\stackMath

Cosmic slowing down of acceleration with the Chaplygin-Jacobi gas as a dark fluid

J.A.S.Fortunato jeferson.fortunato@edu.ufes.br PPGCosmo, CCE, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 540, CEP 29.075-910, Vitória, ES, Brazil Núcleo Cosmo-UFES, CCE, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 540, CEP 29.075-910, Vitória, ES, Brazil Instituto Argentino de Radioastronomía, C.C. No. 5, 1894 Buenos Aires, Argentina    W.S. Hipólito-Ricaldi wiliam.ricaldi@ufes.br Departamento de Ciências Naturais, CEUNES, Universidade Federal do Espírito Santo, Rodovia BR 101 Norte, km. 60,CEP 29.932-540, São Mateus, ES, Brazil Núcleo Cosmo-UFES, CCE, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 540, CEP 29.075-910, Vitória, ES, Brazil    N. Videla nelson.videla@pucv.cl Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 331, Curauma, Valparaíso, Chile    J.R. Villanueva jose.villanueva@uv.cl Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso,
Avenida Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
Abstract

A particular generalization of the Chaplygin inflationary model, using the formalism of Hamilton-Jacobi and elliptic functions, results in a more general non-linear Chaplygin-type equation of state (Chaplygin-Jacobi model). We investigate the implementation of this model as a dark energy (DE) fluid to explain the recent acceleration of the universe. Unlike ΛΛ\Lambdaroman_ΛCDM and other Chaplygin-like fluids, where the final fate of the universe is an eternal de Sitter (dS) phase, the dynamics of this model allow for the possibility of a decelerating phase in the future, following the current accelerating phase. In other words, a transient acceleration arises, accounting for the recently claimed slowing down phenomenon. This Chaplygin-Jacobi model shows important differences compared to the standard and generalized Chaplygin gas models. Additionally, we perform a Markov Chain Monte Carlo (MCMC) analysis using several datasets, including Type Ia Supernovae (SnIa), Cosmic Chronometers (CC), and Fast Radio Bursts (FRBs), to examine the observational viability of the model. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.


I Introduction

One of the greatest challenges in modern science is understanding the universe, particularly its origin, evolution, and final fate. In this regard, the hot big bang (HBB) cosmology, based on four-dimensional General Relativity (GR) Einstein:1916vd , has been widely accepted as the standard paradigm describing how the universe expanded from an initial singularity. During the longest part of its lifetime, the universe has undergone a decelerating expansion, being dominated first by radiation and then by matter. However, the cosmic history includes two phases of accelerated expansion: one at very early times and another at late times. The first accelerating phase corresponds to inflation, which supplies an explanation of the observed large scale structure (LSS), as it provides the primordial, almost adiabatic and scale-invariant perturbations that undergo gravitational collapse to form galaxies and clusters of galaxies Abazajian:2013vfg . The second accelerating phase corresponds to the current cosmic acceleration, which is supported from a large number of observational evidence Riess1998 ; Perlmutter1998 ; WMAP2003 ; Aghanim2020 ; cooke2018one ; Eisenstein2005 , which also indicates that our universe is spatially almost flat, and currently dominated by dark energy (DE) and cold dark matter (DM). The accelerated expansion of the present universe is attributed to DE, which is an exotic component having negative pressure, such as the cosmological constant ΛΛ\Lambdaroman_Λ Padmanabhan:2002ji ; Sahni:1999gb ; Carroll:2000fy . The ΛΛ\Lambdaroman_ΛCDM model, has proven to be successful in explaining a wide range of cosmological observations Riess1998 ; Perlmutter1998 ; WMAP2003 ; Aghanim2020 ; cooke2018one ; Eisenstein2005 . Despite its success, it faces several challenges, namely: (i) the cosmological constant problem Weinberg1989 ; Martin:2012bt , (ii) the cosmic coincidence problem (or the so-called “why now” problem) Zlatev1998 ; Arkani-Hamed:2000ifx , and more recently, (iii) the tension between measurements of the Hubble parameter H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT DiValentino2021 ; Riess:2020fzl and (iv) the S8subscript𝑆8S_{8}italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT tension (S8=σ8Ωm/0.3subscript𝑆8subscript𝜎8subscriptΩ𝑚0.3S_{8}=\sigma_{8}\sqrt{\Omega_{m}/0.3}italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT square-root start_ARG roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT / 0.3 end_ARG) DiValentino2020 .

Several approaches have been proposed to address ΛΛ\Lambdaroman_ΛCDM problems. They generally fall into two groups: one modifies GR, while the other, dynamical DE, involves models where the properties of DE vary over time, unlike in the ΛΛ\Lambdaroman_ΛCDM. Several candidates for dynamical DE have been studied in recent years, including the Chaplygin gas (CG). For a review of DE models, see Refs. Copeland:2006wr ; Nojiri:2006ri ; Clifton:2011jh ; Joyce:2016vqv . The CG’s equation of state (EoS) has a connection with string and brane theories Bilic:2001cg ; Heydari-Fard:2007vcg , and it can admit a supersymmetric generalization Jackiw2000 . Chaplygin cosmology can be understood as the study of the dark sector through a CG fluid that satisfies the relation p=Bρ𝑝𝐵𝜌p=-\frac{B}{\rho}italic_p = - divide start_ARG italic_B end_ARG start_ARG italic_ρ end_ARG Kamenshchik:2001cp ; Fabris:2002xx ; Gorini:2002kf , and its generalizations, like the Generalized Chaplygin Gas (GCG) with an equation of state p=Bρα𝑝𝐵superscript𝜌𝛼p=-\frac{B}{\rho^{\alpha}}italic_p = - divide start_ARG italic_B end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT end_ARG Bilic:2001cg ; Bento:2002ps , where p𝑝pitalic_p represents pressure (assumed to be negative to produce an accelerated stage at late times), ρ𝜌\rhoitalic_ρ is the energy density, and B𝐵Bitalic_B is a positive constant (to ensure p<0)p<0)italic_p < 0 ) and 0<α10𝛼10<\alpha\leq 10 < italic_α ≤ 1. These models belong to the unified models class, which provide a description of the matter-dominated era and the late accelerating era with only one component rather than two (for other unified models, see e.g. Hipolito2009 ; Hipolito2010 ). However, observationally, the CG model has shown problems with instabilities in their corresponding trajectories Perrotta2004 and when tested with various observations, such as Type Ia Supernovae (SnIa) , X-ray gas mass fraction of clusters, and Hubble rate-redshift data biesiada2005 ; Colistete:2005yx ; Zhu:2004aq ; Wu:2006pe ; Makler:2002jv . However, although the GCG model is in agreement with background observational data biesiada2005 ; Colistete:2005yx ; Zhu:2004aq ; Wu:2006pe ; Makler:2002jv ; delCampo:2009cz , it suffers from an unexpected blow-up in the matter power spectrum caused by adiabatic pressure perturbations Sandvik:2002jz . This undesired effect can be avoided if some kind of non-adiabaticity is introduced in the model (see e.g. vomMarttens:2017cuz ). Moreover, in recent years, several GCG modifications or generalizations have been proposed to study the dark sector. Among others, some of them are the modified Chaplygin gas (MCG) Benaoum2022 ; Debnath2004 , the new generalized Chaplygin gas (NCG) Zhang2004 , and viscous generalized Chaplygin gas (VGCG) Zhai2005 ; Hernandez-Almada:2021osl . For recent observational results involving those models, see e.g. Zheng2022 .

