\WarningFilter

*hyperrefOption ‘pagecolor’

Gravitational-wave background in bouncing models from semi-classical, quantum and string gravity

Ido Ben-Dayan    Gianluca Calcagni,**footnotetext: Corresponding author    Maurizio Gasperini    Anupam Mazumdar    Eliseo Pavone    Udaykrishna Thattarampilly    Amresh Verma
Abstract

We study the primordial spectra and the gravitational-wave background (GWB) of three models of semi-classical, quantum or string gravity where the big bang is replaced by a bounce and the tensor spectrum is blue-tilted: ekpyrotic universe with fast-rolling Galileons, string-gas cosmology with Atick–Witten conjecture and pre-big-bang cosmology. We find that the ekpyrotic scenario does not produce a GWB amplitude detectable by present or third-generation interferometers, while the string-gas model is ruled out for producing too large a signal. In contrast, the GWB of the pre-big-bang scenario falls within the sensitivity window of both LISA and Einstein Telescope, where it takes the form of a single or a broken power law depending on the choice of parameters. The latter will be tightly constrained by both detectors.

1 Introduction

Gravitational waves (GWs) are one of the newest and most exciting windows into the workings of gravity. Thanks to the observation of GWs from binary systems by the LIGO-Virgo-KAGRA (LVK) network of ground-based interferometers [1, 2], and of a gravitational-wave background (GWB) of possibly astrophysical (but yet uncertain) origin in Pulsar Timing Arrays (PTAs) [3, 4, 5, 6, 7, 8], we have acquired a better understanding of the physics of solar-mass black holes and neutron stars as well as of the behaviour of the gravitational force near these compact objects and of its propagation across cosmological distances. Both LVK and third-generation instruments such as the Laser Interferometer Space Antenna (LISA) [9, 10, 11, 12], Einstein Telescope (ET) [13, 14] and DECIGO [15, 16, 17] will be able to further probe Einstein’s theory and its extensions to modified gravity and quantum gravity [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

The detection of a relic primordial GWB [34, 35, 36] would be a momentous opportunity to look into the early universe and the gravitational interaction in extreme curvature or energy regimes. At the level of fundamental physics it is not easy to construct robust cosmological models embedded in realistic scenarios of modified or quantum gravity, and even less so to obtain one such model predicting an observable signal without invoking an ad hoc matter field dynamics. With a first, rapid scan of the literature we may find five candidates attempting to fulfil these characteristics, heterogeneous in terms of robustness and predictive power [29]: nonlocal Starobinsky inflation [37, 38], Brandenberger–Ho non-commutative inflation [39, 40], the new ekpyrotic universe [41, 42, 43], string-gas cosmology [44, 45, 46, 47] and multi-fractional inflation [48]. However, only the last four are possibly able to produce a detectable signal and only crossing the DECIGO sensitivity curve in the most optimistic cases. A sixth model of quantum gravity, nonlocal and non-minimally coupled with radiation, appeared afterwards with similar characteristics [32]. Recently, however, a more detailed exploration of the landscape of quantum and string cosmologies [10] singled out three more scenarios with a signal potentially reaching LISA and the Einstein Telescope:

  • A bouncing model with a slow ekpyrotic contraction phase sustained by fast rolling Galileons with a non-canonical kinetic term and where perturbations are sourced by a U(1)𝑈1U(1)italic_U ( 1 ) gauge field [49, 50, 51, 52, 53]. This particle content is the main difference with respect to the new ekpyrotic scenario of [41, 42, 43]. While the original ekpyrotic scenario was inspired by string-theory concepts, the current model is based on effective quantum field theory, and is not necessarily tied to a specific quantum-gravity theory.

  • A bouncing model where the contracting phase is dominated by a string gas behaving like a stiff fluid and evolving according to Einstein’s gravity [54]. The main difference with respect to the string-gas cosmology of [44, 45, 46, 47] is that, while the latter model is based on the behaviour of closed-string modes below the Hagedorn temperature, in [54] the string thermodynamics was studied above the Hagedorn temperature. This implies that the free energy of the strings grows with the temperature more slowly than for ordinary radiation.

  • A pre-big-bang model evolving from the string perturbative vacuum, proposed long ago [55, 56, 57, 58] on the grounds of the string cosmological equations, which enjoy T-duality [59] and may be characterized by a non-singular bounce thanks to all-orders (higher-curvature) αsuperscript𝛼\alpha^{\prime}italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT corrections [60, 61].

The first two models are phenomenological because they are not fully embedded in any high-energy quantum theory of gravity. The third one is based on the modified gravitational dynamics uniquely fixed, in principle, by the string unification of all fundamental interactions, at all energy scales including their quantum limit; however, it also contains phenomenological aspects concerning the (presently unknown) details of the dilaton dynamics in the strong coupling regime. In any case, all three models above are among the very few in quantum gravity possibly able to produce a GWB, arising from the vacuum fluctuations of the metric tensor, with high enough amplitude in the frequency range of third-generation detectors. They have in common an initial phase of growing curvature scale (described by a contracting kinematics with the metric of the Einstein frame), preceding the final decelerated expansion and passing through a non-singular bounce of spacetime curvature. The presence of accelerated contraction (a˙<0˙𝑎0\dot{a}<0over˙ start_ARG italic_a end_ARG < 0, a¨<0¨𝑎0\ddot{a}<0over¨ start_ARG italic_a end_ARG < 0, H˙<0˙𝐻0\dot{H}<0over˙ start_ARG italic_H end_ARG < 0) or of super-inflationary expansion (a˙>0˙𝑎0\dot{a}>0over˙ start_ARG italic_a end_ARG > 0, a¨>0¨𝑎0\ddot{a}>0over¨ start_ARG italic_a end_ARG > 0, H˙>0˙𝐻0\dot{H}>0over˙ start_ARG italic_H end_ARG > 0) in different metric frames is responsible for a blue tilt in the primordial tensor spectrum.

The first two models have been mainly explored at the level of the primordial tensor and scalar spectra, while for the third an approximate GWB profile is known (first computed in [62, 63, 64, 65] and recently discussed in [58]). The GWB of none of them, however, has been studied systematically so far, and the question of whether their signal can reach LISA, ET or DECIGO remains open. Also, one may wonder whether the common characteristic of having a contracting phase would produce a unique type of signal. It is the purpose of this paper to give an answer to these questions and to complement the analysis of [29] done for other models of quantum gravity with a blue-tilted primordial tensor spectrum. We find that:

  • The GWB amplitude of the ekpyrotic model with Galileons is highly suppressed and unobservable, contrary to the new ekpyrotic scenario of [41, 42, 43];

  • The string-gas cosmological model following the Atick–Witten conjecture is ruled out because its signal is too high and violates current bounds, contrary to string-gas models not adopting this conjecture [44, 45, 46, 47];

  • Within the theoretically allowed parameter space, the GWB of the pre-big-bang model reaches the LISA and ET observational window while respecting present bounds. In all plots, we use the ET-D sensitivity curve for a three-year observation run [66, 67].

To the best of our knowledge, the pre-big-bang model and those studied in [29] are the only ones motivated by quantum gravity and generating a detectable GWB directly from the primordial tensor sector. Recently, another bouncing model was proposed where curvature perturbations evolving through a bounce can trigger the formation of primordial black holes and also induce a GWB signal with high amplitude crossing also the LISA and ET windows [68]. However, we do not consider scalar-induced GWBs here.

The paper is organized as follows. Basic expressions connecting the primordial tensor spectrum and the GWB are recalled in section 1.1. The primordial spectra and the GWB of the three models above are studied, respectively, in sections 2, 3 and 4. Conclusions are in section 5. Technical material is relegated to appendices.

1.1 Basic formulæ

Primordial GWs can be described by a small set of quantities and observables, independently of the underlying model. We denote the primordial tensor and scalar spectra as, respectively, 𝒫t(k)subscript𝒫t𝑘\mathcal{P}_{\rm t}(k)caligraphic_P start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT ( italic_k ) and 𝒫s(k)subscript𝒫s𝑘\mathcal{P}_{\rm s}(k)caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ( italic_k ), where k𝑘kitalic_k is the comoving wave-number. From here, one calculates the tensor-to-scalar ratio at any given pivot scale k=k𝑘subscript𝑘k=k_{*}italic_k = italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT,

r𝒫t𝒫s,𝑟subscript𝒫tsubscript𝒫sr\coloneqq\frac{\mathcal{P}_{\rm t}}{\mathcal{P}_{\rm s}}\,,italic_r ≔ divide start_ARG caligraphic_P start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT end_ARG start_ARG caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT end_ARG , (1.1)

as well as the tensor and scalar spectral indices

ntdln𝒫t(k)dlnk,ns1dln𝒫s(k)dlnk.formulae-sequencesubscript𝑛t𝑑subscript𝒫t𝑘𝑑𝑘subscript𝑛s1𝑑subscript𝒫s𝑘𝑑𝑘n_{\rm t}\coloneqq\frac{d\ln\mathcal{P}_{\rm t}(k)}{d\ln k}\,,\qquad n_{\rm s}% -1\coloneqq\frac{d\ln\mathcal{P}_{\rm s}(k)}{d\ln k}\,.italic_n start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT ≔ divide start_ARG italic_d roman_ln caligraphic_P start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT ( italic_k ) end_ARG start_ARG italic_d roman_ln italic_k end_ARG , italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT - 1 ≔ divide start_ARG italic_d roman_ln caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ( italic_k ) end_ARG start_ARG italic_d roman_ln italic_k end_ARG . (1.2)

The current estimate for the scalar amplitude is 𝒫s(k)2.1×109subscript𝒫ssubscript𝑘2.1superscript109\mathcal{P}_{\rm s}(k_{*})\approx 2.1\times 10^{-9}caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) ≈ 2.1 × 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT at the cosmic microwave background (CMB) scale k=0.05Mpc1subscript𝑘0.05superscriptMpc1k_{*}=0.05\,{\rm Mpc}^{-1}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0.05 roman_Mpc start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT [69], while ns=0.9649±0.0042subscript𝑛splus-or-minus0.96490.0042n_{\rm s}=0.9649\pm 0.0042italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT = 0.9649 ± 0.0042 at 68% confidence level at the same pivot scale, assuming dns/dlnk=0𝑑subscript𝑛s𝑑𝑘0dn_{\rm s}/d\ln k=0italic_d italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT / italic_d roman_ln italic_k = 0 [70, 71]. The upper bound on (1.1) is r(k)<0.036𝑟subscript𝑘0.036r(k_{*})<0.036italic_r ( italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) < 0.036 at the same scale at 95%percent9595\%95 % confidence level [72].

In general, the amplitude of the GWB is defined as

Ωgw(k,τ0)=1ρcrit(τ0)dρk(τ0)dlnk,subscriptΩgw𝑘subscript𝜏01subscript𝜌critsubscript𝜏0𝑑subscript𝜌𝑘subscript𝜏0𝑑𝑘\Omega_{\textsc{gw}}(k,\tau_{0})=\frac{1}{\rho_{\rm crit}(\tau_{0})}\frac{d% \rho_{k}(\tau_{0})}{d\ln k}\,,roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_k , italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = divide start_ARG 1 end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT roman_crit end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_ARG divide start_ARG italic_d italic_ρ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_d roman_ln italic_k end_ARG , (1.3)

where τ0subscript𝜏0\tau_{0}italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the present value of the conformal time τ𝜏\tauitalic_τ, defined in terms of the cosmic time t𝑡titalic_t as τ𝑑t/a(t)𝜏differential-d𝑡𝑎𝑡\tau\coloneqq\int dt/a(t)italic_τ ≔ ∫ italic_d italic_t / italic_a ( italic_t ), where a(t)𝑎𝑡a(t)italic_a ( italic_t ) is the scale factor, ρcrit=3MPl2H2subscript𝜌crit3superscriptsubscript𝑀Pl2superscript𝐻2\rho_{\rm crit}=3M_{\rm Pl}^{2}H^{2}italic_ρ start_POSTSUBSCRIPT roman_crit end_POSTSUBSCRIPT = 3 italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is the critical density, MPl2=(8πG)1superscriptsubscript𝑀Pl2superscript8𝜋𝐺1M_{\rm Pl}^{2}=(8\pi G)^{-1}italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ( 8 italic_π italic_G ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT is the reduced Planck mass and ρk(τ0)subscript𝜌𝑘subscript𝜏0\rho_{k}(\tau_{0})italic_ρ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) is the energy density of the k𝑘kitalic_k-th Fourier mode of tensor perturbations amplified by the given model of the early universe and evaluated at the present time τ0subscript𝜏0\tau_{0}italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. For GWs generated by tensor perturbations, the GWB spectral shape can be recast as

Ωgw(f)=k212a02H02𝒫t(k)𝒯2(k,τ0)|k=2πf,subscriptΩgw𝑓evaluated-atsuperscript𝑘212superscriptsubscript𝑎02superscriptsubscript𝐻02subscript𝒫t𝑘superscript𝒯2𝑘subscript𝜏0𝑘2𝜋𝑓\Omega_{\textsc{gw}}(f)=\frac{k^{2}}{12a_{0}^{2}H_{0}^{2}}\mathcal{P}_{\rm t}(% k)\,\mathcal{T}^{2}(k,\tau_{0})\Big{|}_{k=2\pi f}\,,roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_f ) = divide start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 12 italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG caligraphic_P start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT ( italic_k ) caligraphic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_k = 2 italic_π italic_f end_POSTSUBSCRIPT , (1.4)

where f=k/(2π)𝑓𝑘2𝜋f=k/(2\pi)italic_f = italic_k / ( 2 italic_π ) is the GW frequency measured in Hz, a0subscript𝑎0a_{0}italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the scale factor today (a0=1subscript𝑎01a_{0}=1italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 1), H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the value of the Hubble parameter today and 𝒯(k,τ0)𝒯𝑘subscript𝜏0\mathcal{T}(k,\tau_{0})caligraphic_T ( italic_k , italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) is the transfer function encoding how the primordial spectrum evolved after horizon crossing until today [73, 74, 75]. The expressions below are valid for any model where observable perturbations have re-entered the horizon in the past, either because they were originally generated inside the horizon and where later expelled out (e.g., by inflation), or because they were generated outside the horizon in the first place. In the case of instantaneous reheating and a quick transition to a radiation-dominated phase, which applies to all the models discussed below, one has [76]

𝒯2(k,τ0)=Ωm02[g(Tin)g0][gs0gs(Tin)]4/3[3j1(kτ0)kτ0]2𝒯eq2(k),superscript𝒯2𝑘subscript𝜏0superscriptsubscriptΩm02delimited-[]subscript𝑔subscript𝑇insubscript𝑔absent0superscriptdelimited-[]subscript𝑔absent𝑠0subscript𝑔absent𝑠subscript𝑇in43superscriptdelimited-[]3subscript𝑗1𝑘subscript𝜏0𝑘subscript𝜏02superscriptsubscript𝒯eq2𝑘\mathcal{T}^{2}(k,\tau_{0})=\Omega_{{\rm m}0}^{2}\left[\frac{g_{\ast}(T_{\rm in% })}{g_{\ast 0}}\right]\left[\frac{g_{\ast s0}}{g_{\ast s}(T_{\rm in})}\right]^% {4/3}\left[\frac{3j_{1}(k\tau_{0})}{k\tau_{0}}\right]^{2}\mathcal{T}_{\rm eq}^% {2}(k)\,,caligraphic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = roman_Ω start_POSTSUBSCRIPT m0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ divide start_ARG italic_g start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ( italic_T start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT ) end_ARG start_ARG italic_g start_POSTSUBSCRIPT ∗ 0 end_POSTSUBSCRIPT end_ARG ] [ divide start_ARG italic_g start_POSTSUBSCRIPT ∗ italic_s 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_g start_POSTSUBSCRIPT ∗ italic_s end_POSTSUBSCRIPT ( italic_T start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT ) end_ARG ] start_POSTSUPERSCRIPT 4 / 3 end_POSTSUPERSCRIPT [ divide start_ARG 3 italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_k italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT caligraphic_T start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ) , (1.5)

where j1subscript𝑗1j_{1}italic_j start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is the first spherical Bessel function, the fitting function g(Tin)subscript𝑔subscript𝑇ing_{\ast}(T_{\rm in})italic_g start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ( italic_T start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT ) is [77]

g[Tin(k)]subscript𝑔delimited-[]subscript𝑇in𝑘\displaystyle g_{\ast}[T_{\rm in}(k)]italic_g start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT [ italic_T start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT ( italic_k ) ] =\displaystyle== g0A1+tanh{2.5log10[k/(2π)2.5×1012Hz]}A1+1subscript𝑔absent0subscript𝐴12.5subscript10𝑘2𝜋2.5superscript1012Hzsubscript𝐴11\displaystyle g_{\ast 0}\frac{A_{1}+\tanh\left\{-2.5\log_{10}\left[\frac{k/(2% \pi)}{2.5\times 10^{-12}\leavevmode\nobreak\ {\rm Hz}}\right]\right\}}{A_{1}+1}italic_g start_POSTSUBSCRIPT ∗ 0 end_POSTSUBSCRIPT divide start_ARG italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + roman_tanh { - 2.5 roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT [ divide start_ARG italic_k / ( 2 italic_π ) end_ARG start_ARG 2.5 × 10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT roman_Hz end_ARG ] } end_ARG start_ARG italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + 1 end_ARG (1.7)
×A2+tanh{2.0log10[k/(2π)6.0×109Hz]}A2+1,absentsubscript𝐴22.0subscript10𝑘2𝜋6.0superscript109Hzsubscript𝐴21\displaystyle\times\frac{A_{2}+\tanh\left\{-2.0\log_{10}\left[\frac{k/(2\pi)}{% 6.0\times 10^{-9}\leavevmode\nobreak\ {\rm Hz}}\right]\right\}}{A_{2}+1}\,,× divide start_ARG italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + roman_tanh { - 2.0 roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT [ divide start_ARG italic_k / ( 2 italic_π ) end_ARG start_ARG 6.0 × 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT roman_Hz end_ARG ] } end_ARG start_ARG italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 1 end_ARG ,

with g0=3.36subscript𝑔absent03.36g_{\ast 0}=3.36italic_g start_POSTSUBSCRIPT ∗ 0 end_POSTSUBSCRIPT = 3.36, A1=(110.75/g0)/(1+10.75/g0)subscript𝐴1110.75subscript𝑔absent0110.75subscript𝑔absent0A_{1}=(-1-10.75/g_{\ast 0})/(-1+10.75/g_{\ast 0})italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ( - 1 - 10.75 / italic_g start_POSTSUBSCRIPT ∗ 0 end_POSTSUBSCRIPT ) / ( - 1 + 10.75 / italic_g start_POSTSUBSCRIPT ∗ 0 end_POSTSUBSCRIPT ), A2=(1gmax/10.75)/(1+gmax/10.75)subscript𝐴21subscript𝑔max10.751subscript𝑔max10.75A_{2}=(-1-g_{\rm max}/10.75)/(-1+g_{\rm max}/10.75)italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ( - 1 - italic_g start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT / 10.75 ) / ( - 1 + italic_g start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT / 10.75 ), gmax=106.75subscript𝑔max106.75g_{\rm max}=106.75italic_g start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT = 106.75 for a Standard-Model particle content and the function gs(Tin)subscript𝑔absent𝑠subscript𝑇ing_{\ast s}(T_{\rm in})italic_g start_POSTSUBSCRIPT ∗ italic_s end_POSTSUBSCRIPT ( italic_T start_POSTSUBSCRIPT roman_in end_POSTSUBSCRIPT ) is the same as (1.7) upon replacing g0gs0=3.91subscript𝑔absent0subscript𝑔absent𝑠03.91g_{\ast 0}\to g_{\ast s0}=3.91italic_g start_POSTSUBSCRIPT ∗ 0 end_POSTSUBSCRIPT → italic_g start_POSTSUBSCRIPT ∗ italic_s 0 end_POSTSUBSCRIPT = 3.91. The fitting function at the end of (1.5) is [73]

𝒯eq2(k)=1+1.57kkeq+3.42(kkeq)2,keq=7.1×102Ωmh2Mpc1,formulae-sequencesuperscriptsubscript𝒯eq2𝑘11.57𝑘subscript𝑘eq3.42superscript𝑘subscript𝑘eq2subscript𝑘eq7.1superscript102subscriptΩmsuperscript2superscriptMpc1\mathcal{T}_{\rm eq}^{2}(k)=1+1.57\frac{k}{k_{\rm eq}}+3.42\left(\frac{k}{k_{% \rm eq}}\right)^{2}\,,\qquad k_{\rm eq}=7.1\times 10^{-2}\,\Omega_{\rm m}h^{2}% \leavevmode\nobreak\ {\rm Mpc}^{-1},caligraphic_T start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ) = 1 + 1.57 divide start_ARG italic_k end_ARG start_ARG italic_k start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT end_ARG + 3.42 ( divide start_ARG italic_k end_ARG start_ARG italic_k start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_k start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT = 7.1 × 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT italic_h start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Mpc start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , (1.8)

keqsubscript𝑘eqk_{\rm eq}italic_k start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT being the comoving wave-number at radiation-matter equality, so that feq9.9×1017subscript𝑓eq9.9superscript1017f_{\rm eq}\approx 9.9\times 10^{-17}italic_f start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT ≈ 9.9 × 10 start_POSTSUPERSCRIPT - 17 end_POSTSUPERSCRIPT (Ωmh2/0.143)HzsubscriptΩmsuperscript20.143Hz(\Omega_{\rm m}h^{2}/0.143)\,{\rm Hz}( roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT italic_h start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 0.143 ) roman_Hz, where Ωm=0.3153subscriptΩm0.3153\Omega_{\rm m}=0.3153roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.3153 is the matter-energy density and hhitalic_h is the dimensionless Hubble parameter, which we take at its CMB-scale value h=0.67360.6736h=0.6736italic_h = 0.6736 [69].

