dUrca end_POSTSUBSCRIPT the process (1) is suppressed, and the standard approach is to add the rate of a separate “modified Urca” process Chiu and Salpeter (1964)

nNpNeν¯e,pNenNνe,n𝑁absentp𝑁superscript𝑒subscript¯𝜈𝑒p𝑁superscript𝑒absentn𝑁subscript𝜈𝑒\begin{array}[]{rl}\text{n}\ \ N&\leftrightarrow\text{p}\ \ N\ \ e^{-}\ \ {% \bar{\nu}_{e}}\ ,\\ \text{p}\ \ N\ \ e^{-}&\leftrightarrow\text{n}\ \ N\ \ {\nu_{e}}\ ,\end{array}start_ARRAY start_ROW start_CELL n italic_N end_CELL start_CELL ↔ p italic_N italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT , end_CELL end_ROW start_ROW start_CELL p italic_N italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT end_CELL start_CELL ↔ n italic_N italic_ν start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT , end_CELL end_ROW end_ARRAY (2)

whose Feynman diagrams are shown in Fig. 1(b). Here N𝑁Nitalic_N is a “spectator” nucleon, interacting with the participant nucleons via a strong interaction. The standard expression for the mUrca rate comes from Friman and Maxwell Friman and Maxwell (1979). It has been used widely in the literature Yakovlev and Levenfish (1995); Yakovlev et al. (2001), including calculations of neutron star cooling Yakovlev and Pethick (2004); Page et al. (2004); Ho et al. (2015) that are used to constrain the properties of nuclear matter, like the direct Urca threshold Beloin et al. (2019); Thapa and Sinha (2022), or the nuclear superfluid gap Beloin et al. (2018). To obtain an analytic expression Friman and Maxwell made many simplifying assumptions such as the Fermi surface approximation (assuming all participating particles are on their Fermi surfaces), neglecting the neutrino momentum, and approximating the propagator of the internal nucleon (blue line in Fig. 1(b)) as 1/Ee1subscript𝐸𝑒1/E_{e}1 / italic_E start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT.

It would be desirable to have an improvable scheme for calculating Urca processes which would allow us to go beyond some of these approximations. This is needed, for example, to compute flavor relaxation rates in neutron star mergers where temperatures are comparable to the proton Fermi energy so the Fermi surface approximation is not valid, or to compute the absorption mean free path of neutrinos with non-negligible momentum in matter below the direct Urca threshold density, or to generalize the rate calculation to scenarios such as a high magnetic field.

Improvements on Friman and Maxwell’s calculation have typically focused on a better treatment of the strong interaction with the spectator nucleon (e.g. Yakovlev et al. (2001); Khodaie et al. (2017); for a review see Ref. Schmitt and Shternin (2018)). However, using a more accurate representation of the internal nucleon propagator leads to an unphysical divergence in the mUrca rate Shternin et al. (2018) as the density approaches ndUrcasubscript𝑛dUrcan_{\text{dUrca}}italic_n start_POSTSUBSCRIPT dUrca end_POSTSUBSCRIPT from below. Currently, the most complete calculation of mUrca processes is that of Suleiman et. al. Suleiman et al. (2023) who numerically evaluated the full 10-dimensional phase space integral for the neutrino opacity, but had to introduce a phenomenological infrared cutoff in the charged current correlator Roberts et al. (2012); Pascal et al. (2022) to control this divergence.

In this paper, we propose a systematically improvable and practical alternative to the standard approach of calculating dUrca and mUrca as separate rates. This is the nucleon width approximation (NWA), in which the nucleon masses are given a (density and temperature dependent) imaginary part. We will focus on nucleonic matter that is degenerate and homogeneous. We will neglect muons for simplicity, but they can be included in this formalism. We use natural units where =c=kB=1Planck-constant-over-2-pi𝑐subscript𝑘𝐵1\hbar=c=k_{B}=1roman_ℏ = italic_c = italic_k start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = 1.

II Urca rates and the charged current correlator

Refer to caption
Refer to caption
Figure 2: Left: Feynman diagram for imaginary part of neutrino self-energy; the filled ellipse is the hadronic contribution to the in-medium charged current correlator ΠΠ\Piroman_Π. Right: Skeleton expansion for ΠΠ\Piroman_Π in terms of full vertex (red triangle) and full nucleon propagators (red lines).
Refer to caption
Figure 3: Approximations used in evaluating the in-medium hadronic charged current correlator (Fig. 2). Dashed lines represent strong interactions. See text for details.

It has been known for some time that the Urca rate can be formulated in terms of the imaginary part of the neutrino self-energy Burrows and Sawyer (1999); Sedrakian and Dieperink (2000); Lykasov et al. (2008); Roberts et al. (2012); Roberts and Reddy (2017); Pascal et al. (2022). This is illustrated in Fig. 2; according to the Cutkowsky rules the imaginary part can be obtained by cutting the diagram, putting the cut lines on shell, and integrating over their momenta. The hadronic charged current correlator (W-boson self-energy) ΠΠ\Piroman_Π plays a central role: as shown in Fig. 2 it can be written in a skeleton expansion with a full charged current vertex Vfullsuperscript𝑉fullV^{\text{full}}italic_V start_POSTSUPERSCRIPT full end_POSTSUPERSCRIPT (red triangle) and one full neutron propagator Gnfullsubscriptsuperscript𝐺fullnG^{\text{full}}_{\text{n}}italic_G start_POSTSUPERSCRIPT full end_POSTSUPERSCRIPT start_POSTSUBSCRIPT n end_POSTSUBSCRIPT and one full proton propagator Gpfullsubscriptsuperscript𝐺fullpG^{\text{full}}_{\text{p}}italic_G start_POSTSUPERSCRIPT full end_POSTSUPERSCRIPT start_POSTSUBSCRIPT p end_POSTSUBSCRIPT (thick red lines),

