\tikzfeynmanset

compat=1.1.0

Gravitational Wave Birefringence from Fuzzy Dark Matter

Da Huang dahuang@bao.ac.cn National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012, China School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX, United Kingdom International Centre for Theoretical Physics Asia-Pacific, Beijing/Hangzhou, China    Ze-Xuan Xiong xiongzexuan22@mails.ucas.ac.cn School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China International Centre for Theoretical Physics Asia-Pacific, Beijing/Hangzhou, China
(June 19, 2024)
Abstract

Gravitational wave (GW) birefringence is a remarkable phenomenon that can be used to test the parity violation in gravity. By coupling the fuzzy dark matter (FDM) scalar to the gravitational Chern-Simons term, we explore the GW birefringence effects in the FDM background. In particular, in light of the highly oscillating granular FDM structure at the galactic scale, we are led to investigating the GW propagation in the Chern-Simons gravity over the general nontrivial scalar profile, which is a natural extension of previous studies on the homogeneous and isotropic configurations. As a result, it is found that GWs of both circularly polarized modes propagate in the straight line with the speed of light, and does not show any velocity birefringence. However, when considering the imaginary part of the dispersion relation, GWs exhibit the amplitude birefringence in which one circular polarization is enhanced while the other suppressed. Due to its local nature, the FDM-induced amplitude birefringence only depends on the GW frequency without any reliance on the GW event distance. More importantly, the birefringence factor shows a periodic time variation with the period reflecting the FDM scalar mass, which is the smoking gun for testing this new birefringence mechanism. Finally, we also study the extra-galactic FDM contribution to the GW birefringence, which is shown to be suppressed by the cosmological DM density and thus subdominant compared with the galactic counterpart.

I Introduction

Testing gravitational parity violation is a key to understand the nature of gravity. It is well-known that general relativity (RG) preserves the parity symmetry. However, the parity conservation can be broken in many modifications to GR [1], such as Chern-Simons (CS) gravity [2, 3, 4], Teleparallel Gravity [5, 6], ghost-free scalar-tensor gravity [7] and so on [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Moreover, the direct observation of gravitational waves (GWs) by the LIGO-Virgo-Kagra (LVK) collaboration [18, 19, 20, 21, 22] has opened a new avenue to probe this important issue. Especially, one smoking gun of parity violation in gravity is provided by the GW birefringence effects [23, 24, 25, 26, 27], i.e., the two circularly polarized modes behave differently in phase and amplitude when propagating over astrophysical and cosmological distances. Such a remarkable phenomenon has already widely studied in many modified gravity theories [28, 29, 30, 31, 32] and in model-independent ways [33, 34, 35, 36, 37].

Although more and more astrophysical evidences for dark matter (DM) have been accumulated in the past several decades [38], its nature is still elusive. More recently, the fuzzy dark matter (FDM) [39, 40, 41] has become a promising DM candidate since it may provide possible solutions to many problems observed on sub-galactic scales (see e.g. Refs. [42, 43, 44] for recent reviews). Importantly, latest precise N-body simulations [45, 46, 47, 48, 49] have shown that, for a FDM with its mass of 𝒪(1022eV)𝒪superscript1022eV{\cal O}(10^{-22}\,{\rm eV})caligraphic_O ( 10 start_POSTSUPERSCRIPT - 22 end_POSTSUPERSCRIPT roman_eV ), the FDM scalar field is oscillating in time inside the DM halo, and forms a solitonic core surrounded by DM halos with complicated granular structures. Moreover, it was argued that the FDM can be identified as an axion-like particle [39, 40, 41, 42, 50, 51] since its lightness can be easily understood by its associated approximate shift symmetry. Thus, it is quite natural to expect that the FDM can have a gravitational CS coupling arising from the gravitational anomaly [52, 53] or in the string theory [54, 55, 56, 57]. Therefore, all these FDM properties motivate us to consider the GW birefringence phenomena in the CS gravity when GWs propagate in a general FDM profile of highly non-trivial spacetime dependence, which can be viewed as an extension of the previous framework [24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 33] by assuming a homogeneous and isotropic scalar profile. Given that the FDM background variations in time and space are much smaller than the GW frequency and wavenumber, we shall perform our calculation with the well-known eikonal approximation [58]. As a result, we show that the FDM-induced GW birefringence exhibits many new features, which can be used to distinguish this signal from other cosmologically generated ones. Finally, we further consider the extra-galactic FDM contribution to the GW birefringence and assess its impact on the detectability of the galactic one.

The paper is organized as follows. We begin our discussion in Sec. II by setting up our conventions of the CS gravity theory where the scalar field is identified as the FDM candidate. In Sec. III, we focus on the GW birefringence taking place inside our galaxy, and identify its observational signatures. Sec. IV is devoted to investigating the contribution to the GW birefringence from the extra-galactic FDM. Finally, we conclude and provide further discussions in Sec. V.

II Chern-Simons Gravity Theory

The GW birefringence can be generated if the FDM pseudoscalar ϕitalic-ϕ\phiitalic_ϕ possesses the gravitational CS coupling. Following the conventions in Ref. [4], we parametrize the Lagrangian of the CS gravity as follows

𝒮=d4xg[κR+α4ϕRλμντRτλμν],𝒮superscript𝑑4𝑥𝑔delimited-[]𝜅𝑅𝛼4italic-ϕsuperscriptsubscriptsuperscript𝑅𝜏𝜆𝜇𝜈subscriptsuperscript𝑅𝜆𝜇𝜈𝜏\displaystyle{\cal S}=\int d^{4}x\sqrt{-g}\left[\kappa R+\frac{\alpha}{4}\phi~% {}^{*}R^{\tau}_{~{}\lambda\mu\nu}R^{\lambda~{}\mu\nu}_{~{}\tau}\right]\,,caligraphic_S = ∫ italic_d start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_x square-root start_ARG - italic_g end_ARG [ italic_κ italic_R + divide start_ARG italic_α end_ARG start_ARG 4 end_ARG italic_ϕ start_FLOATSUPERSCRIPT ∗ end_FLOATSUPERSCRIPT italic_R start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_λ italic_μ italic_ν end_POSTSUBSCRIPT italic_R start_POSTSUPERSCRIPT italic_λ italic_μ italic_ν end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ] , (1)