2 Ekpyrotic universe with fast-rolling Galileons

In the article [53], a non-singular bounce model was proposed as an alternative model for structure formation in the early Universe. Non-singular bounce models often predict a blue-tilted scalar spectrum contrary to CMB observations. The difference in the spectral index was shown to be remedied by the inclusion of a gauge field [52, 51]; the scalar spectrum matches current observations and the model predicts a tensor-to-scalar ratio with values below the upper bound [53]

r102.less-than-or-similar-to𝑟superscript102r\lesssim 10^{-2}\,.italic_r ≲ 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT . (2.1)

The model involves Galileons with a non-canonical kinetic term and a coupling with a U(1)𝑈1U(1)italic_U ( 1 ) gauge field. The action is

S=MPl2d4x|g|[R2K(ϕ,X)+G(ϕ,X)ϕI2(ϕ)(14FμνFμνδ4F~μνFμν)],𝑆superscriptsubscript𝑀Pl2superscript𝑑4𝑥𝑔delimited-[]𝑅2𝐾italic-ϕ𝑋𝐺italic-ϕ𝑋italic-ϕsuperscript𝐼2italic-ϕ14superscript𝐹𝜇𝜈subscript𝐹𝜇𝜈𝛿4superscript~𝐹𝜇𝜈subscript𝐹𝜇𝜈S=M_{\rm Pl}^{2}\int d^{4}x\sqrt{|g|}\left[\frac{R}{2}-K(\phi,X)+G(\phi,X)\Box% \phi-I^{2}(\phi)\left(\frac{1}{4}F^{\mu\nu}F_{\mu\nu}-\frac{\delta}{4}\tilde{F% }^{\mu\nu}F_{\mu\nu}\right)\right],italic_S = italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∫ italic_d start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_x square-root start_ARG | italic_g | end_ARG [ divide start_ARG italic_R end_ARG start_ARG 2 end_ARG - italic_K ( italic_ϕ , italic_X ) + italic_G ( italic_ϕ , italic_X ) □ italic_ϕ - italic_I start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_ϕ ) ( divide start_ARG 1 end_ARG start_ARG 4 end_ARG italic_F start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT - divide start_ARG italic_δ end_ARG start_ARG 4 end_ARG over~ start_ARG italic_F end_ARG start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ) ] , (2.2)

where MPlsubscript𝑀PlM_{\rm Pl}italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT is the reduced Planck mass, ϕitalic-ϕ\phiitalic_ϕ is the Galileon field, Aμsubscript𝐴𝜇A_{\mu}italic_A start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT is the U(1)𝑈1U(1)italic_U ( 1 ) gauge vector, Fμν=μAννAμsubscript𝐹𝜇𝜈subscript𝜇subscript𝐴𝜈subscript𝜈subscript𝐴𝜇F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}italic_F start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT = ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT - ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_A start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT, F~μν=12ϵμνρσFρσsuperscript~𝐹𝜇𝜈12superscriptitalic-ϵ𝜇𝜈𝜌𝜎subscript𝐹𝜌𝜎\tilde{F}^{\mu\nu}=\frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}over~ start_ARG italic_F end_ARG start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_ϵ start_POSTSUPERSCRIPT italic_μ italic_ν italic_ρ italic_σ end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_ρ italic_σ end_POSTSUBSCRIPT and δ>0𝛿0\delta>0italic_δ > 0 is a coupling constant. The functions K𝐾Kitalic_K and G𝐺Gitalic_G in (2.2) are

K(ϕ,X)=[1g(ϕ)]X+βX2V(ϕ),𝐾italic-ϕ𝑋delimited-[]1𝑔italic-ϕ𝑋𝛽superscript𝑋2𝑉italic-ϕ\displaystyle K(\phi,X)=[1-g(\phi)]X+\beta X^{2}-V(\phi)\,,italic_K ( italic_ϕ , italic_X ) = [ 1 - italic_g ( italic_ϕ ) ] italic_X + italic_β italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_V ( italic_ϕ ) , (2.3)
G(ϕ,X)=γX,𝐺italic-ϕ𝑋𝛾𝑋\displaystyle G(\phi,X)=\gamma X\,,italic_G ( italic_ϕ , italic_X ) = italic_γ italic_X , (2.4)
g(ϕ)=2g0e2pϕ+ebg2pϕ,V(ϕ)=2V0e2qϕ+ebV2qϕ,formulae-sequence𝑔italic-ϕ2subscript𝑔0superscript𝑒2𝑝italic-ϕsuperscript𝑒subscript𝑏𝑔2𝑝italic-ϕ𝑉italic-ϕ2subscript𝑉0superscript𝑒2𝑞italic-ϕsuperscript𝑒subscript𝑏𝑉2𝑞italic-ϕ\displaystyle g(\phi)=\frac{2g_{0}}{e^{-\sqrt{\frac{2}{p}}\phi}+e^{b_{g}\sqrt{% \frac{2}{p}}\phi}}\,,\;\;\;\;\;V(\phi)=-\frac{2V_{0}}{e^{-\sqrt{\frac{2}{q}}% \phi}+e^{b_{V}\sqrt{\frac{2}{q}}\phi}}\,,italic_g ( italic_ϕ ) = divide start_ARG 2 italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_e start_POSTSUPERSCRIPT - square-root start_ARG divide start_ARG 2 end_ARG start_ARG italic_p end_ARG end_ARG italic_ϕ end_POSTSUPERSCRIPT + italic_e start_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT square-root start_ARG divide start_ARG 2 end_ARG start_ARG italic_p end_ARG end_ARG italic_ϕ end_POSTSUPERSCRIPT end_ARG , italic_V ( italic_ϕ ) = - divide start_ARG 2 italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_e start_POSTSUPERSCRIPT - square-root start_ARG divide start_ARG 2 end_ARG start_ARG italic_q end_ARG end_ARG italic_ϕ end_POSTSUPERSCRIPT + italic_e start_POSTSUPERSCRIPT italic_b start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT square-root start_ARG divide start_ARG 2 end_ARG start_ARG italic_q end_ARG end_ARG italic_ϕ end_POSTSUPERSCRIPT end_ARG , (2.5)

where X=12μϕμϕ𝑋12subscript𝜇italic-ϕsuperscript𝜇italic-ϕX=-\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phiitalic_X = - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_ϕ ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_ϕ and β𝛽\betaitalic_β, γ𝛾\gammaitalic_γ and g0subscript𝑔0g_{0}italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT are parameters. The background dynamics of the Universe is determined by a single scalar field ϕitalic-ϕ\phiitalic_ϕ with a non-trivial kinetic term typical of Galileons. This model gives rise to a non-singular bounce and the potential V𝑉Vitalic_V is chosen in such a way as to obtain ekpyrotic contraction away from the bounce. The Universe starts at ϕ1much-less-thanitalic-ϕ1\phi\ll-1italic_ϕ ≪ - 1, far away from the bounce, with a slow ekpyrotic contraction. As ϕitalic-ϕ\phiitalic_ϕ accelerates towards ϕitalic-ϕ\phiitalic_ϕ = 0, the value of g𝑔gitalic_g increases. Since g(0)>1𝑔01g(0)>1italic_g ( 0 ) > 1 (which we require), at some point in time, g𝑔gitalic_g exceeds the critical value g=1𝑔1g=1italic_g = 1 and the sign of the kinetic term X𝑋Xitalic_X in (2.3) becomes negative, giving rise to a phase of ghost condensation coinciding with the bouncing phase. This is the region in field space where the null energy condition is violated,222Although the null energy condition is violated, we confirm that the average null energy condition is not violated during the bounce. which in turn triggers the bounce at ϕ=0italic-ϕ0\phi=0italic_ϕ = 0. The Universe continues to roll to positive larger values of the field ϕ>ϕB+italic-ϕsubscriptitalic-ϕlimit-from𝐵\phi>\phi_{B+}italic_ϕ > italic_ϕ start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT, after which the Lagrangian regains a canonical form and the Universe enters an era of kinetic energy domination. I𝐼Iitalic_I, the coupling of the scalar field to the gauge field, is

I(ϕ)=11+ea1n(ϕϕB),𝐼italic-ϕ11superscript𝑒subscript𝑎1𝑛italic-ϕsubscriptitalic-ϕlimit-from𝐵I(\phi)=\frac{1}{1+e^{-a_{1}n(\phi-\phi_{B-})}}\,,italic_I ( italic_ϕ ) = divide start_ARG 1 end_ARG start_ARG 1 + italic_e start_POSTSUPERSCRIPT - italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_n ( italic_ϕ - italic_ϕ start_POSTSUBSCRIPT italic_B - end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT end_ARG , (2.6)

where a1=1/2qsubscript𝑎112𝑞a_{1}=1/\sqrt{2q}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 1 / square-root start_ARG 2 italic_q end_ARG and ϕBsubscriptitalic-ϕlimit-from𝐵\phi_{B-}italic_ϕ start_POSTSUBSCRIPT italic_B - end_POSTSUBSCRIPT is value of field ϕitalic-ϕ\phiitalic_ϕ at the beginning of the bounce. I(ϕ)𝐼italic-ϕI(\phi)italic_I ( italic_ϕ ) is defined such that during the regime of ekpyrosis, i.e., for large and negative ϕitalic-ϕ\phiitalic_ϕ,

I(ϕ)ea1nϕ.similar-to-or-equals𝐼italic-ϕsuperscript𝑒subscript𝑎1𝑛italic-ϕI(\phi)\simeq e^{a_{1}n\phi}.italic_I ( italic_ϕ ) ≃ italic_e start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_n italic_ϕ end_POSTSUPERSCRIPT . (2.7)

The values n=2𝑛2n=2italic_n = 2 or n=1𝑛1n=-1italic_n = - 1 lead to scale-invariant sourced perturbations [52]. Introducing gauge fields can source second-order inhomogeneities that dominate over the blue-tilted first-order perturbations at CMB scales. This leads to sourced and unsourced perturbations that are linearly independent since the equation for perturbations is linear and creation/annihilation operators of sourced and unsourced fluctuations are uncorrelated. The total power spectrum is of the form

𝒫tot=𝒫v+𝒫ssuperscript𝒫totsuperscript𝒫𝑣superscript𝒫𝑠\mathcal{P}^{\rm tot}=\mathcal{P}^{v}+\mathcal{P}^{s}caligraphic_P start_POSTSUPERSCRIPT roman_tot end_POSTSUPERSCRIPT = caligraphic_P start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT + caligraphic_P start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT (2.8)

where 𝒫vsuperscript𝒫𝑣\mathcal{P}^{v}caligraphic_P start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT is the unsourced or vacuum spectrum and 𝒫ssuperscript𝒫𝑠\mathcal{P}^{s}caligraphic_P start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT is the sourced spectrum. The vacuum scalar (𝒫svsuperscriptsubscript𝒫s𝑣\mathcal{P}_{\rm s}^{v}caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT) and tensor (𝒫tvsuperscriptsubscript𝒫t𝑣\mathcal{P}_{\rm t}^{v}caligraphic_P start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT) spectra as well as the sourced scalar (𝒫sssuperscriptsubscript𝒫s𝑠\mathcal{P}_{\rm s}^{s}caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT) and tensor (𝒫tssuperscriptsubscript𝒫t𝑠\mathcal{P}_{\rm t}^{s}caligraphic_P start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT) spectra are [53]

𝒫tv(k)=(kHB)6(1+wekp)1+3wekpγE2HB22π2MPl2,𝒫sv(k)=(kHB)6(1+wekp)1+3wekpγE2HB248π2MPl2Fζ2,𝒫ts(k)=2.89e4πξ8πq4ξ6(HBMPl)4(kHB)nt,𝒫ss(k)=2.8225e4πξ32πq4ξ6(HBMPl)4(kHB)ns1Fζ2,formulae-sequencesubscriptsuperscript𝒫𝑣t𝑘superscript𝑘subscript𝐻superscript𝐵61subscript𝑤ekp13subscript𝑤ekpsuperscriptsubscript𝛾𝐸2superscriptsubscript𝐻superscript𝐵22superscript𝜋2superscriptsubscript𝑀Pl2formulae-sequencesubscriptsuperscript𝒫𝑣s𝑘superscript𝑘subscript𝐻superscript𝐵61subscript𝑤𝑒𝑘𝑝13subscript𝑤𝑒𝑘𝑝superscriptsubscript𝛾𝐸2superscriptsubscript𝐻superscript𝐵248superscript𝜋2superscriptsubscript𝑀Pl2superscriptsubscript𝐹𝜁2formulae-sequencesubscriptsuperscript𝒫𝑠t𝑘2.89superscript𝑒4𝜋𝜉8𝜋superscript𝑞4superscript𝜉6superscriptsubscript𝐻limit-from𝐵subscript𝑀Pl4superscript𝑘subscript𝐻limit-from𝐵subscript𝑛tsubscriptsuperscript𝒫𝑠s𝑘2.8225superscript𝑒4𝜋𝜉32𝜋superscript𝑞4superscript𝜉6superscriptsubscript𝐻limit-from𝐵subscript𝑀Pl4superscript𝑘subscript𝐻limit-from𝐵subscript𝑛s1superscriptsubscript𝐹𝜁2\begin{split}\mathcal{P}^{v}_{\rm t}(k)&=\left(\frac{k}{H_{B^{-}}}\right)^{% \frac{6(1+w_{\rm ekp})}{1+3w_{\rm ekp}}}\frac{\gamma_{E}^{2}H_{B^{-}}^{2}}{2% \pi^{2}M_{\rm Pl}^{2}}\,,\\ \mathcal{P}^{v}_{\rm s}(k)&=\left(\frac{k}{H_{B^{-}}}\right)^{\frac{6(1+w_{ekp% })}{1+3w_{ekp}}}\frac{\gamma_{E}^{2}H_{B^{-}}^{2}}{48\pi^{2}M_{\rm Pl}^{2}}F_{% \zeta}^{2}\,,\\ \mathcal{P}^{s}_{\rm t}(k)&=2.8\frac{9e^{4\pi\xi}}{8\pi q^{4}\xi^{6}}\left(% \frac{H_{B-}}{M_{\rm Pl}}\right)^{4}\left(\frac{k}{H_{B-}}\right)^{n_{\rm t}}% \,,\\ \mathcal{P}^{s}_{\rm s}(k)&=2.8\frac{225e^{4\pi\xi}}{32\pi q^{4}\xi^{6}}\left(% \frac{H_{B-}}{M_{\rm Pl}}\right)^{4}\left(\frac{k}{H_{B-}}\right)^{n_{\rm s}-1% }F_{\zeta}^{2}\,,\\ \end{split}start_ROW start_CELL caligraphic_P start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT ( italic_k ) end_CELL start_CELL = ( divide start_ARG italic_k end_ARG start_ARG italic_H start_POSTSUBSCRIPT italic_B start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 6 ( 1 + italic_w start_POSTSUBSCRIPT roman_ekp end_POSTSUBSCRIPT ) end_ARG start_ARG 1 + 3 italic_w start_POSTSUBSCRIPT roman_ekp end_POSTSUBSCRIPT end_ARG end_POSTSUPERSCRIPT divide start_ARG italic_γ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT italic_B start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , end_CELL end_ROW start_ROW start_CELL caligraphic_P start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ( italic_k ) end_CELL start_CELL = ( divide start_ARG italic_k end_ARG start_ARG italic_H start_POSTSUBSCRIPT italic_B start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 6 ( 1 + italic_w start_POSTSUBSCRIPT italic_e italic_k italic_p end_POSTSUBSCRIPT ) end_ARG start_ARG 1 + 3 italic_w start_POSTSUBSCRIPT italic_e italic_k italic_p end_POSTSUBSCRIPT end_ARG end_POSTSUPERSCRIPT divide start_ARG italic_γ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT italic_B start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 48 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_F start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL caligraphic_P start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT ( italic_k ) end_CELL start_CELL = 2.8 divide start_ARG 9 italic_e start_POSTSUPERSCRIPT 4 italic_π italic_ξ end_POSTSUPERSCRIPT end_ARG start_ARG 8 italic_π italic_q start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_ξ start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG italic_H start_POSTSUBSCRIPT italic_B - end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ( divide start_ARG italic_k end_ARG start_ARG italic_H start_POSTSUBSCRIPT italic_B - end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL caligraphic_P start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ( italic_k ) end_CELL start_CELL = 2.8 divide start_ARG 225 italic_e start_POSTSUPERSCRIPT 4 italic_π italic_ξ end_POSTSUPERSCRIPT end_ARG start_ARG 32 italic_π italic_q start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_ξ start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG italic_H start_POSTSUBSCRIPT italic_B - end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ( divide start_ARG italic_k end_ARG start_ARG italic_H start_POSTSUBSCRIPT italic_B - end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_F start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , end_CELL end_ROW (2.9)

where γEsubscript𝛾𝐸\gamma_{E}italic_γ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT is the Euler–Mascheroni constant, q𝑞qitalic_q is related to the equation of state of the ekpyrotic phase by wekp=1+23qsubscript𝑤ekp123𝑞w_{\rm ekp}=-1+\frac{2}{3q}italic_w start_POSTSUBSCRIPT roman_ekp end_POSTSUBSCRIPT = - 1 + divide start_ARG 2 end_ARG start_ARG 3 italic_q end_ARG, ξ𝜉\xiitalic_ξ is related to the strength of gauge coupling by ξ=2πδ𝜉2𝜋𝛿\xi=2\pi\deltaitalic_ξ = 2 italic_π italic_δ and HBsubscript𝐻limit-from𝐵H_{B-}italic_H start_POSTSUBSCRIPT italic_B - end_POSTSUBSCRIPT is the Hubble parameter at the end of the bounce determined by the scale of the bounce. nssubscript𝑛sn_{\rm s}italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT and ntsubscript𝑛tn_{\rm t}italic_n start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT are the spectral indices of scalar and tensor perturbations, respectively. By choosing n=2.01𝑛2.01n=-2.01italic_n = - 2.01, it is possible to obtain a scalar spectral index ns=0.96subscript𝑛s0.96n_{\rm s}=0.96italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT = 0.96, a red tilted scalar power spectrum in agreement with observations. The tensor-to-scalar ratio r𝑟ritalic_r is determined by the factor Fζsubscript𝐹𝜁F_{\zeta}italic_F start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT, governing amplification across the bounce. Here lies a main qualitative difference between the different spectra. The scalar spectra are amplified across the bounce while the tensor ones are unchanged. Since the sourced spectrum is significantly larger compared to the vacuum spectrum, 𝒫tot𝒫ssimilar-to-or-equalssuperscript𝒫totsuperscript𝒫𝑠\mathcal{P}^{\rm tot}\simeq\mathcal{P}^{s}caligraphic_P start_POSTSUPERSCRIPT roman_tot end_POSTSUPERSCRIPT ≃ caligraphic_P start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT and

r𝒫ts𝒫ss=425(1Fζ)2.similar-to-or-equals𝑟superscriptsubscript𝒫t𝑠superscriptsubscript𝒫s𝑠425superscript1subscript𝐹𝜁2r\simeq\frac{\mathcal{P}_{\rm t}^{s}}{\mathcal{P}_{\rm s}^{s}}=\frac{4}{25}% \left(\frac{1}{F_{\zeta}}\right)^{2}.italic_r ≃ divide start_ARG caligraphic_P start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT end_ARG start_ARG caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT end_ARG = divide start_ARG 4 end_ARG start_ARG 25 end_ARG ( divide start_ARG 1 end_ARG start_ARG italic_F start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (2.10)

The sourced tensor spectrum has the same red-tilted spectral index as the scalar spectrum and is unobservable by current and third-generation interferometers 333It should be noted that this sourced tensor spectrum is observable in CMB frequencies. It is distinguishable from the inflationary predictions by the fact that the signal should have a definite chirality, unlike the inflationary predictions that result in similar contribution to the spectrum from both chiralities.. However, the vacuum perturbations are blue-tilted, and although tensor vacuum perturbations are small compared to the sourced spectrum at CMB scales, the blue-tilted spectrum may be observable at higher frequencies.

After the bounce, kinetic domination takes place. The gauge field in our model can be either a putative gauge field, or the actual U(1)𝑈1U(1)italic_U ( 1 ) of electromagnetism. The different options will imply different reheating epochs and may modify the predicted tensor spectrum. We now examine the possibility of the gauge field sourcing perturbations as electromagnetic radiation. It is possible to calculate the scale factor at which the Universe ends a reheating phase with this assumption. The Universe becomes radiation dominated when the energy density of the scalar field responsible for the bounce is smaller than the energy density of the gauge field. The energy density of the scalar field ϕitalic-ϕ\phiitalic_ϕ at the end of the bounce phase is approximately

ρϕ(τB+)12ϕ˙2(τB+)[1g0+3βϕ˙2(τB+)]g013βe2τB+T(1e2τB+T),similar-to-or-equalssubscript𝜌italic-ϕsubscript𝜏limit-from𝐵12superscript˙italic-ϕ2subscript𝜏limit-from𝐵delimited-[]1subscript𝑔03𝛽superscript˙italic-ϕ2subscript𝜏limit-from𝐵similar-to-or-equalssubscript𝑔013𝛽superscript𝑒2subscript𝜏limit-from𝐵𝑇1superscript𝑒2subscript𝜏limit-from𝐵𝑇\rho_{\phi}(\tau_{B+})\simeq\frac{1}{2}\dot{\phi}^{2}(\tau_{B+})[1-g_{0}+3% \beta\dot{\phi}^{2}(\tau_{B+})]\simeq\frac{g_{0}-1}{3\beta}e^{-2\frac{\tau_{B+% }}{T}}\left(1-e^{-2\frac{\tau_{B+}}{T}}\right)\,,italic_ρ start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT ) ≃ divide start_ARG 1 end_ARG start_ARG 2 end_ARG over˙ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_τ start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT ) [ 1 - italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + 3 italic_β over˙ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_τ start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT ) ] ≃ divide start_ARG italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - 1 end_ARG start_ARG 3 italic_β end_ARG italic_e start_POSTSUPERSCRIPT - 2 divide start_ARG italic_τ start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT end_ARG start_ARG italic_T end_ARG end_POSTSUPERSCRIPT ( 1 - italic_e start_POSTSUPERSCRIPT - 2 divide start_ARG italic_τ start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT end_ARG start_ARG italic_T end_ARG end_POSTSUPERSCRIPT ) , (2.11)

where τB+subscript𝜏limit-from𝐵\tau_{B+}italic_τ start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT and τBsubscript𝜏limit-from𝐵\tau_{B-}italic_τ start_POSTSUBSCRIPT italic_B - end_POSTSUBSCRIPT are the conformal time at the beginning and at the end of the bounce phase, respectively, and T𝑇Titalic_T is a quarter of the duration of bounce phase. During the phase of kinetic domination, the energy density decays as a6superscript𝑎6a^{-6}italic_a start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT. Thus, the energy density of the scalar field during this phase is

ρϕ=g013βe2τB+T(1e2τB+T)(aBa)6.subscript𝜌italic-ϕsubscript𝑔013𝛽superscript𝑒2subscript𝜏limit-from𝐵𝑇1superscript𝑒2subscript𝜏limit-from𝐵𝑇superscriptsubscript𝑎𝐵𝑎6\rho_{\phi}=\frac{g_{0}-1}{3\beta}e^{-2\frac{\tau_{B+}}{T}}\left(1-e^{-2\frac{% \tau_{B+}}{T}}\right)\left(\frac{a_{B}}{a}\right)^{6}.italic_ρ start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT = divide start_ARG italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - 1 end_ARG start_ARG 3 italic_β end_ARG italic_e start_POSTSUPERSCRIPT - 2 divide start_ARG italic_τ start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT end_ARG start_ARG italic_T end_ARG end_POSTSUPERSCRIPT ( 1 - italic_e start_POSTSUPERSCRIPT - 2 divide start_ARG italic_τ start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT end_ARG start_ARG italic_T end_ARG end_POSTSUPERSCRIPT ) ( divide start_ARG italic_a start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT end_ARG start_ARG italic_a end_ARG ) start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT . (2.12)

The gauge field energy density attains the maximum

ρA,τB=D(n)e2πξξ3τB4,D(n)=14π2(n1)2Γ(2n1)22n+1(n2)π,formulae-sequencesubscript𝜌𝐴subscript𝜏limit-from𝐵𝐷𝑛superscript𝑒2𝜋𝜉superscript𝜉3superscriptsubscript𝜏limit-from𝐵4𝐷𝑛14superscript𝜋2superscript𝑛12Γ2𝑛1superscript22𝑛1𝑛2𝜋\rho_{A,\tau_{B-}}=D(n)\frac{e^{2\pi\xi}}{\xi^{3}\tau_{B-}^{4}}\,,\qquad D(n)=% \frac{1}{4\pi^{2}}\frac{(n-1)^{2}\Gamma(2n-1)}{2^{2n+1}(n-2)\pi}\,,italic_ρ start_POSTSUBSCRIPT italic_A , italic_τ start_POSTSUBSCRIPT italic_B - end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_D ( italic_n ) divide start_ARG italic_e start_POSTSUPERSCRIPT 2 italic_π italic_ξ end_POSTSUPERSCRIPT end_ARG start_ARG italic_ξ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_τ start_POSTSUBSCRIPT italic_B - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG , italic_D ( italic_n ) = divide start_ARG 1 end_ARG start_ARG 4 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG ( italic_n - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Γ ( 2 italic_n - 1 ) end_ARG start_ARG 2 start_POSTSUPERSCRIPT 2 italic_n + 1 end_POSTSUPERSCRIPT ( italic_n - 2 ) italic_π end_ARG , (2.13)

at the bounce, where the expression for D(n)𝐷𝑛D(n)italic_D ( italic_n ) holds for n𝑛nitalic_n close to 2. After the bounce, the energy density decays as a4superscript𝑎4a^{-4}italic_a start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT and the gauge field energy density is

ρA,τ=D(n)e2πξξ3τB4(aBa)4.subscript𝜌𝐴𝜏𝐷𝑛superscript𝑒2𝜋𝜉superscript𝜉3superscriptsubscript𝜏limit-from𝐵4superscriptsubscript𝑎𝐵𝑎4\rho_{A,\tau}=D(n)\frac{e^{2\pi\xi}}{\xi^{3}\tau_{B-}^{4}}\left(\frac{a_{B}}{a% }\right)^{4}\,.italic_ρ start_POSTSUBSCRIPT italic_A , italic_τ end_POSTSUBSCRIPT = italic_D ( italic_n ) divide start_ARG italic_e start_POSTSUPERSCRIPT 2 italic_π italic_ξ end_POSTSUPERSCRIPT end_ARG start_ARG italic_ξ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_τ start_POSTSUBSCRIPT italic_B - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG italic_a start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT end_ARG start_ARG italic_a end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT . (2.14)

From the expressions for energy densities, one can calculate the scale factor corresponding to which the Universe ends the reheating phase and find that reheating will last for only a few e-folds.