Recently, a further generalization has been proposed through the Hamilton-Jacobi formalism in the inflationary context by means of elliptic functions Rengo1 . This led to the development of a more general Chaplygin-like EoS, which we will refer to as Chaplygin-Jacobi Gas model (CJG). The CJG EoS is expressed as follows:

p=B,kραkρ(21Bρα+1).𝑝𝐵𝑘superscript𝜌𝛼superscript𝑘𝜌21𝐵superscript𝜌𝛼1p=-\frac{B,k}{\rho^{\alpha}}-k^{\prime}\rho\left(2-\frac{1}{B}\rho^{\alpha+1}% \right)\,.italic_p = - divide start_ARG italic_B , italic_k end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT end_ARG - italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_ρ ( 2 - divide start_ARG 1 end_ARG start_ARG italic_B end_ARG italic_ρ start_POSTSUPERSCRIPT italic_α + 1 end_POSTSUPERSCRIPT ) . (1)

In the above equation, k𝑘kitalic_k represents the modulus of the elliptic function, and k=1ksuperscript𝑘1𝑘k^{\prime}=1-kitalic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = 1 - italic_k is the complementary modulus. It is noteworthy that the GCG is obtained with k=1𝑘1k=1italic_k = 1 and B>0𝐵0B>0italic_B > 0. In recent years, the CJG has been studied in contexts different from this work Rengo1 ; Rengo2 ; Rengo3 ; Debnath:2021pxy ; Mukherjee2023 ; Chaudhary2023l ; Rengo4 .

Considering that Chaplygin-like fluids offer an interesting framework to study phenomenology beyond the ΛΛ\Lambdaroman_ΛCDM, the main goal of the present work is to explore the viability of the CJG for describing the late universe. First, we integrate the balance equation and find its solutions for the energy density, pressure and EoS parameter. Then, we perform an analysis of its parameter space to find the region in which physical solutions are possible. After obtaining an analytical solution for the Hubble rate, and in order to compare the background evolution of the CJG with that of the ΛΛ\Lambdaroman_ΛCDM model, we introduce parameters where derivatives of the scale factor beyond the second-order appear. To this end, one option is to study the so-called statefinder parameters, r𝑟ritalic_r and s𝑠sitalic_s, defined as follows Sahni:2002fz ; Alam:2003sc .

r𝑟\displaystyle ritalic_r \displaystyle\equiv a˙˙˙aH3,˙˙˙𝑎𝑎superscript𝐻3\displaystyle\frac{\dddot{a}}{aH^{3}},divide start_ARG over˙˙˙ start_ARG italic_a end_ARG end_ARG start_ARG italic_a italic_H start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG , (2)
s𝑠\displaystyle sitalic_s \displaystyle\equiv r13(q12),𝑟13𝑞12\displaystyle\frac{r-1}{3(q-\frac{1}{2})},divide start_ARG italic_r - 1 end_ARG start_ARG 3 ( italic_q - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) end_ARG , (3)

where the dot denotes differentiation with respect to cosmic time t𝑡titalic_t, H=a˙/a𝐻˙𝑎𝑎H=\dot{a}/aitalic_H = over˙ start_ARG italic_a end_ARG / italic_a represents the Hubble rate, and q=a¨/(aH2)𝑞¨𝑎𝑎superscript𝐻2q=-\ddot{a}/(aH^{2})italic_q = - over¨ start_ARG italic_a end_ARG / ( italic_a italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) denotes the deceleration parameter. It is worth noting that the statefinder parameters involve third derivatives of the scale factor with respect to cosmic time, in contrast to the Hubble rate and the deceleration parameter, which are expressed in terms of the first and second time derivatives of the scale factor, respectively. Statefinder analysis serves as a diagnostic tool for understanding the dynamics of the universe’s expansion. These parameters are computed for our specific DE model, and as we will discuss later, r𝑟ritalic_r and s𝑠sitalic_s can differ significantly from ΛΛ\Lambdaroman_ΛCDM even if they predict very similar expansion histories.

While emergent cosmology may not realize a unified model like most CG-like models, it offers a phenomenology with interesting results distinct from those of the CG model and its generalizations, particularly in future times. As is expected for any DE model, a fluid satisfying the relation (1) is subdominant in a multi-component universe during early times. This accurately reproduces a radiation-dominated era followed by a matter-dominated era, resulting in a decelerating universe. Subsequently, the DE fluid dominates, leading to an accelerating phase. However, a specific region in the parameter space permits a transient acceleration-deceleration in the future, indicating the possibility of a decelerating phase following the current accelerating phase. This phenomenon is commonly referred to as the cosmic slowing down of the current acceleration. DE models with a constant EoS like ΛΛ\Lambdaroman_ΛCDM or the w𝑤witalic_wCDM cannot exhibit the slowing down feature Zhang2018 , as they predict a de Sitter (dS) phase as the final fate of the universe. However, depending on the set of parameters, some DE models, especially those with dynamical EoS or parametrizations like the Chevallier-Polarski-Linder (CPL) model and others, allow for this possibility (see e.g. Vargas2011 ; Hu2015 ; Magana2014 ; Zhang2018 ; Bolotin2020 ). Here, we demonstrate that a universe with a fluid satisfying the relation (1) as DE can also exhibit the slowing down behavior. Additionally, we conduct a data analysis to investigate whether recent astronomical and cosmological observations support this transient behavior in the context of the CJG. To achieve this, we utilize the latest supernova (SnIa) Pantheon + data and Cosmic Chronometers (CC) data. Furthermore, we incorporate observations from Fast Radio Bursts (FRBs) into our tests, as they have recently been shown to provide an interesting complement to other cosmological probes.

Our work is organized as follows: after this introduction, in Section II, we derive solutions for the energy density, pressure, and EoS parameter. Next, we conduct an analysis of the parameter space to determine the sub-regions where physical solutions are feasible and the sub-regions where the slowing down phenomenon appears. In Section III, we delve into the background cosmological dynamics of the CJG in a multifluid context. This includes obtaining an analytical solution for the Hubble rate H(z)𝐻𝑧H(z)italic_H ( italic_z ) as a function of redshift and introducing the deceleration and Statefinder parameters tailored for the CJG. In Section IV, we present the data and relevant equations for the implementation of the MCMC analysis. In Section V, we present the results of the MCMC analysis and evaluate numerically the cosmic evolution of the CJG against redshift, comparing these results with those of the ΛΛ\Lambdaroman_ΛCDM model. Finally, we summarize our findings and present our conclusions in Section VI. Throughout our work, we adopt the mostly positive metric signature (,+,+,+)(-,+,+,+)( - , + , + , + ) and utilize natural units where c==1𝑐Planck-constant-over-2-pi1c=\hbar=1italic_c = roman_ℏ = 1.

II Chaplygin-Jacobi dark energy

As mentioned before, the Hamilton-Jacobi formalism allows for obtaining a particular generalization of the Chaplygin inflationary model through elliptical functions, resulting in a more general Chaplygin-like EoS parameter Rengo1

ω=Bkρα+12k+kBρα+1,𝜔𝐵𝑘superscript𝜌𝛼12superscript𝑘superscript𝑘𝐵superscript𝜌𝛼1\omega=-\frac{B\,k}{\rho^{\alpha+1}}-2k^{\prime}+\frac{k^{\prime}}{B}\rho^{% \alpha+1},italic_ω = - divide start_ARG italic_B italic_k end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT italic_α + 1 end_POSTSUPERSCRIPT end_ARG - 2 italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + divide start_ARG italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_B end_ARG italic_ρ start_POSTSUPERSCRIPT italic_α + 1 end_POSTSUPERSCRIPT , (4)

where k=1ksuperscript𝑘1𝑘k^{\prime}=1-kitalic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = 1 - italic_k, and α𝛼\alphaitalic_α, B𝐵Bitalic_B and k𝑘kitalic_k are constants with 0<k<10𝑘10<k<10 < italic_k < 1 and 0<k<10superscript𝑘10<k^{\prime}<10 < italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT < 1. In principle, the EoS in (1) reduces to a GCG case when k=1𝑘1k=1italic_k = 1, B>0𝐵0B>0italic_B > 0 and 0<α<10𝛼10<\alpha<10 < italic_α < 1. The case where B>0𝐵0B>0italic_B > 0, k=1𝑘1k=1italic_k = 1 and α=0𝛼0\alpha=0italic_α = 0 reproduces ΛΛ\Lambdaroman_ΛCDM. There is no other case in which one can obtain the MGC, NCG, or another Chaplygin-like EoS. In the GCG context, only the first term in Eq. (1) appears. Then, for B>0𝐵0B>0italic_B > 0 and 0<α<10𝛼10<\alpha<10 < italic_α < 1, the pressure is always negative, allowing an explanation for the late accelerated expansion of the universe. However, the CJG has two additional contributions to the pressure. The second term of Eq. (1) is always negative, but the first and third terms always have opposite signs. For instance, for B>0𝐵0B>0italic_B > 0, the first term is negative and the third term is positive, while for B<0𝐵0B<0italic_B < 0 the behaviour is reversed. Eventually, depending on the parameter space, the positive term might dominate and the pressure might become less negative, opening the the possibility of a slowing down of the cosmic acceleration. This becomes more evident when looking at the energy density and pressure as functions of the scale factor. Let us first consider one universe dominated by a fluid with an EoS as in Eq. (1) and solve the energy balance equation.