where κ(16πG)1𝜅superscript16𝜋𝐺1\kappa\equiv(16\pi G)^{-1}italic_κ ≡ ( 16 italic_π italic_G ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT with G𝐺Gitalic_G the Newton constant, while α𝛼\alphaitalic_α denotes the CS coupling with unit length dimension. The quantity RλμντRτλμνsuperscriptsubscriptsuperscript𝑅𝜏𝜆𝜇𝜈subscriptsuperscript𝑅𝜆𝜇𝜈𝜏{}^{*}R^{\tau}_{~{}\lambda\mu\nu}R^{\lambda~{}\mu\nu}_{~{}\tau}start_FLOATSUPERSCRIPT ∗ end_FLOATSUPERSCRIPT italic_R start_POSTSUPERSCRIPT italic_τ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_λ italic_μ italic_ν end_POSTSUBSCRIPT italic_R start_POSTSUPERSCRIPT italic_λ italic_μ italic_ν end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT is the so-called Pontryagin denisty. Here the dual Riemann tensor is defined by RτλμνϵμνρσRτρσλ/2superscriptsubscriptsuperscript𝑅𝜆𝜇𝜈𝜏superscriptitalic-ϵ𝜇𝜈𝜌𝜎subscriptsuperscript𝑅𝜆𝜏𝜌𝜎2{}^{*}R^{\lambda~{}\mu\nu}_{~{}\tau}\equiv\epsilon^{\mu\nu\rho\sigma}R^{% \lambda}_{~{}\tau\rho\sigma}/2start_FLOATSUPERSCRIPT ∗ end_FLOATSUPERSCRIPT italic_R start_POSTSUPERSCRIPT italic_λ italic_μ italic_ν end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT ≡ italic_ϵ start_POSTSUPERSCRIPT italic_μ italic_ν italic_ρ italic_σ end_POSTSUPERSCRIPT italic_R start_POSTSUPERSCRIPT italic_λ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_τ italic_ρ italic_σ end_POSTSUBSCRIPT / 2, where ϵμνρσ=ϵ~μνρσ/gsuperscriptitalic-ϵ𝜇𝜈𝜌𝜎superscript~italic-ϵ𝜇𝜈𝜌𝜎𝑔{\epsilon}^{\mu\nu\rho\sigma}=\tilde{\epsilon}^{\mu\nu\rho\sigma}/\sqrt{-g}italic_ϵ start_POSTSUPERSCRIPT italic_μ italic_ν italic_ρ italic_σ end_POSTSUPERSCRIPT = over~ start_ARG italic_ϵ end_ARG start_POSTSUPERSCRIPT italic_μ italic_ν italic_ρ italic_σ end_POSTSUPERSCRIPT / square-root start_ARG - italic_g end_ARG is the 4-dimensional Levi-Civita tensor with the anti-symmetric symbol as ϵ~0123=ϵ~0123=1superscript~italic-ϵ0123subscript~italic-ϵ01231\tilde{\epsilon}^{0123}=-\tilde{\epsilon}_{0123}=1over~ start_ARG italic_ϵ end_ARG start_POSTSUPERSCRIPT 0123 end_POSTSUPERSCRIPT = - over~ start_ARG italic_ϵ end_ARG start_POSTSUBSCRIPT 0123 end_POSTSUBSCRIPT = 1. By differentiating the CS gravity action with respect to the tensor perturbation hijsubscript𝑖𝑗h_{ij}italic_h start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT defined by ds2=a(η)2[dη2+(δij+hij)dxidxj]𝑑superscript𝑠2𝑎superscript𝜂2delimited-[]𝑑superscript𝜂2subscript𝛿𝑖𝑗subscript𝑖𝑗𝑑superscript𝑥𝑖𝑑superscript𝑥𝑗ds^{2}=a(\eta)^{2}[-d\eta^{2}+(\delta_{ij}+h_{ij})dx^{i}dx^{j}]italic_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_a ( italic_η ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ - italic_d italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT + italic_h start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ) italic_d italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT italic_d italic_x start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT ], we can obtain the following linearized gravitational equations [23]

hij=ακϵpjkα[1a2(pϕηαηϕpα)]hki,subscriptsuperscript𝑗𝑖𝛼𝜅superscriptitalic-ϵ𝑝𝑗𝑘superscript𝛼delimited-[]1superscript𝑎2subscript𝑝italic-ϕsubscript𝜂subscript𝛼subscript𝜂italic-ϕsubscript𝑝subscript𝛼subscript𝑘𝑖\displaystyle\square h^{j}_{~{}i}=\frac{\alpha}{\kappa}\epsilon^{pjk}\partial^% {\alpha}\left[\frac{1}{a^{2}}\left(\partial_{p}\phi\partial_{\eta}\partial_{% \alpha}-\partial_{\eta}\phi\partial_{p}\partial_{\alpha}\right)\right]h_{ki}\,,□ italic_h start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = divide start_ARG italic_α end_ARG start_ARG italic_κ end_ARG italic_ϵ start_POSTSUPERSCRIPT italic_p italic_j italic_k end_POSTSUPERSCRIPT ∂ start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT [ divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( ∂ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_ϕ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT - ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_ϕ ∂ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) ] italic_h start_POSTSUBSCRIPT italic_k italic_i end_POSTSUBSCRIPT , (2)

where (η22η+i2)/a2superscriptsubscript𝜂22subscript𝜂superscriptsubscript𝑖2superscript𝑎2\square\equiv(-\partial_{\eta}^{2}-2{\cal H}\partial_{\eta}+\partial_{i}^{2})/% a^{2}□ ≡ ( - ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 caligraphic_H ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT + ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) / italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is the four-dimensional d’Alembertian operator in the Friedmann-Lemaître-Robertson-Walker metric with {\cal H}caligraphic_H the conformal Hubble parameter. Throughout this article, the Latin letters refer to the spatial indices while the Greek letters to the spacetime ones. Also, we have simplified our formulae by using the usual transverse-traceless gauge conditions δijhij=ihij=0superscript𝛿𝑖𝑗subscript𝑖𝑗superscript𝑖subscript𝑖𝑗0\delta^{ij}h_{ij}=\partial^{i}h_{ij}=0italic_δ start_POSTSUPERSCRIPT italic_i italic_j end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = ∂ start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = 0. Depending on the realistic situations inside and outside of the Milky Way (MW), we can further simplify the above general GW equations.

III Gravitational Wave Birefringence in Our Galaxy

Let us firstly focus on the GW propagation over the inhomogeneous FDM field background within the galactic scale. Thus, the cosmic expansion effect can be ignored and the background metric can be taken to be flat. By setting the scale factor a=1𝑎1a=1italic_a = 1 and replacing the conformal time η𝜂\etaitalic_η with the physical one t𝑡titalic_t, we can reduce Eq. (2) into

hij=(α/κ)ϵpjkα(pϕtαtϕpα)hki.subscriptsuperscript𝑗𝑖𝛼𝜅superscriptitalic-ϵ𝑝𝑗𝑘superscript𝛼subscript𝑝italic-ϕsubscript𝑡subscript𝛼subscript𝑡italic-ϕsubscript𝑝subscript𝛼subscript𝑘𝑖\displaystyle\square h^{j}_{~{}i}=(\alpha/\kappa)\epsilon^{pjk}\partial^{% \alpha}\left(\partial_{p}\phi\partial_{t}\partial_{\alpha}-\partial_{t}\phi% \partial_{p}\partial_{\alpha}\right)h_{ki}\,.□ italic_h start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = ( italic_α / italic_κ ) italic_ϵ start_POSTSUPERSCRIPT italic_p italic_j italic_k end_POSTSUPERSCRIPT ∂ start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT ( ∂ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_ϕ ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT - ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_ϕ ∂ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) italic_h start_POSTSUBSCRIPT italic_k italic_i end_POSTSUBSCRIPT . (3)