In the derivation of primordial spectra in (LABEL:e:finspec1), we have assumed the scale factor at the bounce to be one. However, the transfer function is derived with normalization a0=1subscript𝑎01a_{0}=1italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 1. For consistency, we reparametrize a0subscript𝑎0a_{0}italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT as

a0=aBaraB+aB+aBa0arsubscript𝑎0subscript𝑎𝐵subscript𝑎rsubscript𝑎limit-from𝐵subscript𝑎limit-from𝐵subscript𝑎𝐵subscript𝑎0subscript𝑎ra_{0}=a_{B}\frac{a_{\rm r}}{a_{B+}}\frac{a_{B+}}{a_{B}}\frac{a_{0}}{a_{\rm r}}italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT divide start_ARG italic_a start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT end_ARG divide start_ARG italic_a start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT end_ARG divide start_ARG italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT end_ARG (2.15)

where arsubscript𝑎ra_{\rm r}italic_a start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT is the scale factor at the onset of radiation domination. The reheating phase for this model is dominated by the kinetic term from tB+subscript𝑡limit-from𝐵t_{B+}italic_t start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT to the beginning of radiation domination, implying

araB+=(trtB+)13(HB+Hr)13.subscript𝑎rsubscript𝑎limit-from𝐵superscriptsubscript𝑡rsubscript𝑡limit-from𝐵13similar-to-or-equalssuperscriptsubscript𝐻limit-from𝐵subscript𝐻r13\frac{a_{\rm r}}{a_{B+}}=\left(\frac{t_{\rm r}}{t_{B+}}\right)^{\frac{1}{3}}% \simeq\left(\frac{H_{B+}}{H_{\rm r}}\right)^{\frac{1}{3}}.divide start_ARG italic_a start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT end_ARG = ( divide start_ARG italic_t start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT end_ARG start_ARG italic_t start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT ≃ ( divide start_ARG italic_H start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT . (2.16)

From (2.15) and (2.16), we obtain

a0aB=34×101387GeVHB+13Hr16MPl12.subscript𝑎0subscript𝑎𝐵34superscript101387GeVsuperscriptsubscript𝐻limit-from𝐵13superscriptsubscript𝐻r16superscriptsubscript𝑀Pl12\displaystyle\frac{a_{0}}{a_{B}}=\frac{34\times 10^{13}}{87\,\text{GeV}}H_{B+}% ^{\frac{1}{3}}H_{\rm r}^{\frac{1}{6}}M_{\rm Pl}^{\frac{1}{2}}\,.divide start_ARG italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT end_ARG = divide start_ARG 34 × 10 start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT end_ARG start_ARG 87 GeV end_ARG italic_H start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 6 end_ARG end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT . (2.17)

Instantaneous reheating implies HrHB+similar-to-or-equalssubscript𝐻rsubscript𝐻limit-from𝐵H_{\rm r}\simeq H_{B+}italic_H start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT ≃ italic_H start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT. In our case, the value of HB+subscript𝐻limit-from𝐵H_{B+}italic_H start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT is determined by the theory of sourced perturbations and is dependent on the parameters of the theory. In our discussion, we set parameters for sourced perturbations to values optimal for obtaining a reasonable tensor-to-scalar ratio and a red spectral tilt. This value is around HB+105MPlsimilar-to-or-equalssubscript𝐻limit-from𝐵superscript105subscript𝑀PlH_{B+}\simeq 10^{-5}M_{\rm Pl}italic_H start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT ≃ 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT. We notice that, for the case where the gauge field responsible for sourcing gravitational waves behaves as radiation, the reheating phase is short, cN34similar-to𝑐𝑁34cN\sim 3-4italic_c italic_N ∼ 3 - 4, and the spectrum of GWs is similar to that of the case where reheating is instantaneous. For models with instant reheating, the transfer function is described in (1.5) and present-day GWB is given by (1.4). We present our results in Fig. 1, where we used vacuum tensor spectrum from (LABEL:e:finspec1) assuming wekp1much-greater-thansubscript𝑤ekp1w_{\rm ekp}\gg 1italic_w start_POSTSUBSCRIPT roman_ekp end_POSTSUBSCRIPT ≫ 1 which gives

𝒫tv(k)γE2k22π2MPl2.similar-to-or-equalssuperscriptsubscript𝒫t𝑣𝑘superscriptsubscript𝛾𝐸2superscript𝑘22superscript𝜋2superscriptsubscript𝑀Pl2\mathcal{P}_{\rm t}^{v}(k)\simeq\frac{\gamma_{E}^{2}k^{2}}{2\pi^{2}M_{\rm Pl}^% {2}}\,.caligraphic_P start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_v end_POSTSUPERSCRIPT ( italic_k ) ≃ divide start_ARG italic_γ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (2.18)

If, instead, we assume that the gauge field responsible for sourced perturbations is not radiation and is something more exotic such as U(1)𝑈1U(1)italic_U ( 1 ) axions or dark radiation, then it is possible to have an extended reheating period where the Universe is dominated by a kinetic term. We have also examined this possibility. The transfer function in the presence of a reheating phase is slightly modified and is well known [76]. Figure 1 also shows the GWB in the presence of a prolonged reheating phase, where we assumed a large reheating period lasting till the onset of big-bang nucleosynthesis (BBN).

Refer to caption
Refer to caption
Figure 1: GWB generated by the primordial vacuum tensor spectrum of the ekpyrotic model with fast-rolling Galileons for the instantaneous reheating scenario with HB+=Hr=105MPlsubscript𝐻limit-from𝐵subscript𝐻rsuperscript105subscript𝑀PlH_{B+}=H_{\rm r}=10^{-5}\,M_{\rm Pl}italic_H start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT = italic_H start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT (solid thin curve) and the prolonged reheating scenario with HB+=105MPlsubscript𝐻limit-from𝐵superscript105subscript𝑀PlH_{B+}=10^{-5}\,M_{\rm Pl}italic_H start_POSTSUBSCRIPT italic_B + end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT and Hr=1043MPlsubscript𝐻rsuperscript1043subscript𝑀PlH_{\rm r}=10^{-43}\,M_{\rm Pl}italic_H start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT - 43 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT (solid thick curve), compared with the sensitivity curves (dashed) of LVK, SKA, LISA, ET and DECIGO. Also shown are the CMB and BBN exclusion (where the CMB upper bound is given thickness to improve visibility in the plot) and, as a thick red segment, the signal detected by PTAs. The bottom plot captures the high-amplitude part of the GWB.

This analysis shows that the predicted GWB will not be observable with the current sensitivity of GW observatories, nor by third-generation interferometers. Also, the long reheating scenario is ruled out because it violates the BBN upper bound. This constraint, however, can be bypassed assuming fewer e-folds of contraction. Considering a contraction period of cN=55𝑐𝑁55cN=55italic_c italic_N = 55 instead of 60 e-folds, which is the minimum conservatively assumed to isotropize the universe, is enough to avoid violations of the BBN bound [78].

3 String-gas cosmology with Atick–Witten conjecture

One of the characteristic features of string theory is the existence of the Hagedorn phase at temperatures close to the string scale Mssubscript𝑀sM_{\rm s}italic_M start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT, where the energy is not dominated by the massless modes but rather by the most massive string states, leading to a pressureless fluid [79, 80, 81, 82]. In fact, a canonical description of the thermal phase indicates a limiting Hagedorn temperature [79, 80]. However, it was also argued that the limiting temperature only corresponds to the emergence of a thermal tachyonic mode, making the description of the system in terms of fundamental string excitations invalid [83, 84]. Atick and Witten [85] conjectured that, at temperatures larger than the Hagedorn temperature, the free energy grows much more slowly than in conventional field theories. Therefore, the system represents fewer degrees of freedom than expected from the zero-temperature string spectrum or from point-like particle field theories.

According to [85], the partition function only grows as T2superscript𝑇2T^{2}italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, hence the authors modeled the pressure with quadratic, linear and logarithmic terms in temperature. However, for convenience and transparency we may as well model the pressure in the form [54]

p(T)=Ms4[(TMs)2+c1(TMs)1+α],|α|1.formulae-sequence𝑝𝑇superscriptsubscript𝑀𝑠4delimited-[]superscript𝑇subscript𝑀𝑠2subscript𝑐1superscript𝑇subscript𝑀𝑠1𝛼much-less-than𝛼1p(T)=M_{s}^{4}\left[\left(\frac{T}{M_{s}}\right)^{2}+c_{1}\left(\frac{T}{M_{s}% }\right)^{1+\alpha}\right]\,,\qquad|\alpha|\ll 1\,.italic_p ( italic_T ) = italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT [ ( divide start_ARG italic_T end_ARG start_ARG italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( divide start_ARG italic_T end_ARG start_ARG italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 1 + italic_α end_POSTSUPERSCRIPT ] , | italic_α | ≪ 1 . (3.1)

where α𝛼\alphaitalic_α is a real constant.

The possibility of thermal fluctuations being the origin of small inhomogeneities and anisotropies in the CMB was already proposed by Peebles [86]. The fluid fluctuations may arise naturally from two different sources. There might be fluctuations in the energy density and the associated temperature. And, even if there is a unique temperature in a given volume, there are fluctuations in energy within this volume due to the very statistical nature of thermal physics. This could also potentially seed primordial fluctuations; see, for instance, [87, 88, 89, 90] and references therein.

The statistical fluctuations in the energy inside a given volume V=L3𝑉superscript𝐿3V=L^{3}italic_V = italic_L start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT is given by

ΔEL2superscriptsubscriptdelimited-⟨⟩Δ𝐸𝐿2\displaystyle\langle\Delta E\rangle_{L}^{2}⟨ roman_Δ italic_E ⟩ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT \displaystyle\coloneqq E2E2=2lnZβ2=T2CLdelimited-⟨⟩superscript𝐸2superscriptdelimited-⟨⟩𝐸2superscript2𝑍superscript𝛽2superscript𝑇2subscript𝐶𝐿\displaystyle\langle E^{2}\rangle-\langle E\rangle^{2}=\frac{\partial^{2}\ln Z% }{\partial\beta^{2}}=T^{2}C_{L}⟨ italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ - ⟨ italic_E ⟩ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_ln italic_Z end_ARG start_ARG ∂ italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT
δρ2Lsubscriptdelimited-⟨⟩𝛿superscript𝜌2𝐿\displaystyle\Longrightarrow\quad\langle\delta\rho^{2}\rangle_{L}⟹ ⟨ italic_δ italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT =\displaystyle== T2CVL6=T2L3ρT,superscript𝑇2subscript𝐶𝑉superscript𝐿6superscript𝑇2superscript𝐿3𝜌𝑇\displaystyle\frac{T^{2}C_{V}}{L^{6}}=\frac{T^{2}}{L^{3}}\frac{\partial\rho}{% \partial T}\,,divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT end_ARG start_ARG italic_L start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT end_ARG = divide start_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_L start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG divide start_ARG ∂ italic_ρ end_ARG start_ARG ∂ italic_T end_ARG , (3.2)

where CLsubscript𝐶𝐿C_{L}italic_C start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT is the heat capacity of the thermal system for the volume L3superscript𝐿3L^{3}italic_L start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. These are classical random fluctuations that exist in any finite-temperature system as long as the fluid is in local thermal equilibrium. Hence, as such there is no need for any seed quantum fluctuations here.444Even in the vacuum dominated case, the initial fluctuations can be seeded classically to mimic the Bunch–Davies vacuum [91]. Therefore, the power spectrum for the seed fluctuations could then be sourced by these sub-Hubble wavelengths. Once the modes become super-Hubble, thermal correlations over the relevant physical wavelengths can no longer be maintained, then the coupled metric and matter fluctuations can evolve according to the usual general-relativistic hydrodynamical differential equations.

A precise understanding of how these statistical fluctuations get encoded in the curvature perturbation ζ𝜁\zetaitalic_ζ at the Hubble crossing, was achieved in [92] for a general extensive thermodynamic fluid whose pressure p𝑝pitalic_p can be an arbitrary function of the temperature T𝑇Titalic_T. The derived curvature power spectrum reads

𝒫ζ=k3ζk2=83π3A2(Tk)Tk2ρkMPl3ρk,subscript𝒫𝜁superscript𝑘3superscriptsubscript𝜁𝑘283superscript𝜋3superscript𝐴2subscript𝑇𝑘superscriptsubscript𝑇𝑘2superscriptsubscript𝜌𝑘superscriptsubscript𝑀Pl3subscript𝜌𝑘\displaystyle{\cal P}_{\zeta}=k^{3}\zeta_{k}^{2}=8\sqrt{3\pi^{3}}A^{2}(T_{k})% \frac{T_{k}^{2}\rho_{k}^{\prime}}{M_{\rm Pl}^{3}\sqrt{\rho_{k}}}\,,caligraphic_P start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT = italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_ζ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 8 square-root start_ARG 3 italic_π start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) divide start_ARG italic_T start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT square-root start_ARG italic_ρ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG end_ARG , (3.3)

where a prime denotes differentiation with respect to T𝑇Titalic_T and

A(T)=3(1+w)Ω+2(3+R)6(1+w)Ω,R=32[1+(1+w)ρ(2ρ+Tρ′′)Tρ2].formulae-sequence𝐴𝑇31𝑤Ω23𝑅61𝑤Ω𝑅32delimited-[]11𝑤𝜌2superscript𝜌𝑇superscript𝜌′′𝑇superscriptsuperscript𝜌2A(T)=\frac{3(1+w)\Omega+2(3+R)}{6(1+w)\Omega}\,,\qquad R=-\frac{3}{2}\left[1+% \frac{(1+w)\rho(2\rho^{\prime}+T\rho^{\prime\prime})}{T{\rho^{\prime}}^{2}}% \right].italic_A ( italic_T ) = divide start_ARG 3 ( 1 + italic_w ) roman_Ω + 2 ( 3 + italic_R ) end_ARG start_ARG 6 ( 1 + italic_w ) roman_Ω end_ARG , italic_R = - divide start_ARG 3 end_ARG start_ARG 2 end_ARG [ 1 + divide start_ARG ( 1 + italic_w ) italic_ρ ( 2 italic_ρ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_T italic_ρ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ) end_ARG start_ARG italic_T italic_ρ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] . (3.4)

The subscript k𝑘kitalic_k (which we are going to subsequently drop) refers to the fact that all these quantities have to be evaluated at horizon crossing, Hk=k/asubscript𝐻𝑘𝑘𝑎H_{k}=k/aitalic_H start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_k / italic_a. Note, that all the above functions of temperature can be calculated if we know p(T)𝑝𝑇p(T)italic_p ( italic_T ), as the energy density is related rather straightforwardly to pressure:

ρ(T)=Tdp(T)dTp(T).𝜌𝑇𝑇𝑑𝑝𝑇𝑑𝑇𝑝𝑇\rho(T)=T\frac{dp(T)}{dT}-p(T)\,.italic_ρ ( italic_T ) = italic_T divide start_ARG italic_d italic_p ( italic_T ) end_ARG start_ARG italic_d italic_T end_ARG - italic_p ( italic_T ) . (3.5)

The primordial tensor and scalar spectra as functions of the temperature T𝑇Titalic_T are [54]

𝒫t(k)subscript𝒫t𝑘\displaystyle\mathcal{P}_{\rm t}(k)caligraphic_P start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT ( italic_k ) =\displaystyle== 2π2[H(k)MPl]2,2superscript𝜋2superscriptdelimited-[]𝐻𝑘subscript𝑀Pl2\displaystyle\frac{2}{\pi^{2}}\left[\frac{H(k)}{M_{\rm Pl}}\right]^{2},divide start_ARG 2 end_ARG start_ARG italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG [ divide start_ARG italic_H ( italic_k ) end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (3.6)
𝒫s(k)subscript𝒫s𝑘\displaystyle\mathcal{P}_{\rm s}(k)caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ( italic_k ) =\displaystyle== 3π3c124(MsMPl)3[T(k)Ms]2α,3superscript𝜋3superscriptsubscript𝑐124superscriptsubscript𝑀ssubscript𝑀Pl3superscriptdelimited-[]𝑇𝑘subscript𝑀s2𝛼\displaystyle\frac{\sqrt{3\pi^{3}}c_{1}^{2}}{4}\left(\frac{M_{\rm s}}{M_{\rm Pl% }}\right)^{3}\left[\frac{T(k)}{M_{\rm s}}\right]^{2\alpha},divide start_ARG square-root start_ARG 3 italic_π start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG ( divide start_ARG italic_M start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT [ divide start_ARG italic_T ( italic_k ) end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT end_ARG ] start_POSTSUPERSCRIPT 2 italic_α end_POSTSUPERSCRIPT , (3.7)

where Mssubscript𝑀sM_{\rm s}italic_M start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT is the string mass scale and c1subscript𝑐1c_{1}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is the constant coefficient in the O(T1+α)𝑂superscript𝑇1𝛼O(T^{1+\alpha})italic_O ( italic_T start_POSTSUPERSCRIPT 1 + italic_α end_POSTSUPERSCRIPT ) term in (3.1). By tuning the parameters c1subscript𝑐1c_{1}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and Mssubscript𝑀sM_{\rm s}italic_M start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT in (3.7), one can easily make the tensor-to-scalar ratio

r=8π33πc12(HT)2MPlMs(TMs)2(1α),𝑟8superscript𝜋33𝜋superscriptsubscript𝑐12superscript𝐻𝑇2subscript𝑀Plsubscript𝑀ssuperscript𝑇subscript𝑀s21𝛼r=\frac{8}{\pi^{3}\sqrt{3\pi}c_{1}^{2}}\left(\frac{H}{T}\right)^{2}\frac{M_{% \rm Pl}}{M_{\rm s}}\left(\frac{T}{M_{\rm s}}\right)^{2(1-\alpha)},italic_r = divide start_ARG 8 end_ARG start_ARG italic_π start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT square-root start_ARG 3 italic_π end_ARG italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG italic_H end_ARG start_ARG italic_T end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT end_ARG ( divide start_ARG italic_T end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 ( 1 - italic_α ) end_POSTSUPERSCRIPT , (3.8)

as large as the upper bound r=0.036𝑟0.036r=0.036italic_r = 0.036 at k=0.05Mpc1subscript𝑘0.05superscriptMpc1k_{*}=0.05\,{\rm Mpc}^{-1}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0.05 roman_Mpc start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. This, however, turns out to be ruled out by observations, as we shall see presently.

At high temperature, the string gas behaves like a stiff fluid pρsimilar-to-or-equals𝑝𝜌p\simeq\rhoitalic_p ≃ italic_ρ and the gravitational setting is Einstein’s gravity, so that the standard Friedmann equations hold and

H2ρT2a6.proportional-tosuperscript𝐻2𝜌proportional-tosuperscript𝑇2proportional-tosuperscript𝑎6H^{2}\propto\rho\propto T^{2}\propto a^{-6}\,.italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ italic_ρ ∝ italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ italic_a start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT . (3.9)

Therefore, from the horizon crossing relation k=aH𝑘𝑎𝐻k=aHitalic_k = italic_a italic_H we have ka2proportional-to𝑘superscript𝑎2k\propto a^{-2}italic_k ∝ italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT and

𝒫ta6,𝒫sa6α,ddlnk=12ddlna,formulae-sequenceproportional-tosubscript𝒫tsuperscript𝑎6formulae-sequenceproportional-tosubscript𝒫ssuperscript𝑎6𝛼𝑑𝑑𝑘12𝑑𝑑𝑎\mathcal{P}_{\rm t}\propto a^{-6}\,,\qquad\mathcal{P}_{\rm s}\propto a^{-6% \alpha}\,,\qquad\frac{d}{d\ln k}=-\frac{1}{2}\frac{d}{d\ln a}\,,caligraphic_P start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT ∝ italic_a start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT , caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ∝ italic_a start_POSTSUPERSCRIPT - 6 italic_α end_POSTSUPERSCRIPT , divide start_ARG italic_d end_ARG start_ARG italic_d roman_ln italic_k end_ARG = - divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG italic_d end_ARG start_ARG italic_d roman_ln italic_a end_ARG , (3.10)

so that the tensor and scalar spectral indices (1.2) are constant and given by

nt=3,ns1=3α.formulae-sequencesubscript𝑛t3subscript𝑛s13𝛼n_{\rm t}=3\,,\qquad n_{\rm s}-1=3\alpha\,.italic_n start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT = 3 , italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT - 1 = 3 italic_α . (3.11)

The tensor spectrum (3.6) can thus be written as

𝒫t(k)=r(k)𝒫s(k)(kk)nt,subscript𝒫t𝑘𝑟subscript𝑘subscript𝒫ssubscript𝑘superscript𝑘subscript𝑘subscript𝑛t\mathcal{P}_{\rm t}(k)=r(k_{*})\,\mathcal{P}_{\rm s}(k_{*})\left(\frac{k}{k_{*% }}\right)^{n_{\rm t}},caligraphic_P start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT ( italic_k ) = italic_r ( italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) ( divide start_ARG italic_k end_ARG start_ARG italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , (3.12)

which we plugged into (1.4) to get the spectral shape shown in Fig. 2.

Refer to caption
Refer to caption
Figure 2: GWB for the bouncing model of string-gas cosmology with Atick–Witten conjecture with r=0.036,1018,5×1022𝑟0.036superscript10185superscript1022r=0.036,10^{-18},5\times 10^{-22}italic_r = 0.036 , 10 start_POSTSUPERSCRIPT - 18 end_POSTSUPERSCRIPT , 5 × 10 start_POSTSUPERSCRIPT - 22 end_POSTSUPERSCRIPT (increasing thickness) at the CMB pivot scale (where the upper bound is given thickness to improve visibility in the plot), compared with the sensitivity curves (dashed) of LVK, SKA, LISA, ET and DECIGO. Also shown are the BBN exclusion region and, as a thick red segment, the signal detected by PTAs. The bottom plot captures the high-amplitude part of the GWB.

As the reader can see, the signal predicted by this model is too strong and is excluded by all present constraints. The problem is the high tensor index in (3.11), two orders of magnitude higher than the minimum tilt required for detection in DECIGO, ET and LISA (nt0.060.34greater-than-or-equivalent-tosubscript𝑛t0.060.34n_{\rm t}\gtrsim 0.06\!-\!0.34italic_n start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT ≳ 0.06 - 0.34) [33]. At r=0.036𝑟0.036r=0.036italic_r = 0.036, the curve hits the Gaia bound around Ωgw(f=5×1012Hz)7×1012subscriptΩgw𝑓5superscript1012Hz7superscript1012\Omega_{\textsc{gw}}(f=5\times 10^{-12}\,{\rm Hz})\approx 7\times 10^{-12}roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_f = 5 × 10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT roman_Hz ) ≈ 7 × 10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT [93]. The tensor-to-scalar ratio must be reduced down to r1018similar-to𝑟superscript1018r\sim 10^{-18}italic_r ∼ 10 start_POSTSUPERSCRIPT - 18 end_POSTSUPERSCRIPT to cross the signal detected by PTA, with which it is incompatible since nt2/3subscript𝑛t23n_{\rm t}\approx 2/3italic_n start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT ≈ 2 / 3 there [7]. To shift past the PTA-SKA curve, it must be r<5×1022𝑟5superscript1022r<5\times 10^{-22}italic_r < 5 × 10 start_POSTSUPERSCRIPT - 22 end_POSTSUPERSCRIPT, at which point the parameter space of the model becomes too compressed to yield a realistic scenario. In the meanwhile, the BBN bound Ωgw<5×106subscriptΩgw5superscript106\Omega_{\textsc{gw}}<5\times 10^{-6}roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT < 5 × 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT truncates the top of all these signals before they can reach the cut-off frequency, which is much larger than the range depicted in the plot [29].

4 Pre-big-bang cosmology

A possible example of strongly blue-tilted spectrum of primordial tensor perturbations, peaked at high frequencies, is provided by the so-called Pre-Big-Bang (PBB) scenario [55, 56], based on the scale-factor duality of the string cosmology equations [59]. Such symmetry is a peculiar property of string theory, and is a crucial ingredient not only to fix the slope of the primordial spectrum [62, 63, 64] but also, as confirmed by recent results [60, 61], to implement a smooth transition from the initial growing curvature (PBB) regime to the standard regime of decreasing curvature evolution. According to this model, the evolution of our Universe, characterized by decelerated expansion (at intermediate times), decreasing temperature and curvature, weak gravitational coupling, should be preceded in time by an almost specularly symmetric phase of accelerated expansion, increasing curvature, increasing density and temperature and growing coupling. Such a dual counterpart of the present one describes a “pre-big-bang” evolution from a flat, cold, empty initial state with negligible interactions to a final high-curvature, high-energy, explosive bounce, marking the transition to the more standard cosmological regime (see, e.g., [94] for a recent non-technical introduction, and [95] for a more detailed and complete discussion).