In the context of a universe described by the Friedman-Lemaître-Robertson-Walker (FLRW) metric, the energy balance equation for an EoS given by Eq. (1) reads:

ρ˙ρ=3a˙a(Bkρα+1+2k1+(1k)Bρα+1)=3a˙a(Bk(12k)ρα+1+1kBρ2(α+1)ρα+1),˙𝜌𝜌3˙𝑎𝑎𝐵𝑘superscript𝜌𝛼12𝑘11𝑘𝐵superscript𝜌𝛼13˙𝑎𝑎𝐵𝑘12𝑘superscript𝜌𝛼11𝑘𝐵superscript𝜌2𝛼1superscript𝜌𝛼1\displaystyle\frac{\dot{\rho}}{\rho}=-3\frac{\dot{a}}{a}\left(-\frac{B\,k}{% \rho^{\alpha+1}}+2k-1+\frac{(1-k)}{B}\rho^{\alpha+1}\right)=-3\frac{\dot{a}}{a% }\left(\frac{-Bk-(1-2k)\rho^{\alpha+1}+\frac{1-k}{B}\rho^{2(\alpha+1)}}{\rho^{% \alpha+1}}\right),divide start_ARG over˙ start_ARG italic_ρ end_ARG end_ARG start_ARG italic_ρ end_ARG = - 3 divide start_ARG over˙ start_ARG italic_a end_ARG end_ARG start_ARG italic_a end_ARG ( - divide start_ARG italic_B italic_k end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT italic_α + 1 end_POSTSUPERSCRIPT end_ARG + 2 italic_k - 1 + divide start_ARG ( 1 - italic_k ) end_ARG start_ARG italic_B end_ARG italic_ρ start_POSTSUPERSCRIPT italic_α + 1 end_POSTSUPERSCRIPT ) = - 3 divide start_ARG over˙ start_ARG italic_a end_ARG end_ARG start_ARG italic_a end_ARG ( divide start_ARG - italic_B italic_k - ( 1 - 2 italic_k ) italic_ρ start_POSTSUPERSCRIPT italic_α + 1 end_POSTSUPERSCRIPT + divide start_ARG 1 - italic_k end_ARG start_ARG italic_B end_ARG italic_ρ start_POSTSUPERSCRIPT 2 ( italic_α + 1 ) end_POSTSUPERSCRIPT end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT italic_α + 1 end_POSTSUPERSCRIPT end_ARG ) , (5)

where a𝑎aitalic_a is the scale factor of the homogeneous and isotropic metric and a dot denotes differentiation with respect to cosmic time. This equation can be integrated directly, resulting in

ρ(a)=[BBAAka3(1+α)]11+α,𝜌𝑎superscriptdelimited-[]𝐵𝐵𝐴𝐴superscript𝑘superscript𝑎31𝛼11𝛼\displaystyle\rho(a)=\left[B-\frac{BA}{Ak^{\prime}-a^{3(1+\alpha)}}\right]^{% \frac{1}{1+\alpha}}\,,italic_ρ ( italic_a ) = [ italic_B - divide start_ARG italic_B italic_A end_ARG start_ARG italic_A italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 3 ( 1 + italic_α ) end_POSTSUPERSCRIPT end_ARG ] start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 1 + italic_α end_ARG end_POSTSUPERSCRIPT , (6)

where A𝐴Aitalic_A is an integration constant. If B=ρ01+αBs𝐵subscriptsuperscript𝜌1𝛼0subscript𝐵𝑠B=\rho^{1+\alpha}_{0}B_{s}italic_B = italic_ρ start_POSTSUPERSCRIPT 1 + italic_α end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, this last equation can be conveniently rewritten as

ρ(a)=ρ0[BsBsAAka3(1+α)]11+α,𝜌𝑎subscript𝜌0superscriptdelimited-[]subscript𝐵𝑠subscript𝐵𝑠𝐴𝐴superscript𝑘superscript𝑎31𝛼11𝛼\displaystyle\rho(a)=\rho_{0}\left[B_{s}-\frac{B_{s}A}{Ak^{\prime}-a^{3(1+% \alpha)}}\right]^{\frac{1}{1+\alpha}}\,,italic_ρ ( italic_a ) = italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT [ italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - divide start_ARG italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_A end_ARG start_ARG italic_A italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT 3 ( 1 + italic_α ) end_POSTSUPERSCRIPT end_ARG ] start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 1 + italic_α end_ARG end_POSTSUPERSCRIPT , (7)

and the integration constant A𝐴Aitalic_A is determined by the condition ρ=ρ0𝜌subscript𝜌0\rho=\rho_{0}italic_ρ = italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT at the present time, so that

A=1Bs1k(1Bs),𝐴1subscript𝐵𝑠1𝑘1subscript𝐵𝑠\displaystyle A=\frac{1-B_{s}}{1-k(1-B_{s})},italic_A = divide start_ARG 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG 1 - italic_k ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) end_ARG , (8)

and thus,

ρ(a)=ρo[BsBs(1Bs)(1BS)k(k+Bsk)a3(1+α)]11+α,𝜌𝑎subscript𝜌𝑜superscriptdelimited-[]subscript𝐵𝑠subscript𝐵𝑠1subscript𝐵𝑠1subscript𝐵𝑆superscript𝑘superscript𝑘subscript𝐵𝑠𝑘superscript𝑎31𝛼11𝛼\displaystyle\rho(a)=\rho_{o}\left[B_{s}-\frac{B_{s}(1-B_{s})}{(1-B_{S})k^{% \prime}-(k^{\prime}+B_{s}\,k)a^{3(1+\alpha)}}\right]^{\frac{1}{1+\alpha}}\,,italic_ρ ( italic_a ) = italic_ρ start_POSTSUBSCRIPT italic_o end_POSTSUBSCRIPT [ italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - divide start_ARG italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) end_ARG start_ARG ( 1 - italic_B start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ) italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - ( italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k ) italic_a start_POSTSUPERSCRIPT 3 ( 1 + italic_α ) end_POSTSUPERSCRIPT end_ARG ] start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 1 + italic_α end_ARG end_POSTSUPERSCRIPT , (9)

Notice that the energy density spans a three-dimensional space of parameters. Accordingly, the pressure of the CJG as a function of the scale factor can be computed by replacing Eq. (9) into Eq. (1). Although, in principle, solution (9) has a three-dimensional space of parameters

={(α,Bs,k)/α,Bs,0<k<1},formulae-sequence𝛼subscript𝐵𝑠𝑘𝛼formulae-sequencesubscript𝐵𝑠0𝑘1{\cal{M}}=\{(\alpha,B_{s},k)/\,\alpha\in\mathbb{R},B_{s}\in\mathbb{R},0<k<1\},caligraphic_M = { ( italic_α , italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_k ) / italic_α ∈ roman_ℝ , italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∈ roman_ℝ , 0 < italic_k < 1 } , (10)

some regions of this space can lead to singularities, divergences in the past, or negative densities, resulting in non-physical solutions across the entire space {\cal{M}}caligraphic_M. However, certain sub-regions of {\cal{M}}caligraphic_M allow solutions without these problems. Let us find the sub-regions in {\cal{M}}caligraphic_M where we can have physical solutions for the model.