In order to proceed, we shall work in the coordinates where the GW moves in the z𝑧zitalic_z-direction, so that the widely-used linearly polarizations can be identified as h+hxx=hyysubscriptsubscript𝑥𝑥subscript𝑦𝑦h_{+}\equiv h_{xx}=-h_{yy}italic_h start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ≡ italic_h start_POSTSUBSCRIPT italic_x italic_x end_POSTSUBSCRIPT = - italic_h start_POSTSUBSCRIPT italic_y italic_y end_POSTSUBSCRIPT and h×hxy=hyxsubscriptsubscript𝑥𝑦subscript𝑦𝑥h_{\times}\equiv h_{xy}=h_{yx}italic_h start_POSTSUBSCRIPT × end_POSTSUBSCRIPT ≡ italic_h start_POSTSUBSCRIPT italic_x italic_y end_POSTSUBSCRIPT = italic_h start_POSTSUBSCRIPT italic_y italic_x end_POSTSUBSCRIPT. According to Ref. [59], the two circularly polarized GW modes can be written as

hR,L=(1/2)(h+ih×),subscriptRL12minus-or-plussubscript𝑖subscript\displaystyle h_{\rm R,L}=({1}/{\sqrt{2}})(h_{+}\mp ih_{\times})\,,italic_h start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT = ( 1 / square-root start_ARG 2 end_ARG ) ( italic_h start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ∓ italic_i italic_h start_POSTSUBSCRIPT × end_POSTSUBSCRIPT ) , (4)

and Eq. (3) can be decomposed into two separate equations for left- and right-handed polarizations

hR,Li(α/κ)α[zϕαttϕαz]hR,L=0.minus-or-plussubscriptRL𝑖𝛼𝜅superscript𝛼delimited-[]subscript𝑧italic-ϕsubscript𝛼subscript𝑡subscript𝑡italic-ϕsubscript𝛼subscript𝑧subscriptRL0\displaystyle\square h_{\rm R,L}\mp i(\alpha/\kappa)\partial^{\alpha}\left[% \partial_{z}\phi\partial_{\alpha}\partial_{t}-\partial_{t}\phi\partial_{\alpha% }\partial_{z}\right]h_{\rm R,L}=0\,.□ italic_h start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT ∓ italic_i ( italic_α / italic_κ ) ∂ start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT [ ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_ϕ ∂ start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_ϕ ∂ start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ] italic_h start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT = 0 . (5)

where and in what follows the upper (lower) sign refers to the right(left)-handed polarization.

By further assuming that the time and spatial variations of the FDM scalar background are small compared with the typical GW frequency and wavenumber, we can take advantage of the famous eikonal approximation [58, 60] to compute the GW waveform corrections induced by the FDM profile. Concretely, we consider the GW solution of the form hR,L=hR,L0eiSsubscriptRLsubscriptsuperscript0RLsuperscript𝑒𝑖𝑆h_{\rm R,L}=h^{0}_{\rm R,L}e^{iS}italic_h start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT = italic_h start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_S end_POSTSUPERSCRIPT, where hR,L0superscriptsubscriptRL0h_{\rm R,L}^{0}italic_h start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT are slowly-varying GW amplitudes for both polarizations while the phase S𝑆Sitalic_S dominates the GW evolution. According to the general rules of the eikonal approximation, we can define the following GW frequency and wavenumber

ω=S/t,ki=S/xi.formulae-sequence𝜔𝑆𝑡subscript𝑘𝑖𝑆superscript𝑥𝑖\displaystyle\omega=-\partial S/\partial t\,,\quad k_{i}=\partial S/\partial x% ^{i}\,.italic_ω = - ∂ italic_S / ∂ italic_t , italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = ∂ italic_S / ∂ italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT . (6)

Since the GW propagates along z𝑧zitalic_z-axes by assumption, only kz=ksubscript𝑘𝑧𝑘k_{z}=kitalic_k start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT = italic_k is nonzero. The dispersion relations for both polarizations are given by

D±superscript𝐷plus-or-minus\displaystyle D^{\pm}italic_D start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT =\displaystyle== (ω2k2)[1ακ(ωzϕ+ktϕ)]superscript𝜔2superscript𝑘2delimited-[]minus-or-plus1𝛼𝜅𝜔subscript𝑧italic-ϕ𝑘subscript𝑡italic-ϕ\displaystyle(\omega^{2}-k^{2})\left[1\mp\frac{\alpha}{\kappa}(\omega\partial_% {z}\phi+k\partial_{t}\phi)\right]( italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) [ 1 ∓ divide start_ARG italic_α end_ARG start_ARG italic_κ end_ARG ( italic_ω ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_ϕ + italic_k ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_ϕ ) ] (7)
iακ[(ω2+k2)tzϕ+ωk(z2ϕ+t2ϕ)]=0.minus-or-plus𝑖𝛼𝜅delimited-[]superscript𝜔2superscript𝑘2subscript𝑡subscript𝑧italic-ϕ𝜔𝑘superscriptsubscript𝑧2italic-ϕsuperscriptsubscript𝑡2italic-ϕ0\displaystyle\mp\frac{i\alpha}{\kappa}\left[(\omega^{2}+k^{2})\partial_{t}% \partial_{z}\phi+\omega k(\partial_{z}^{2}\phi+\partial_{t}^{2}\phi)\right]=0\,.∓ divide start_ARG italic_i italic_α end_ARG start_ARG italic_κ end_ARG [ ( italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_ϕ + italic_ω italic_k ( ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ + ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ ) ] = 0 .

Due to the presence of the imaginary part in Eq. (7), the GW frequency and wavenumber would, in general, be complex. In the literature, the real (imaginary) correction to the GW dispersion relation is often referred to the velocity (amplitude) birefringence, as it usually leads to the different modifications to left- and right-handed GW propagating speed (amplitude). It is interesting to note that the imaginary part in Eq. (7) is one-order smaller than the real correction in the limit t,zϕ/ω,k1much-less-thansubscript𝑡𝑧italic-ϕ𝜔𝑘1\partial_{t,z}\phi/\omega,\,k\ll 1∂ start_POSTSUBSCRIPT italic_t , italic_z end_POSTSUBSCRIPT italic_ϕ / italic_ω , italic_k ≪ 1, so that we can consider them separately.