Here we recall the derivation of the associated GWB in a self-contained way. We shall introduce the spectral energy density of the relic GW radiation present today inside our cosmic horizon, and produced by a simple model of PBB scenario which satisfies all present observational constraints and depends on four constant parameters (see also [58]). Two of these parameters control the inflationary growth of the scale factor and of the string coupling in the high-energy regime preceding the bounce; the other ones control the beginning and the end of the axion-dominated phase occurring after the curvature bounce. We recall that the presence of a dust-like phase dominated by the oscillations of the Kalb–Ramond axion is in general needed in the PBB scenario to obtain (via the curvaton mechanism) a flat spectrum of scalar metric perturbations [96, 97].

At present, the first two parameters are largely arbitrary, while the other two may vary in a rather small range of values. We stress, however, that the dependence of the amplitude of the GWB on the full set of the above four parameters is given and discussed, for the first time, in this paper. We have neglected a possible further parameter, the effective propagation speed of tensor perturbations during the high curvature string phase: it may be important for the production of primordial black holes [98] but it seems to have small effects on the energy density of the GW spectrum. We thus postpone this study to a future paper.

Let us now compute the spectral energy density in critical units of the GWB, eq. (1.3) with k0kk1subscript𝑘0𝑘subscript𝑘1k_{0}\leqslant k\leqslant k_{1}italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ⩽ italic_k ⩽ italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, in such a way that all modes k𝑘kitalic_k of eq. (1.3) satisfy the condition kτ0> 1𝑘subscript𝜏0>1k\tau_{0}\leavevmode\nobreak\ \raise 1.72218pt\hbox{$>$}\kern-6.99997pt\lower 2% .6694pt\hbox{$\sim$}\leavevmode\nobreak\ 1italic_k italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > ∼ 1 (i.e., they are all inside our present Hubble horizon, k>k0=τ01𝑘>subscript𝑘0superscriptsubscript𝜏01k\leavevmode\nobreak\ \raise 1.72218pt\hbox{$>$}\kern-6.99997pt\lower 2.6694pt% \hbox{$\sim$}\leavevmode\nobreak\ k_{0}=\tau_{0}^{-1}italic_k > ∼ italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT). The highest mode k1=τ11subscript𝑘1superscriptsubscript𝜏11k_{1}=\tau_{1}^{-1}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT is the maximum amplified frequency crossing the horizon just at the end of the phase of PBB inflation. Higher frequency modes (kk1much-greater-than𝑘subscript𝑘1k\gg k_{1}italic_k ≫ italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT) can, in principle, be included into Eq. (1.3), but their amplitude is exponentially suppressed [99, 100, 101] and their contribution to ΩgwsubscriptΩgw\Omega_{\textsc{gw}}roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT is negligible. For the explicit computation of ΩgwsubscriptΩgw\Omega_{\textsc{gw}}roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT, two comments must be made.

The first is that, even if we are working in general with a higher-dimensional spacetime manifold (an unavoidable choice in the string theory context), we are mainly interested in the tensor perturbations of the four-dimensional metric, δgμν=hμν𝛿subscript𝑔𝜇𝜈subscript𝜇𝜈\delta g_{\mu\nu}=h_{\mu\nu}italic_δ italic_g start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT = italic_h start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT, assuming that the extra spatial dimensions are today compactified with frozen dynamics. However, this does not mean that we are neglecting the possible effects of the higher-dimensional geometry during its initial, non-trivial evolution: indeed, all such higher-dimensional contributions will be included into the canonical equation which controls the dynamics of hμνsubscript𝜇𝜈h_{\mu\nu}italic_h start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT [56, 58, 95].

The second point is that, as usual, we are interested in the contributions to ΩgwsubscriptΩgw\Omega_{\textsc{gw}}roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT arising from the cosmological amplification of the quantum vacuum fluctuations of the metric tensor. This implies that we can describe the amplification of tensor perturbations as a quantum (or semi-classical) field-theory process of production of pairs of gravitons from the initial vacuum state (see, e.g., [95]) and we can write, for each mode k𝑘kitalic_k, the differential energy density of the amplified perturbations as follows:

dρk(τ0)=2knk(τ0)d3𝒌(2π)3=k4π2nk(τ0)dlnk,𝑑subscript𝜌𝑘subscript𝜏02𝑘delimited-⟨⟩subscript𝑛𝑘subscript𝜏0superscript𝑑3𝒌superscript2𝜋3superscript𝑘4superscript𝜋2delimited-⟨⟩subscript𝑛𝑘subscript𝜏0𝑑𝑘d\rho_{k}(\tau_{0})=2k\,\langle n_{k}(\tau_{0})\rangle\,\frac{d^{3}\bm{k}}{(2% \pi)^{3}}=\frac{k^{4}}{\pi^{2}}\,\langle n_{k}(\tau_{0})\rangle\,d\ln k\,,italic_d italic_ρ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = 2 italic_k ⟨ italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ⟩ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT bold_italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG = divide start_ARG italic_k start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ⟨ italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ⟩ italic_d roman_ln italic_k , (4.1)

where 2222 is the number of polarization states and nk(τ0)delimited-⟨⟩subscript𝑛𝑘subscript𝜏0\langle n_{k}(\tau_{0})\rangle⟨ italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ⟩ the number density of produced gravitons at the final epoch τ0subscript𝜏0\tau_{0}italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. The last equality follows from assuming an isotropic final distribution.

To obtain nkdelimited-⟨⟩subscript𝑛𝑘\langle n_{k}\rangle⟨ italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ⟩ and then ΩgwsubscriptΩgw\Omega_{\textsc{gw}}roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT, we need now to solve the evolution equation for the Fourier component of the (Mukhanov-Sasaki) canonical variable, vk(τ)subscript𝑣𝑘𝜏v_{k}(\tau)italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_τ ), defined by putting in canonical form the quadratic action for the tensor fluctuation mode hksubscript𝑘h_{k}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT [102]:

vk′′+(k2ξ′′ξ)vk=0.superscriptsubscript𝑣𝑘′′superscript𝑘2superscript𝜉′′𝜉subscript𝑣𝑘0v_{k}^{\prime\prime}+\left(k^{2}-\frac{\xi^{\prime\prime}}{\xi}\right)v_{k}=0\,.italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT + ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG italic_ξ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_ξ end_ARG ) italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 0 . (4.2)

Here a prime denotes differentiation concerning the conformal time, vk=ξhksubscript𝑣𝑘𝜉subscript𝑘v_{k}=\xi h_{k}italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_ξ italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and ξ(τ)𝜉𝜏\xi(\tau)italic_ξ ( italic_τ ) is the so-called “pump field” which controls, according to the above equation, the dynamics of the perturbation modes in the given background.

In the model we are considering, the background may be approximated as a sequence of various cosmic phases, and in each of them the pump field ξ𝜉\xiitalic_ξ is characterized by a simple power-law behaviour. In particular, in the initial PBB regime <ττ1𝜏subscript𝜏1-\infty<\tau\leqslant-\tau_{1}- ∞ < italic_τ ⩽ - italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, starting asymptotically from the string perturbative vacuum and approaching the curvature bounce at τ=τ1𝜏subscript𝜏1\tau=-\tau_{1}italic_τ = - italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, we have two different phases with the following (canonically normalized) pump field behaviour [58]:

ξMPl2(τ)1/2,τ<τs;ξMPl2(τ)β1,τs<τ<τ1.formulae-sequencesimilar-to𝜉subscript𝑀Pl2superscript𝜏12formulae-sequence𝜏subscript𝜏𝑠formulae-sequencesimilar-to𝜉subscript𝑀Pl2superscript𝜏𝛽1subscript𝜏𝑠𝜏subscript𝜏1\xi\sim\frac{M_{\rm Pl}}{\sqrt{2}}(-\tau)^{1/2},\qquad\tau<-\tau_{s}% \leavevmode\nobreak\ ;\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode% \nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ % \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode% \nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \xi\sim\frac{M_{\rm Pl}}{% \sqrt{2}}(-\tau)^{\beta-1},\!\!\!\qquad-\tau_{s}<\tau<-\tau_{1}\,.italic_ξ ∼ divide start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ( - italic_τ ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT , italic_τ < - italic_τ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ; italic_ξ ∼ divide start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ( - italic_τ ) start_POSTSUPERSCRIPT italic_β - 1 end_POSTSUPERSCRIPT , - italic_τ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < italic_τ < - italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT . (4.3)

The parameter β𝛽\betaitalic_β describes the high-energy growth of the dilaton and the dynamics of the internal dimensions, while the time scale τssubscript𝜏𝑠\tau_{s}italic_τ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is a free parameter which marks the transition from the low-energy initial phase to a possible late-time attractor, where spacetime curvature stays frozen at the value controlled by the fundamental string mass scale [103]. In both phases, the evolution of the pump field takes into account not only, as usual, the inflationary growth of the scale factor but also the additional string-theory effects [56, 95], such as the dynamics of the extra dimensions and the growth of the string coupling controlled by the scalar dilaton field (see also [103, 65]).

In the subsequent post-bouncing regime τ1<ττ0subscript𝜏1𝜏subscript𝜏0-\tau_{1}<\tau\leqslant\tau_{0}- italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_τ ⩽ italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, the cosmic evolution is decelerated and we may have in principle three phases with the following pump-field behaviour [58]:

ξMPl2τ,τ1<τ<τσ;ξMPl2τ2,τσ<τ<τd;ξMPl2τ,τd<τ<τeq.formulae-sequenceformulae-sequencesimilar-to𝜉subscript𝑀Pl2𝜏subscript𝜏1𝜏subscript𝜏𝜎formulae-sequencesimilar-to𝜉subscript𝑀Pl2superscript𝜏2subscript𝜏𝜎𝜏subscript𝜏𝑑formulae-sequencesimilar-to𝜉subscript𝑀Pl2𝜏subscript𝜏𝑑𝜏subscript𝜏eq\xi\sim\frac{M_{\rm Pl}}{\sqrt{2}}\,\tau,\leavevmode\nobreak\ \leavevmode% \nobreak\ -\tau_{1}<\tau<\tau_{\sigma};\leavevmode\nobreak\ \leavevmode% \nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \xi\sim\frac{M_{\rm Pl}}{% \sqrt{2}}\,\tau^{2},\leavevmode\nobreak\ \leavevmode\nobreak\ \tau_{\sigma}<% \tau<\tau_{d};\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ % \leavevmode\nobreak\ \xi\sim\frac{M_{\rm Pl}}{\sqrt{2}}\,\tau,\leavevmode% \nobreak\ \leavevmode\nobreak\ \tau_{d}<\tau<\tau_{\rm eq}.italic_ξ ∼ divide start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG italic_τ , - italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_τ < italic_τ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ; italic_ξ ∼ divide start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG italic_τ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_τ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT < italic_τ < italic_τ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ; italic_ξ ∼ divide start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG italic_τ , italic_τ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT < italic_τ < italic_τ start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT . (4.4)

Here we are assuming that the extra-dimensional geometry and the string coupling (i.e., the dilaton) are frozen after the bounce, so that the pump field simply coincides with the scale factor. Here, again, we have two free parameters: the time scale τσsubscript𝜏𝜎\tau_{\sigma}italic_τ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT, marking the beginning of the dust-like phase dominated by the axion oscillations, and the time scale τdsubscript𝜏𝑑\tau_{d}italic_τ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT, marking the epoch of axion decay associated with the conventional reheating (source of the CMB radiation that we are presently observing) and corresponding to the beginning of the standard post-big-bang evolution555There is also the final matter-dominated phase completing the cosmic evolution from the equality epoch τeqsubscript𝜏eq\tau_{\rm eq}italic_τ start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT down to the present epoch τ0subscript𝜏0\tau_{0}italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. However, such a phase only affects the very low frequency modes k<keq=τeq1𝑘subscript𝑘eqsuperscriptsubscript𝜏eq1k<k_{\rm eq}=\tau_{\rm eq}^{-1}italic_k < italic_k start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT = italic_τ start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, whose amplitude is so small (because of the strongly blue-tilted spectrum) to be fully negligible for this paper..

As discussed in previous papers [58, 96, 97], instead of τσsubscript𝜏𝜎\tau_{\sigma}italic_τ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT and τdsubscript𝜏𝑑\tau_{d}italic_τ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT we can conveniently use as parameters the corresponding curvature scales HσH(τσ)subscript𝐻𝜎𝐻subscript𝜏𝜎H_{\sigma}\coloneqq H(\tau_{\sigma})italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ≔ italic_H ( italic_τ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ) and HdH(τd)subscript𝐻𝑑𝐻subscript𝜏𝑑H_{d}\coloneqq H(\tau_{d})italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ≔ italic_H ( italic_τ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) which can be expressed in terms of the (unknown) mass m𝑚mitalic_m of the Kalb–Ramond axion and of its initial amplitude σisubscript𝜎𝑖\sigma_{i}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT after the bounce:

Hσm(σiMPl)4,Hdm(mMPl)2.formulae-sequencesimilar-to-or-equalssubscript𝐻𝜎𝑚superscriptsubscript𝜎𝑖subscript𝑀Pl4similar-to-or-equalssubscript𝐻𝑑𝑚superscript𝑚subscript𝑀Pl2H_{\sigma}\simeq m\left(\frac{\sigma_{i}}{M_{\rm Pl}}\right)^{4},\qquad% \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode% \nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ % \leavevmode\nobreak\ \leavevmode\nobreak\ H_{d}\simeq m\left(\frac{m}{M_{\rm Pl% }}\right)^{2}.italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ≃ italic_m ( divide start_ARG italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT , italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ≃ italic_m ( divide start_ARG italic_m end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (4.5)

For a consistent model, the allowed values of the parameters m𝑚mitalic_m and σisubscript𝜎𝑖\sigma_{i}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT must satisfy the scale hierarchy MPl>H1>Hσ>Hdsubscript𝑀Pl>subscript𝐻1>subscript𝐻𝜎>subscript𝐻𝑑M_{\rm Pl}\leavevmode\nobreak\ \raise 1.72218pt\hbox{$>$}\kern-6.99997pt\lower 2% .6694pt\hbox{$\sim$}\leavevmode\nobreak\ H_{1}\leavevmode\nobreak\ \raise 1.72% 218pt\hbox{$>$}\kern-6.99997pt\lower 2.6694pt\hbox{$\sim$}\leavevmode\nobreak% \ H_{\sigma}\leavevmode\nobreak\ \raise 1.72218pt\hbox{$>$}\kern-6.99997pt% \lower 2.6694pt\hbox{$\sim$}\leavevmode\nobreak\ H_{d}italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT > ∼ italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT > ∼ italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT > ∼ italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT. In addition, we have the obvious condition Hd>HNsubscript𝐻𝑑subscript𝐻𝑁H_{d}>H_{N}italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT > italic_H start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT, where HN(1Mev)2/MPlsimilar-tosubscript𝐻𝑁superscript1Mev2subscript𝑀PlH_{N}\sim(1\,{\rm Mev})^{2}/M_{\rm Pl}italic_H start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ∼ ( 1 roman_Mev ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT is the nucleosynthesis scale of the standard cosmological scenario.

Given the full model of background evolution from the initial state at τ𝜏\tau\rightarrow-\inftyitalic_τ → - ∞ down to the present epoch τ0subscript𝜏0\tau_{0}italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, and given the power-law behaviour of ξ𝜉\xiitalic_ξ in the various phases, we can now work in the so-called “sudden approximation” [100] by imposing on the pump field to be continuous at the transitions scales, and solving, in each phase, the canonical equation (4.2). We recall that, in general, for a pump field given by ξ=(MPl/2)|τ/τ1|α𝜉subscript𝑀Pl2superscript𝜏subscript𝜏1𝛼\xi=(M_{\rm Pl}/\sqrt{2})|\tau/\tau_{1}|^{\alpha}italic_ξ = ( italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT / square-root start_ARG 2 end_ARG ) | italic_τ / italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT, the exact solution for hksubscript𝑘h_{k}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT obtained from (4.2) can be written in terms of the first- and second-kind Hankel functions, Hν(1)superscriptsubscript𝐻𝜈1H_{\nu}^{(1)}italic_H start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT, Hν(2)superscriptsubscript𝐻𝜈2H_{\nu}^{(2)}italic_H start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT, as

hk(τ)=vkξ=(2τ1Mp2)1/2|ττ1|ν[A+(k)Hν(2)(kτ)+A(k)Hν(1)(kτ)],subscript𝑘𝜏subscript𝑣𝑘𝜉superscript2subscript𝜏1𝑀superscript𝑝212superscript𝜏subscript𝜏1𝜈delimited-[]subscript𝐴𝑘superscriptsubscript𝐻𝜈2𝑘𝜏subscript𝐴𝑘superscriptsubscript𝐻𝜈1𝑘𝜏h_{k}(\tau)=\frac{v_{k}}{\xi}=\left(\frac{2\tau_{1}}{Mp^{2}}\right)^{1/2}\left% |\frac{\tau}{\tau_{1}}\right|^{\nu}\left[A_{+}(k)H_{\nu}^{(2)}(k\tau)+A_{-}(k)% H_{\nu}^{(1)}(k\tau)\right],italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_τ ) = divide start_ARG italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG start_ARG italic_ξ end_ARG = ( divide start_ARG 2 italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT | divide start_ARG italic_τ end_ARG start_ARG italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG | start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT [ italic_A start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ( italic_k ) italic_H start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ( italic_k italic_τ ) + italic_A start_POSTSUBSCRIPT - end_POSTSUBSCRIPT ( italic_k ) italic_H start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ( italic_k italic_τ ) ] , (4.6)

where ν=α+1/2𝜈𝛼12\nu=-\alpha+1/2italic_ν = - italic_α + 1 / 2. The complete solution for hk(τ)subscript𝑘𝜏h_{k}(\tau)italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_τ ), describing its evolution from -\infty- ∞ to τ0subscript𝜏0\tau_{0}italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, is then obtained by solving the canonical equation in the various phases and matching hksubscript𝑘h_{k}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and hksuperscriptsubscript𝑘h_{k}^{\prime}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT at the transition scales.

In our model, in particular, we have four transitions (at τssubscript𝜏𝑠\tau_{s}italic_τ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, τ1subscript𝜏1\tau_{1}italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, τσsubscript𝜏𝜎\tau_{\sigma}italic_τ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT, τdsubscript𝜏𝑑\tau_{d}italic_τ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT), which means five different phases of background evolution (see Eqs. (4.3) and (4.4)), which implies five different solutions like (4.6), and thus ten different coefficients A±(k)subscript𝐴plus-or-minus𝑘A_{\pm}(k)italic_A start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT ( italic_k ) to be determined at the various epochs. The continuity of hksubscript𝑘h_{k}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT and hksuperscriptsubscript𝑘h_{k}^{\prime}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT only gives eight conditions. The two remaining conditions are obtained by imposing on the canonical variable to initially describe a positive-frequency mode normalized to the quantum fluctuations of the Bunch–Davies vacuum, namely, by imposing vk=(1/2k)exp(ikτ)subscript𝑣𝑘12𝑘𝑖𝑘𝜏v_{k}=(1/\sqrt{2k})\exp(-ik\tau)italic_v start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = ( 1 / square-root start_ARG 2 italic_k end_ARG ) roman_exp ( - italic_i italic_k italic_τ ) for τ𝜏\tau\rightarrow-\inftyitalic_τ → - ∞: this implies (using the large-argument limit of the Hankel functions [95]) A=0subscript𝐴0A_{-}=0italic_A start_POSTSUBSCRIPT - end_POSTSUBSCRIPT = 0 and A+=π/4subscript𝐴𝜋4A_{+}=\sqrt{\pi/4}italic_A start_POSTSUBSCRIPT + end_POSTSUBSCRIPT = square-root start_ARG italic_π / 4 end_ARG for the solution describing perturbations in the initial regime τ𝜏\tau\rightarrow-\inftyitalic_τ → - ∞.

With such a canonical normalization, the sought value of the number density nk(τ0)delimited-⟨⟩subscript𝑛𝑘subscript𝜏0\langle n_{k}(\tau_{0})\rangle⟨ italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ⟩ of produced gravitons is then automatically obtained from the coefficient A(k)subscript𝐴𝑘A_{-}(k)italic_A start_POSTSUBSCRIPT - end_POSTSUBSCRIPT ( italic_k ) of the first-kind Hankel function describing the perturbation mode hk(τ)subscript𝑘𝜏h_{k}(\tau)italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_τ ) in the final regime τ+𝜏\tau\rightarrow+\inftyitalic_τ → + ∞ (actually, for our purpose, in the limit ττ0𝜏subscript𝜏0\tau\rightarrow\tau_{0}italic_τ → italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT). More precisely, one finds (see, e.g., [95])

nk(τ0)=4π|A(k)|τ=τ0.delimited-⟨⟩subscript𝑛𝑘subscript𝜏04𝜋subscriptsubscript𝐴𝑘𝜏subscript𝜏0\langle n_{k}(\tau_{0})\rangle=\frac{4}{\pi}\left|A_{-}(k)\right|_{\tau=\tau_{% 0}}.⟨ italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ⟩ = divide start_ARG 4 end_ARG start_ARG italic_π end_ARG | italic_A start_POSTSUBSCRIPT - end_POSTSUBSCRIPT ( italic_k ) | start_POSTSUBSCRIPT italic_τ = italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT . (4.7)

By performing the above computation and varying k𝑘kitalic_k in the allowed frequency range we find that there are, in principle, four different branches of the energy density spectrum (1.3), (4.1), depending on the epochs of horizon crossing of the various modes. Noting that the axion-dominated phase is expected to occur soon after the bounce, in order to have a short duration with respect to the preceding high-curvature string phase (namely, τd/τστ1/τsmuch-less-thansubscript𝜏𝑑subscript𝜏𝜎subscript𝜏1subscript𝜏𝑠\tau_{d}/\tau_{\sigma}\ll\tau_{1}/\tau_{s}italic_τ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT / italic_τ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ≪ italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_τ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT) we may consistently assume that all modes re-entering the horizon before, during, or soon after the axion phase are amplified modes leaving the horizon during the high-curvature string phase. This means, in other words, that we can work with the following hierarchy of wave-number scales: k1kσkd>kssubscript𝑘1subscript𝑘𝜎subscript𝑘𝑑subscript𝑘𝑠k_{1}\geqslant k_{\sigma}\geqslant k_{d}>k_{s}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⩾ italic_k start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ⩾ italic_k start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT > italic_k start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, where kiτi1subscript𝑘𝑖superscriptsubscript𝜏𝑖1k_{i}\coloneqq\tau_{i}^{-1}italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≔ italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT is the limiting frequency of a mode crossing the horizon at the transition epoch τisubscript𝜏𝑖\tau_{i}italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT.