II.1 Physical solutions

From a physical standpoint, we impose that the energy density must always be positive and that there are no singularities within the interval 0<a<10𝑎10<a<10 < italic_a < 1. For convenience, it is better to analyze two different regimes for the parameter α𝛼\alphaitalic_α: (i) α+1<0𝛼10\alpha+1<0italic_α + 1 < 0 and (ii) α+10𝛼10\alpha+1\geq 0italic_α + 1 ≥ 0. Let us analyze each case separately

II.1.1 Case α+1<0𝛼10\alpha+1<0italic_α + 1 < 0

For α+1<0𝛼10\alpha+1<0italic_α + 1 < 0, we have (α+1)>0𝛼10-(\alpha+1)>0- ( italic_α + 1 ) > 0. Then, the energy density in Eq. (9) can be rewritten as

ρ(1+α)=ρ0(1+α)[Bs+Bs(1Bs)(k+Bsk)a3(1+α)(1Bs)k]1.superscript𝜌1𝛼superscriptsubscript𝜌01𝛼superscriptdelimited-[]subscript𝐵𝑠subscript𝐵𝑠1subscript𝐵𝑠superscript𝑘subscript𝐵𝑠𝑘superscript𝑎31𝛼1subscript𝐵𝑠superscript𝑘1\displaystyle\rho^{-(1+\alpha)}=\rho_{0}^{-(1+\alpha)}\left[B_{s}+\frac{B_{s}(% 1-B_{s})}{(k^{\prime}+B_{s}\,k)a^{3(1+\alpha)}-(1-B_{s})k^{\prime}}\right]^{-1% }\,.italic_ρ start_POSTSUPERSCRIPT - ( 1 + italic_α ) end_POSTSUPERSCRIPT = italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - ( 1 + italic_α ) end_POSTSUPERSCRIPT [ italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + divide start_ARG italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) end_ARG start_ARG ( italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k ) italic_a start_POSTSUPERSCRIPT 3 ( 1 + italic_α ) end_POSTSUPERSCRIPT - ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ] start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT . (11)

In that case, a singularity happens for

ac3(1+α)=1+1k(Bs1),subscriptsuperscript𝑎31𝛼𝑐11𝑘subscript𝐵𝑠1\displaystyle a^{-3(1+\alpha)}_{c}=1+\frac{1}{k(B_{s}-1)},italic_a start_POSTSUPERSCRIPT - 3 ( 1 + italic_α ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 1 + divide start_ARG 1 end_ARG start_ARG italic_k ( italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - 1 ) end_ARG , (12)

To avoid any singularity in 0<a<10𝑎10<a<10 < italic_a < 1, acsubscript𝑎𝑐a_{c}italic_a start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT must be outside of this interval. One possibility is to have ac3(α+1)subscriptsuperscript𝑎3𝛼1𝑐a^{-3(\alpha+1)}_{c}\in\mathbb{R}italic_a start_POSTSUPERSCRIPT - 3 ( italic_α + 1 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ∈ roman_ℝ and ac>1subscript𝑎𝑐1a_{c}>1italic_a start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT > 1. This condition is possible only if the second term in Eq. (12) is always positive, i.e., for Bs>1subscript𝐵𝑠1B_{s}>1italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT > 1. Therefore, we have the first sub-region with physical solutions

𝒩1={(α,Bs,k)/α<1,Bs>1,0<k<1},subscript𝒩1formulae-sequence𝛼subscript𝐵𝑠𝑘𝛼1formulae-sequencesubscript𝐵𝑠10𝑘1\displaystyle{\cal{N}_{1}}=\{(\alpha,B_{s},k)/\alpha<-1,B_{s}>1,0<k<1\}\,,caligraphic_N start_POSTSUBSCRIPT caligraphic_1 end_POSTSUBSCRIPT = { ( italic_α , italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_k ) / italic_α < - 1 , italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT > 1 , 0 < italic_k < 1 } , (13)

Another possibility is that ac3(α+1)subscriptsuperscript𝑎3𝛼1𝑐a^{-3(\alpha+1)}_{c}\notin\mathbb{R}italic_a start_POSTSUPERSCRIPT - 3 ( italic_α + 1 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ∉ roman_ℝ and ac<0subscript𝑎𝑐0a_{c}<0italic_a start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT < 0. This occurs only when kk<Bs<1superscript𝑘𝑘subscript𝐵𝑠1-\frac{k^{\prime}}{k}<B_{s}<1- divide start_ARG italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_k end_ARG < italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < 1. Nevertheless, in the past, when a1much-less-than𝑎1a\ll 1italic_a ≪ 1, we have the limit

ρ(1+α)=ρ0(1+α)(1Bs),superscript𝜌1𝛼superscriptsubscript𝜌01𝛼1subscript𝐵𝑠\displaystyle\rho^{-(1+\alpha)}=\rho_{0}^{-(1+\alpha)}\left(\frac{1}{B_{s}}% \right)\,,italic_ρ start_POSTSUPERSCRIPT - ( 1 + italic_α ) end_POSTSUPERSCRIPT = italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - ( 1 + italic_α ) end_POSTSUPERSCRIPT ( divide start_ARG 1 end_ARG start_ARG italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG ) , (14)

where the expression in parentheses is negative for Bs<0subscript𝐵𝑠0B_{s}<0italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < 0. We then discard negative values, identifying another sub-region 𝒩2subscript𝒩2{\cal{N}_{2}}\subset{\cal{M}}caligraphic_N start_POSTSUBSCRIPT caligraphic_2 end_POSTSUBSCRIPT ⊂ caligraphic_M with physical solutions, such that

𝒩2={(α,Bs,k)/α<1,0<Bs<1,0<k<1}.\displaystyle{\cal{N}_{2}}=\{(\alpha,B_{s},k)/\alpha<-1,0<B_{s}<1,0<k<1\}\,.caligraphic_N start_POSTSUBSCRIPT caligraphic_2 end_POSTSUBSCRIPT = { ( italic_α , italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_k ) / italic_α < - 1 , 0 < italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < 1 , 0 < italic_k < 1 } . (15)

II.1.2 Case α+10𝛼10\alpha+1\geq 0italic_α + 1 ≥ 0

In the case where α+10𝛼10\alpha+1\geq 0italic_α + 1 ≥ 0, Eq. (9) has a singularity at

as3(1+α)=1Bsk+Bsk.superscriptsubscript𝑎𝑠31𝛼1subscript𝐵𝑠superscript𝑘subscript𝐵𝑠𝑘\displaystyle a_{s}^{3(1+\alpha)}=1-\frac{B_{s}}{k^{\prime}+B_{s}k}\,.italic_a start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 ( 1 + italic_α ) end_POSTSUPERSCRIPT = 1 - divide start_ARG italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k end_ARG . (16)