III.1 Velocity Birefringence

We now take into account the real part of the dispersion relations in Eq. (7)

DR±=(ω2k2)[1(α/κ)(ωzϕ+ktϕ)]=0,superscriptsubscript𝐷𝑅plus-or-minussuperscript𝜔2superscript𝑘2delimited-[]minus-or-plus1𝛼𝜅𝜔subscript𝑧italic-ϕ𝑘subscript𝑡italic-ϕ0\displaystyle D_{R}^{\pm}=(\omega^{2}-k^{2})\left[1\mp(\alpha/\kappa)(\omega% \partial_{z}\phi+k\partial_{t}\phi)\right]=0\,,italic_D start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT = ( italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) [ 1 ∓ ( italic_α / italic_κ ) ( italic_ω ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_ϕ + italic_k ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_ϕ ) ] = 0 , (8)

which determines the GW velocity and direction in the FDM field ϕitalic-ϕ\phiitalic_ϕ. It is clear that ω=k𝜔𝑘\omega=kitalic_ω = italic_k is always a solution to Eq. (8)111It seems that there is another solution to Eq. (8) with ω=[ktϕκ/α]/(zϕ)𝜔delimited-[]minus-or-plus𝑘subscript𝑡italic-ϕ𝜅𝛼subscript𝑧italic-ϕ\omega=[-k\partial_{t}\phi\mp\kappa/\alpha]/(\partial_{z}\phi)italic_ω = [ - italic_k ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_ϕ ∓ italic_κ / italic_α ] / ( ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_ϕ ). But this solution cannot continuously connected to the vacuum one ω=k𝜔𝑘\omega=kitalic_ω = italic_k and should be ignored. , which indicates that GWs of both circular polarizations propagate with the speed of light, regardless of the presence of the FDM background. We can further check this by calculating the GW paths under the influence of a nontrivial ϕitalic-ϕ\phiitalic_ϕ profile

dxidt𝑑superscript𝑥𝑖𝑑𝑡\displaystyle\frac{dx^{i}}{dt}divide start_ARG italic_d italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_t end_ARG =\displaystyle== DR±/kiDR±/ω=δzi,superscriptsubscript𝐷𝑅plus-or-minussubscript𝑘𝑖superscriptsubscript𝐷𝑅plus-or-minus𝜔subscriptsuperscript𝛿𝑖𝑧\displaystyle-\frac{\partial D_{R}^{\pm}/\partial k_{i}}{\partial D_{R}^{\pm}/% \partial\omega}=\delta^{i}_{z}\,,- divide start_ARG ∂ italic_D start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT / ∂ italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_D start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT / ∂ italic_ω end_ARG = italic_δ start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ,
dkidt𝑑subscript𝑘𝑖𝑑𝑡\displaystyle\frac{dk_{i}}{dt}divide start_ARG italic_d italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_t end_ARG =\displaystyle== DR±/xiDR±/ω=0,dωdt=DR±/tDR±/ω=0,formulae-sequencesuperscriptsubscript𝐷𝑅plus-or-minussuperscript𝑥𝑖superscriptsubscript𝐷𝑅plus-or-minus𝜔0𝑑𝜔𝑑𝑡superscriptsubscript𝐷𝑅plus-or-minus𝑡superscriptsubscript𝐷𝑅plus-or-minus𝜔0\displaystyle\frac{\partial D_{R}^{\pm}/\partial x^{i}}{\partial D_{R}^{\pm}/% \partial\omega}=0\,,\quad\frac{d\omega}{dt}=-\frac{\partial D_{R}^{\pm}/% \partial t}{\partial D_{R}^{\pm}/\partial\omega}=0\,,divide start_ARG ∂ italic_D start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT / ∂ italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG start_ARG ∂ italic_D start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT / ∂ italic_ω end_ARG = 0 , divide start_ARG italic_d italic_ω end_ARG start_ARG italic_d italic_t end_ARG = - divide start_ARG ∂ italic_D start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT / ∂ italic_t end_ARG start_ARG ∂ italic_D start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT / ∂ italic_ω end_ARG = 0 , (9)

where we have used ω=k𝜔𝑘\omega=kitalic_ω = italic_k to simplify the these formulae. It is clear from Eq. (III.1) that the FDM does not induce any velocity birefringence and both GW polarizations still follow the straight line. Also, the GW frequency and wavenumber would remain the same during its propagation in the galactic FDM halo.

III.2 Amplitude Birefringence

In this subsection, we shall turn to the full dispersion relation in Eq. (7) by including the imaginary part, which might lead to the GW amplitude birefringence. Following the general rules of eikonal approximation, we obtain

dxidt𝑑superscript𝑥𝑖𝑑𝑡\displaystyle\frac{dx^{i}}{dt}divide start_ARG italic_d italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_t end_ARG =\displaystyle== D±/kiD±/ωsuperscript𝐷plus-or-minussubscript𝑘𝑖superscript𝐷plus-or-minus𝜔\displaystyle-\frac{\partial D^{\pm}/\partial k_{i}}{\partial D^{\pm}/\partial\omega}- divide start_ARG ∂ italic_D start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT / ∂ italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_D start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT / ∂ italic_ω end_ARG
\displaystyle\approx {1±i(α/κ)[2tzϕ+(t2ϕ+z2ϕ)]}δzi,plus-or-minus1𝑖𝛼𝜅delimited-[]2subscript𝑡subscript𝑧italic-ϕsuperscriptsubscript𝑡2italic-ϕsuperscriptsubscript𝑧2italic-ϕsubscriptsuperscript𝛿𝑖𝑧\displaystyle\{1\pm i(\alpha/\kappa)[2\partial_{t}\partial_{z}\phi+(\partial_{% t}^{2}\phi+\partial_{z}^{2}\phi)]\}\delta^{i}_{z}\,,{ 1 ± italic_i ( italic_α / italic_κ ) [ 2 ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_ϕ + ( ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ + ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ ) ] } italic_δ start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ,
dkidt𝑑subscript𝑘𝑖𝑑𝑡\displaystyle\frac{dk_{i}}{dt}divide start_ARG italic_d italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_t end_ARG =\displaystyle== D±/xiD±/ωsuperscript𝐷plus-or-minussuperscript𝑥𝑖superscript𝐷plus-or-minus𝜔\displaystyle\frac{\partial D^{\pm}/\partial x^{i}}{\partial D^{\pm}/\partial\omega}divide start_ARG ∂ italic_D start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT / ∂ italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG start_ARG ∂ italic_D start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT / ∂ italic_ω end_ARG
\displaystyle\approx i(αω/2κ)[2tziϕ+t2iϕ+z2iϕ],minus-or-plus𝑖𝛼𝜔2𝜅delimited-[]2subscript𝑡subscript𝑧subscript𝑖italic-ϕsuperscriptsubscript𝑡2subscript𝑖italic-ϕsubscriptsuperscript2𝑧subscript𝑖italic-ϕ\displaystyle\mp i(\alpha\omega/2\kappa)\left[2\partial_{t}\partial_{z}% \partial_{i}\phi+\partial_{t}^{2}\partial_{i}\phi+\partial^{2}_{z}\partial_{i}% \phi\right]\,,∓ italic_i ( italic_α italic_ω / 2 italic_κ ) [ 2 ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ϕ + ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ϕ + ∂ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ϕ ] ,
dωdt𝑑𝜔𝑑𝑡\displaystyle\frac{d\omega}{dt}divide start_ARG italic_d italic_ω end_ARG start_ARG italic_d italic_t end_ARG =\displaystyle== D±/tD±/ωsuperscript𝐷plus-or-minus𝑡superscript𝐷plus-or-minus𝜔\displaystyle-\frac{\partial D^{\pm}/\partial t}{\partial D^{\pm}/\partial\omega}- divide start_ARG ∂ italic_D start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT / ∂ italic_t end_ARG start_ARG ∂ italic_D start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT / ∂ italic_ω end_ARG (10)
\displaystyle\approx ±i(αω/2κ)[2t2zϕ+tz2ϕ+t3ϕ],plus-or-minus𝑖𝛼𝜔2𝜅delimited-[]2superscriptsubscript𝑡2subscript𝑧italic-ϕsubscript𝑡superscriptsubscript𝑧2italic-ϕsuperscriptsubscript𝑡3italic-ϕ\displaystyle\pm i(\alpha\omega/2\kappa)\left[2\partial_{t}^{2}\partial_{z}% \phi+\partial_{t}\partial_{z}^{2}\phi+\partial_{t}^{3}\phi\right]\,,± italic_i ( italic_α italic_ω / 2 italic_κ ) [ 2 ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_ϕ + ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ + ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_ϕ ] ,

where we have kept only the leading-order contributions and set ω=k𝜔𝑘\omega=kitalic_ω = italic_k to make our expressions simpler. For the GW path in which xi(t)superscript𝑥𝑖𝑡x^{i}(t)italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT ( italic_t ) is the function of time t𝑡titalic_t, we can define the following total derivative of the scalar field