Πλσ(q)=d4k(2π)4Tr[VλfullGpfull(kq)VσfullGnfull(k)].subscriptΠ𝜆𝜎𝑞superscript𝑑4𝑘superscript2𝜋4Trdelimited-[]subscriptsuperscript𝑉full𝜆subscriptsuperscript𝐺fullp𝑘𝑞subscriptsuperscript𝑉full𝜎subscriptsuperscript𝐺fulln𝑘\Pi_{\lambda\sigma}(q)=\int\dfrac{d^{4}k}{(2\pi)^{4}}\text{Tr}\Bigl{[}V^{\text% {full}}_{\lambda}G^{\text{full}}_{\text{p}}(k{-}q)V^{\text{full}}_{\sigma}G^{% \text{full}}_{\text{n}}(k)\Bigr{]}\ .roman_Π start_POSTSUBSCRIPT italic_λ italic_σ end_POSTSUBSCRIPT ( italic_q ) = ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG Tr [ italic_V start_POSTSUPERSCRIPT full end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT italic_G start_POSTSUPERSCRIPT full end_POSTSUPERSCRIPT start_POSTSUBSCRIPT p end_POSTSUBSCRIPT ( italic_k - italic_q ) italic_V start_POSTSUPERSCRIPT full end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT italic_G start_POSTSUPERSCRIPT full end_POSTSUPERSCRIPT start_POSTSUBSCRIPT n end_POSTSUBSCRIPT ( italic_k ) ] . (3)

At nonzero temperature the integral over k0subscript𝑘0k_{0}italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT becomes a sum over Matsubara frequencies. In this framework we can understand the standard approaches to calculating Urca rates as different approximations to these components of the skeleton expansion (Fig. 3).
(1) Direct Urca (Fig. 3, first row) corresponds to evaluating (3) in the approximation where the vertex is derived from the bare charged current,

VμW=gwcosθC22γμ(1gAγ5),subscriptsuperscript𝑉𝑊𝜇subscript𝑔𝑤subscript𝜃𝐶22subscript𝛾𝜇1subscript𝑔𝐴subscript𝛾5V^{W}_{\mu}=\dfrac{g_{w}\cos\theta_{C}}{2\sqrt{2}}\gamma_{\mu}(1-g_{A}\gamma_{% 5})\ ,italic_V start_POSTSUPERSCRIPT italic_W end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT = divide start_ARG italic_g start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT roman_cos italic_θ start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT end_ARG start_ARG 2 square-root start_ARG 2 end_ARG end_ARG italic_γ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ( 1 - italic_g start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT italic_γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ) , (4)

(which can be generalized to include additional terms such as weak magnetism Vogel (1984); Horowitz and Perez-Garcia (2003)) and Gfullsuperscript𝐺fullG^{\text{full}}italic_G start_POSTSUPERSCRIPT full end_POSTSUPERSCRIPT is replaced by the mean-field nucleon propagator, with isospin index a𝑎aitalic_a specifying neutron or proton,

Gamf(k)=1(k0Ua)γ0+kiγi+Ma.superscriptsubscript𝐺𝑎mf𝑘1subscript𝑘0subscript𝑈𝑎superscript𝛾0subscript𝑘𝑖superscript𝛾𝑖subscriptsuperscript𝑀𝑎G_{a}^{\text{mf}}(k)=\dfrac{1}{(k_{0}-U_{a})\gamma^{0}+k_{i}\gamma^{i}+M^{*}_{% a}}\ .italic_G start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT mf end_POSTSUPERSCRIPT ( italic_k ) = divide start_ARG 1 end_ARG start_ARG ( italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - italic_U start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) italic_γ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT + italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_γ start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT + italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG . (5)

At finite density one includes a chemical potential in the γ0superscript𝛾0\gamma^{0}italic_γ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT term and an appropriate iε𝑖𝜀i\varepsilonitalic_i italic_ε prescription. The mean-field propagators include single-particle in-medium corrections via an effective mass Masubscriptsuperscript𝑀𝑎M^{*}_{a}italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT and energy shift Uasubscript𝑈𝑎U_{a}italic_U start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT.
(2) Direct + modified Urca (Fig. 3, second row) is currently the standard approach. It is an approximation using the bare charged current vertex and adding a second term to the nucleon propagator where a model of the strong interaction is used to dress it with a single particle-hole companion (summed over n𝑛nitalic_n-n¯¯𝑛\bar{n}over¯ start_ARG italic_n end_ARG and p𝑝pitalic_p-p¯¯𝑝\bar{p}over¯ start_ARG italic_p end_ARG). By substituting this in to the skeleton expansion of the hadronic charged current correlator ΠΠ\Piroman_Π (Fig. 2) one can see that this is equivalent to summing over the squares of the amplitudes shown in Fig. 1(b). The interference terms between these diagrams are not included (in Fig. 2 they would correspond to vertex corrections in ΠΠ\Piroman_Π) but these interference terms are already known to be a small correction Shternin et al. (2018).