To obtain the explicit (parameter-dependent) form of the GWB, it is useful to first compute the frequency ratios of the four scales kisubscript𝑘𝑖k_{i}italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. We note that in our model there are two phases of radiation-dominated evolution (i.e., aτH1/2similar-to𝑎𝜏similar-tosuperscript𝐻12a\sim\tau\sim H^{-1/2}italic_a ∼ italic_τ ∼ italic_H start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT) for τ1<τ<τσsubscript𝜏1𝜏subscript𝜏𝜎-\tau_{1}<\tau<\tau_{\sigma}- italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_τ < italic_τ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT and for τ>τd𝜏subscript𝜏𝑑\tau>\tau_{d}italic_τ > italic_τ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT, one phase of matter-dominated evolution (i.e., aτ2H2/3similar-to𝑎superscript𝜏2similar-tosuperscript𝐻23a\sim\tau^{2}\sim H^{-2/3}italic_a ∼ italic_τ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∼ italic_H start_POSTSUPERSCRIPT - 2 / 3 end_POSTSUPERSCRIPT) for τσ<τ<τdsubscript𝜏𝜎𝜏subscript𝜏𝑑\tau_{\sigma}<\tau<\tau_{d}italic_τ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT < italic_τ < italic_τ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT, and one phase where the string frame scale factor undergoes a de Sitter-like evolution (i.e., a|τ|1similar-to𝑎superscript𝜏1a\sim|\tau|^{-1}italic_a ∼ | italic_τ | start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT) for τs<τ<τ1subscript𝜏𝑠𝜏subscript𝜏1-\tau_{s}<\tau<-\tau_{1}- italic_τ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < italic_τ < - italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. By defining the convenient parameters

zsτsτ1=k1ks,zστστ1=k1kσ,zdτdτ1=k1kd,formulae-sequencesubscript𝑧𝑠subscript𝜏𝑠subscript𝜏1subscript𝑘1subscript𝑘𝑠subscript𝑧𝜎subscript𝜏𝜎subscript𝜏1subscript𝑘1subscript𝑘𝜎subscript𝑧𝑑subscript𝜏𝑑subscript𝜏1subscript𝑘1subscript𝑘𝑑z_{s}\coloneqq\frac{\tau_{s}}{\tau_{1}}=\frac{k_{1}}{k_{s}},\leavevmode% \nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ % \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode% \nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ % \leavevmode\nobreak\ \leavevmode\nobreak\ z_{\sigma}\coloneqq\frac{\tau_{% \sigma}}{\tau_{1}}=\frac{k_{1}}{k_{\sigma}},\leavevmode\nobreak\ \leavevmode% \nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ % \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode% \nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ % \leavevmode\nobreak\ z_{d}\coloneqq\frac{\tau_{d}}{\tau_{1}}=\frac{k_{1}}{k_{d% }},italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ≔ divide start_ARG italic_τ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG , italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ≔ divide start_ARG italic_τ start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG , italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ≔ divide start_ARG italic_τ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG , (4.8)

controlling the time extension of the pre-bouncung high curvature regime and of the two post-bouncing, non-standard phases, we find666Conventions: we denote with ω𝜔\omegaitalic_ω the usual (time-dependent) proper frequency evolving in time like the inverse scale factor, ω(t)k/a(t)𝜔𝑡𝑘𝑎𝑡\omega(t)\equiv k/a(t)italic_ω ( italic_t ) ≡ italic_k / italic_a ( italic_t ). Hence, the proper frequency crossing the horizon at the given time t1subscript𝑡1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, ω1=H1=H(t1)subscript𝜔1subscript𝐻1𝐻subscript𝑡1\omega_{1}=H_{1}=H(t_{1})italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_H ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), and evaluated at a general time t𝑡titalic_t, is given by ω1(t)=H(t1)a(t1)/a(t)H1a1/asubscript𝜔1𝑡𝐻subscript𝑡1𝑎subscript𝑡1𝑎𝑡subscript𝐻1subscript𝑎1𝑎\omega_{1}(t)=H(t_{1})a(t_{1})/a(t)\equiv H_{1}a_{1}/aitalic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) = italic_H ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_a ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) / italic_a ( italic_t ) ≡ italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_a. The time-dependent scale factor obviously disappears in the ratios of two frequency scales so that, for instance, ω1/ωσ=H1a1/Hσaσ=k1/kσsubscript𝜔1subscript𝜔𝜎subscript𝐻1subscript𝑎1subscript𝐻𝜎subscript𝑎𝜎subscript𝑘1subscript𝑘𝜎\omega_{1}/\omega_{\sigma}=H_{1}a_{1}/H_{\sigma}a_{\sigma}=k_{1}/k_{\sigma}italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_ω start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT = italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT = italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT. (using eq. (4.5))

zσ=k1kσ=H1a1Hσaσ=(H1Hσ)12(H1MPl)12(mMPl)12(σiMPl)2,subscript𝑧𝜎subscript𝑘1subscript𝑘𝜎subscript𝐻1subscript𝑎1subscript𝐻𝜎subscript𝑎𝜎superscriptsubscript𝐻1subscript𝐻𝜎12similar-to-or-equalssuperscriptsubscript𝐻1subscript𝑀Pl12superscript𝑚subscript𝑀Pl12superscriptsubscript𝜎𝑖subscript𝑀Pl2\displaystyle\!\!\!\!\!\!\!\!z_{\sigma}=\frac{k_{1}}{k_{\sigma}}=\frac{H_{1}a_% {1}}{H_{\sigma}a_{\sigma}}=\left(\frac{H_{1}}{H_{\sigma}}\right)^{\frac{1}{2}}% \simeq\left(\frac{H_{1}}{M_{\rm Pl}}\right)^{\frac{1}{2}}\left(\frac{m}{M_{\rm Pl% }}\right)^{-\frac{1}{2}}\left(\frac{\sigma_{i}}{M_{\rm Pl}}\right)^{-2},italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT = divide start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG = ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ≃ ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_m end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ,
zdzσ=kσkd=HσaσHdad=(HσHd)13(mMPl)23(σiMPl)43,subscript𝑧𝑑subscript𝑧𝜎subscript𝑘𝜎subscript𝑘𝑑subscript𝐻𝜎subscript𝑎𝜎subscript𝐻𝑑subscript𝑎𝑑superscriptsubscript𝐻𝜎subscript𝐻𝑑13similar-to-or-equalssuperscript𝑚subscript𝑀Pl23superscriptsubscript𝜎𝑖subscript𝑀Pl43\displaystyle\!\!\!\!\!\!\!\!\frac{z_{d}}{z_{\sigma}}=\frac{k_{\sigma}}{k_{d}}% =\frac{H_{\sigma}a_{\sigma}}{H_{d}a_{d}}=\left(\frac{H_{\sigma}}{H_{d}}\right)% ^{\frac{1}{3}}\simeq\left(\frac{m}{M_{\rm Pl}}\right)^{-\frac{2}{3}}\left(% \frac{\sigma_{i}}{M_{\rm Pl}}\right)^{\frac{4}{3}},divide start_ARG italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_k start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG = ( divide start_ARG italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT ≃ ( divide start_ARG italic_m end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - divide start_ARG 2 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 4 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT ,
zszd=kdks=kdk1k1ks=zsHdadH1a1=zsHdH1adaσaσa1zs(H1MPl)12(mMPl)76(σiMPl)23.subscript𝑧𝑠subscript𝑧𝑑subscript𝑘𝑑subscript𝑘𝑠subscript𝑘𝑑subscript𝑘1subscript𝑘1subscript𝑘𝑠subscript𝑧𝑠subscript𝐻𝑑subscript𝑎𝑑subscript𝐻1subscript𝑎1subscript𝑧𝑠subscript𝐻𝑑subscript𝐻1subscript𝑎𝑑subscript𝑎𝜎subscript𝑎𝜎subscript𝑎1similar-to-or-equalssubscript𝑧𝑠superscriptsubscript𝐻1subscript𝑀Pl12superscript𝑚subscript𝑀Pl76superscriptsubscript𝜎𝑖subscript𝑀Pl23\displaystyle\!\!\!\!\!\!\!\!\frac{z_{s}}{z_{d}}=\frac{k_{d}}{k_{s}}=\frac{k_{% d}}{k_{1}}\frac{k_{1}}{k_{s}}=z_{s}\frac{H_{d}a_{d}}{H_{1}a_{1}}=z_{s}\frac{H_% {d}}{H_{1}}\frac{a_{d}}{a_{\sigma}}\frac{a_{\sigma}}{a_{1}}\simeq z_{s}\left(% \frac{H_{1}}{M_{\rm Pl}}\right)^{-\frac{1}{2}}\left(\frac{m}{M_{\rm Pl}}\right% )^{\frac{7}{6}}\left(\frac{\sigma_{i}}{M_{\rm Pl}}\right)^{\frac{2}{3}}.divide start_ARG italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_k start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_k start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG divide start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG = italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT divide start_ARG italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG = italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT divide start_ARG italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG divide start_ARG italic_a start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG divide start_ARG italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ≃ italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_m end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 7 end_ARG start_ARG 6 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 2 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT . (4.9)

By inverting the above relations we can also express σisubscript𝜎𝑖\sigma_{i}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and m𝑚mitalic_m in terms of H1subscript𝐻1H_{1}italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and of the parameters zssubscript𝑧𝑠z_{s}italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, zσsubscript𝑧𝜎z_{\sigma}italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT and zdsubscript𝑧𝑑z_{d}italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT as follows:

σiMPl(H1MPl)16zd14zσ712,mMPl(H1MPl)13zd1zσ13.formulae-sequencesimilar-to-or-equalssubscript𝜎𝑖subscript𝑀Plsuperscriptsubscript𝐻1subscript𝑀Pl16superscriptsubscript𝑧𝑑14superscriptsubscript𝑧𝜎712similar-to-or-equals𝑚subscript𝑀Plsuperscriptsubscript𝐻1subscript𝑀Pl13superscriptsubscript𝑧𝑑1superscriptsubscript𝑧𝜎13\frac{\sigma_{i}}{M_{\rm Pl}}\simeq\left(\frac{H_{1}}{M_{\rm Pl}}\right)^{% \frac{1}{6}}z_{d}^{\frac{1}{4}}z_{\sigma}^{-\frac{7}{12}}\,,\leavevmode% \nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ % \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode% \nobreak\ \qquad\frac{m}{M_{\rm Pl}}\simeq\left(\frac{H_{1}}{M_{\rm Pl}}\right% )^{\frac{1}{3}}z_{d}^{-1}z_{\sigma}^{\frac{1}{3}}.divide start_ARG italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ≃ ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 6 end_ARG end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 4 end_ARG end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - divide start_ARG 7 end_ARG start_ARG 12 end_ARG end_POSTSUPERSCRIPT , divide start_ARG italic_m end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ≃ ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT . (4.10)

Let us now give an example of full computation of the spectral distribution (1.3) for the highest frequency branch of the spectrum (kσ<k<k1subscript𝑘𝜎𝑘subscript𝑘1k_{\sigma}<k<k_{1}italic_k start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT < italic_k < italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT) and for a generic epoch τ𝜏\tauitalic_τ (late enough, however, to have all such modes inside the horizon, kτ1much-greater-than𝑘𝜏1k\tau\gg 1italic_k italic_τ ≫ 1). To this purpose, let us express the energy density of the perturbations in terms of their (time-dependent) proper frequency ω𝜔\omegaitalic_ω scaling in time like the inverse scale factor, ω(τ)=k/a(τ)𝜔𝜏𝑘𝑎𝜏\omega(\tau)=k/a(\tau)italic_ω ( italic_τ ) = italic_k / italic_a ( italic_τ ). From eqs. (1.3) and (4.1), we obtain

Ωgw(k,τ)=ω4π2ρcrit(τ)nω(τ),kσ<k<k1.formulae-sequencesubscriptΩgw𝑘𝜏superscript𝜔4superscript𝜋2subscript𝜌crit𝜏delimited-⟨⟩subscript𝑛𝜔𝜏subscript𝑘𝜎𝑘subscript𝑘1\Omega_{\textsc{gw}}(k,\tau)=\frac{\omega^{4}}{\pi^{2}\rho_{\rm crit}(\tau)}\,% \langle n_{\omega}(\tau)\rangle\,,\leavevmode\nobreak\ \leavevmode\nobreak\ % \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode% \nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \qquad k_{\sigma}<k<k_{1}.roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_k , italic_τ ) = divide start_ARG italic_ω start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT roman_crit end_POSTSUBSCRIPT ( italic_τ ) end_ARG ⟨ italic_n start_POSTSUBSCRIPT italic_ω end_POSTSUBSCRIPT ( italic_τ ) ⟩ , italic_k start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT < italic_k < italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT . (4.11)

The modes we are considering are amplified by the pump field (4.3) of the high-curvature string phase, and the canonical equations (4.6), (4.7) then give [95]

nω(τ)(ωω1)1|32β|=(kk1)1|32β|.similar-to-or-equalsdelimited-⟨⟩subscript𝑛𝜔𝜏superscript𝜔subscript𝜔1132𝛽superscript𝑘subscript𝑘1132𝛽\langle n_{\omega}(\tau)\rangle\simeq\left(\frac{\omega}{\omega_{1}}\right)^{-% 1-|3-2\beta|}=\left(\frac{k}{k_{1}}\right)^{-1-|3-2\beta|}.⟨ italic_n start_POSTSUBSCRIPT italic_ω end_POSTSUBSCRIPT ( italic_τ ) ⟩ ≃ ( divide start_ARG italic_ω end_ARG start_ARG italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 1 - | 3 - 2 italic_β | end_POSTSUPERSCRIPT = ( divide start_ARG italic_k end_ARG start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 1 - | 3 - 2 italic_β | end_POSTSUPERSCRIPT . (4.12)

Also, it is convenient to express the critical density ρcritsubscript𝜌crit\rho_{\rm crit}italic_ρ start_POSTSUBSCRIPT roman_crit end_POSTSUBSCRIPT in terms of the critical fraction of radiation energy density, Ωr=ρr/ρcritsubscriptΩrsubscript𝜌𝑟subscript𝜌crit\Omega_{\rm r}=\rho_{r}/\rho_{\rm crit}roman_Ω start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT = italic_ρ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT / italic_ρ start_POSTSUBSCRIPT roman_crit end_POSTSUBSCRIPT, so that, referring to radiation produced at the axion-decay scale, we have

ρcrit(τ)=ρr(τ)Ωr(τ)=3MPl2HdΩr(τ)(ada)4.subscript𝜌crit𝜏subscript𝜌𝑟𝜏subscriptΩr𝜏3superscriptsubscript𝑀Pl2subscript𝐻𝑑subscriptΩr𝜏superscriptsubscript𝑎𝑑𝑎4\rho_{\rm crit}(\tau)=\frac{\rho_{r}(\tau)}{\Omega_{\rm r}(\tau)}=\frac{3M_{% \rm Pl}^{2}H_{d}}{\Omega_{\rm r}(\tau)}\left(\frac{a_{d}}{a}\right)^{4}.italic_ρ start_POSTSUBSCRIPT roman_crit end_POSTSUBSCRIPT ( italic_τ ) = divide start_ARG italic_ρ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_τ ) end_ARG start_ARG roman_Ω start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT ( italic_τ ) end_ARG = divide start_ARG 3 italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG roman_Ω start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT ( italic_τ ) end_ARG ( divide start_ARG italic_a start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_a end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT . (4.13)

Finally, for each mode of proper frequency ω(τ)𝜔𝜏\omega(\tau)italic_ω ( italic_τ ) we can express its ω4superscript𝜔4\omega^{4}italic_ω start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT contribution to eq. (4.11) as

ω4=(ka)4=(kk1)4(H1a1a)4.superscript𝜔4superscript𝑘𝑎4superscript𝑘subscript𝑘14superscriptsubscript𝐻1subscript𝑎1𝑎4\omega^{4}=\left(\frac{k}{a}\right)^{4}=\left(\frac{k}{k_{1}}\right)^{4}\left(% \frac{H_{1}a_{1}}{a}\right)^{4}.italic_ω start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT = ( divide start_ARG italic_k end_ARG start_ARG italic_a end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT = ( divide start_ARG italic_k end_ARG start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_a end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT . (4.14)

Combining all these results and using eq. (4.5) we then find, for the considered band of frequency,

Ωgw(k,τ)=Ωr(τ)Ωr0ΩPBB(kk1)3|32β|,kσ<k<k1,τ>τd,formulae-sequenceformulae-sequencesubscriptΩgw𝑘𝜏subscriptΩr𝜏subscriptΩr0subscriptΩPBBsuperscript𝑘subscript𝑘1332𝛽subscript𝑘𝜎𝑘subscript𝑘1𝜏subscript𝜏𝑑\Omega_{\textsc{gw}}(k,\tau)=\frac{\Omega_{\rm r}(\tau)}{\Omega_{{\rm r}0}}\,% \Omega_{\rm PBB}\left(\frac{k}{k_{1}}\right)^{3-|3-2\beta|},\leavevmode% \nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ % \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode% \nobreak\ \leavevmode\nobreak\ k_{\sigma}<k<k_{1},\leavevmode\nobreak\ % \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \tau>\tau_{d},roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_k , italic_τ ) = divide start_ARG roman_Ω start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT ( italic_τ ) end_ARG start_ARG roman_Ω start_POSTSUBSCRIPT r0 end_POSTSUBSCRIPT end_ARG roman_Ω start_POSTSUBSCRIPT roman_PBB end_POSTSUBSCRIPT ( divide start_ARG italic_k end_ARG start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 - | 3 - 2 italic_β | end_POSTSUPERSCRIPT , italic_k start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT < italic_k < italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_τ > italic_τ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT , (4.15)

where Ωr0Ωr(τ0)4.15×105h2subscriptΩr0subscriptΩrsubscript𝜏04.15superscript105superscript2\Omega_{{\rm r}0}\equiv\Omega_{\rm r}(\tau_{0})\approx 4.15\times 10^{-5}h^{-2}roman_Ω start_POSTSUBSCRIPT r0 end_POSTSUBSCRIPT ≡ roman_Ω start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≈ 4.15 × 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT is the present critical fraction of radiation energy density (including neutrinos) and we have defined the constant (parameter dependent) dimensionless amplitude

ΩPBBΩr0(H1MPl)2(mMPlσi2)4/3=Ωr0(H1MPl)2(zσzd)2.subscriptΩPBBsubscriptΩr0superscriptsubscript𝐻1subscript𝑀Pl2superscript𝑚subscript𝑀Plsuperscriptsubscript𝜎𝑖243subscriptΩr0superscriptsubscript𝐻1subscript𝑀Pl2superscriptsubscript𝑧𝜎subscript𝑧𝑑2\Omega_{\rm PBB}\coloneqq\Omega_{{\rm r}0}\left(\frac{H_{1}}{M_{\rm Pl}}\right% )^{2}\left(\frac{mM_{\rm Pl}}{\sigma_{i}^{2}}\right)^{4/3}=\Omega_{{\rm r}0}% \left(\frac{H_{1}}{M_{\rm Pl}}\right)^{2}\left(\frac{z_{\sigma}}{z_{d}}\right)% ^{2}.roman_Ω start_POSTSUBSCRIPT roman_PBB end_POSTSUBSCRIPT ≔ roman_Ω start_POSTSUBSCRIPT r0 end_POSTSUBSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_m italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 4 / 3 end_POSTSUPERSCRIPT = roman_Ω start_POSTSUBSCRIPT r0 end_POSTSUBSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (4.16)

For simplicity we have absorbed all numerical factors of order of unity into the unknown scale H1subscript𝐻1H_{1}italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Obviously, the result (4.15) is also valid if applied in particular to the present epoch τ=τ0𝜏subscript𝜏0\tau=\tau_{0}italic_τ = italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, with Ωr(τ)=Ωr0subscriptΩr𝜏subscriptΩr0\Omega_{\rm r}(\tau)=\Omega_{{\rm r}0}roman_Ω start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT ( italic_τ ) = roman_Ω start_POSTSUBSCRIPT r0 end_POSTSUBSCRIPT.

By following the same procedure for the other (lower frequency) branches of the spectrum, and turning to the more conventional frequency variable777Note that the initial normalisation of the spectrum to the quantum fluctuations of the vacuum, leading to the results (4.7), (4.11), is performed as usual in units =1Planck-constant-over-2-pi1\hbar=1roman_ℏ = 1. Hence, ω=2πf𝜔2𝜋𝑓\omega=2\pi fitalic_ω = 2 italic_π italic_f. f=k/(2π)𝑓𝑘2𝜋f=k/(2\pi)italic_f = italic_k / ( 2 italic_π ), we obtain that the full GWB can be written synthetically as

Ωgw(f)={ΩPBB(ff1)3|32β|,fσ<f<f1Ωgw(f1)(fσf1)3|32β|(ffσ)1|32β|,fd<f<fσΩgw(fσ)(fdfσ)1|32β|(ffd)3|32β|,fs<f<fdΩgw(fd)(fsfd)3|32β|(ffs)3,f<fs\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\Omega_{\textsc{gw}}(f)=\left\{\begin{matrix}% \Omega_{\rm PBB}\left(\dfrac{f}{f_{1}}\right)^{3-|3-2\beta|},\qquad\qquad% \qquad\qquad\qquad f_{\sigma}\leavevmode\nobreak\ \raise 1.72218pt\hbox{$<$}% \kern-8.00003pt\lower 2.6694pt\hbox{$\sim$}\leavevmode\nobreak\ f\leavevmode% \nobreak\ \raise 1.72218pt\hbox{$<$}\kern-8.00003pt\lower 2.6694pt\hbox{$\sim$% }\leavevmode\nobreak\ f_{1}\\ \\ \Omega_{\textsc{gw}}(f_{1})\left(\dfrac{f_{\sigma}}{f_{1}}\right)^{3-|3-2\beta% |}\left(\dfrac{f}{f_{\sigma}}\right)^{1-|3-2\beta|},\qquad\quad f_{d}% \leavevmode\nobreak\ \raise 1.72218pt\hbox{$<$}\kern-8.00003pt\lower 2.6694pt% \hbox{$\sim$}\leavevmode\nobreak\ f\leavevmode\nobreak\ \raise 1.72218pt\hbox{% $<$}\kern-8.00003pt\lower 2.6694pt\hbox{$\sim$}\leavevmode\nobreak\ f_{\sigma}% \\ \\ \Omega_{\textsc{gw}}(f_{\sigma})\left(\dfrac{f_{d}}{f_{\sigma}}\right)^{1-|3-2% \beta|}\left(\dfrac{f}{f_{d}}\right)^{3-|3-2\beta|},\qquad\,\,f_{s}\leavevmode% \nobreak\ \raise 1.72218pt\hbox{$<$}\kern-8.00003pt\lower 2.6694pt\hbox{$\sim$% }\leavevmode\nobreak\ f\leavevmode\nobreak\ \raise 1.72218pt\hbox{$<$}\kern-8.% 00003pt\lower 2.6694pt\hbox{$\sim$}\leavevmode\nobreak\ f_{d}\\ \\ \Omega_{\textsc{gw}}(f_{d})\left(\dfrac{f_{s}}{f_{d}}\right)^{3-|3-2\beta|}% \left(\dfrac{f}{f_{s}}\right)^{3},\qquad\qquad\qquad\quad\,\,\,\,\,f% \leavevmode\nobreak\ \raise 1.72218pt\hbox{$<$}\kern-8.00003pt\lower 2.6694pt% \hbox{$\sim$}\leavevmode\nobreak\ f_{s}\end{matrix}\right.roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_f ) = { start_ARG start_ROW start_CELL roman_Ω start_POSTSUBSCRIPT roman_PBB end_POSTSUBSCRIPT ( divide start_ARG italic_f end_ARG start_ARG italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 - | 3 - 2 italic_β | end_POSTSUPERSCRIPT , italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT < ∼ italic_f < ∼ italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL end_ROW start_ROW start_CELL roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( divide start_ARG italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 - | 3 - 2 italic_β | end_POSTSUPERSCRIPT ( divide start_ARG italic_f end_ARG start_ARG italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 1 - | 3 - 2 italic_β | end_POSTSUPERSCRIPT , italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT < ∼ italic_f < ∼ italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL end_ROW start_ROW start_CELL roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ) ( divide start_ARG italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 1 - | 3 - 2 italic_β | end_POSTSUPERSCRIPT ( divide start_ARG italic_f end_ARG start_ARG italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 - | 3 - 2 italic_β | end_POSTSUPERSCRIPT , italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < ∼ italic_f < ∼ italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL end_ROW start_ROW start_CELL roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) ( divide start_ARG italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 - | 3 - 2 italic_β | end_POSTSUPERSCRIPT ( divide start_ARG italic_f end_ARG start_ARG italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , italic_f < ∼ italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_CELL end_ROW end_ARG (4.17)

where the three ratios of frequency scales fσ/f1subscript𝑓𝜎subscript𝑓1f_{\sigma}/f_{1}italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT / italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, fd/fσsubscript𝑓𝑑subscript𝑓𝜎f_{d}/f_{\sigma}italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT / italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT, fs/fdsubscript𝑓𝑠subscript𝑓𝑑f_{s}/f_{d}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT can be expressed in terms of the parameters zssubscript𝑧𝑠z_{s}italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, zσsubscript𝑧𝜎z_{\sigma}italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT, zdsubscript𝑧𝑑z_{d}italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT (or m𝑚mitalic_m, σisubscript𝜎𝑖\sigma_{i}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, H1subscript𝐻1H_{1}italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT) according to eq. (4.9). It is important to note that, for f>f1𝑓subscript𝑓1f>f_{1}italic_f > italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, the spectrum is exponentially suppressed as Ωgw(f)=ΩPBBexp[(ff1)/f1]subscriptΩgw𝑓subscriptΩPBB𝑓subscript𝑓1subscript𝑓1\Omega_{\textsc{gw}}(f)=\Omega_{\rm PBB}\exp{[-(f-f_{1})/f_{1}}]roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_f ) = roman_Ω start_POSTSUBSCRIPT roman_PBB end_POSTSUBSCRIPT roman_exp [ - ( italic_f - italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) / italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ], so that a smooth interpolation of all the branches can be given by the following expression proven in Appendix A:

Ωgw(f)subscriptΩgw𝑓\displaystyle\Omega_{\textsc{gw}}(f)roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_f ) =\displaystyle== ΩPBBf3(f2+fs2)|32β|2(f2+fd2)1(f2+fσ2)(f2+f12)|32β|32subscriptΩPBBsuperscript𝑓3superscriptsuperscript𝑓2superscriptsubscript𝑓𝑠232𝛽2superscriptsuperscript𝑓2superscriptsubscript𝑓𝑑21superscript𝑓2superscriptsubscript𝑓𝜎2superscriptsuperscript𝑓2superscriptsubscript𝑓1232𝛽32\displaystyle\,\Omega_{\rm PBB}\,f^{3}\left(f^{2}+f_{s}^{2}\right)^{-\frac{% \left|3-2\beta\right|}{2}}\left(f^{2}+f_{d}^{2}\right)^{-1}\left(f^{2}+f_{% \sigma}^{2}\right)\left(f^{2}+f_{1}^{2}\right)^{\frac{\left|3-2\beta\right|-3}% {2}}roman_Ω start_POSTSUBSCRIPT roman_PBB end_POSTSUBSCRIPT italic_f start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - divide start_ARG | 3 - 2 italic_β | end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG | 3 - 2 italic_β | - 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT (4.18)
×exp(ff1+arctanff1).absent𝑓subscript𝑓1𝑓subscript𝑓1\displaystyle\times\exp{\left({-\frac{f}{f_{1}}+\arctan{\frac{f}{f_{1}}}}% \right)}\,.× roman_exp ( - divide start_ARG italic_f end_ARG start_ARG italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG + roman_arctan divide start_ARG italic_f end_ARG start_ARG italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) .