ϕ˙dϕdt=tϕ+iϕdxidttϕ+zϕ,˙italic-ϕ𝑑italic-ϕ𝑑𝑡subscript𝑡italic-ϕsubscript𝑖italic-ϕ𝑑superscript𝑥𝑖𝑑𝑡subscript𝑡italic-ϕsubscript𝑧italic-ϕ\displaystyle\dot{\phi}\equiv\frac{d\phi}{dt}=\partial_{t}\phi+\partial_{i}% \phi\frac{dx^{i}}{dt}\approx\partial_{t}\phi+\partial_{z}\phi\,,over˙ start_ARG italic_ϕ end_ARG ≡ divide start_ARG italic_d italic_ϕ end_ARG start_ARG italic_d italic_t end_ARG = ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_ϕ + ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ϕ divide start_ARG italic_d italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_t end_ARG ≈ ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_ϕ + ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_ϕ , (11)

where we have used the leading-order GW velocity dxi/dt=δzi𝑑superscript𝑥𝑖𝑑𝑡subscriptsuperscript𝛿𝑖𝑧dx^{i}/dt=\delta^{i}_{z}italic_d italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT / italic_d italic_t = italic_δ start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT. Hence, we can integrate the GW wavenumber and frequency over time t𝑡titalic_t in Eq. (III.2) to obtain the following corrections

ΔkiΔsubscript𝑘𝑖\displaystyle\Delta k_{i}roman_Δ italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT =\displaystyle== iαωiϕ˙/(2κ),Δω=±iαωtϕ˙/(2κ).minus-or-plus𝑖𝛼𝜔subscript𝑖˙italic-ϕ2𝜅Δ𝜔plus-or-minus𝑖𝛼𝜔subscript𝑡˙italic-ϕ2𝜅\displaystyle\mp i\alpha\omega\partial_{i}\dot{\phi}/(2\kappa)\,,\quad\Delta% \omega=\pm i\alpha\omega\partial_{t}\dot{\phi}/(2\kappa)\,.∓ italic_i italic_α italic_ω ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT over˙ start_ARG italic_ϕ end_ARG / ( 2 italic_κ ) , roman_Δ italic_ω = ± italic_i italic_α italic_ω ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT over˙ start_ARG italic_ϕ end_ARG / ( 2 italic_κ ) . (12)

As a result, the GW phase S𝑆Sitalic_S varies as

ΔSΔ𝑆\displaystyle\Delta Sroman_Δ italic_S =\displaystyle== teto𝑑tΔω+𝐱e𝐱o𝑑xiΔkisubscriptsuperscriptsubscript𝑡𝑜subscript𝑡𝑒differential-d𝑡Δ𝜔subscriptsuperscriptsubscript𝐱𝑜subscript𝐱𝑒differential-dsuperscript𝑥𝑖Δsubscript𝑘𝑖\displaystyle-\int^{t_{o}}_{t_{e}}dt\Delta\omega+\int^{{\bf x}_{o}}_{{\bf x}_{% e}}dx^{i}\Delta k_{i}- ∫ start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_d italic_t roman_Δ italic_ω + ∫ start_POSTSUPERSCRIPT bold_x start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT bold_x start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_d italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT roman_Δ italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT (13)
=\displaystyle== iαω(ϕ˙oϕ˙e)/(2κ),minus-or-plus𝑖𝛼𝜔subscript˙italic-ϕ𝑜subscript˙italic-ϕ𝑒2𝜅\displaystyle\mp i\alpha\omega(\dot{\phi}_{o}-\dot{\phi}_{e})/(2\kappa)\,,∓ italic_i italic_α italic_ω ( over˙ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT - over˙ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ) / ( 2 italic_κ ) ,

where the subscripts o𝑜oitalic_o and e𝑒eitalic_e represent the field values when GWs are observed and emitted, respectively. Therefore, the GW waveform would modify according to

hR,L=hR,L0eiΔS=hR,L0exp(±αω(ϕ˙oϕ˙e)/(2κ)),subscriptRLsuperscriptsubscriptRL0superscript𝑒𝑖Δ𝑆superscriptsubscriptRL0plus-or-minus𝛼𝜔subscript˙italic-ϕ𝑜subscript˙italic-ϕ𝑒2𝜅\displaystyle h_{\rm R,L}=h_{\rm R,L}^{0}e^{i\Delta S}=h_{\rm R,L}^{0}\exp% \left(\pm\alpha\omega(\dot{\phi}_{o}-\dot{\phi}_{e})/(2\kappa)\right),italic_h start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT = italic_h start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i roman_Δ italic_S end_POSTSUPERSCRIPT = italic_h start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT roman_exp ( ± italic_α italic_ω ( over˙ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT - over˙ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ) / ( 2 italic_κ ) ) , (14)

which clearly manifests the GW amplitude birefringence.

III.3 Observational Signatures

GW birefringence has been widely studied in the literature, but earlier explorations usually assumed a homogeneous scalar background in the CS gravity. Given the complicated FDM distributions in our galaxy, it is generally expected that the induced GW birefringence would exhibit new signatures.

Typically, the FDM mass is taken to be mϕ𝒪(1022eV)similar-tosubscript𝑚italic-ϕ𝒪superscript1022eVm_{\phi}\sim{\cal O}(10^{-22}~{}{\rm eV})italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ∼ caligraphic_O ( 10 start_POSTSUPERSCRIPT - 22 end_POSTSUPERSCRIPT roman_eV ), and the corresponding de Brogile wavelength of 𝒪(1kpc)𝒪1kpc{\cal O}(1\,{\rm kpc})caligraphic_O ( 1 roman_kpc ). Recent precise numerical simulations [45, 46, 47] have shown that the clustering of such light FDM particles could form a core of flat density profile around the center of a MW-like galaxy, and suppress the formation of small structures, which could solve many problems faced by the cold DM [61]. However, outside of the core, the FDM density transits into the conventional Navarro-Frenk-White (NFW) profile [62]