As noted above, the mUrca contribution has an unphysical divergence when the nucleon propagator between the charged current vertex and the strong interaction vertex goes on shell.
(3) Nucleon Width Approximation (NWA). A more consistent approach is the nucleon width approximation (Fig. 3, bottom row) in which we evaluate (3) using the bare vertex (4) and a dressed nucleon propagator that includes an imaginary contribution to the mass. The full nucleon propagator can be expressed in terms of the self-energy (hatched circle) via a Schwinger-Dyson equation (Fig. 3, third row). The self-energy is determined by a model of the strong interaction. In general it would contain a sum of different Dirac matrix structures Dieperink et al. (1990), each being a function of the energy and momentum flowing through it. In the nucleon width approximation we keep only the imaginary Lorentz scalar component iW/2𝑖𝑊2iW/2italic_i italic_W / 2, with no energy or momentum dependence. The NWA nucleon propagator then has the same form as the mean-field one, with an imaginary part iWa/2𝑖subscript𝑊𝑎2iW_{a}/2italic_i italic_W start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT / 2 added to the mass

GaNWA(k)=1(k0Ua)γ0+kiγi+Ma+iWa/2.superscriptsubscript𝐺𝑎NWA𝑘1subscript𝑘0subscript𝑈𝑎superscript𝛾0subscript𝑘𝑖superscript𝛾𝑖subscriptsuperscript𝑀𝑎𝑖subscript𝑊𝑎2G_{a}^{\text{NWA}}(k)=\dfrac{1}{(k_{0}-U_{a})\gamma^{0}+k_{i}\gamma^{i}+M^{*}_% {a}+iW_{a}/2}\ .italic_G start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT NWA end_POSTSUPERSCRIPT ( italic_k ) = divide start_ARG 1 end_ARG start_ARG ( italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - italic_U start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) italic_γ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT + italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_γ start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT + italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT + italic_i italic_W start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT / 2 end_ARG . (6)

It should be noted that this approximation, where there is a nucleon width but no vertex correction, is not appropriate for neutral current processes such as elastic scattering of neutrinos. The vector component of the neutral current is the exactly conserved baryon current JλBsubscriptsuperscript𝐽𝐵𝜆J^{B}_{\lambda}italic_J start_POSTSUPERSCRIPT italic_B end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT so the vector-vector component of the neutral current correlator, ΠBBλσ(q)superscriptsubscriptΠ𝐵𝐵𝜆𝜎𝑞\Pi_{BB}^{\lambda\sigma}(q)roman_Π start_POSTSUBSCRIPT italic_B italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_λ italic_σ end_POSTSUPERSCRIPT ( italic_q ), obeys a Ward identity qλΠBBλσ=0subscript𝑞𝜆superscriptsubscriptΠ𝐵𝐵𝜆𝜎0q_{\lambda}\Pi_{BB}^{\lambda\sigma}=0italic_q start_POSTSUBSCRIPT italic_λ end_POSTSUBSCRIPT roman_Π start_POSTSUBSCRIPT italic_B italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_λ italic_σ end_POSTSUPERSCRIPT = 0, but giving the nucleon a width without introducing compensating corrections to the vertex will violate this condition (see Ref. Peskin and Schroeder (1995), Ch. 7.5 and 21.3). In contrast, the vector component of the charged current is the non-conserved isospin current Leinson and Perez (2001). Thus the Ward identity for the vector-vector part of the charged current correlator is already violated in vacuum by MnMp1MeVsimilar-tosubscript𝑀nsubscript𝑀p1MeVM_{\text{n}}-M_{\text{p}}\sim 1\,\text{MeV}italic_M start_POSTSUBSCRIPT n end_POSTSUBSCRIPT - italic_M start_POSTSUBSCRIPT p end_POSTSUBSCRIPT ∼ 1 MeV, and in beta-equilibrated nuclear matter by MnMpsubscriptsuperscript𝑀nsubscriptsuperscript𝑀pM^{*}_{\text{n}}-M^{*}_{\text{p}}italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT n end_POSTSUBSCRIPT - italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT p end_POSTSUBSCRIPT or UnUpsubscript𝑈nsubscript𝑈pU_{\text{n}}-U_{\text{p}}italic_U start_POSTSUBSCRIPT n end_POSTSUBSCRIPT - italic_U start_POSTSUBSCRIPT p end_POSTSUBSCRIPT which can be as large as tens of MeV Roberts et al. (2012); Horowitz et al. (2012). The nucleon widths that we will use are of order T2/(5MeV)superscript𝑇25MeVT^{2}/(5\,\text{MeV})italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( 5 MeV ) and so for T10MeVless-than-or-similar-to𝑇10MeVT\lesssim 10\,\text{MeV}italic_T ≲ 10 MeV are no larger than the intrinsic violation of isospin symmetry.

In the nucleon width approximation the total Urca rate ΓNWAsuperscriptΓNWA\Gamma^{\text{NWA}}roman_Γ start_POSTSUPERSCRIPT NWA end_POSTSUPERSCRIPT takes a similar form to the dUrca approximation, except that in the charged current correlator we use nucleon propagators with widths, GafullGaNWAsubscriptsuperscript𝐺full𝑎subscriptsuperscript𝐺NWA𝑎G^{\text{full}}_{a}\to G^{\text{NWA}}_{a}italic_G start_POSTSUPERSCRIPT full end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT → italic_G start_POSTSUPERSCRIPT NWA end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT (Eq. (6)).