As in the previous case, to avoid a singularity in 0<a<10𝑎10<a<10 < italic_a < 1, we have the conditions (i) ac>1subscript𝑎𝑐1a_{c}>1italic_a start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT > 1 and (ii) ac<0subscript𝑎𝑐0a_{c}<0italic_a start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT < 0. In each case, we divide the analysis into two parts: for BS>0subscript𝐵𝑆0B_{S}>0italic_B start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT > 0 and for BS<0subscript𝐵𝑆0B_{S}<0italic_B start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT < 0. In condition (i), the second term on the right side of Eq. (16) must be negative, which for Bs>0subscript𝐵𝑠0B_{s}>0italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT > 0, only occurs when k+Bsk<0superscript𝑘subscript𝐵𝑠𝑘0k^{\prime}+B_{s}k<0italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k < 0. However, this condition never holds when Bs>0subscript𝐵𝑠0B_{s}>0italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT > 0. On the other hand, for Bs<0subscript𝐵𝑠0B_{s}<0italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < 0, the second term on the right side of Eq. (16) is negative when k+Bsk>0superscript𝑘subscript𝐵𝑠𝑘0k^{\prime}+B_{s}k>0italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k > 0, which is true if kk<BS<0superscript𝑘𝑘subscript𝐵𝑆0-\frac{k^{\prime}}{k}<B_{S}<0- divide start_ARG italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_k end_ARG < italic_B start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT < 0. Consequently, we identify another sub-region 𝒩3subscript𝒩3{\cal{N}_{3}}\subset{\cal{M}}caligraphic_N start_POSTSUBSCRIPT caligraphic_3 end_POSTSUBSCRIPT ⊂ caligraphic_M with physical solutions, such that

𝒩3={(α,Bs,k)/α1,kk<Bs<0,0<k<1}.\displaystyle{\cal{N}}_{3}=\{(\alpha,B_{s},k)/\alpha\geq-1,-\frac{k^{\prime}}{% k}<B_{s}<0,0<k<1\}.caligraphic_N start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = { ( italic_α , italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_k ) / italic_α ≥ - 1 , - divide start_ARG italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_k end_ARG < italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < 0 , 0 < italic_k < 1 } . (17)

At this point, it is worth mentioning that Bssubscript𝐵𝑠B_{s}italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT being negative is not a problem. Unlike in other Chaplygin-like cosmologies where the first term in Eq. (1) has to be negative, in the CJG context this term can be positive, while the third term is negative. The three terms together can ensure the negativity of the entire expression in Eq. (1). Additionally, notice that for early times, i.e., a1much-less-than𝑎1a\ll 1italic_a ≪ 1, we have that

ρρiρ0(Bskk)11+α,𝜌subscript𝜌𝑖subscript𝜌0superscriptsubscript𝐵𝑠𝑘superscript𝑘11𝛼\displaystyle\rho\rightarrow\rho_{i}\equiv\rho_{0}\left(\frac{-B_{s}\,k}{k^{% \prime}}\right)^{\frac{1}{1+\alpha}},italic_ρ → italic_ρ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≡ italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( divide start_ARG - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k end_ARG start_ARG italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 1 + italic_α end_ARG end_POSTSUPERSCRIPT , (18)

which is perfectly compatible with negative values for BSsubscript𝐵𝑆B_{S}italic_B start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT. Moreover, for Bs>0subscript𝐵𝑠0B_{s}>0italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT > 0, condition (ii) is satisfied when 0<k+Bsk<Bs0superscript𝑘subscript𝐵𝑠𝑘subscript𝐵𝑠0<k^{\prime}+B_{s}k<B_{s}0 < italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k < italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, which is the case for Bs>1subscript𝐵𝑠1B_{s}>1italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT > 1. However, positive values are not allowed by the limit in Eq. (18). Finally, for Bs<0subscript𝐵𝑠0B_{s}<0italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < 0, condition (ii) is satisfied when BS<k+BSk<0subscript𝐵𝑆superscript𝑘subscript𝐵𝑆𝑘0B_{S}<k^{\prime}+B_{S}k<0italic_B start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT < italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT italic_k < 0, which is valid for Bs<kksubscript𝐵𝑠superscript𝑘𝑘B_{s}<-\frac{k^{\prime}}{k}italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < - divide start_ARG italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_k end_ARG. Therefore, we also have physical solutions in the sub-region 𝒩4subscript𝒩4{\cal{N}}_{4}\subset{\cal{M}}caligraphic_N start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ⊂ caligraphic_M such that

𝒩4={(α,Bs,k)/α>1,Bs<kk,0<k<1}.subscript𝒩4formulae-sequence𝛼subscript𝐵𝑠𝑘𝛼1formulae-sequencesubscript𝐵𝑠superscript𝑘𝑘0𝑘1\displaystyle{\cal{N}}_{4}=\{(\alpha,B_{s},k)/\alpha>-1,B_{s}<-\frac{k^{\prime% }}{k},0<k<1\}.caligraphic_N start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT = { ( italic_α , italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_k ) / italic_α > - 1 , italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < - divide start_ARG italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_k end_ARG , 0 < italic_k < 1 } . (19)

Summarizing, we have physical solutions in

𝒩=𝒩1𝒩2𝒩3𝒩4.𝒩subscript𝒩1subscript𝒩2subscript𝒩3subscript𝒩4\displaystyle{\cal{N}}={\cal{N}}_{1}\cup{\cal{N}}_{2}\cup{\cal{N}}_{3}\cup{% \cal{N}}_{4}\,.caligraphic_N = caligraphic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ caligraphic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∪ caligraphic_N start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ∪ caligraphic_N start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT . (20)

We remark that the density is always positive in 𝒩𝒩{\cal{N}}caligraphic_N. Additionally, unlike CG, GCG, MCG, NCG, and VCG, the limit in the past for CJG (Eqs. (14) and (18)) does not correspond to a matter component. This implies that CJG cannot be used as a unified model.

II.2 Conditions for cosmic slowing down

The cosmic acceleration is usually attributed to the dominance of a negative pressure component. For instance, in the ΛΛ\Lambdaroman_ΛCDM case, where p=ρ𝑝𝜌p=-\rhoitalic_p = - italic_ρ, the pressure is always negative, and acceleration will extend forever, driving the universe towards a de Sitter phase as a final state. The same fate is predicted by GCG and other Chaplygin-like models. However, for the CJG model, depending on contributions to the pressure, this can be less negative, thereby opening the possibility of a decelerating phase immediately after the present accelerating phase. Consequently, it is interesting to check the existence of transient acceleration in the sub-region 𝒩𝒩{\cal{N}}caligraphic_N. To this end, we need to start with the following expressions for the deceleration parameter and for the relation between the Hubble function and a general EoS parameter w(z)𝑤𝑧w(z)italic_w ( italic_z )

q(z)=1+1+zEdEdz,E2(z)exp[30z1+w(z)1+z𝑑z].formulae-sequence𝑞𝑧11𝑧𝐸𝑑𝐸𝑑𝑧proportional-tosuperscript𝐸2𝑧expdelimited-[]3subscriptsuperscript𝑧01𝑤superscript𝑧1superscript𝑧differential-dsuperscript𝑧\displaystyle q(z)=-1+\frac{1+z}{E}\frac{dE}{dz}\,,\qquad E^{2}(z)\propto\text% {exp}\left[3\int^{z}_{0}\frac{1+w(z^{\prime})}{1+z^{\prime}}dz^{\prime}\right]\,.italic_q ( italic_z ) = - 1 + divide start_ARG 1 + italic_z end_ARG start_ARG italic_E end_ARG divide start_ARG italic_d italic_E end_ARG start_ARG italic_d italic_z end_ARG , italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z ) ∝ exp [ 3 ∫ start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT divide start_ARG 1 + italic_w ( italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG start_ARG 1 + italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG italic_d italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ] . (21)

where E(z)=H(z)/H0𝐸𝑧𝐻𝑧subscript𝐻0E(z)=H(z)/H_{0}italic_E ( italic_z ) = italic_H ( italic_z ) / italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and H=a˙a𝐻˙𝑎𝑎H=\frac{\dot{a}}{a}italic_H = divide start_ARG over˙ start_ARG italic_a end_ARG end_ARG start_ARG italic_a end_ARG is the Hubble rate. A transition between accelerated and decelerated phases requires a switch to a negative slope in the deceleration parameter, i.e., dqdz<0𝑑𝑞𝑑𝑧0\frac{dq}{dz}<0divide start_ARG italic_d italic_q end_ARG start_ARG italic_d italic_z end_ARG < 0. Using Eqs. (21), it is possible to express this condition in terms of the EoS parameter (see Zhang2018 for details). This leads to the conclusion that slowing down acceleration requires at least the following condition to be met Zhang2018 :

dwdz<0.𝑑𝑤𝑑𝑧0\displaystyle\frac{dw}{dz}<0\,.divide start_ARG italic_d italic_w end_ARG start_ARG italic_d italic_z end_ARG < 0 . (22)

Clearly, the ΛΛ\Lambdaroman_ΛCDM and w𝑤witalic_wCDM models do not predict cosmic slowing down Zhang2018 . Similarly, the GCG, MCG, and NGC models also predict a final de Sitter phase for the universe, unlike the CJG model. Thus, we need to determine under which conditions a different fate from the de Sitter phase will occur in the model studied.