ρNFW(r)=ρ0[rrs(1+rrs)2]1.subscript𝜌NFW𝑟subscript𝜌0superscriptdelimited-[]𝑟subscript𝑟𝑠superscript1𝑟subscript𝑟𝑠21\displaystyle\rho_{\rm NFW}(r)={\rho_{0}}\left[{\frac{r}{r_{s}}\left(1+\frac{r% }{r_{s}}\right)^{2}}\right]^{-1}\,.italic_ρ start_POSTSUBSCRIPT roman_NFW end_POSTSUBSCRIPT ( italic_r ) = italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT [ divide start_ARG italic_r end_ARG start_ARG italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG ( 1 + divide start_ARG italic_r end_ARG start_ARG italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT . (15)

where rssubscript𝑟𝑠r_{s}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and ρ0subscript𝜌0\rho_{0}italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT are two characteristic parameters. Thus, the local FDM field can be well estimated by [63]

ϕ(t,𝐱)=2ρNFWmϕcos(mϕt+α(𝐱)),italic-ϕ𝑡𝐱2subscript𝜌NFWsubscript𝑚italic-ϕsubscript𝑚italic-ϕ𝑡𝛼𝐱\displaystyle\phi(t,{\bf x})=\frac{\sqrt{2\rho_{\rm NFW}}}{m_{\phi}}\cos\left(% m_{\phi}t+\alpha({\bf x})\right)\,,italic_ϕ ( italic_t , bold_x ) = divide start_ARG square-root start_ARG 2 italic_ρ start_POSTSUBSCRIPT roman_NFW end_POSTSUBSCRIPT end_ARG end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_ARG roman_cos ( italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT italic_t + italic_α ( bold_x ) ) , (16)

which could reproduce the above NFW density distribution. Here α(𝐱)𝛼𝐱\alpha({\bf x})italic_α ( bold_x ) is a position-dependent random phase, which accounts for the incoherently fluctuating granular structures seen in simulations.

Now we concentrate on the GW propagation inside the MW, and postpone the discussion of the extra-galactic effects to the next section. Hence, we can take ϕ˙esubscript˙italic-ϕ𝑒\dot{\phi}_{e}over˙ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT and ϕ˙osubscript˙italic-ϕ𝑜\dot{\phi}_{o}over˙ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT in Eq. (14) to be the field values just outside our galaxy and around the Sun, respectively. However, the FDM density out of the MW can be estimated as ρDM=0.265ρcritsubscript𝜌DM0.265subscript𝜌crit\rho_{\rm DM}=0.265\rho_{\rm crit}italic_ρ start_POSTSUBSCRIPT roman_DM end_POSTSUBSCRIPT = 0.265 italic_ρ start_POSTSUBSCRIPT roman_crit end_POSTSUBSCRIPT [64], which is nearly six orders smaller than ρ=0.4GeV/cm3subscript𝜌direct-product0.4GeVsuperscriptcm3\rho_{\odot}=0.4\,{\rm GeV/cm^{3}}italic_ρ start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT = 0.4 roman_GeV / roman_cm start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT around the Solar system. Hence, the birefringence effect from ϕ˙esubscript˙italic-ϕ𝑒\dot{\phi}_{e}over˙ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT in Eq. (14) should be greatly suppressed and thus ignored. It turns out that the GW magnitude birefringence only depends on the local FDM property ϕ˙osubscript˙italic-ϕ𝑜\dot{\phi}_{o}over˙ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT near the Earth, giving us the following observed GW waveforms

hR,Lobs(f)=hR,L0(f)×exp(±κA1Gpc×f100Hz),subscriptsuperscriptobsRL𝑓subscriptsuperscript0RL𝑓plus-or-minussubscript𝜅𝐴1Gpc𝑓100Hz\displaystyle h^{\rm obs}_{\rm R,L}(f)=h^{0}_{\rm R,L}(f)\times\exp\left(\pm% \frac{\kappa_{A}}{1\,{\rm Gpc}}\times\frac{f}{100\,{\rm Hz}}\right)\,,italic_h start_POSTSUPERSCRIPT roman_obs end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT ( italic_f ) = italic_h start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT ( italic_f ) × roman_exp ( ± divide start_ARG italic_κ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT end_ARG start_ARG 1 roman_Gpc end_ARG × divide start_ARG italic_f end_ARG start_ARG 100 roman_Hz end_ARG ) , (17)

where hR,L0(f)subscriptsuperscript0RL𝑓h^{0}_{\rm R,L}(f)italic_h start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT ( italic_f ) can be viewed as right- and left-handed the GW waveforms predicted by GR, while the opacity parameter is defined by

κAπαϕ˙o/κ.subscript𝜅𝐴𝜋𝛼subscript˙italic-ϕ𝑜𝜅\displaystyle\kappa_{A}\equiv\pi\alpha\dot{\phi}_{o}/\kappa\,.italic_κ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ≡ italic_π italic_α over˙ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT / italic_κ . (18)

From Eq. (11), ϕ˙osubscript˙italic-ϕ𝑜\dot{\phi}_{o}over˙ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT is the sum of the following local time and spatial derivatives of the FDM field near the Sun

tϕsubscript𝑡italic-ϕ\displaystyle\partial_{t}\phi∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_ϕ =\displaystyle== 2ρsin(mϕt+α0),2subscript𝜌direct-productsubscript𝑚italic-ϕ𝑡subscript𝛼0\displaystyle\sqrt{2\rho_{\odot}}\sin\left(m_{\phi}t+\alpha_{0}\right)\,,square-root start_ARG 2 italic_ρ start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG roman_sin ( italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT italic_t + italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ,
zϕsubscript𝑧italic-ϕ\displaystyle\partial_{z}\phi∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_ϕ \displaystyle\approx cos𝐤,𝐫rϕ,𝐤𝐫subscript𝑟italic-ϕ\displaystyle\cos\langle{\bf k},{\bf r}\rangle\partial_{r}\phi\,,roman_cos ⟨ bold_k , bold_r ⟩ ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ϕ , (19)

where R8similar-to-or-equalssubscript𝑅direct-product8R_{\odot}\simeq 8italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ≃ 8 kpc and α0subscript𝛼0\alpha_{0}italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT denote the radial galactic distance and the local field phase at the Solar system, respectively. The factor cos𝐤,𝐫𝐤𝐫\cos\langle{\bf k},{\bf r}\rangleroman_cos ⟨ bold_k , bold_r ⟩ comes from the projection of the radial derivative of the FDM field rϕsubscript𝑟italic-ϕ\partial_{r}\phi∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ϕ onto the GW propagating orientation 𝐤𝐤{\bf k}bold_k with

rϕ=ρ/2mϕR(1+3R/rs1+R/rs)cos(mϕt+α0).subscript𝑟italic-ϕsubscript𝜌direct-product2subscript𝑚italic-ϕsubscript𝑅direct-product13subscript𝑅direct-productsubscript𝑟𝑠1subscript𝑅direct-productsubscript𝑟𝑠subscript𝑚italic-ϕ𝑡subscript𝛼0\displaystyle\partial_{r}\phi=-\frac{\sqrt{{\rho_{\odot}}/{2}}}{m_{\phi}R_{% \odot}}\left(\frac{1+3R_{\odot}/r_{s}}{1+R_{\odot}/r_{s}}\right)\cos(m_{\phi}t% +\alpha_{0})\,.∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ϕ = - divide start_ARG square-root start_ARG italic_ρ start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT / 2 end_ARG end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG ( divide start_ARG 1 + 3 italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT / italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG 1 + italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT / italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG ) roman_cos ( italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT italic_t + italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) . (20)