The propagator for a fermion with nonzero width can be written as a mass-spectral decomposition Kuksa (2015) in terms of propagators with zero width, so in our context

GaNWA(k,Ma,Wa)=𝑑mGamf(k,m)Ra(m),subscriptsuperscript𝐺NWA𝑎𝑘subscriptsuperscript𝑀𝑎subscript𝑊𝑎superscriptsubscriptdifferential-d𝑚subscriptsuperscript𝐺mf𝑎𝑘𝑚subscript𝑅𝑎𝑚G^{\text{NWA}}_{a}(k,M^{*}_{a},W_{a})=\int_{-\infty}^{\infty}\!dm\,G^{\text{mf% }}_{a}(k,m)\,R_{a}(m)\ ,italic_G start_POSTSUPERSCRIPT NWA end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( italic_k , italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT , italic_W start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) = ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_d italic_m italic_G start_POSTSUPERSCRIPT mf end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( italic_k , italic_m ) italic_R start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( italic_m ) , (7)

where the mass-spectral function takes the Breit-Wigner form

Ra(m)1πWa/2(mMa)2+Wa2/4.subscript𝑅𝑎𝑚1𝜋subscript𝑊𝑎2superscript𝑚subscriptsuperscript𝑀𝑎2superscriptsubscript𝑊𝑎24R_{a}(m)\equiv\dfrac{1}{\pi}\dfrac{W_{a}/2}{(m-M^{*}_{a})^{2}+W_{a}^{2}/4}\ .italic_R start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( italic_m ) ≡ divide start_ARG 1 end_ARG start_ARG italic_π end_ARG divide start_ARG italic_W start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT / 2 end_ARG start_ARG ( italic_m - italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_W start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 4 end_ARG . (8)

In the limit where the width Wa0subscript𝑊𝑎0W_{a}\to 0italic_W start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT → 0, Ra(m)δ(mMa)subscript𝑅𝑎𝑚𝛿𝑚subscriptsuperscript𝑀𝑎R_{a}(m)\to\delta(m-M^{*}_{a})italic_R start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( italic_m ) → italic_δ ( italic_m - italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ), and GaNWAGamfsubscriptsuperscript𝐺NWA𝑎subscriptsuperscript𝐺mf𝑎G^{\text{NWA}}_{a}\to G^{\text{mf}}_{a}italic_G start_POSTSUPERSCRIPT NWA end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT → italic_G start_POSTSUPERSCRIPT mf end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT.

Substituting (7) into (3) we find

ΠλσNWA(q)=subscriptsuperscriptΠNWA𝜆𝜎𝑞superscriptsubscript\displaystyle\Pi^{\text{NWA}}_{\lambda\sigma}(q)=\int_{-\infty}^{\infty}roman_Π start_POSTSUPERSCRIPT NWA end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_λ italic_σ end_POSTSUBSCRIPT ( italic_q ) = ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT dmndmpΠλσmf(q,mn,mp)Rn(mn)Rp(mp).𝑑subscript𝑚n𝑑subscript𝑚psubscriptsuperscriptΠmf𝜆𝜎𝑞subscript𝑚nsubscript𝑚psubscript𝑅nsubscript𝑚nsubscript𝑅psubscript𝑚p\displaystyle\!\!dm_{\text{n}}dm_{\text{p}}\,\Pi^{\text{mf}}_{\lambda\sigma}(q% ,m_{\text{n}},m_{\text{p}})R_{\text{n}}(m_{\text{n}})R_{\text{p}}(m_{\text{p}}% )\ .italic_d italic_m start_POSTSUBSCRIPT n end_POSTSUBSCRIPT italic_d italic_m start_POSTSUBSCRIPT p end_POSTSUBSCRIPT roman_Π start_POSTSUPERSCRIPT mf end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_λ italic_σ end_POSTSUBSCRIPT ( italic_q , italic_m start_POSTSUBSCRIPT n end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT p end_POSTSUBSCRIPT ) italic_R start_POSTSUBSCRIPT n end_POSTSUBSCRIPT ( italic_m start_POSTSUBSCRIPT n end_POSTSUBSCRIPT ) italic_R start_POSTSUBSCRIPT p end_POSTSUBSCRIPT ( italic_m start_POSTSUBSCRIPT p end_POSTSUBSCRIPT ) . (9)

Since the Urca rate is just an integral over q𝑞qitalic_q of the correlator Π(q)Π𝑞\Pi(q)roman_Π ( italic_q ) multiplied by a function of q𝑞qitalic_q that comes from the leptonic part of the neutrino self-energy diagram (Fig. 2), and the dUrca rate is obtained by using the mean-field propagators in the correlator, this leads to a particularly simple form for Urca rates in the nucleon-width approximation: one just “smears” the dUrca rate over a range of nucleon masses

ΓNWA=𝑑mn𝑑mpΓdUrca(mn,mp)Rn(mn)Rp(mp).superscriptΓNWAsuperscriptsubscriptdifferential-dsubscript𝑚ndifferential-dsubscript𝑚psuperscriptΓdUrcasubscript𝑚nsubscript𝑚psubscript𝑅nsubscript𝑚nsubscript𝑅psubscript𝑚p\Gamma^{\text{NWA}}=\int_{-\infty}^{\infty}\!\!dm_{\text{n}}dm_{\text{p}}% \Gamma^{\text{dUrca}}(m_{\text{n}},m_{\text{p}})\,R_{\text{n}}(m_{\text{n}})R_% {\text{p}}(m_{\text{p}})\ .roman_Γ start_POSTSUPERSCRIPT NWA end_POSTSUPERSCRIPT = ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_d italic_m start_POSTSUBSCRIPT n end_POSTSUBSCRIPT italic_d italic_m start_POSTSUBSCRIPT p end_POSTSUBSCRIPT roman_Γ start_POSTSUPERSCRIPT dUrca end_POSTSUPERSCRIPT ( italic_m start_POSTSUBSCRIPT n end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT p end_POSTSUBSCRIPT ) italic_R start_POSTSUBSCRIPT n end_POSTSUBSCRIPT ( italic_m start_POSTSUBSCRIPT n end_POSTSUBSCRIPT ) italic_R start_POSTSUBSCRIPT p end_POSTSUBSCRIPT ( italic_m start_POSTSUBSCRIPT p end_POSTSUBSCRIPT ) . (10)

This expression is applicable to any Urca process, i.e. any process that is obtained by cutting the neutrino self-energy diagram (Fig. 2). Once the width has been obtained from a model of the strong interaction, or by a phenomenological fit, the total Urca rate can be straightforwardly calculated from the dUrca rate for general nucleon masses.