The EoS parameter w𝑤witalic_w as a function of the scale parameter can be found using Eqs. (4) and (9), which results in

ω=1+(1Bs)kk(1Bs)+(k+Bsk)a3(1+α)+(1Bs)k(k+Bsk)a3(1+α)(1Bs)k.𝜔11subscript𝐵𝑠𝑘𝑘1subscript𝐵𝑠superscript𝑘subscript𝐵𝑠𝑘superscript𝑎31𝛼1subscript𝐵𝑠superscript𝑘superscript𝑘subscript𝐵𝑠𝑘superscript𝑎31𝛼1subscript𝐵𝑠superscript𝑘\displaystyle\omega=-1+\frac{(1-B_{s})k}{k(1-B_{s})+(k^{\prime}+B_{s}k)a^{3(1+% \alpha)}}+\frac{(1-B_{s})k^{\prime}}{(k^{\prime}+B_{s}k)a^{3(1+\alpha)}-(1-B_{% s})k^{\prime}}\,.italic_ω = - 1 + divide start_ARG ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) italic_k end_ARG start_ARG italic_k ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) + ( italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k ) italic_a start_POSTSUPERSCRIPT 3 ( 1 + italic_α ) end_POSTSUPERSCRIPT end_ARG + divide start_ARG ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k ) italic_a start_POSTSUPERSCRIPT 3 ( 1 + italic_α ) end_POSTSUPERSCRIPT - ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG . (23)

In the appendix, we present a detailed evaluation of the condition in Eq. (22). The results indicate that cosmic slowing down is possible in 𝒩1subscript𝒩1{\cal{N}}_{1}caligraphic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and 𝒩4subscript𝒩4{\cal{N}}_{4}caligraphic_N start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT.

III Cosmology of the CJG

Here we study a cosmological model based on the results from the previous section, using the CJG fluid as the DE component. First, we assume the cosmic substratum to be dynamically dominated by a mixture of radiation (r𝑟ritalic_r), pressureless dark matter (m𝑚mitalic_m), and a DE component (de𝑑𝑒deitalic_d italic_e). Radiation and matter are modeled by barotropic fluids with EoS parameters wr=1/3subscript𝑤𝑟13w_{r}=1/3italic_w start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = 1 / 3 and wm1much-less-thansubscript𝑤𝑚1w_{m}\ll 1italic_w start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ≪ 1, respectively. The DE energy component comes in the form of a CJG fluid with EoS (1).

In General Relativity, the Friedmann equation for a homogeneous, isotropic, and spatially flat three-component universe is

3H2=8πG(ρr+ρm+ρde).3superscript𝐻28𝜋𝐺subscript𝜌𝑟subscript𝜌𝑚subscript𝜌𝑑𝑒\displaystyle 3H^{2}=8\pi\,G(\rho_{r}+\rho_{m}+\rho_{de})\,.3 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 8 italic_π italic_G ( italic_ρ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + italic_ρ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT + italic_ρ start_POSTSUBSCRIPT italic_d italic_e end_POSTSUBSCRIPT ) . (24)

Here, ρrsubscript𝜌𝑟\rho_{r}italic_ρ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT, ρmsubscript𝜌𝑚\rho_{m}italic_ρ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT, and ρdesubscript𝜌𝑑𝑒\rho_{de}italic_ρ start_POSTSUBSCRIPT italic_d italic_e end_POSTSUBSCRIPT are the radiation, pressureless dark matter, and DE densities, respectively. Moreover, energy conservation is satisfied by all the components separately

ρ˙i+3H(ρi+pi)=0,subscript˙𝜌𝑖3𝐻subscript𝜌𝑖subscript𝑝𝑖0\displaystyle\dot{\rho}_{i}+3H(\rho_{i}+p_{i})=0\,,over˙ start_ARG italic_ρ end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + 3 italic_H ( italic_ρ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_p start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = 0 , (25)

where i=r,m,de𝑖𝑟𝑚𝑑𝑒i=r,m,deitalic_i = italic_r , italic_m , italic_d italic_e. As it is well-known, solutions of Eq. (25) for radiation and matter are found to be ρr=ρr0a4subscript𝜌𝑟subscript𝜌𝑟0superscript𝑎4\rho_{r}=\rho_{r0}a^{-4}italic_ρ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = italic_ρ start_POSTSUBSCRIPT italic_r 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT and ρm=ρm0a3subscript𝜌𝑚subscript𝜌𝑚0superscript𝑎3\rho_{m}=\rho_{m0}a^{-3}italic_ρ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = italic_ρ start_POSTSUBSCRIPT italic_m 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT, respectively. For DE, the solution is given by Eq. (9). The sub-index “0” denotes the current value of any given quantity.

The past evolution is restricted by the necessity of a radiation and matter-dominated epochs to guarantee, for instance, the Big Bang Nucleosynthesis (BBN) and cosmic structure formation. To be a viable DE model, the CJG must be subdominant in the past, reproducing correctly a radiation domination era and subsequently, the matter domination era giving a decelerating universe. In recent times, the DE fluid must dominate to give rise the accelerating stage of the universe. A fluid with EoS given by (1) and within a subspace of parameters 𝒩𝒩\cal{N}caligraphic_N reproduces all these points properly, as can be observed in Fig. 1 (left side), where the fractional densities are shown as a function of redshift. In all cases, the blue curves represent radiation, the red ones represent matter, and the black curves represent DE fluid. For the dot-dashed curve, parameter values are Ωm0=0.30subscriptΩ𝑚00.30\Omega_{m0}=0.30roman_Ω start_POSTSUBSCRIPT italic_m 0 end_POSTSUBSCRIPT = 0.30, α=0.1𝛼0.1\alpha=0.1italic_α = 0.1, Bs=0.6subscript𝐵𝑠0.6B_{s}=-0.6italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = - 0.6, k=0.43𝑘0.43k=0.43italic_k = 0.43, corresponding to a point in 𝒩3subscript𝒩3{\cal{N}}_{3}caligraphic_N start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. For the solid line, we used Ωm0=0.30subscriptΩ𝑚00.30\Omega_{m0}=0.30roman_Ω start_POSTSUBSCRIPT italic_m 0 end_POSTSUBSCRIPT = 0.30, α=1.3𝛼1.3\alpha=1.3italic_α = 1.3, Bs=1.4subscript𝐵𝑠1.4B_{s}=-1.4italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = - 1.4, k=0.46𝑘0.46k=0.46italic_k = 0.46, corresponding to a point in 𝒩4subscript𝒩4{\cal{N}}_{4}caligraphic_N start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT. For the sake of comparison, we also plotted the corresponding functions in the ΛΛ\Lambdaroman_ΛCDM model using the same colored dashed curves.

Refer to caption
Refer to caption
Figure 1: Fractional densities for radiation, matter and DE (left) and deceleration parameter (right) as functions of redshift for different sets of parameters in the sub-region 𝒩𝒩{\cal{N}}caligraphic_N (described in the text) for CJG and ΛΛ\Lambdaroman_ΛCDM cosmologies.