However, for a FDM with mϕ1022eVsimilar-tosubscript𝑚italic-ϕsuperscript1022eVm_{\phi}\sim 10^{-22}\,{\rm eV}italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ∼ 10 start_POSTSUPERSCRIPT - 22 end_POSTSUPERSCRIPT roman_eV, it is generally expected that the time variation of the field profile dominates over the birefringence due to tϕ/rϕmϕR𝒪(105)similar-tosubscript𝑡italic-ϕsubscript𝑟italic-ϕsubscript𝑚italic-ϕsubscript𝑅direct-productsimilar-to𝒪superscript105\partial_{t}\phi/\partial_{r}\phi\sim m_{\phi}R_{\odot}\sim{\cal O}(10^{5})∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_ϕ / ∂ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ϕ ∼ italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ∼ caligraphic_O ( 10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT ). Therefore, the opacity parameter can be expressed as

κA(πα/κ)2ρsin(mϕt+α0).similar-to-or-equalssubscript𝜅𝐴𝜋𝛼𝜅2subscript𝜌direct-productsubscript𝑚italic-ϕ𝑡subscript𝛼0\displaystyle\kappa_{A}\simeq(\pi\alpha/\kappa)\sqrt{2\rho_{\odot}}\sin(m_{% \phi}t+\alpha_{0})\,.italic_κ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ≃ ( italic_π italic_α / italic_κ ) square-root start_ARG 2 italic_ρ start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG roman_sin ( italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT italic_t + italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) . (21)

Compared with the conventional signals studied in the literature, our predicted magnitude birefringence induced by the FDM shows several novel features. Firstly, it is obvious from Eq. (17) that, due to its local nature, the birefringence factor is only a function of the GW frequency, without any dependence on the GW event distance, which is distinguished from the earlier results in [24, 28, 32, 34, 36]. More significantly, our proposed birefringence in Eq. (21) exhibits a remarkable time variation with the period directly reflecting the FDM mass. For example, if the mass is taken to be 1022eVsuperscript1022eV10^{-22}\,{\rm eV}10 start_POSTSUPERSCRIPT - 22 end_POSTSUPERSCRIPT roman_eV, the oscillation period corresponds to 1.3 year, which can be viewed as a smoking gun of this FDM-generated GW birefringence.

IV Extra-galactic Contribution to Gravitational Wave Birefringence

Beside the amplitude birefringence induced by the FDM in the MW, there is an additional contribution from the extra-galactic FDM field. One might worry that this contribution might affect or even govern the birefringence signal since it might be enhanced by the GW travel over an astrophysical distance. In order to investigate this important issue, we shall study the GW movement in the following cosmological FDM background [65, 66]

ϕ(t)=ϕ0(a0/a)3/2cos(mϕt+αc),italic-ϕ𝑡subscriptitalic-ϕ0superscriptsubscript𝑎0𝑎32subscript𝑚italic-ϕ𝑡subscript𝛼𝑐\displaystyle\phi(t)=\phi_{0}\left({a_{0}}/{a}\right)^{3/2}\cos(m_{\phi}t+% \alpha_{c})\,,italic_ϕ ( italic_t ) = italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_a ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT roman_cos ( italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT italic_t + italic_α start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ) , (22)

where ϕ0=2ρDM/mϕsubscriptitalic-ϕ02subscript𝜌DMsubscript𝑚italic-ϕ\phi_{0}=\sqrt{2\rho_{\rm DM}}/m_{\phi}italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = square-root start_ARG 2 italic_ρ start_POSTSUBSCRIPT roman_DM end_POSTSUBSCRIPT end_ARG / italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT, αcsubscript𝛼𝑐\alpha_{c}italic_α start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT and a0subscript𝑎0a_{0}italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT are the FDM field amplitude, phase and present-day scale factor, respectively. Note that the field amplitude and phase should change at different spacetime point, with the typical scale being the inverse of the de Broglie wavelength mϕvsubscript𝑚italic-ϕ𝑣m_{\phi}vitalic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT italic_v. For a small FDM velocity v1much-less-than𝑣1v\ll 1italic_v ≪ 1, such variations can be ignored compared with the dominant oscillation frequency mϕsubscript𝑚italic-ϕm_{\phi}italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT. Hence, we shall use the homogeneous FDM profile in Eq. (22) to perform the following calculation. Also, we will set a0=1subscript𝑎01a_{0}=1italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 1 for simplicity. The associated GW equation can be deduced from Eq. (2) as follows

hR,L=±iακa2[1a2(ϕ′′2ϕ)zhR,LϕzhR,L],subscriptRLplus-or-minus𝑖𝛼𝜅superscript𝑎2delimited-[]1superscript𝑎2superscriptitalic-ϕ′′2superscriptitalic-ϕsubscript𝑧subscriptsuperscriptRLsuperscriptitalic-ϕsubscript𝑧subscriptRL\displaystyle\square h_{\rm R,L}=\pm\frac{i\alpha}{\kappa a^{2}}\left[\frac{1}% {a^{2}}(\phi^{\prime\prime}-2{\cal H}\phi^{\prime})\partial_{z}h^{\prime}_{\rm R% ,L}-\phi^{\prime}\square\partial_{z}h_{\rm R,L}\right]\,,□ italic_h start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT = ± divide start_ARG italic_i italic_α end_ARG start_ARG italic_κ italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG [ divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_ϕ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT - 2 caligraphic_H italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT - italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT □ ∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT ] ,

which leads to the following dispersion relations for both circularly polarized modes

ωk+Δωexkiω/k±iαω2κa2(ϕ′′2ϕ),𝜔𝑘Δsuperscript𝜔explus-or-minus𝑘𝑖𝜔𝑘𝑖𝛼𝜔2𝜅superscript𝑎2superscriptitalic-ϕ′′2superscriptitalic-ϕ\displaystyle\omega\equiv k+\Delta\omega^{\rm ex}\approx k-i{\cal H}\omega/k% \pm\frac{i\alpha\omega}{2\kappa a^{2}}(\phi^{\prime\prime}-2{\cal H}\phi^{% \prime})\,,italic_ω ≡ italic_k + roman_Δ italic_ω start_POSTSUPERSCRIPT roman_ex end_POSTSUPERSCRIPT ≈ italic_k - italic_i caligraphic_H italic_ω / italic_k ± divide start_ARG italic_i italic_α italic_ω end_ARG start_ARG 2 italic_κ italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_ϕ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT - 2 caligraphic_H italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , (24)

up to the leading order in the eikonal approximation.