Refer to caption
Figure 4: Neutron decay rate as a function of density for IUF matter at T=1MeV𝑇1MeVT=1\,\text{MeV}italic_T = 1 MeV, comparing NWA with standard approximations. See text for details.
Refer to caption
Figure 5: Neutron decay rate as a function of temperature for IUF matter at densities nB=n00.16fm3subscript𝑛𝐵subscript𝑛00.16superscriptfm3n_{B}=n_{0}\equiv 0.16\,\text{fm}^{-3}italic_n start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≡ 0.16 fm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT (well below the dUrca threshold) and nB=6n0subscript𝑛𝐵6subscript𝑛0n_{B}=6\,n_{0}italic_n start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = 6 italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (above threshold), showing that NWA gives the expected temperature dependence; see text for details.
Refer to caption
Figure 6: The NWA Urca rate integrand (10) for the IUF EoS. Brighter (yellow) color indicates a larger integrand. Main plot is for a density below the dUrca threshold, insert is above the threshold. Dashed red lines show the effective masses Masubscriptsuperscript𝑀𝑎M^{*}_{a}italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT. In the outer blue-colored area we do not calculate the integrand because its contribution to the integrand is quadratically suppressed by the Breit-Wigner functions. In the gray-shaded area, the integrand is exponentially suppressed due to kinematic constraints.

III Results

In Fig. 4 we show the density dependence of the neutron decay rate in matter described by the IUF equation of state Fattoyev et al. (2010) at T=1MeV𝑇1MeVT=1\,\text{MeV}italic_T = 1 MeV in cold chemical equilibrium μn=μp+μesubscript𝜇𝑛subscript𝜇𝑝subscript𝜇𝑒\mu_{n}=\mu_{p}+\mu_{e}italic_μ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_μ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT + italic_μ start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT Alford and Harris (2018); Alford et al. (2021b, 2024). The NWA calculation (red line) uses nucleon widths Wa=T2/(5MeV)subscript𝑊𝑎superscript𝑇25MeVW_{a}=T^{2}/(5\,\text{MeV})italic_W start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( 5 MeV ) obtained from a Brueckner theory calculation for pure neutron matter using the Paris NN potential (Ref. Sedrakian and Dieperink (2000), Eq. (69)), which found only a weak density dependence of the width, justifying the assumptions for NWA. One could explore other models of the strong interaction, and use their estimates for the widths, or alternatively set the width phenomenologically by matching ΓNWAsuperscriptΓNWA\Gamma^{\text{NWA}}roman_Γ start_POSTSUPERSCRIPT NWA end_POSTSUPERSCRIPT to an mUrca-with-propagator calculation at a density well below the dUrca threshold.

In Fig. 4 the dUrca rate is calculated by evaluating the full phase space integral and using the relativistic matrix element as in Ref. Alford et al. (2024). We see that the NWA result agrees with dUrca above the dUrca threshold. Far below the threshold, it is fairly close to an improved mUrca calculation (gray line), where, as in Ref. Shternin et al. (2018), the internal nucleon propagator is included. This improved mUrca calculation uses the Fermi surface approximation and models the strong interaction via one-pion exchange as in Ref. Yakovlev et al. (2001), but with relativistic kinematics and propagators for the nucleons. As expected, the improved mUrca rate diverges at the dUrca threshold, while NWA smoothly matches to dUrca.

In Fig. 5 we show the temperature dependence of the neutron decay rate for IUF matter at two densities. Firstly nB=n0subscript𝑛𝐵subscript𝑛0n_{B}=n_{0}italic_n start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (saturation density), far below the dUrca threshold. Secondly nB=6n0subscript𝑛𝐵6subscript𝑛0n_{B}=6n_{0}italic_n start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = 6 italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, above the dUrca threshold. The NWA calculation uses the same width estimates as in Fig. 4. We see that above threshold NWA (solid red line) agrees very well with the dUrca calculation (dashed green line).

Far below threshold, NWA (solid red line) agrees well with the improved mUrca calculation (solid grey line, for details see description of Fig. 4). In both cases, the dotted lines show the predicted power-law behavior (T5superscript𝑇5T^{5}italic_T start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT for dUrca, T7superscript𝑇7T^{7}italic_T start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT for mUrca) at low temperatures where the Fermi surface approximation can be used to simplify the integrals Friman and Maxwell (1979); Yakovlev et al. (2001). We see that NWA captures the expected temperature dependence above and below the threshold.

