General Relativity and Quantum Cosmology
[Submitted on 19 Jun 2024]
Title:Gravitational Wave Birefringence from Fuzzy Dark Matter
View PDF HTML (experimental)Abstract:Gravitational wave (GW) birefringence is a remarkable phenomenon that can be used to test the parity violation in gravity. By coupling the fuzzy dark matter (FDM) scalar to the gravitational Chern-Simons term, we explore the GW birefringence effects in the FDM background. In particular, in light of the highly oscillating granular FDM structure at the galactic scale, we are led to investigating the GW propagation in the Chern-Simons gravity over the general nontrivial scalar profile, which is a natural extension of previous studies on the homogeneous and isotropic configurations. As a result, it is found that GWs of both circularly polarized modes propagate in the straight line with the speed of light, and does not show any velocity birefringence. However, when considering the imaginary part of the dispersion relation, GWs exhibit the amplitude birefringence in which one circular polarization is enhanced while the other suppressed. Due to its local nature, the FDM-induced amplitude birefringence only depends on the GW frequency without any reliance on the GW event distance. More importantly, the birefringence factor shows a periodic time variation with the period reflecting the FDM scalar mass, which is the smoking gun for testing this new birefringence mechanism. Finally, we also study the extra-galactic FDM contribution to the GW birefringence, which is shown to be suppressed by the cosmological DM density and thus subdominant compared with the galactic counterpart.
Current browse context:
gr-qc
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.