The smoothing of the piecewise profile (4.17) does not change the underlying scenario because the transition epochs from one phase to another are of very short, negligible duration compared with the time extension of such phases.

There are now two important points to be stressed. The first is that the overall GWB, and in particular the peak amplitude, is controlled not only by the bouncing curvature scale H1subscript𝐻1H_{1}italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT but also by the parameters m𝑚mitalic_m and σisubscript𝜎𝑖\sigma_{i}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and, thus, by the details of the post-bounce evolution. This implies, in particular, that the amplitude may result strongly suppressed with respect to the natural value fixed by the fundamental string mass scale Mssubscript𝑀sM_{\rm s}italic_M start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT, even for the highest frequency modes crossing the horizon at such scale.

The second point concerns the number of parameters controlling the shape of the spectrum. There are four time (or curvature) scales and one dimensionless number, the power β𝛽\betaitalic_β of the pump field in the string phase; see (4.3). However, these five parameters must satisfy an important phenomenological condition. The PBB scenario we are considering, in fact, besides producing relic GW radiation must also produce a suitable large-scale background of scalar curvature perturbations with a nearly flat spectrum, in order to be compatible with CMB observations.

This is known to be possible via the curvaton mechanism [104, 105, 106] triggered by the Kalb–Ramond axion [96, 97], but this imposes constraints on the previous spectral parameters [58]. In particular, the primordial scalar amplitude 𝒫s(k)subscript𝒫ssubscript𝑘\mathcal{P}_{\rm s}(k_{*})caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) and spectral index nssubscript𝑛sn_{\rm s}italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT must be in agreement with the observational results reported below (1.2). By imposing such conditions on the scalar perturbations produced by the PBB model we are considering, whose spectrum is controlled by the same set of parameters as the GWB of (4.17) or its smooth version (4.18), we can then eliminate one of the previous five parameters and fix, for instance, the transition scale H1subscript𝐻1H_{1}italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT as a function of zssubscript𝑧𝑠z_{s}italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, β𝛽\betaitalic_β, m𝑚mitalic_m, σisubscript𝜎𝑖\sigma_{i}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and of the two observables 𝒫s(k)subscript𝒫ssubscript𝑘\mathcal{P}_{\rm s}(k_{*})caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) and nssubscript𝑛sn_{\rm s}italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT. This is done in Appendix B.1, where we conclude that the parameter space of the model is

{β,zs,zd,zσ}.𝛽subscript𝑧𝑠subscript𝑧𝑑subscript𝑧𝜎\{\beta,z_{s},z_{d},z_{\sigma}\}\,.{ italic_β , italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT } . (4.19)

Without assuming any prior on these parameter, one can plot (4.18) and find some general trends. For instance, the larger β𝛽\betaitalic_β, the smaller the amplitude, so that, in practice, only values of β𝛽\betaitalic_β near zero generate a detectable signal. Also, as the parameter zdsubscript𝑧𝑑z_{d}italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT increases, the spectral shape is squeezed and the peak becomes narrower but neither its frequency nor its amplitude vary appreciably. On the other hand, the parameter zσsubscript𝑧𝜎z_{\sigma}italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT changes the shape but not much the frequency peak or the amplitude, while the parameter zssubscript𝑧𝑠z_{s}italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT which affects both the range and the amplitude of the intermediate plateau or slope.

Refer to caption
Figure 3: The shaded area shows the allowed region in the (log10zs,log10zd)subscript10subscript𝑧𝑠subscript10subscript𝑧𝑑(\log_{10}z_{s},\log_{10}z_{d})( roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) plane for the limiting case β=0𝛽0\beta=0italic_β = 0 and σi=MPlsubscript𝜎𝑖subscript𝑀Pl\sigma_{i}=M_{\rm Pl}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT, which maximizes the peak amplitude of the primordial GWB. The maximal allowed intensity is reached for parameter values lying on the dashed straight line marking the right border of the region, corresponding to log10(H1/MPl)3.29subscript10subscript𝐻1subscript𝑀Pl3.29\log_{10}(H_{1}/M_{\rm Pl})\approx-3.29roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT ) ≈ - 3.29, as explained in Appendix B.3.

However, the four parameters (4.19) do obey a non-trivial set of theoretical priors determined in Appendix B.2. Within this space, in Appendix B.3 we circumscribe the region in the parameter space where the peak amplitude of the GWB is maximized. This happens for β=0𝛽0\beta=0italic_β = 0, σi=MPlsubscript𝜎𝑖subscript𝑀Pl\sigma_{i}=M_{\rm Pl}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT, zσsubscript𝑧𝜎z_{\sigma}italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT determined by eq. (B.13) and the values of zssubscript𝑧𝑠z_{s}italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and zdsubscript𝑧𝑑z_{d}italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT shown in Fig. 3.

Any given set of parameters zs,zd,zσsubscript𝑧𝑠subscript𝑧𝑑subscript𝑧𝜎z_{s},z_{d},z_{\sigma}italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT satisfying eq. (B.13) together with all other constraints, and implementing the additional limiting condition log10(H1/MPl)3.29subscript10subscript𝐻1subscript𝑀Pl3.29\log_{10}(H_{1}/M_{\rm Pl})\approx-3.29roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT ) ≈ - 3.29, produces a GWB with a peak of maximum intensity Ωgwmax10111010similar-tosuperscriptsubscriptΩgwmaxsuperscript1011superscript1010\Omega_{\textsc{gw}}^{\rm max}\sim 10^{-11}\!-\!10^{-10}roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_max end_POSTSUPERSCRIPT ∼ 10 start_POSTSUPERSCRIPT - 11 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 10 end_POSTSUPERSCRIPT (eq. (B.15)). For phenomenological reasons, however, we are interested not only in the maximal amplitude but also in the maximal extension in frequency (in particular, towards small frequencies) of the allowed spectral region. This last property can be easily obtained by choosing, among all possible combinations of parameters producing the maximal amplitude, the combination selecting the maximal allowed value of zssubscript𝑧𝑠z_{s}italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT (i.e., zs1022.3subscript𝑧𝑠superscript1022.3z_{s}\approx 10^{22.3}italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ≈ 10 start_POSTSUPERSCRIPT 22.3 end_POSTSUPERSCRIPT), together with the corresponding minimal value of zdsubscript𝑧𝑑z_{d}italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT (i.e., zd102.19subscript𝑧𝑑superscript102.19z_{d}\approx 10^{2.19}italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ≈ 10 start_POSTSUPERSCRIPT 2.19 end_POSTSUPERSCRIPT), together with the associated minimal value of zσsubscript𝑧𝜎z_{\sigma}italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT (i.e., zσ1subscript𝑧𝜎1z_{\sigma}\approx 1italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ≈ 1, according to eq. (B.13)).

Refer to caption
Figure 4: The shaded area is the maximal allowed region for the GWB (4.18) extended in the low-frequency range, with all its parameters satisfying the self-consistency constraints (B.7)–(B.11). We have also plotted four possible spectra corresponding to different sets of parameters giving rise to different kinematic details of the phases of earlier, non-standard cosmic evolution, preceding and following the curvature bounce.

The GWB (4.18) with the above numerical values of the parameters (satisfying σi=MPlsubscript𝜎𝑖subscript𝑀Pl\sigma_{i}=M_{\rm Pl}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT) and with β=0𝛽0\beta=0italic_β = 0 provides the border of the shaded area in Fig. 4 within which the primordial GWB of pre-big-bang cosmology with maximal peak amplitude falls. Such region respects known constraints obtained from the observations of millisecond pulsars [107], which imply Ωgw< 108subscriptΩgw<superscript108\Omega_{\textsc{gw}}\leavevmode\nobreak\ \raise 1.72218pt\hbox{$<$}\kern-8.000% 03pt\lower 2.6694pt\hbox{$\sim$}\leavevmode\nobreak\ 10^{-8}roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT < ∼ 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT at a frequency scale f108similar-to𝑓superscript108f\sim 10^{-8}italic_f ∼ 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT Hz. It is also consistent with large-scale CMB constraints on the tensor spectrum. In the frequency range of PTA, the maximal GWB amplitude is smaller than the signal detected [3, 4, 5, 6, 7] and is therefore consistent with those observations.

For an illustrative purpose, in Fig. 4 we have also plotted a few examples of GWBs produced by different sets of parameters satisfying all required constraints. The plotted spectra maximize neither the peak amplitude nor the extension in frequency but they are well inside the border of the allowed region and they can still produce a detectable signal within the LISA and the ET frequency range.

5 Discussion

In this paper, we have continued the study of [29] on the tensor-produced primordial GWB in bouncing scenarios embedded in, or inspired by, semi-classical models, quantum gravity and string theory. A grand summary of our present results is the following.

  • Cosmological models of string and quantum gravity such as inflation in flux compactification (see [109, 108] for reviews), nonlocal Starobinsky inflation [37, 38], Wheeler–DeWitt quantum cosmology [110, 111, 112, 113, 114, 115] and various incarnations of loop quantum cosmology [116, 117, 118, 119, 120] generate a red-tilted primordial tensor spectrum (nt<0subscript𝑛t0n_{\rm t}<0italic_n start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT < 0) and the resulting GWB is not enhanced with respect to the standard inflationary one. It is thus unobservable by present and planned interferometers [29].

  • Scenarios such as Brandenberger–Ho non-commutative inflation [39, 40], multi-fractional inflation [48] and the conformal early universe in nonlocal quantum gravity [32] also generate a blue-tilted tensor spectrum but the primordial GWB amplitude can only reach the DECIGO window [29, 32]. These models may allow for a strong signal at CMB scales already within observability reach but this is a fixed prediction only for the conformal early-universe scenario [32].

  • The GWB of the new ekpyrotic universe [41, 42, 43] has a very low amplitude at CMB scales and it can reach the DECIGO window only if the tensor spectral index is running [29]. In some extreme but not very realistic cases, it can even reach the ET window. The ekpyrotic scenario with Galileons and a U(1)𝑈1U(1)italic_U ( 1 ) gauge field studied here [49, 50, 51, 52, 53] predicts a sourced tensor amplitude which is observable only on CMB frequency range, while the vacuum GWB is unobservable in all other upcoming GWB observations.

  • The GWB of string-gas cosmology is highly sensitive to the underlying assumptions. If the signal is produced below the Hagedorn temperature [44, 45, 46, 47], then it can reach at most the DECIGO sensitivity window assuming small or no running of the spectral indices [29]. If, as explored here, it is produced above the Hagedorn temperature [54], then it becomes too high and is observationally excluded. A possible way out of this would be to revise the assumptions underlying the model, in particular, to be already in Einstein’s gravity regime (3.9) when the primordial spectra were produced. Relaxing this condition and allowing generation of the spectra before recovering Einstein’s gravity might yield different results.

  • The only model so far striking a balance between observability in the high-frequency range and observational consistency is the pre-big-bang scenario [55, 56, 57, 58]. We found that its primordial GWB has a convex shape with an intermediate flat plateau. The parameter space of the model is tightly constrained theoretically but it still gives enough phenomenological freedom, to the point that this GWB can comfortably fall within the sensitivity window of both LISA and ET. When the parameter β𝛽\betaitalic_β is close to zero, in this range of frequencies the GWB of this model is a single power law

    ΩGW(f)fngw,ngw=2+nt3|32β|0.formulae-sequencesimilar-tosubscriptΩGW𝑓superscript𝑓subscript𝑛gwsubscript𝑛gw2subscript𝑛tsimilar-to-or-equals332𝛽0\Omega_{\text{GW}}(f)\sim f^{n_{\textsc{gw}}}\,,\qquad n_{\textsc{gw}}=2+n_{% \rm t}\simeq 3-|3-2\beta|\approx 0\,.roman_Ω start_POSTSUBSCRIPT GW end_POSTSUBSCRIPT ( italic_f ) ∼ italic_f start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_n start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT = 2 + italic_n start_POSTSUBSCRIPT roman_t end_POSTSUBSCRIPT ≃ 3 - | 3 - 2 italic_β | ≈ 0 . (5.1)

    When zdsubscript𝑧𝑑z_{d}italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT grows, the signal becomes a broken power law,

    Ωgw(f){fngw,1,ff¯fngw,2,ff¯,\Omega_{\textsc{gw}}(f)\sim\left\{\begin{matrix}\,\,f^{n_{\textsc{gw},1}},% \qquad\quad f\ll\bar{f}\\ f^{n_{\textsc{gw},2}},\qquad\quad f\gg\bar{f}\end{matrix}\right.,roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_f ) ∼ { start_ARG start_ROW start_CELL italic_f start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT gw , 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_f ≪ over¯ start_ARG italic_f end_ARG end_CELL end_ROW start_ROW start_CELL italic_f start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT gw , 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_f ≫ over¯ start_ARG italic_f end_ARG end_CELL end_ROW end_ARG , (5.2)

    where the slopes depend on where the transition scale f¯¯𝑓\bar{f}over¯ start_ARG italic_f end_ARG lies in the model’s scales hierarchy and on whether the intermediate plateau is extended enough:

    f¯=fd:ngw,13|32β|0,ngw,21|32β|2,\displaystyle\bar{f}=f_{d}\,:\hphantom{\simeq f_{d}}\quad n_{\textsc{gw},1}% \simeq 3-|3-2\beta|\approx 0\,,\quad\,\,n_{\textsc{gw},2}\simeq 1-|3-2\beta|% \approx-2\,,over¯ start_ARG italic_f end_ARG = italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT : italic_n start_POSTSUBSCRIPT gw , 1 end_POSTSUBSCRIPT ≃ 3 - | 3 - 2 italic_β | ≈ 0 , italic_n start_POSTSUBSCRIPT gw , 2 end_POSTSUBSCRIPT ≃ 1 - | 3 - 2 italic_β | ≈ - 2 ,
    f¯=fs:ngw,13,ngw,23|32β|0,:¯𝑓subscript𝑓𝑠formulae-sequencesubscript𝑛gw13similar-to-or-equalssubscript𝑛gw2332𝛽0\displaystyle\bar{f}=f_{s}\,:\hphantom{\simeq f_{d}}\quad n_{\textsc{gw},1}% \approx 3\,,\qquad\qquad\qquad\qquad n_{\textsc{gw},2}\simeq 3-|3-2\beta|% \approx 0\,,over¯ start_ARG italic_f end_ARG = italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT : italic_n start_POSTSUBSCRIPT gw , 1 end_POSTSUBSCRIPT ≈ 3 , italic_n start_POSTSUBSCRIPT gw , 2 end_POSTSUBSCRIPT ≃ 3 - | 3 - 2 italic_β | ≈ 0 , (5.3)
    f¯=fsfd:ngw,13,ngw,21|32β|2.:¯𝑓subscript𝑓𝑠similar-to-or-equalssubscript𝑓𝑑formulae-sequencesubscript𝑛gw13similar-to-or-equalssubscript𝑛gw2132𝛽2\displaystyle\bar{f}=f_{s}\simeq f_{d}\,:\quad\!\!n_{\textsc{gw},1}\approx 3\,% ,\qquad\qquad\qquad\qquad n_{\textsc{gw},2}\simeq 1-|3-2\beta|\approx-2\,.over¯ start_ARG italic_f end_ARG = italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ≃ italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT : italic_n start_POSTSUBSCRIPT gw , 1 end_POSTSUBSCRIPT ≈ 3 , italic_n start_POSTSUBSCRIPT gw , 2 end_POSTSUBSCRIPT ≃ 1 - | 3 - 2 italic_β | ≈ - 2 .

Overall, among all these early-universe scenarios only the pre-big-bang model is of interest for LISA and ET. Both the single- and the broken-power-law shapes (5.1) and (5.3) fit the two simplest templates commonly used for inflationary models [121] and they could be submitted to the same type of analysis performed in [122] as well as to a discussion on degeneracies and model selection when compared with alternative candidates with similar spectral shapes.

In general, the higher the signal-to-noise ratio, the smaller the error on the parameters of the spectral shape, as has been verified for a variety of cases [33, 121, 122]. Thus, for the PBB model one would be able to identify the corner of the parameter space such that the tilt or tilts of the GWB (and, thus, β𝛽\betaitalic_β) would be determined with an accuracy of, say, 1% by LISA and ET in their respective observability window.

In the case of the broken power law, the sharper the transition from one slope to the other with respect to the sensitivity curve the more difficult the determination of the parameters, due to the fact that the binning of the data introduces a certain level of coarse graining of short-range features [123]. We do not expect to have this problem for the PBB model, since the aforementioned transition is gentle enough (Fig. 4). These and other aspects of the PBB model will deserve to be explored in the future.

Acknowledgments

G.C. is supported by grant PID2020-118159GB-C41 funded by the Spanish Ministry of Science, Innovation and Universities MCIN/AEI/10.13039/501100011033. He thanks S. Kuroyanagi for useful discussions. M.G. and E.P. are supported in part by INFN under the program TAsP: “Theoretical Astroparticle Physics.” E.P. is also partially supported by the research grant number 2022E2J4RK PANTHEON: “Perspectives in Astroparticle and Neutrino THEory with Old and New messengers ” under the program PRIN 2022 funded by the Italian Ministero dell’Università e della Ricerca (MUR). I.B-D., U.T. and A.V. acknowledge the Ariel HPC Center at Ariel University for providing computing resources that have contributed to the research results reported in this paper.

Appendix A Smooth interpolation of a broken power law

Suppose we have a piecewise continuous function f(x):++:𝑓𝑥superscriptsuperscriptf(x):\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}italic_f ( italic_x ) : blackboard_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → blackboard_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT such that, in each interval, its behaviour is given by a power law f(x)xmsimilar-to𝑓𝑥superscript𝑥𝑚f(x)\sim x^{m}italic_f ( italic_x ) ∼ italic_x start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT. Then, we can define a sequence of exponents m1,m2,subscript𝑚1subscript𝑚2m_{1},m_{2},\dotsitalic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … and interval extrema x1,2,x2,3,subscript𝑥12subscript𝑥23x_{1,2},x_{2,3},\dotsitalic_x start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 , 3 end_POSTSUBSCRIPT , … such that xi,i+1<xi+1,i+2subscript𝑥𝑖𝑖1subscript𝑥𝑖1𝑖2x_{i,i+1}<x_{i+1,i+2}italic_x start_POSTSUBSCRIPT italic_i , italic_i + 1 end_POSTSUBSCRIPT < italic_x start_POSTSUBSCRIPT italic_i + 1 , italic_i + 2 end_POSTSUBSCRIPT. The derivative of the logarithm of the function with respect to the logarithm of its argument is simply given by

dlnf(x)dlnx=m1+(m2m1)Θ(lnxlnx1,2)+(m3m2)Θ(lnxlnx2,3)+,𝑑𝑓𝑥𝑑𝑥subscript𝑚1subscript𝑚2subscript𝑚1Θ𝑥subscript𝑥12subscript𝑚3subscript𝑚2Θ𝑥subscript𝑥23\frac{d\ln f(x)}{d\ln x}=m_{1}+(m_{2}-m_{1})\Theta(\ln x-\ln x_{1,2})+(m_{3}-m% _{2})\Theta(\ln x-\ln x_{2,3})+\dots,divide start_ARG italic_d roman_ln italic_f ( italic_x ) end_ARG start_ARG italic_d roman_ln italic_x end_ARG = italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ( italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) roman_Θ ( roman_ln italic_x - roman_ln italic_x start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT ) + ( italic_m start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) roman_Θ ( roman_ln italic_x - roman_ln italic_x start_POSTSUBSCRIPT 2 , 3 end_POSTSUBSCRIPT ) + … , (A.1)

where ΘΘ\Thetaroman_Θ is the Heaviside step function: Θ(y)=1Θ𝑦1\Theta(y)=1roman_Θ ( italic_y ) = 1 for y0𝑦0y\geqslant 0italic_y ⩾ 0 and Θ(y)=0Θ𝑦0\Theta(y)=0roman_Θ ( italic_y ) = 0 otherwise. Let us approximate the Heaviside function with a logistic function:

Θ(yy0)11+el(yy0),similar-to-or-equalsΘ𝑦subscript𝑦011superscript𝑒𝑙𝑦subscript𝑦0\Theta(y-y_{0})\simeq\frac{1}{1+e^{-l(y-y_{0})}},roman_Θ ( italic_y - italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ≃ divide start_ARG 1 end_ARG start_ARG 1 + italic_e start_POSTSUPERSCRIPT - italic_l ( italic_y - italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT end_ARG , (A.2)

where l𝑙litalic_l is a positive constant and the greater l𝑙litalic_l the better the approximation. Substituting the latter into (A.1) and defining a different l𝑙litalic_l for each ΘΘ\Thetaroman_Θ, we have in compact form

dlnf(x)dlnx=m1+i=1N1mi+1mi1+(xxi,i+1)li+1.𝑑𝑓𝑥𝑑𝑥subscript𝑚1superscriptsubscript𝑖1𝑁1subscript𝑚𝑖1subscript𝑚𝑖1superscript𝑥subscript𝑥𝑖𝑖1subscript𝑙𝑖1\frac{d\ln f(x)}{d\ln x}=m_{1}+\sum_{i=1}^{N-1}\frac{m_{i+1}-m_{i}}{1+(\frac{x% }{x_{i,i+1}})^{-l_{i+1}}}\,.divide start_ARG italic_d roman_ln italic_f ( italic_x ) end_ARG start_ARG italic_d roman_ln italic_x end_ARG = italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N - 1 end_POSTSUPERSCRIPT divide start_ARG italic_m start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG 1 + ( divide start_ARG italic_x end_ARG start_ARG italic_x start_POSTSUBSCRIPT italic_i , italic_i + 1 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - italic_l start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG . (A.3)

We can moreover rewrite the last equality with respect to the x𝑥xitalic_x-derivative as

dlnf(x)dx=m1x+i=1N1mi+1mix11+(xxi,i+1)li+1.𝑑𝑓𝑥𝑑𝑥subscript𝑚1𝑥superscriptsubscript𝑖1𝑁1subscript𝑚𝑖1subscript𝑚𝑖𝑥11superscript𝑥subscript𝑥𝑖𝑖1subscript𝑙𝑖1\frac{d\ln f(x)}{dx}=\frac{m_{1}}{x}+\sum_{i=1}^{N-1}\frac{m_{i+1}-m_{i}}{x}% \frac{1}{1+(\frac{x}{x_{i,i+1}})^{-l_{i+1}}}\,.divide start_ARG italic_d roman_ln italic_f ( italic_x ) end_ARG start_ARG italic_d italic_x end_ARG = divide start_ARG italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_x end_ARG + ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N - 1 end_POSTSUPERSCRIPT divide start_ARG italic_m start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_x end_ARG divide start_ARG 1 end_ARG start_ARG 1 + ( divide start_ARG italic_x end_ARG start_ARG italic_x start_POSTSUBSCRIPT italic_i , italic_i + 1 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - italic_l start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG . (A.4)

Integrating the last expression, we obtain

lnf(x)=lnA+ln(xm1)+i=1N1ln(xli+1+xi,i+1li+1)(mi+1mi)/li+1,\ln f(x)=\ln A+\ln(x^{m_{1}})+\sum_{i=1}^{N-1}\ln(x^{l_{i+1}}+x_{i,i+1}^{l_{i+% 1}})^{(m_{i+1}-m_{i})/l_{i+1}},roman_ln italic_f ( italic_x ) = roman_ln italic_A + roman_ln ( italic_x start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) + ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N - 1 end_POSTSUPERSCRIPT roman_ln ( italic_x start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT + italic_x start_POSTSUBSCRIPT italic_i , italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ( italic_m start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) / italic_l start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ,

where A𝐴Aitalic_A is a constant, and finally

f(x)𝑓𝑥\displaystyle f(x)italic_f ( italic_x ) =\displaystyle== Axm1i=1N1(xli+1+xi,i+1li+1)(mi+1mi)/li+1𝐴superscript𝑥subscript𝑚1superscriptsubscriptproduct𝑖1𝑁1superscriptsuperscript𝑥subscript𝑙𝑖1superscriptsubscript𝑥𝑖𝑖1subscript𝑙𝑖1subscript𝑚𝑖1subscript𝑚𝑖subscript𝑙𝑖1\displaystyle A\,x^{m_{1}}\prod_{i=1}^{N-1}\left(x^{l_{i+1}}+x_{i,i+1}^{l_{i+1% }}\right)^{(m_{i+1}-m_{i})/l_{i+1}}italic_A italic_x start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N - 1 end_POSTSUPERSCRIPT ( italic_x start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT + italic_x start_POSTSUBSCRIPT italic_i , italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ( italic_m start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) / italic_l start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT (A.5)
=\displaystyle== Axm1(xl2+x1,2l2)(m2m1)/l2(xl3+x2,3l3)(m3m2)/l3×.𝐴superscript𝑥subscript𝑚1superscriptsuperscript𝑥subscript𝑙2superscriptsubscript𝑥12subscript𝑙2subscript𝑚2subscript𝑚1subscript𝑙2superscriptsuperscript𝑥subscript𝑙3superscriptsubscript𝑥23subscript𝑙3subscript𝑚3subscript𝑚2subscript𝑙3\displaystyle A\,x^{m_{1}}\left(x^{l_{2}}+x_{1,2}^{l_{2}}\right)^{(m_{2}-m_{1}% )/l_{2}}\left(x^{l_{3}}+x_{2,3}^{l_{3}}\right)^{(m_{3}-m_{2})/l_{3}}\times% \dots.\,italic_A italic_x start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_x start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT + italic_x start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ( italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) / italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_x start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT + italic_x start_POSTSUBSCRIPT 2 , 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ( italic_m start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) / italic_l start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT × … .

If we wish to introduce an exponential cut-off for x>xN,N+1𝑥subscript𝑥𝑁𝑁1x>x_{N,N+1}italic_x > italic_x start_POSTSUBSCRIPT italic_N , italic_N + 1 end_POSTSUBSCRIPT such that f(x)exp[(xxN,N+1)/xN,N+1]similar-to𝑓𝑥𝑥subscript𝑥𝑁𝑁1subscript𝑥𝑁𝑁1f(x)\sim\exp[-(x-x_{N,N+1})/x_{N,N+1}]italic_f ( italic_x ) ∼ roman_exp [ - ( italic_x - italic_x start_POSTSUBSCRIPT italic_N , italic_N + 1 end_POSTSUBSCRIPT ) / italic_x start_POSTSUBSCRIPT italic_N , italic_N + 1 end_POSTSUBSCRIPT ], then we have to add to (A.1) an additional contribution given by (x/xN,N+1mN+1)Θ(lnxlnxN,N+1)𝑥subscript𝑥𝑁𝑁1subscript𝑚𝑁1Θ𝑥subscript𝑥𝑁𝑁1(-x/x_{N,N+1}-m_{N+1})\Theta(\ln x-\ln x_{N,N+1})( - italic_x / italic_x start_POSTSUBSCRIPT italic_N , italic_N + 1 end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT italic_N + 1 end_POSTSUBSCRIPT ) roman_Θ ( roman_ln italic_x - roman_ln italic_x start_POSTSUBSCRIPT italic_N , italic_N + 1 end_POSTSUBSCRIPT ). Let us denote xN,N+1xMsubscript𝑥𝑁𝑁1subscript𝑥𝑀x_{N,N+1}\equiv x_{M}italic_x start_POSTSUBSCRIPT italic_N , italic_N + 1 end_POSTSUBSCRIPT ≡ italic_x start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT and lN+1lsubscript𝑙𝑁1𝑙l_{N+1}\equiv litalic_l start_POSTSUBSCRIPT italic_N + 1 end_POSTSUBSCRIPT ≡ italic_l. Following the same steps as before, one finds upon integration and exponentiation that

f(x)𝑓𝑥\displaystyle f(x)italic_f ( italic_x ) =\displaystyle== Axm1i=1N1(xli+1+xi,i+1li+1)(mi+1mi)/li+1(xl+xMl)mN+1/l𝐴superscript𝑥subscript𝑚1superscriptsubscriptproduct𝑖1𝑁1superscriptsuperscript𝑥subscript𝑙𝑖1superscriptsubscript𝑥𝑖𝑖1subscript𝑙𝑖1subscript𝑚𝑖1subscript𝑚𝑖subscript𝑙𝑖1superscriptsuperscript𝑥𝑙superscriptsubscript𝑥𝑀𝑙subscript𝑚𝑁1𝑙\displaystyle A\,x^{m_{1}}\prod_{i=1}^{N-1}\left(x^{l_{i+1}}+x_{i,i+1}^{l_{i+1% }}\right)^{(m_{i+1}-m_{i})/l_{i+1}}\left(x^{l}+x_{M}^{l}\right)^{-m_{N+1}/l}italic_A italic_x start_POSTSUPERSCRIPT italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N - 1 end_POSTSUPERSCRIPT ( italic_x start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT + italic_x start_POSTSUBSCRIPT italic_i , italic_i + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_l start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ( italic_m start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) / italic_l start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_x start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT + italic_x start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - italic_m start_POSTSUBSCRIPT italic_N + 1 end_POSTSUBSCRIPT / italic_l end_POSTSUPERSCRIPT (A.6)
×exp[(x/xM)21+lF1(1, 1+1/l, 2+1/l,(x/xM)l)1+l],absentsubscriptsuperscript𝑥subscript𝑥𝑀1𝑙2subscript𝐹1111𝑙21𝑙superscript𝑥subscript𝑥𝑀𝑙1𝑙\displaystyle\times\exp\left[-\frac{(x/x_{M})^{1+l}\,_{2}F_{1}(1,\,1+1/l,\,2+1% /l,\,-(x/x_{M})^{l})}{1+l}\right],× roman_exp [ - divide start_ARG ( italic_x / italic_x start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 + italic_l end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , 1 + 1 / italic_l , 2 + 1 / italic_l , - ( italic_x / italic_x start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ) end_ARG start_ARG 1 + italic_l end_ARG ] ,

where F12(a,b,c,z)subscriptsubscript𝐹12𝑎𝑏𝑐𝑧{}_{2}F_{1}(a,b,c,z)start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_a , italic_b , italic_c , italic_z ) is the Gauss hypergeometric function. Translating into the general language we introduced before for the power spectrum of (4.17), we have m1=3subscript𝑚13m_{1}=3italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 3, m2=3|32β|subscript𝑚2332𝛽m_{2}=3-\left|3-2\beta\right|italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 3 - | 3 - 2 italic_β |, m3=1|32β|subscript𝑚3132𝛽m_{3}=1-\left|3-2\beta\right|italic_m start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = 1 - | 3 - 2 italic_β | , m4=3|32β|subscript𝑚4332𝛽m_{4}=3-\left|3-2\beta\right|italic_m start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = 3 - | 3 - 2 italic_β |, x1,2=fssubscript𝑥12subscript𝑓𝑠x_{1,2}=f_{s}italic_x start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT = italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, x2,3=fdsubscript𝑥23subscript𝑓𝑑x_{2,3}=f_{d}italic_x start_POSTSUBSCRIPT 2 , 3 end_POSTSUBSCRIPT = italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT and x3,4=fσsubscript𝑥34subscript𝑓𝜎x_{3,4}=f_{\sigma}italic_x start_POSTSUBSCRIPT 3 , 4 end_POSTSUBSCRIPT = italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT and xM=f1subscript𝑥𝑀subscript𝑓1x_{M}=f_{1}italic_x start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT = italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, so that (setting li=lsubscript𝑙𝑖𝑙l_{i}=litalic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_l for all i𝑖iitalic_i)

ΩGWsmooth(f)superscriptsubscriptΩGWsmooth𝑓\displaystyle\Omega_{\text{GW}}^{\text{smooth}}(f)roman_Ω start_POSTSUBSCRIPT GW end_POSTSUBSCRIPT start_POSTSUPERSCRIPT smooth end_POSTSUPERSCRIPT ( italic_f ) =\displaystyle== Af3(fl+fsl)|32β|l(fl+fdl)2l(fl+fσl)2l𝐴superscript𝑓3superscriptsuperscript𝑓𝑙superscriptsubscript𝑓𝑠𝑙32𝛽𝑙superscriptsuperscript𝑓𝑙superscriptsubscript𝑓𝑑𝑙2𝑙superscriptsuperscript𝑓𝑙superscriptsubscript𝑓𝜎𝑙2𝑙\displaystyle A\,f^{3}\left(f^{l}+f_{s}^{l}\right)^{-\frac{\left|3-2\beta% \right|}{l}}\left(f^{l}+f_{d}^{l}\right)^{-\frac{2}{l}}\left(f^{l}+f_{\sigma}^% {l}\right)^{\frac{2}{l}}italic_A italic_f start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_f start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - divide start_ARG | 3 - 2 italic_β | end_ARG start_ARG italic_l end_ARG end_POSTSUPERSCRIPT ( italic_f start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - divide start_ARG 2 end_ARG start_ARG italic_l end_ARG end_POSTSUPERSCRIPT ( italic_f start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 2 end_ARG start_ARG italic_l end_ARG end_POSTSUPERSCRIPT (A.7)
×(fl+f1l)|32β|3l(f,f1,l),absentsuperscriptsuperscript𝑓𝑙superscriptsubscript𝑓1𝑙32𝛽3𝑙𝑓subscript𝑓1𝑙\displaystyle\times\left(f^{l}+f_{1}^{l}\right)^{\frac{\left|3-2\beta\right|-3% }{l}}\mathcal{F}(f,f_{1},l)\,,× ( italic_f start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG | 3 - 2 italic_β | - 3 end_ARG start_ARG italic_l end_ARG end_POSTSUPERSCRIPT caligraphic_F ( italic_f , italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_l ) ,

where we defined the function (f,f1,l)𝑓subscript𝑓1𝑙\mathcal{F}(f,f_{1},l)caligraphic_F ( italic_f , italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_l ) as the exponential cutoff appearing in the last line of (A.6). Setting l=2𝑙2l=2italic_l = 2, we obtain (4.18):

Ωgwsmooth(f)superscriptsubscriptΩgwsmooth𝑓\displaystyle\Omega_{\textsc{gw}}^{\text{smooth}}(f)roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT start_POSTSUPERSCRIPT smooth end_POSTSUPERSCRIPT ( italic_f ) =\displaystyle== Af3(f2+fs2)|32β|2(f2+fd2)1(f2+fσ2)(f2+f12)|32β|32𝐴superscript𝑓3superscriptsuperscript𝑓2superscriptsubscript𝑓𝑠232𝛽2superscriptsuperscript𝑓2superscriptsubscript𝑓𝑑21superscript𝑓2superscriptsubscript𝑓𝜎2superscriptsuperscript𝑓2superscriptsubscript𝑓1232𝛽32\displaystyle A\,f^{3}\left(f^{2}+f_{s}^{2}\right)^{-\frac{\left|3-2\beta% \right|}{2}}\left(f^{2}+f_{d}^{2}\right)^{-1}\left(f^{2}+f_{\sigma}^{2}\right)% \left(f^{2}+f_{1}^{2}\right)^{\frac{\left|3-2\beta\right|-3}{2}}italic_A italic_f start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - divide start_ARG | 3 - 2 italic_β | end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG | 3 - 2 italic_β | - 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT (A.8)
×exp(ff1+arctanff1).absent𝑓subscript𝑓1𝑓subscript𝑓1\displaystyle\times\exp{\left({-\frac{f}{f_{1}}+\arctan{\frac{f}{f_{1}}}}% \right)}.× roman_exp ( - divide start_ARG italic_f end_ARG start_ARG italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG + roman_arctan divide start_ARG italic_f end_ARG start_ARG italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) .

The integration constant A𝐴Aitalic_A is fixed to match the asymptotic behaviour in the limit f0𝑓0f\rightarrow 0italic_f → 0 with the explicit formula given in (4.17),

Ωgw(f)f0ΩPBB(fσ)2(fd)2(fs)|32β|(f1)|32β|3f3,superscriptsimilar-to-or-equals𝑓0subscriptΩgw𝑓subscriptΩPBBsuperscriptsubscript𝑓𝜎2superscriptsubscript𝑓𝑑2superscriptsubscript𝑓𝑠32𝛽superscriptsubscript𝑓132𝛽3superscript𝑓3\Omega_{\textsc{gw}}(f)\stackrel{{\scriptstyle f\rightarrow 0}}{{\simeq}}{% \Omega}_{\text{PBB}}\,(f_{\sigma})^{2}(f_{d})^{-2}(f_{s})^{-\left|3-2\beta% \right|}(f_{1})^{\left|3-2\beta\right|-3}f^{3},roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_f ) start_RELOP SUPERSCRIPTOP start_ARG ≃ end_ARG start_ARG italic_f → 0 end_ARG end_RELOP roman_Ω start_POSTSUBSCRIPT PBB end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ( italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - | 3 - 2 italic_β | end_POSTSUPERSCRIPT ( italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT | 3 - 2 italic_β | - 3 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , (A.9)

while for the smooth interpolation (A.8)

Ωgwsmooth(f)f0A(fσ)2(fd)2(fs)|32β|(f1)|32β|3f3,superscriptsimilar-to-or-equals𝑓0superscriptsubscriptΩgwsmooth𝑓𝐴superscriptsubscript𝑓𝜎2superscriptsubscript𝑓𝑑2superscriptsubscript𝑓𝑠32𝛽superscriptsubscript𝑓132𝛽3superscript𝑓3\Omega_{\textsc{gw}}^{\text{smooth}}(f)\stackrel{{\scriptstyle f\rightarrow 0}% }{{\simeq}}A\,(f_{\sigma})^{2}(f_{d})^{-2}(f_{s})^{-\left|3-2\beta\right|}(f_{% 1})^{\left|3-2\beta\right|-3}f^{3},roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT start_POSTSUPERSCRIPT smooth end_POSTSUPERSCRIPT ( italic_f ) start_RELOP SUPERSCRIPTOP start_ARG ≃ end_ARG start_ARG italic_f → 0 end_ARG end_RELOP italic_A ( italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ( italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - | 3 - 2 italic_β | end_POSTSUPERSCRIPT ( italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT | 3 - 2 italic_β | - 3 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , (A.10)

which yields A=ΩPBB𝐴subscriptΩPBBA={\Omega}_{\text{PBB}}italic_A = roman_Ω start_POSTSUBSCRIPT PBB end_POSTSUBSCRIPT.

Appendix B Parameter space of the PBB model

In this appendix, we show that the parameter space of the PBB model is {β,zs,zd,zσ}𝛽subscript𝑧𝑠subscript𝑧𝑑subscript𝑧𝜎\{\beta,z_{s},z_{d},z_{\sigma}\}{ italic_β , italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT } (section B.1) and we discuss the theoretical priors on these parameters (section B.2). We also determine the region in parameter space for which the promordial GWB amplitude is maximized (section B.3). In view of a numerical implementation of these conditions and to emphasize orders of magnitude, it may be useful to work with base-10 logarithmic expressions.

B.1 Reducing the number of parameters

First, we show that the transition scale H1subscript𝐻1H_{1}italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is not independent and can be fixed by the other parameters,

H1=H1(β,zs,zd,zσ).subscript𝐻1subscript𝐻1𝛽subscript𝑧𝑠subscript𝑧𝑑subscript𝑧𝜎H_{1}=H_{1}(\beta,z_{s},z_{d},z_{\sigma})\,.italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_β , italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ) . (B.1)

By using previous results [58, 98], obtained under the natural assumption that the pivot scale belongs to the low-frequency band of the scalar spectrum (i.e., k<kssubscript𝑘subscript𝑘𝑠k_{*}<k_{s}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT < italic_k start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT), the condition on H1subscript𝐻1H_{1}italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT following from the normalization of the scalar spectrum can be written as

(H1MPl)5ns2superscriptsubscript𝐻1subscript𝑀Pl5subscript𝑛s2\displaystyle\left(\frac{H_{1}}{M_{\rm Pl}}\right)^{\frac{5-n_{\rm s}}{2}}( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 5 - italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT =\displaystyle== 2π2𝒯2(σi)𝒫s(k)zs1ns2β[(HMPl)12(mMPlσi2)13]ns12superscript𝜋2superscript𝒯2subscript𝜎𝑖subscript𝒫ssubscript𝑘superscriptsubscript𝑧𝑠1subscript𝑛s2𝛽superscriptdelimited-[]superscriptsubscript𝐻subscript𝑀Pl12superscript𝑚subscript𝑀Plsuperscriptsubscript𝜎𝑖213subscript𝑛s1\displaystyle\frac{2\pi^{2}}{\mathcal{T}^{2}(\sigma_{i})}\mathcal{P}_{\rm s}(k% _{*})\,z_{s}^{1-n_{\rm s}-2\beta}\left[\left(\frac{H_{*}}{M_{\rm Pl}}\right)^{% -\frac{1}{2}}\left(\frac{mM_{\rm Pl}}{\sigma_{i}^{2}}\right)^{\frac{1}{3}}% \right]^{n_{\rm s}-1}divide start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG caligraphic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 - italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT - 2 italic_β end_POSTSUPERSCRIPT [ ( divide start_ARG italic_H start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_m italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT (B.2)
=\displaystyle== 2π2𝒯2(σi)𝒫s(k)zs1ns2β(HMPlzdzσ)ns12,2superscript𝜋2superscript𝒯2subscript𝜎𝑖subscript𝒫ssubscript𝑘superscriptsubscript𝑧𝑠1subscript𝑛s2𝛽superscriptsubscript𝐻subscript𝑀Plsubscript𝑧𝑑subscript𝑧𝜎subscript𝑛s12\displaystyle\frac{2\pi^{2}}{\mathcal{T}^{2}(\sigma_{i})}\mathcal{P}_{\rm s}(k% _{*})\,z_{s}^{1-n_{\rm s}-2\beta}\left(\frac{H_{*}}{M_{\rm Pl}}\frac{z_{d}}{z_% {\sigma}}\right)^{-\frac{n_{\rm s}-1}{2}},divide start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG caligraphic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 - italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT - 2 italic_β end_POSTSUPERSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG divide start_ARG italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - divide start_ARG italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT - 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ,

where we have recast m𝑚mitalic_m and σisubscript𝜎𝑖\sigma_{i}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT according to (4.10), Hsubscript𝐻H_{*}italic_H start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT is the curvature scale at the epoch in which the pivot mode ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT re-enters the horizon and 𝒯(σi)𝒯subscript𝜎𝑖\mathcal{T}(\sigma_{i})caligraphic_T ( italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) is the transfer function connecting the amplitude of the primordial axion fluctuations to the final amplitude of the scalar curvature modes of metric perturbations. A numerical integration of the scalar perturbation equations gives the simple result [97]

𝒯(σi)0.13σiMPl+0.25MPlσi0.01,similar-to-or-equals𝒯subscript𝜎𝑖0.13subscript𝜎𝑖subscript𝑀Pl0.25subscript𝑀Plsubscript𝜎𝑖0.01\mathcal{T}(\sigma_{i})\simeq 0.13\,\frac{\sigma_{i}}{M_{\rm Pl}}+0.25\,\frac{% M_{\rm Pl}}{\sigma_{i}}-0.01\,,caligraphic_T ( italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ≃ 0.13 divide start_ARG italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG + 0.25 divide start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG - 0.01 , (B.3)

where σisubscript𝜎𝑖\sigma_{i}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT can be expressed in terms of the z𝑧zitalic_z parameters as in (4.10). To obtain Hsubscript𝐻H_{*}italic_H start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, we can conveniently refer to the equilibrium scale by noting that k5keqsimilar-to-or-equalssubscript𝑘5subscript𝑘eqk_{*}\simeq 5k_{\rm eq}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≃ 5 italic_k start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT. This implies H1/25Heq1/2similar-to-or-equalssuperscriptsubscript𝐻125superscriptsubscript𝐻eq12H_{*}^{1/2}\simeq 5H_{\rm eq}^{1/2}italic_H start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ≃ 5 italic_H start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT. On the other hand, it is known that the Hubble parameter at radiation-matter equality is given by Heq1.6×105H09.5×1056MPlsimilar-to-or-equalssubscript𝐻eq1.6superscript105subscript𝐻09.5superscript1056subscript𝑀PlH_{\rm eq}\simeq 1.6\times 10^{5}H_{0}\approx 9.5\times 10^{-56}M_{\rm Pl}italic_H start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT ≃ 1.6 × 10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≈ 9.5 × 10 start_POSTSUPERSCRIPT - 56 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT. We thus obtain

(HMPl)1/21.5×1027.superscriptsubscript𝐻subscript𝑀Pl121.5superscript1027\left(\frac{H_{*}}{M_{\rm Pl}}\right)^{1/2}\approx 1.5\times 10^{-27}\,.( divide start_ARG italic_H start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ≈ 1.5 × 10 start_POSTSUPERSCRIPT - 27 end_POSTSUPERSCRIPT . (B.4)

Now we can then express the normalization (B.2) in terms of the four parameters {β,zs,zd,zσ}𝛽subscript𝑧𝑠subscript𝑧𝑑subscript𝑧𝜎\{\beta,z_{s},z_{d},z_{\sigma}\}{ italic_β , italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT } (and of known experimental numbers) as follows:

log10(H1MPl)subscript10subscript𝐻1subscript𝑀Pl\displaystyle\log_{10}\left(\frac{H_{1}}{M_{\rm Pl}}\right)roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) =\displaystyle== 25ns{log10[4.2π2𝒯2(σi)]9+(1ns)(log101.527)\displaystyle\frac{2}{5-n_{\rm s}}\left\{\log_{10}\left[\frac{4.2\pi^{2}}{% \mathcal{T}^{2}(\sigma_{i})}\right]-9+(1-n_{\rm s})(\log_{10}1.5-27)\right.divide start_ARG 2 end_ARG start_ARG 5 - italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT end_ARG { roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT [ divide start_ARG 4.2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG caligraphic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG ] - 9 + ( 1 - italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ) ( roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT 1.5 - 27 ) (B.5)
+(1ns2β)log10zs+ns12(log10zσlog10zd)},\displaystyle+\left.(1-n_{\rm s}-2\beta)\log_{10}z_{s}+\frac{n_{\rm s}-1}{2}% \left(\log_{10}z_{\sigma}-\log_{10}z_{d}\right)\right\},+ ( 1 - italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT - 2 italic_β ) roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + divide start_ARG italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT - 1 end_ARG start_ARG 2 end_ARG ( roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT - roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) } ,

where we have used 𝒫s(k)=2.1×109subscript𝒫ssubscript𝑘2.1superscript109\mathcal{P}_{\rm s}(k_{*})=2.1\times 10^{-9}caligraphic_P start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) = 2.1 × 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT. It should be noted that 𝒯2(σi)superscript𝒯2subscript𝜎𝑖\mathcal{T}^{2}(\sigma_{i})caligraphic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) also contains H1subscript𝐻1H_{1}italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT through (4.10) but the solution for H1subscript𝐻1H_{1}italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT can always be numerically obtained, in general, for any given set of values of the four independent parameters.