On the other hand, the Hubble rate can be written as a function of the scale factor a𝑎aitalic_a. However, it will be more useful to have the dimensionless Hubble rate as a function of z𝑧zitalic_z

E2(z)=Ωr0(1+z)4+Ωm0(1+z)3+(1Ωm0Ωr0)[Bs+Bs(1Bs)(1+z)3(1+α)(k+Bsk)(1Bs)k(1+z)3(1+α)]11+α,superscript𝐸2𝑧subscriptΩ𝑟0superscript1𝑧4subscriptΩ𝑚0superscript1𝑧31subscriptΩ𝑚0subscriptΩ𝑟0superscriptdelimited-[]subscript𝐵𝑠subscript𝐵𝑠1subscript𝐵𝑠superscript1𝑧31𝛼superscript𝑘subscript𝐵𝑠𝑘1subscript𝐵𝑠superscript𝑘superscript1𝑧31𝛼11𝛼\displaystyle E^{2}(z)=\Omega_{r0}(1+z)^{4}+\Omega_{m0}(1+z)^{3}+(1-\Omega_{m0% }-\Omega_{r0})\left[B_{s}+\frac{B_{s}(1-B_{s})(1+z)^{3(1+\alpha)}}{(k^{\prime}% +B_{s}\,k)-(1-B_{s})k^{\prime}(1+z)^{3(1+\alpha)}}\right]^{\frac{1}{1+\alpha}},italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z ) = roman_Ω start_POSTSUBSCRIPT italic_r 0 end_POSTSUBSCRIPT ( 1 + italic_z ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + roman_Ω start_POSTSUBSCRIPT italic_m 0 end_POSTSUBSCRIPT ( 1 + italic_z ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + ( 1 - roman_Ω start_POSTSUBSCRIPT italic_m 0 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT italic_r 0 end_POSTSUBSCRIPT ) [ italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + divide start_ARG italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) ( 1 + italic_z ) start_POSTSUPERSCRIPT 3 ( 1 + italic_α ) end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k ) - ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( 1 + italic_z ) start_POSTSUPERSCRIPT 3 ( 1 + italic_α ) end_POSTSUPERSCRIPT end_ARG ] start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 1 + italic_α end_ARG end_POSTSUPERSCRIPT , (26)

where we have used the fact that each energy density is usually expressed in terms of the dimensionless density parameter, defined as Ωi=ρi/ρcrsubscriptΩ𝑖subscript𝜌𝑖subscript𝜌𝑐𝑟\Omega_{i}=\rho_{i}/\rho_{cr}roman_Ω start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_ρ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_ρ start_POSTSUBSCRIPT italic_c italic_r end_POSTSUBSCRIPT with ρcr=3H2/(8πG)subscript𝜌𝑐𝑟3superscript𝐻28𝜋𝐺\rho_{cr}=3H^{2}/(8\pi G)italic_ρ start_POSTSUBSCRIPT italic_c italic_r end_POSTSUBSCRIPT = 3 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( 8 italic_π italic_G ) being the critical density.

Having obtained the analytical expression for E(z)𝐸𝑧E(z)italic_E ( italic_z ), we may proceed to analyze our model using the statefinder diagnostic. It will be useful to express these parameters in terms of the dimensionless Hubble rate and the redshift z𝑧zitalic_z. The cosmic times derivatives are written as redshift derivatives according to

ddt=ddzdzdadadt=(1+z)H(z)ddz,𝑑𝑑𝑡𝑑𝑑𝑧𝑑𝑧𝑑𝑎𝑑𝑎𝑑𝑡1𝑧𝐻𝑧𝑑𝑑𝑧\frac{d}{dt}=\frac{d}{dz}\frac{dz}{da}\frac{da}{dt}=-(1+z)H(z)\frac{d}{dz},divide start_ARG italic_d end_ARG start_ARG italic_d italic_t end_ARG = divide start_ARG italic_d end_ARG start_ARG italic_d italic_z end_ARG divide start_ARG italic_d italic_z end_ARG start_ARG italic_d italic_a end_ARG divide start_ARG italic_d italic_a end_ARG start_ARG italic_d italic_t end_ARG = - ( 1 + italic_z ) italic_H ( italic_z ) divide start_ARG italic_d end_ARG start_ARG italic_d italic_z end_ARG ,

In this way, the set of statefinder parameters becomes

r𝑟\displaystyle ritalic_r =1+12E2[(1+z)2d2E2dz22(1+z)dE2dz],absent112superscript𝐸2delimited-[]superscript1𝑧2superscript𝑑2superscript𝐸2𝑑superscript𝑧221𝑧𝑑superscript𝐸2𝑑𝑧\displaystyle=1+\frac{1}{2E^{2}}\left[(1+z)^{2}\frac{d^{2}E^{2}}{dz^{2}}-2(1+z% )\frac{dE^{2}}{dz}\right],= 1 + divide start_ARG 1 end_ARG start_ARG 2 italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG [ ( 1 + italic_z ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - 2 ( 1 + italic_z ) divide start_ARG italic_d italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_z end_ARG ] , (27)
s𝑠\displaystyle sitalic_s =13(1+z)2d2E2dz22(1+z)dE2dz(1+z)dE2dz3E2.absent13superscript1𝑧2superscript𝑑2superscript𝐸2𝑑superscript𝑧221𝑧𝑑superscript𝐸2𝑑𝑧1𝑧𝑑superscript𝐸2𝑑𝑧3superscript𝐸2\displaystyle=\frac{1}{3}\frac{(1+z)^{2}\frac{d^{2}E^{2}}{dz^{2}}-2(1+z)\frac{% dE^{2}}{dz}}{(1+z)\frac{dE^{2}}{dz}-3E^{2}}.= divide start_ARG 1 end_ARG start_ARG 3 end_ARG divide start_ARG ( 1 + italic_z ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - 2 ( 1 + italic_z ) divide start_ARG italic_d italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_z end_ARG end_ARG start_ARG ( 1 + italic_z ) divide start_ARG italic_d italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_z end_ARG - 3 italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (28)

Accordingly, upon replacement of Eq. (26) into Eqs. (27)-(28), the specific expressions for the Statefinder parameters are obtained (not shown) and will be plotted in Section V using the best-fit values. Furthermore, we compute the effective EoS parameter weffsubscript𝑤𝑒𝑓𝑓w_{eff}italic_w start_POSTSUBSCRIPT italic_e italic_f italic_f end_POSTSUBSCRIPT for our CJG cosmological model, which encodes information about the universe’s composition, the evolution of its energy density, and the dynamics of its expansion. The general expression for weffsubscript𝑤𝑒𝑓𝑓w_{eff}italic_w start_POSTSUBSCRIPT italic_e italic_f italic_f end_POSTSUBSCRIPT depends on the first derivative of E2(z)superscript𝐸2𝑧E^{2}(z)italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z ) with respect to the redshift z𝑧zitalic_z as follows

weff=1+1+z3E2dE2dz.subscript𝑤𝑒𝑓𝑓11𝑧3superscript𝐸2𝑑superscript𝐸2𝑑𝑧\displaystyle w_{eff}=-1+\frac{1+z}{3E^{2}}\frac{dE^{2}}{dz}.italic_w start_POSTSUBSCRIPT italic_e italic_f italic_f end_POSTSUBSCRIPT = - 1 + divide start_ARG 1 + italic_z end_ARG start_ARG 3 italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG italic_d italic_E start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_z end_ARG . (29)

Thus, by replacing Eq.(26) into (29), weffsubscript𝑤𝑒𝑓𝑓w_{eff}italic_w start_POSTSUBSCRIPT italic_e italic_f italic_f end_POSTSUBSCRIPT for our specific CJG model is found (not shown).