From Figs. 4 and 5 we see that NWA predicts that the rate at low densities is enhanced by at least an order of magnitude compared to the widely used no-propagator mUrca calculation (blue line in Fig. 4). Such an enhancement was also found in the improved mUurca calculation of Ref. Shternin et al. (2018), but there it was accompanied by a divergence at the dUrca threshold. In NWA we see the enhancement in a well-behaved calculation that can be applied aross a wide range of densities and temperatures. This may have important ramifications for any scenario where charged current neutrino interactions play an important role, such as neutron star cooling, transport in neutron stars and neutron star mergers Yakovlev et al. (2001); Gavassino et al. (2021); Radice et al. (2022); Foucart (2023); Gavassino and Noronha (2024) and for the thermal states of compact stars in low-mass X-ray binaries Yakovlev and Pethick (2004); Fortin et al. (2018); Shternin et al. (2018).

To understand how NWA implements the physics that the modified Urca process attempts to capture, we show in Fig. 6 the integrand from (10) plotted in the (mn,mp)subscript𝑚𝑛subscript𝑚𝑝(m_{n},m_{p})( italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) plane. At densities below the direct Urca threshold (Fig. 6, main plot) the direct Urca rate ΓdUrca(Mn,Mp)superscriptΓdUrcasubscriptsuperscript𝑀nsubscriptsuperscript𝑀p\Gamma^{\text{dUrca}}(M^{*}_{\text{n}},M^{*}_{\text{p}})roman_Γ start_POSTSUPERSCRIPT dUrca end_POSTSUPERSCRIPT ( italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT n end_POSTSUBSCRIPT , italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT p end_POSTSUBSCRIPT ) is exponentially suppressed in the T0𝑇0T\to 0italic_T → 0 limit because (Mn,Mp)subscriptsuperscript𝑀nsubscriptsuperscript𝑀p(M^{*}_{\text{n}},M^{*}_{\text{p}})( italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT n end_POSTSUBSCRIPT , italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT p end_POSTSUBSCRIPT ) (intersection of dashed red lines) lies outside the kinematically allowed region. Specifically, the proton and electron Fermi momenta are too small to produce a neutron on its Fermi surface, violating the dUrca criterion kFp+kFekFnsubscript𝑘𝐹psubscript𝑘𝐹𝑒subscript𝑘𝐹nk_{F\text{p}}+k_{Fe}\geq k_{F\text{n}}italic_k start_POSTSUBSCRIPT italic_F p end_POSTSUBSCRIPT + italic_k start_POSTSUBSCRIPT italic_F italic_e end_POSTSUBSCRIPT ≥ italic_k start_POSTSUBSCRIPT italic_F n end_POSTSUBSCRIPT. But in the NWA integral (10) there are contributions from lower mpsubscript𝑚𝑝m_{p}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT (or higher mnsubscript𝑚𝑛m_{n}italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT) (bright regions) where, since the chemical potential is held constant in the spectral mass integral, the proton Fermi momentum is larger, or neutron Fermi momentum is smaller, and hence obeys the dUrca criterion. These contributions are moderately suppressed because they lie in the tails of the Breit-Wigner distribution (8), yielding the slower (than dUrca) rate that is seen in the improved mUrca calculation.

At a density above the direct Urca threshold (inset in Fig. 6) the in-medium masses (Mn,Mp)subscriptsuperscript𝑀𝑛subscriptsuperscript𝑀𝑝(M^{*}_{n},M^{*}_{p})( italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_M start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) enter the kinematically allowed region. The Breit-Wigner function is then effectively just a slightly smeared delta function, and the mass integral yields almost the same result as setting ma=Masubscript𝑚𝑎superscriptsubscript𝑀𝑎m_{a}=M_{a}^{*}italic_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT in the rate. Thus instead of the unphysical divergence seen in mUrca calculations we obtain a smooth crossover to the standard dUrca rate.

IV Conclusions

We have argued that the nucleon width approximation (NWA) is a convenient method for calculating Urca rates that, unlike the dUrca+mUrca approximation, represents the first step in a systematically improvable scheme. The rate calculated using NWA, with widths taken from a Brueckner theory calculation, shows the expected behavior above and below the dUrca threshold and varies smoothly across it. The rate below threshold is enhanced by an order of magnitude compared to standard mUrca calculations.

NWA can be applied in any context where dUrca rates can be calculated, opening the door to a consistent study of total Urca rates at finite temperature, which has not been possible up to this point, and calculations of total Urca rates for matter with non-equilibrium neutrino distributions, strong magnetic fields, or other scenarios outside the scope of standard mUrca calculations like decays in some models of dark matter Fornal and Grinstein (2018); Husain et al. (2022); Shirke et al. (2023, 2024), weak decays in hyperonic matter Haensel et al. (2002); van Dalen and Dieperink (2004); Ofengeim et al. (2019); Alford and Haber (2021); Xu et al. (2021), or weak processes in quark matter Jaikumar et al. (2006); Berdermann et al. (2016); Hernandez et al. (2024).

For our calculations we evaluated the dUrca rate by performing the full 4D numerical phase space integral with the vacuum matrix element Alford et al. (2024) so the NWA rate is a 6D numerical integral which is tractable because the integrand is well behaved. At low temperatures (T1MeVless-than-or-similar-to𝑇1MeVT\lesssim 1\,\text{MeV}italic_T ≲ 1 MeV) one could alternatively use an analytic approximation for the dUrca rate based on the Fermi surface approximation with either a constant Yakovlev et al. (2001) or an angle-averaged matrix element. These approaches agree with the full integral to within a factor of about 27272-72 - 7 at low T𝑇Titalic_T depending on what approximation is used for the matrix element. Then the NWA rate becomes a 2D numerical integral of a well-behaved peaked integrand as shown in Fig. 6.