Finally, the other important quantity appearing in the GWB (4.17) is today’s value of the highest amplified frequency mode f1subscript𝑓1f_{1}italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, which is given by

f1subscript𝑓1\displaystyle f_{1}italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT =\displaystyle== ω1(τ0)2π=H1a12πa0=H12πa1aσaσadadaeqaeqa0H12π(HσH1)12(HdHσ)23(HeqHd)12(H0Heq)23=subscript𝜔1subscript𝜏02𝜋subscript𝐻1subscript𝑎12𝜋subscript𝑎0subscript𝐻12𝜋subscript𝑎1subscript𝑎𝜎subscript𝑎𝜎subscript𝑎𝑑subscript𝑎𝑑subscript𝑎eqsubscript𝑎eqsubscript𝑎0similar-to-or-equalssubscript𝐻12𝜋superscriptsubscript𝐻𝜎subscript𝐻112superscriptsubscript𝐻𝑑subscript𝐻𝜎23superscriptsubscript𝐻eqsubscript𝐻𝑑12superscriptsubscript𝐻0subscript𝐻eq23absent\displaystyle\frac{\omega_{1}(\tau_{0})}{2\pi}=\frac{H_{1}a_{1}}{2\pi a_{0}}=% \frac{H_{1}}{2\pi}\frac{a_{1}}{a_{\sigma}}\frac{a_{\sigma}}{a_{d}}\frac{a_{d}}% {a_{\rm eq}}\frac{a_{\rm eq}}{a_{0}}\simeq\frac{H_{1}}{2\pi}\left(\frac{H_{% \sigma}}{H_{1}}\right)^{\frac{1}{2}}\left(\frac{H_{d}}{H_{\sigma}}\right)^{% \frac{2}{3}}\left(\frac{H_{\rm eq}}{H_{d}}\right)^{\frac{1}{2}}\left(\frac{H_{% 0}}{H_{\rm eq}}\right)^{\frac{2}{3}}=divide start_ARG italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_τ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_ARG start_ARG 2 italic_π end_ARG = divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_π italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_π end_ARG divide start_ARG italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG divide start_ARG italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG divide start_ARG italic_a start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT end_ARG divide start_ARG italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ≃ divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_π end_ARG ( divide start_ARG italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 2 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 2 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT = (B.6)
=\displaystyle== H1122π(zσzd)12H023Heq163.9×10112π(H1MPl)12(zσzd)12Hz.similar-to-or-equalssuperscriptsubscript𝐻1122𝜋superscriptsubscript𝑧𝜎subscript𝑧𝑑12superscriptsubscript𝐻023superscriptsubscript𝐻eq163.9superscript10112𝜋superscriptsubscript𝐻1subscript𝑀Pl12superscriptsubscript𝑧𝜎subscript𝑧𝑑12Hz\displaystyle\frac{H_{1}^{\frac{1}{2}}}{2\pi}\left(\frac{z_{\sigma}}{z_{d}}% \right)^{\frac{1}{2}}\frac{H_{0}^{\frac{2}{3}}}{H_{\rm eq}^{\frac{1}{6}}}% \simeq\frac{3.9\times 10^{11}}{2\pi}\left(\frac{H_{1}}{M_{\rm Pl}}\right)^{% \frac{1}{2}}\left(\frac{z_{\sigma}}{z_{d}}\right)^{\frac{1}{2}}\,{\rm Hz}\,.divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π end_ARG ( divide start_ARG italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT divide start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 2 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 6 end_ARG end_POSTSUPERSCRIPT end_ARG ≃ divide start_ARG 3.9 × 10 start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π end_ARG ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT roman_Hz .

B.2 Theoretical priors

Having thus determined that the parameter space is {β,zs,zd,zσ}𝛽subscript𝑧𝑠subscript𝑧𝑑subscript𝑧𝜎\{\beta,z_{s},z_{d},z_{\sigma}\}{ italic_β , italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT }, let us now turn to the priors we can impose on it theoretically.

A first condition concerns the parameter β𝛽\betaitalic_β controlling the power-law behaviour of the primordial GW spectrum at high frequencies, which is constrained to be in the range

0β<3.0𝛽30\leqslant\beta<3\,.0 ⩽ italic_β < 3 . (B.7)

The lower limit is due to the assumption of growing string coupling (needed to implement a smooth bouncing transition [103, 60, 61]), while the upper limit has to be imposed to avoid background instabilities [124].

We have then a number of constraints following from the (already mentioned) hierarchy of the transition frequency scales, which must satisfy the conditions f1fσ>fd>fsgreater-than-or-equivalent-tosubscript𝑓1subscript𝑓𝜎subscript𝑓𝑑subscript𝑓𝑠f_{1}\gtrsim f_{\sigma}>f_{d}>f_{s}italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≳ italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT > italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT > italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT. They imply

1zσ<zd<zs.less-than-or-similar-to1subscript𝑧𝜎subscript𝑧𝑑subscript𝑧𝑠1\lesssim z_{\sigma}<z_{d}<z_{s}\,.1 ≲ italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT < italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT < italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT . (B.8)

In addition, for an efficient implementation of the curvaton mechanism based on the oscillations of the Kalb–Ramond axion, the axion background field must be oscillating when it becomes dominant (at the curvature scale Hσsubscript𝐻𝜎H_{\sigma}italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT). From the axion dynamical equations, one finds [96, 97] that the oscillating regime starts at the scale Hmmsimilar-to-or-equalssubscript𝐻𝑚𝑚H_{m}\simeq mitalic_H start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ≃ italic_m. This leads to the condition HmHσsubscript𝐻𝑚subscript𝐻𝜎H_{m}\geqslant H_{\sigma}italic_H start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ⩾ italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT, which implies σiMPlsubscript𝜎𝑖subscript𝑀Pl\sigma_{i}\leqslant M_{\rm Pl}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⩽ italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT and which, by using Eq. (4.10), can be written in logarithmic form as

log10(H1MPl)+32log10zd72log10zσ0.subscript10subscript𝐻1subscript𝑀Pl32subscript10subscript𝑧𝑑72subscript10subscript𝑧𝜎0\log_{10}\left(\frac{H_{1}}{M_{\rm Pl}}\right)+\frac{3}{2}\log_{10}z_{d}-\frac% {7}{2}\log_{10}z_{\sigma}\leqslant 0\,.roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) + divide start_ARG 3 end_ARG start_ARG 2 end_ARG roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT - divide start_ARG 7 end_ARG start_ARG 2 end_ARG roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ⩽ 0 . (B.9)

Also, to be consistent with the established results of the post-inflationary scenario, we may expect that the reheating produced by the axion decay at the scale Hdsubscript𝐻𝑑H_{d}italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT, and marking the beginning of the standard cosmological evolution, occurs before the BBN scale, Hbbn(1MeV)2/MPlsimilar-to-or-equalssubscript𝐻bbnsuperscript1MeV2subscript𝑀PlH_{\textsc{bbn}}\simeq(1\,{\rm MeV})^{2}/M_{\rm Pl}italic_H start_POSTSUBSCRIPT bbn end_POSTSUBSCRIPT ≃ ( 1 roman_MeV ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT. This implies Hd>Hbbnsubscript𝐻𝑑subscript𝐻bbnH_{d}>H_{\textsc{bbn}}italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT > italic_H start_POSTSUBSCRIPT bbn end_POSTSUBSCRIPT from which, using eqs. (4.5) and (4.10), we have the constraint

log10(H1MPl)3log10zd+log10zσ>42log104,subscript10subscript𝐻1subscript𝑀Pl3subscript10subscript𝑧𝑑subscript10subscript𝑧𝜎42subscript104\log_{10}\left(\frac{H_{1}}{M_{\rm Pl}}\right)-3\log_{10}z_{d}+\log_{10}z_{% \sigma}>-42-\log_{10}4\,,roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) - 3 roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT + roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT > - 42 - roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT 4 , (B.10)

where we have used MPl2×1018subscript𝑀Pl2superscript1018M_{\rm Pl}\approx 2\times 10^{18}italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT ≈ 2 × 10 start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT GeV.

Finally, the conditions concerning the scalar perturbation spectrum must be imposed not only at the pivot frequency scale ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT but also, in principle, to all frequency scales included into the multipole expansion of the CMB anisotropy, and constrained by observational data. This means, in other words, that also the highest frequency modes klsssubscript𝑘lssk_{\textsc{lss}}italic_k start_POSTSUBSCRIPT lss end_POSTSUBSCRIPT presently constrained by large scale structure (LSS) observations must be below the lowest frequency branch of the axion perturbation spectrum [58, 98], and this implies klss<kssubscript𝑘lsssubscript𝑘𝑠k_{\textsc{lss}}<k_{s}italic_k start_POSTSUBSCRIPT lss end_POSTSUBSCRIPT < italic_k start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, where klss3Mpc160ksimilar-tosubscript𝑘lss3superscriptMpc160subscript𝑘k_{\textsc{lss}}\sim 3\,{\rm Mpc}^{-1}\approx 60\,k_{*}italic_k start_POSTSUBSCRIPT lss end_POSTSUBSCRIPT ∼ 3 roman_Mpc start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ≈ 60 italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, namely Hlss1/260H1/2similar-to-or-equalssuperscriptsubscript𝐻lss1260superscriptsubscript𝐻12H_{\textsc{lss}}^{1/2}\simeq 60\,H_{*}^{1/2}italic_H start_POSTSUBSCRIPT lss end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ≃ 60 italic_H start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT. The condition klss/ks=(klss/k1)zs<1subscript𝑘lsssubscript𝑘𝑠subscript𝑘lsssubscript𝑘1subscript𝑧𝑠1k_{\textsc{lss}}/k_{s}=(k_{\textsc{lss}}/k_{1})z_{s}<1italic_k start_POSTSUBSCRIPT lss end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = ( italic_k start_POSTSUBSCRIPT lss end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < 1 then leads to yet another constraint that can be written as follows. Since

k1klsssubscript𝑘1subscript𝑘lss\displaystyle\frac{k_{1}}{k_{\textsc{lss}}}divide start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT lss end_POSTSUBSCRIPT end_ARG =\displaystyle== H1a1Hlssalss=H1Hlssa1aσaσadadalssH1Hlss(HσH1)12(HdHσ)23(HlssHd)12subscript𝐻1subscript𝑎1subscript𝐻lsssubscript𝑎lsssubscript𝐻1subscript𝐻lsssubscript𝑎1subscript𝑎𝜎subscript𝑎𝜎subscript𝑎𝑑subscript𝑎𝑑subscript𝑎lsssimilar-to-or-equalssubscript𝐻1subscript𝐻lsssuperscriptsubscript𝐻𝜎subscript𝐻112superscriptsubscript𝐻𝑑subscript𝐻𝜎23superscriptsubscript𝐻lsssubscript𝐻𝑑12\displaystyle\frac{H_{1}a_{1}}{H_{\textsc{lss}}a_{\textsc{lss}}}=\frac{H_{1}}{% H_{\textsc{lss}}}\frac{a_{1}}{a_{\sigma}}\frac{a_{\sigma}}{a_{d}}\frac{a_{d}}{% a_{\textsc{lss}}}\simeq\frac{H_{1}}{H_{\textsc{lss}}}\left(\frac{H_{\sigma}}{H% _{1}}\right)^{\frac{1}{2}}\left(\frac{H_{d}}{H_{\sigma}}\right)^{\frac{2}{3}}% \left(\frac{H_{\textsc{lss}}}{H_{d}}\right)^{\frac{1}{2}}divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT lss end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT lss end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT lss end_POSTSUBSCRIPT end_ARG divide start_ARG italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG divide start_ARG italic_a start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG divide start_ARG italic_a start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT lss end_POSTSUBSCRIPT end_ARG ≃ divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT lss end_POSTSUBSCRIPT end_ARG ( divide start_ARG italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 2 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT lss end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT
=\displaystyle== (H1MPl)12(HMPl)12(HHlss)12(HσHd)16,superscriptsubscript𝐻1subscript𝑀Pl12superscriptsubscript𝐻subscript𝑀Pl12superscriptsubscript𝐻subscript𝐻lss12superscriptsubscript𝐻𝜎subscript𝐻𝑑16\displaystyle\left(\frac{H_{1}}{M_{\rm Pl}}\right)^{\frac{1}{2}}\left(\frac{H_% {*}}{M_{\rm Pl}}\right)^{-\frac{1}{2}}\left(\frac{H_{*}}{H_{\textsc{lss}}}% \right)^{\frac{1}{2}}\left(\frac{H_{\sigma}}{H_{d}}\right)^{-\frac{1}{6}},( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT lss end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 6 end_ARG end_POSTSUPERSCRIPT ,

from eqs. (4.5) and (4.10) we get Hσ/Hd=(zd/zσ)3subscript𝐻𝜎subscript𝐻𝑑superscriptsubscript𝑧𝑑subscript𝑧𝜎3H_{\sigma}/H_{d}=(z_{d}/z_{\sigma})^{3}italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT / italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT = ( italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT / italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT and from (B.4) we obtain

log10zs<26log109+12log10(H1MPl)+12(log10zσlog10zd).subscript10subscript𝑧𝑠26subscript10912subscript10subscript𝐻1subscript𝑀Pl12subscript10subscript𝑧𝜎subscript10subscript𝑧𝑑\log_{10}z_{s}<26-\log_{10}9+\frac{1}{2}\log_{10}\left(\frac{H_{1}}{M_{\rm Pl}% }\right)+\frac{1}{2}\left(\log_{10}z_{\sigma}-\log_{10}z_{d}\right)\,.roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < 26 - roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT 9 + divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT - roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) . (B.11)

B.3 Maximizing the signal

Given the condition (B.5) on H1/MPlsubscript𝐻1subscript𝑀PlH_{1}/M_{\rm Pl}italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT, the amplitude and the frequency distribution of the GWB (4.17) or (4.18) are fully determined by β,zs,zd,zσ𝛽subscript𝑧𝑠subscript𝑧𝑑subscript𝑧𝜎\beta,z_{s},z_{d},z_{\sigma}italic_β , italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT. These four parameters are not completely free, as they must satisfy a non-trivial set of self-consistency conditions (Appendix B). Taking into account these constraints on the parameters, we can determine the maximal allowed region for the PBB signal in the spectral plane (Ωgw,f)subscriptΩgw𝑓(\Omega_{\textsc{gw}},f)( roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT , italic_f ). Let us first notice that, thanks to the condition (B.7), the GWB (4.18) may be possibly decreasing only in the frequency branch fdffσsubscript𝑓𝑑𝑓subscript𝑓𝜎f_{d}\leqslant f\leqslant f_{\sigma}italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ⩽ italic_f ⩽ italic_f start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT. The peak of the spectrum may thus be located either at f1subscript𝑓1f_{1}italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT or at fdsubscript𝑓𝑑f_{d}italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT, with corresponding amplitudes

Ωgw(f1)=Ωr0(H1MPl)2(zσzd)2,Ωgw(fd)=Ωr0(H1MPl)2zd|32β|3.formulae-sequencesubscriptΩgwsubscript𝑓1subscriptΩr0superscriptsubscript𝐻1subscript𝑀Pl2superscriptsubscript𝑧𝜎subscript𝑧𝑑2subscriptΩgwsubscript𝑓𝑑subscriptΩr0superscriptsubscript𝐻1subscript𝑀Pl2superscriptsubscript𝑧𝑑32𝛽3\Omega_{\textsc{gw}}(f_{1})=\Omega_{{\rm r}0}\left(\frac{H_{1}}{M_{\rm Pl}}% \right)^{2}\left(\frac{z_{\sigma}}{z_{d}}\right)^{2},\leavevmode\nobreak\ % \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode% \nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ % \leavevmode\nobreak\ \Omega_{\textsc{gw}}(f_{d})=\Omega_{{\rm r}0}\left(\frac{% H_{1}}{M_{\rm Pl}}\right)^{2}z_{d}^{|3-2\beta|-3}.roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = roman_Ω start_POSTSUBSCRIPT r0 end_POSTSUBSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT end_ARG start_ARG italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT ( italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) = roman_Ω start_POSTSUBSCRIPT r0 end_POSTSUBSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT | 3 - 2 italic_β | - 3 end_POSTSUPERSCRIPT . (B.12)

In the first case, given the constraints (B.8), the maximal amplitude can be reached for the limiting values zdzσsimilar-to-or-equalssubscript𝑧𝑑subscript𝑧𝜎z_{d}\simeq z_{\sigma}italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ≃ italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT, which imply however HdHσsimilar-to-or-equalssubscript𝐻𝑑subscript𝐻𝜎H_{d}\simeq H_{\sigma}italic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ≃ italic_H start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT: hence, in that case, the axion starts decaying as soon as it becomes dominant, and there is not enough time for an efficient curvaton mechanism. Also, in that case, the maximal amplitude would correspond to a frequency range ff1similar-to𝑓subscript𝑓1f\sim f_{1}italic_f ∼ italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, in general too high for the sensitivity of present detectors.

In the second case with the peak at fdsubscript𝑓𝑑f_{d}italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT, given again the constraints (B.7) and (B.8), the maximal amplitude can be obtained either in the limit zdzσ1similar-to-or-equalssubscript𝑧𝑑subscript𝑧𝜎1z_{d}\simeq z_{\sigma}\rightarrow 1italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ≃ italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT → 1 or in the limit β0𝛽0\beta\rightarrow 0italic_β → 0. Discarding the first possibility (for the same reasons as before), in order to find the allowed region for the GW signal of maximal intensity we will thus concentrate on the limiting case β=0𝛽0\beta=0italic_β = 0 which, as we will see, automatically leads to a peak located in frequency ranges possibly accessible to third-generation detectors.

It should be noted, in addition, that the limiting amplitude reached at fdsubscript𝑓𝑑f_{d}italic_f start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT for β=0𝛽0\beta=0italic_β = 0 is only controlled by the ratio H1/MPlsubscript𝐻1subscript𝑀PlH_{1}/M_{\rm Pl}italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT, whose maximal allowed value is bounded by the constraints (B.9): hence, the amplitude of the GWB approaches its allowed maximum in the limit in which the condition (B.9) is saturated by the equality

log10zσ=27log10(H1MPl)+37log10zd.subscript10subscript𝑧𝜎27subscript10subscript𝐻1subscript𝑀Pl37subscript10subscript𝑧𝑑\log_{10}z_{\sigma}=\frac{2}{7}\log_{10}\left(\frac{H_{1}}{M_{\rm Pl}}\right)+% \frac{3}{7}\log_{10}z_{d}\,.roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT = divide start_ARG 2 end_ARG start_ARG 7 end_ARG roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) + divide start_ARG 3 end_ARG start_ARG 7 end_ARG roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT . (B.13)

This result has two important consequences.

First of all, by using eq. (4.10), we can check that the above condition is equivalent to the condition σi=MPlsubscript𝜎𝑖subscript𝑀Pl\sigma_{i}=M_{\rm Pl}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT, and this uniquely fixes the transfer function (B.3) leading to the constant numerical value 𝒯20.137superscript𝒯20.137\mathcal{T}^{2}\approx 0.137caligraphic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≈ 0.137. Second, by inserting into the above condition the general expression (B.5) for H1subscript𝐻1H_{1}italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, and solving for the variable log10zσsubscript10subscript𝑧𝜎\log_{10}z_{\sigma}roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT, we can eliminate zσsubscript𝑧𝜎z_{\sigma}italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT everywhere and confine our discussion of the maximum allowed spectrum to a two-dimensional parameter space spanned by the variables {log10zs,log10zd}subscript10subscript𝑧𝑠subscript10subscript𝑧𝑑\{\log_{10}z_{s},\log_{10}z_{d}\}{ roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT }, with β=0𝛽0\beta=0italic_β = 0, zσsubscript𝑧𝜎z_{\sigma}italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT given by eq. (B.13) and H1subscript𝐻1H_{1}italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT given by

log10(H1MPl)subscript10subscript𝐻1subscript𝑀Pl\displaystyle\log_{10}\left(\frac{H_{1}}{M_{\rm Pl}}\right)roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) similar-to-or-equals\displaystyle\simeq 14379ns[log10(4.2π20.137)9+(1ns)(log101.527)\displaystyle\frac{14}{37-9n_{\rm s}}\left[\log_{10}\left(\frac{4.2\pi^{2}}{0.% 137}\right)-9+(1-n_{\rm s})(\log_{10}1.5-27)\right.divide start_ARG 14 end_ARG start_ARG 37 - 9 italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT end_ARG [ roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( divide start_ARG 4.2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 0.137 end_ARG ) - 9 + ( 1 - italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ) ( roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT 1.5 - 27 ) (B.14)
+(1ns)log10zs+27(1ns)log10zd].\displaystyle+\left.(1-n_{\rm s})\log_{10}z_{s}+\frac{2}{7}(1-n_{\rm s})\log_{% 10}z_{d}\right].+ ( 1 - italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ) roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + divide start_ARG 2 end_ARG start_ARG 7 end_ARG ( 1 - italic_n start_POSTSUBSCRIPT roman_s end_POSTSUBSCRIPT ) roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ] .

We can now easily impose all constraints (B.8)–(B.11) and evaluate, in such a context, both the allowed region of parameter space and the maximal allowed value of the peak amplitude. It turns out (see Fig. 3), that the maximal value of eq. (B.14) compatible with the given constraints corresponds to log10(H1/MPl)3.29subscript10subscript𝐻1subscript𝑀Pl3.29\log_{10}(H_{1}/M_{\rm Pl})\approx-3.29roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT ( italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT ) ≈ - 3.29, so that the expected maximum intensity of the primordial GWB is given by

Ωgwmax=Ωr0(H1MPl)21010.6.superscriptsubscriptΩgwmaxsubscriptΩr0superscriptsubscript𝐻1subscript𝑀Pl2superscript1010.6\Omega_{\textsc{gw}}^{\rm max}=\Omega_{{\rm r}0}\left(\frac{H_{1}}{M_{\rm Pl}}% \right)^{2}\approx 10^{-10.6}\,.roman_Ω start_POSTSUBSCRIPT gw end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_max end_POSTSUPERSCRIPT = roman_Ω start_POSTSUBSCRIPT r0 end_POSTSUBSCRIPT ( divide start_ARG italic_H start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_Pl end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≈ 10 start_POSTSUPERSCRIPT - 10.6 end_POSTSUPERSCRIPT . (B.15)

The allowed values of the parameters compatible with this maximal intensity (and with the imposed constraints) are in the range 18.7<log10zs< 22.318.7<subscript10subscript𝑧𝑠<22.318.7\leavevmode\nobreak\ \raise 1.72218pt\hbox{$<$}\kern-8.00003pt\lower 2.669% 4pt\hbox{$\sim$}\leavevmode\nobreak\ \log_{10}z_{s}\leavevmode\nobreak\ \raise 1% .72218pt\hbox{$<$}\kern-8.00003pt\lower 2.6694pt\hbox{$\sim$}\leavevmode% \nobreak\ 22.318.7 < ∼ roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < ∼ 22.3 and 2.19<log10zd< 14.92.19<subscript10subscript𝑧𝑑<14.92.19\leavevmode\nobreak\ \raise 1.72218pt\hbox{$<$}\kern-8.00003pt\lower 2.669% 4pt\hbox{$\sim$}\leavevmode\nobreak\ \log_{10}z_{d}\leavevmode\nobreak\ \raise 1% .72218pt\hbox{$<$}\kern-8.00003pt\lower 2.6694pt\hbox{$\sim$}\leavevmode% \nobreak\ 14.92.19 < ∼ roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT < ∼ 14.9, as shown in Fig. 3. The corresponding value of zσsubscript𝑧𝜎z_{\sigma}italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT is given by eq. (B.13) and lies in the range 0<log10zσ< 5.50<subscript10subscript𝑧𝜎<5.50\leavevmode\nobreak\ \raise 1.72218pt\hbox{$<$}\kern-8.00003pt\lower 2.6694pt% \hbox{$\sim$}\leavevmode\nobreak\ \log_{10}z_{\sigma}\leavevmode\nobreak\ % \raise 1.72218pt\hbox{$<$}\kern-8.00003pt\lower 2.6694pt\hbox{$\sim$}% \leavevmode\nobreak\ 5.50 < ∼ roman_log start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_σ end_POSTSUBSCRIPT < ∼ 5.5.

References