For the FDM scalar with mϕ1022eVsimilar-tosubscript𝑚italic-ϕsuperscript1022eVm_{\phi}\sim 10^{-22}~{}{\rm eV}italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ∼ 10 start_POSTSUPERSCRIPT - 22 end_POSTSUPERSCRIPT roman_eV, the mass scale is much larger than the cosmological expansion rate characterized by {\cal H}caligraphic_H. Thus, we expect that the time integration in the birefringence factor eiΔS=ei𝑑ηΔωexsuperscript𝑒𝑖Δ𝑆superscript𝑒𝑖differential-d𝜂Δsuperscript𝜔exe^{i\Delta S}=e^{-i\int d\eta\Delta\omega^{\rm ex}}italic_e start_POSTSUPERSCRIPT italic_i roman_Δ italic_S end_POSTSUPERSCRIPT = italic_e start_POSTSUPERSCRIPT - italic_i ∫ italic_d italic_η roman_Δ italic_ω start_POSTSUPERSCRIPT roman_ex end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT should be dominated by the rapidly oscillating term in ϕ′′superscriptitalic-ϕ′′\phi^{\prime\prime}italic_ϕ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT. As a result, the phase correction generated by the extra-galactic FDM background is given by

ΔS±i(αω2κ)2ρDMsin(mϕt+αc),Δ𝑆plus-or-minus𝑖𝛼𝜔2𝜅2subscript𝜌DMsubscript𝑚italic-ϕ𝑡subscript𝛼𝑐\displaystyle\Delta S\approx\pm i\left(\frac{\alpha\omega}{2\kappa}\right)% \sqrt{2\rho_{\rm DM}}\sin(m_{\phi}t+\alpha_{c})\,,roman_Δ italic_S ≈ ± italic_i ( divide start_ARG italic_α italic_ω end_ARG start_ARG 2 italic_κ end_ARG ) square-root start_ARG 2 italic_ρ start_POSTSUBSCRIPT roman_DM end_POSTSUBSCRIPT end_ARG roman_sin ( italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT italic_t + italic_α start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ) , (25)

in which we have taken the small redshift limit with all scale factors being a1𝑎1a\approx 1italic_a ≈ 1. Hence, the FDM outside of the MW would give the following amplitude birefringence

hR,Lex(f)=hR,L0(f)exp(±κAex1Gpc×f100Hz),subscriptsuperscriptexRL𝑓superscriptsubscriptRL0𝑓plus-or-minussuperscriptsubscript𝜅𝐴ex1Gpc𝑓100Hz\displaystyle h^{\rm ex}_{\rm R,L}(f)=h_{\rm R,L}^{0}(f)\exp\left(\pm\frac{% \kappa_{A}^{\rm ex}}{1~{}{\rm Gpc}}\times\frac{f}{100~{}{\rm Hz}}\right)\,,italic_h start_POSTSUPERSCRIPT roman_ex end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT ( italic_f ) = italic_h start_POSTSUBSCRIPT roman_R , roman_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_f ) roman_exp ( ± divide start_ARG italic_κ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_ex end_POSTSUPERSCRIPT end_ARG start_ARG 1 roman_Gpc end_ARG × divide start_ARG italic_f end_ARG start_ARG 100 roman_Hz end_ARG ) , (26)

where κAexαπ2ρDMsin(mϕt+αc)/κsuperscriptsubscript𝜅𝐴ex𝛼𝜋2subscript𝜌DMsubscript𝑚italic-ϕ𝑡subscript𝛼𝑐𝜅\kappa_{A}^{\rm ex}\equiv\alpha\pi\sqrt{2\rho_{\rm DM}}\sin(m_{\phi}t+\alpha_{% c})/\kappaitalic_κ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_ex end_POSTSUPERSCRIPT ≡ italic_α italic_π square-root start_ARG 2 italic_ρ start_POSTSUBSCRIPT roman_DM end_POSTSUBSCRIPT end_ARG roman_sin ( italic_m start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT italic_t + italic_α start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ) / italic_κ. In comparison with Eqs. (17) and (21), it is obvious that the birefringence effect is overwhelmed by the galactic FDM component due to its enhanced DM density in the MW, which is evident by |κA/κAex|ρ/ρDM𝒪(103)similar-tosubscript𝜅𝐴superscriptsubscript𝜅𝐴exsubscript𝜌direct-productsubscript𝜌DMsimilar-to𝒪superscript103|\kappa_{A}/\kappa_{A}^{\rm ex}|\sim\sqrt{\rho_{\odot}/\rho_{\rm DM}}\sim{\cal O% }(10^{3})| italic_κ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT / italic_κ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_ex end_POSTSUPERSCRIPT | ∼ square-root start_ARG italic_ρ start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT / italic_ρ start_POSTSUBSCRIPT roman_DM end_POSTSUBSCRIPT end_ARG ∼ caligraphic_O ( 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ).

V Conclusions and Discussions

The FDM is a promising DM candidate which can possibly solve many problems faced in the sub-galactic scale. If such a FDM can be identified as an axion-like particle with an additional gravitational CS coupling, GWs are expected to show the parity-violating birefringence phenomena when propagating in the nontrivial FDM background. Especially, provided the complicated granular structures displayed in recent simulations, we are led to considering the GW propagation in a general spacetime-dependent FDM field profile. By using the famous eikonal approximation, we find that GWs do not exhibit any velocity birefringence in the CS gravity, no matter if there is a FDM background field. However, the inclusion of the imaginary part in the GW dispersion relations gives rise to the amplitude birefringence, i.e., one circular polarization is enhanced whereas the other suppressed. Due to the local nature of this galactic birefringence, the obtained effect only depends on the GW frequency without any reliance on the GW event distance. More remarkably, such amplitude modifications of the left- and right-handed polarizations oscillate in time with the period controlled by the FDM scalar mass. Also, we have considered the extra-galactic FDM-induced contribution to the GW birefringence, which can be safely neglected since it is suppressed by the corresponding cosmological DM density.

Currently, the existing LVK GW data already allows us to constrain the predicted FDM-induced amplitude birefringence. By including the associated birefringence factor in Eq. (17) into the left- and right-handed GW components, we can compare the obtained waveform model against the whole set of compact binary events [28, 34, 33] or the binary neutron star merger GW170817 with a multi-messenger approach [32]. Nevertheless, as emphasized before, the birefringence factor produced by the FDM is only a function of the GW frequency and does not rely on the GW propagation distance, which is a novel signature and requires a new fit to the LVK datasets. We can estimate the bound on κAsubscript𝜅𝐴\kappa_{A}italic_κ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT to be of 𝒪(0.01Gpc)𝒪0.01Gpc{\cal O}(0.01~{}{\rm Gpc})caligraphic_O ( 0.01 roman_Gpc ) based on previous investigations in Refs. [28, 34, 32, 33],. More significantly, if the obtained κAsubscript𝜅𝐴\kappa_{A}italic_κ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT for each event shows the periodic time dependence, this would further support the FDM origin of the GW birefringence as the period reflects the FDM mass. However, a detailed discussion of the data-analysis issue is beyond the scope of the present paper, and we would like to postpone this exploration to a future work.

Acknowledgements

DH would like to thank Prof. Kazuya Koyama for his warm hospitality at the Institute of Cosmology and Gravitation, University of Portsmouth, where part of this work was carried out. DH is also grateful to Prof. Ian Harry and Prof. Tessa Baker for enlightening discussions. This work is supported in part by the National Key Research and Development Program of China under Grant No. 2021YFC2203003, and the China Scholarship Council under Grant No. 202310740003.

References