As well as investigating applications of NWA (to neutron star cooling for example), a natural next step would be to pursue the systematic improvement scheme outlined in this letter: (1) explore other estimates of the nucleon width, e.g. from chiral effective theory Vidana et al. (2022); (2) include other contributions (with different Dirac index structures) to the nucleon self-energy; (3) allow for momentum and energy dependence of the self-energy; (4) include vertex corrections, for example an RPA resummation along the lines of Ref. Shin et al. (2024).

V Acknowledgements

We thank S. Reddy, G. Baym, A. Sedrakian, and S. Harris for helpful discussions. MGA thanks the Yukawa Institute for Theoretical Physics at Kyoto University and RIKEN iTHEMS for the workshop (YITP-T-23-05) on “Condensed Matter Physics of QCD 2024” which provided useful discussions for this work. MGA and AH are partly supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award No. #DE-FG02-05ER41375. ZZ is supported in part by the National Science Foundation (NSF) within the framework of the MUSES collaboration, under grant number OAC-2103680.

References

  • Janka (2012) H.-T. Janka, Ann. Rev. Nucl. Part. Sci. 62, 407 (2012), eprint 1206.2503.
  • Prakash et al. (1997) M. Prakash, I. Bombaci, M. Prakash, P. J. Ellis, J. M. Lattimer, and R. Knorren, Phys. Rept. 280, 1 (1997), eprint nucl-th/9603042.
  • Page et al. (2006) D. Page, U. Geppert, and F. Weber, Nucl. Phys. A 777, 497 (2006), eprint astro-ph/0508056.
  • Alford et al. (2021a) M. Alford, A. Harutyunyan, and A. Sedrakian, Phys. Rev. D 104, 103027 (2021a), eprint 2108.07523.
  • Foucart (2023) F. Foucart, Liv. Rev. Comput. Astrophys. 9, 1 (2023), eprint 2209.02538.
  • Most et al. (2024) E. R. Most, A. Haber, S. P. Harris, Z. Zhang, M. G. Alford, and J. Noronha, Astrophys. J. Lett. 967, L14 (2024), eprint 2207.00442.
  • Alford et al. (2024) M. G. Alford, A. Haber, and Z. Zhang, Phys. Rev. C 109, 055803 (2024), eprint 2306.06180.
  • Espino et al. (2024) P. L. Espino, P. Hammond, D. Radice, S. Bernuzzi, R. Gamba, F. Zappa, L. F. Longo Micchi, and A. Perego, Phys. Rev. Lett. 132, 211001 (2024), eprint 2311.00031.
  • Lattimer et al. (1991) J. M. Lattimer, M. Prakash, C. J. Pethick, and P. Haensel, Phys. Rev. Lett. 66, 2701 (1991).
  • Chiu and Salpeter (1964) H.-Y. Chiu and E. E. Salpeter, Phys. Rev. Lett. 12, 413 (1964).
  • Friman and Maxwell (1979) B. L. Friman and O. V. Maxwell, Astrophys. J. 232, 541 (1979).
  • Yakovlev and Levenfish (1995) D. G. Yakovlev and K. P. Levenfish, Astron. & Astrophys. 297, 717 (1995).
  • Yakovlev et al. (2001) D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin, and P. Haensel, Phys. Rept. 354, 1 (2001), eprint astro-ph/0012122.
  • Yakovlev and Pethick (2004) D. G. Yakovlev and C. J. Pethick, Ann. Rev. Astron. Astrophys. 42, 169 (2004), eprint astro-ph/0402143.
  • Page et al. (2004) D. Page, J. M. Lattimer, M. Prakash, and A. W. Steiner, Astrophys. J. Suppl. 155, 623 (2004), eprint astro-ph/0403657.
  • Ho et al. (2015) W. C. G. Ho, K. G. Elshamouty, C. O. Heinke, and A. Y. Potekhin, Phys. Rev. C 91, 015806 (2015), eprint 1412.7759.
  • Beloin et al. (2019) S. Beloin, S. Han, A. W. Steiner, and K. Odbadrakh, Phys. Rev. C 100, 055801 (2019), eprint 1812.00494.
  • Thapa and Sinha (2022) V. B. Thapa and M. Sinha (2022), eprint 2203.02272.
  • Beloin et al. (2018) S. Beloin, S. Han, A. W. Steiner, and D. Page, Phys. Rev. C 97, 015804 (2018), eprint 1612.04289.
  • Khodaie et al. (2017) A. Khodaie, A. Dehghan Niri, H. R. Moshfegh, and P. Haensel, Acta Phys. Polon. B 48, 661 (2017).
  • Schmitt and Shternin (2018) A. Schmitt and P. Shternin, Astrophys. Space Sci. Libr. 457, 455 (2018), eprint 1711.06520.
  • Shternin et al. (2018) P. S. Shternin, M. Baldo, and P. Haensel, Phys. Lett. B 786, 28 (2018), eprint 1807.06569.
  • Suleiman et al. (2023) L. Suleiman, M. Oertel, and M. Mancini, Phys. Rev. C 108, 035803 (2023), eprint 2308.09819.
  • Roberts et al. (2012) L. F. Roberts, S. Reddy, and G. Shen, Phys. Rev. C 86, 065803 (2012), eprint 1205.4066.
  • Pascal et al. (2022) A. Pascal, J. Novak, and M. Oertel, Mon. Not. Roy. Astron. Soc. 511, 356 (2022), eprint 2201.01955.
  • Burrows and Sawyer (1999) A. Burrows and R. F. Sawyer, Phys. Rev. C 59, 510 (1999), eprint astro-ph/9804264.
  • Sedrakian and Dieperink (2000) A. Sedrakian and A. E. L. Dieperink, Phys. Rev. D 62, 083002 (2000), eprint astro-ph/0002228.
  • Lykasov et al. (2008) G. I. Lykasov, C. J. Pethick, and A. Schwenk, Phys. Rev. C 78, 045803 (2008), eprint 0808.0330.
  • Roberts and Reddy (2017) L. F. Roberts and S. Reddy, Phys. Rev. C 95, 045807 (2017), eprint 1612.02764.
  • Vogel (1984) P. Vogel, Phys. Rev. D 29, 1918 (1984).
  • Horowitz and Perez-Garcia (2003) C. J. Horowitz and M. A. Perez-Garcia, Phys. Rev. C 68, 025803 (2003), eprint astro-ph/0305138.
  • Dieperink et al. (1990) A. E. L. Dieperink, J. Piekarewicz, and K. Wehrberger, Phys. Rev. C 41, R2479 (1990).
  • Peskin and Schroeder (1995) M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory (Addison-Wesley, Reading, USA, 1995), ISBN 978-0-201-50397-5, 978-0-429-50355-9, 978-0-429-49417-8.
  • Leinson and Perez (2001) L. B. Leinson and A. Perez, Phys. Lett. B 518, 15 (2001), [Erratum: Phys.Lett.B 522, 358–358 (2001)], eprint hep-ph/0110207.
  • Horowitz et al. (2012) C. J. Horowitz, G. Shen, E. O’Connor, and C. D. Ott, Phys. Rev. C 86, 065806 (2012), eprint 1209.3173.
  • Kuksa (2015) V. Kuksa, Advances in High Energy Physics 2015, 490238 (2015), eprint 1408.6994.
  • Fattoyev et al. (2010) F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and G. Shen, Phys. Rev. C 82, 055803 (2010), eprint 1008.3030.
  • Alford and Harris (2018) M. G. Alford and S. P. Harris, Phys. Rev. C 98, 065806 (2018), eprint 1803.00662.
  • Alford et al. (2021b) M. G. Alford, A. Haber, S. P. Harris, and Z. Zhang, Universe 7, 399 (2021b), eprint 2108.03324.
  • Gavassino et al. (2021) L. Gavassino, M. Antonelli, and B. Haskell, Class. Quant. Grav. 38, 075001 (2021), eprint 2003.04609.
  • Radice et al. (2022) D. Radice, S. Bernuzzi, A. Perego, and R. Haas, Mon. Not. Roy. Astron. Soc. 512, 1499 (2022), eprint 2111.14858.
  • Gavassino and Noronha (2024) L. Gavassino and J. Noronha, Phys. Rev. D 109, 096040 (2024), eprint 2305.04119.
  • Fortin et al. (2018) M. Fortin, G. Taranto, G. F. Burgio, P. Haensel, H. J. Schulze, and J. L. Zdunik, Mon. Not. Roy. Astron. Soc. 475, 5010 (2018), eprint 1709.04855.
  • Fornal and Grinstein (2018) B. Fornal and B. Grinstein, Phys. Rev. Lett. 120, 191801 (2018), [Erratum: Phys.Rev.Lett. 124, 219901 (2020)], eprint 1801.01124.
  • Husain et al. (2022) W. Husain, T. F. Motta, and A. W. Thomas, JCAP 10, 028 (2022), eprint 2203.02758.
  • Shirke et al. (2023) S. Shirke, S. Ghosh, D. Chatterjee, L. Sagunski, and J. Schaffner-Bielich, JCAP 12, 008 (2023), eprint 2305.05664.
  • Shirke et al. (2024) S. Shirke, B. K. Pradhan, D. Chatterjee, L. Sagunski, and J. Schaffner-Bielich (2024), eprint 2403.18740.
  • Haensel et al. (2002) P. Haensel, K. P. Levenfish, and D. G. Yakovlev, Astron. Astrophys. 381, 1080 (2002), eprint astro-ph/0110575.
  • van Dalen and Dieperink (2004) E. N. E. van Dalen and A. E. L. Dieperink, Phys. Rev. C 69, 025802 (2004), eprint nucl-th/0311103.
  • Ofengeim et al. (2019) D. D. Ofengeim, M. E. Gusakov, P. Haensel, and M. Fortin, Phys. Rev. D 100, 103017 (2019), eprint 1911.08407.
  • Alford and Haber (2021) M. G. Alford and A. Haber, Phys. Rev. C 103, 045810 (2021), eprint 2009.05181.
  • Xu et al. (2021) Y. Xu, X. L. Huang, Y. B. Wang, C. Z. Liu, and J. L. Han, Int. J. Mod. Phys. D 30, 2150054 (2021).
  • Jaikumar et al. (2006) P. Jaikumar, C. D. Roberts, and A. Sedrakian, Phys. Rev. C 73, 042801 (2006), eprint nucl-th/0509093.
  • Berdermann et al. (2016) J. Berdermann, D. Blaschke, T. Fischer, and A. Kachanovich, Phys. Rev. D 94, 123010 (2016), eprint 1609.05201.
  • Hernandez et al. (2024) J. L. Hernandez, C. Manuel, and L. Tolos, Phys. Rev. D 109, 123022 (2024), eprint 2402.06595.
  • Vidana et al. (2022) I. Vidana, D. Logoteta, and I. Bombaci, Phys. Rev. C 106, 035804 (2022), eprint 2206.10190.
  • Shin et al. (2024) E. Shin, E. Rrapaj, J. W. Holt, and S. K. Reddy, Phys. Rev. C 109, 015804 (2024), eprint 2306.05280.