As discussed above, for a universe dominated only by a CJG, a particular region in the subspace of parameters allows for transient acceleration-deceleration in the future. This feature must remain when a more realistic model of the universe is considered, including radiation and dark matter. Therefore, the future cosmological evolution within the framework of CJG may be very different from a de Sitter phase. This is shown in Fig. 1 (right side), where several curves for deceleration parameter as a function of redshift were plotted for different sets of parameters. The dashed dark curve on the right side of Fig. 1 represents the case for for ΛΛ\Lambdaroman_ΛCDM, in which, as it is known, the accelerated expansion will continue forever. The green curve, which corresponds to the set Ωm=0.3subscriptΩ𝑚0.3\Omega_{m}=0.3roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = 0.3, α=1.1𝛼1.1\alpha=1.1italic_α = 1.1, Bs=0.81subscript𝐵𝑠0.81B_{s}=-0.81italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = - 0.81 and k=0.55𝑘0.55k=0.55italic_k = 0.55, also indicates accelerated expansion forever. However, the last two curves, the blue one for Ωm=0.3subscriptΩ𝑚0.3\Omega_{m}=0.3roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = 0.3, α=0.1𝛼0.1\alpha=0.1italic_α = 0.1, Bs=1.5subscript𝐵𝑠1.5B_{s}=-1.5italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = - 1.5, and k=0.43𝑘0.43k=0.43italic_k = 0.43, and the orange one for Ωm=0.3subscriptΩ𝑚0.3\Omega_{m}=0.3roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = 0.3, α=0.8𝛼0.8\alpha=0.8italic_α = 0.8, Bs=1.41subscript𝐵𝑠1.41B_{s}=-1.41italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = - 1.41, and k=0.42𝑘0.42k=0.42italic_k = 0.42, exhibit a transition between an accelerated and a decelerated phase in the future. In all the curves, the transition from a decelerated evolution during the matter-dominated epoch to an accelerating phase in the past can be observed.

The possibility of future transient acceleration is not new. In the past, evidence was found for a slowing down of the expansion rate of the universe, or equivalently, for an increase in the deceleration parameter at redshifts close to the present epoch z0𝑧0z\approx 0italic_z ≈ 0 Shafieloo2009 ; Guimaraes2011 ; Cai2011 ; Costa2010 ; Fabris2009 ; Vargas2011 . More recently, this possibility has been explored in light of recent data Magana2014 ; Shahalam2015 ; Hu2015 ; Bolotin2020 ; Escobal2023 . In fact, over the last few years, several authors have discussed the possibility that the accelerated expansion might be a transient phenomenon, i.e., that there might be a transition back to decelerated expansion Albrecht1999 ; Barrow2000 ; Bento2001 .

So far, we have explored the concept of cosmic slowing down with a CJG fluid from a theoretical standpoint. However, in recent years, a large amount of cosmological data has emerged, enabling very precise statistical tests. In the next section, we will use different probes to study the viability of a CJG as dark energy and what the data can tell us about the cosmic slowing down in the CJG framework. In this regard, several quantities describing the background evolution, such as the Hubble rate , the deceleration parameter, and the statefinder parameters, will be evaluated after obtaining the best-fit values from the aforementioned observational analysis.

IV Data

In Section II, the regions in the parameter space where the model has physical solutions were limited by imposing physical conditions on the fluid density (9). In this section, we will utilize current observational data to estimate the free parameters and their associated error bars. Through this process, we aim to determine the region in the parameter space where a model based on CJG could be compatible with observations. We will utilize cosmic chronometers (CC), Type Ia Supernovae (SNIa), and Fast Gamma Ray Bursts (FRBs) datasets, along with their joint analysis, to perform a MCMC study. Implementations were carried out using the publicly available Python package Polychord (handley2015polychord, ). Now, let us briefly describe each of the datasets used.

IV.1 Cosmic Chronometers

The Hubble rate is the quantity that most directly characterizes the expansion of the universe. Over the last few years, its measurement has advanced significantly, and currently, there are two well-known methods to obtain H(z)𝐻𝑧H(z)italic_H ( italic_z ) data. The first method utilizes the differential age of galaxies and is referred to as cosmic chronometers (CC) Jimenez2002 ; Stern2010 ; Zhang2014 ; Moresco2016 . The second method measures the peaks of the baryon acoustic oscillations (BAO), observing the typical acoustic scale in the line-of-sight direction Gaztanaga2008 ; BOSS:2012gof ; BOSS2013 ; BOSS2014 . The CC technique relies on measuring the age difference between two ensembles of passively evolving massive galaxies at slightly different redshifts, from which one can determine the derivative of redshift with respect to cosmic time Jimenez2002 . This method has the advantage of avoiding systematic errors that arise when measuring the absolute ages of individual galaxies, instead allowing the measurement of the relative age difference between them. In a homogeneous and isotropic universe, the Hubble parameter and the derivative of redshift with respect to time are related by

H(z)=11+zdzdt11+zΔzΔt.𝐻𝑧11𝑧𝑑𝑧𝑑𝑡similar-to-or-equals11𝑧Δ𝑧Δ𝑡H(z)=-\frac{1}{1+z}\frac{dz}{dt}\simeq-\frac{1}{1+z}\frac{\Delta z}{\Delta t}.italic_H ( italic_z ) = - divide start_ARG 1 end_ARG start_ARG 1 + italic_z end_ARG divide start_ARG italic_d italic_z end_ARG start_ARG italic_d italic_t end_ARG ≃ - divide start_ARG 1 end_ARG start_ARG 1 + italic_z end_ARG divide start_ARG roman_Δ italic_z end_ARG start_ARG roman_Δ italic_t end_ARG . (30)

Since the CC method does not rely on a particular functional form of the expansion history or spatial geometry, it can be regarded as a model-independent method. On the other hand, the BAO approach is based on the relation between H(z)𝐻𝑧H(z)italic_H ( italic_z ) and the comoving differential radial distance. This method requires knowledge of the comoving BAO scale (rBAOsubscript𝑟BAOr_{\text{BAO}}italic_r start_POSTSUBSCRIPT BAO end_POSTSUBSCRIPT), which is derived from CMB measurements. This fact makes this probe not entirely cosmology-independent, as typically, in the derivation of the sound horizon scale from CMB, a cosmological model is assumed Jiao2022 . Therefore, in this work, we have chosen to use the 31 measurements of the Hubble parameter H(z)𝐻𝑧H(z)italic_H ( italic_z ) via the CC method, compiled in wang2020reconstructing .

To estimate the region of parameters compatible with the CC dataset, we need to evaluate the likelihood function

CCexp[i(HiHtheo(zi))22σHi2],proportional-tosubscriptCCsubscript𝑖superscriptsubscript𝐻𝑖superscript𝐻theosubscript𝑧𝑖22superscriptsubscript𝜎subscript𝐻𝑖2\mathcal{L}_{\rm CC}\propto\exp\left[-\sum_{i}\frac{\bigl{(}H_{i}-H^{\rm{theo}% }(z_{i})\bigr{)}^{2}}{2\sigma_{H_{i}}^{2}}\right]\,,caligraphic_L start_POSTSUBSCRIPT roman_CC end_POSTSUBSCRIPT ∝ roman_exp [ - ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT divide start_ARG ( italic_H start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_H start_POSTSUPERSCRIPT roman_theo end_POSTSUPERSCRIPT ( italic_z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_σ start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] , (31)

where Hisubscript𝐻𝑖H_{i}italic_H start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT represents each of the individual measurements of the sample considered, σHisubscript𝜎subscript𝐻𝑖\sigma_{H_{i}}italic_σ start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT represents the uncertainty for each Hisubscript𝐻𝑖H_{i}italic_H start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, and Htheosuperscript𝐻theoH^{\rm theo}italic_H start_POSTSUPERSCRIPT roman_theo end_POSTSUPERSCRIPT represents the set of Hubble parameters calculated from Eq. (26).

IV.2 SNIa

Type Ia supernovae (SNIa) constitute a distinct and significant class of stellar phenomena, emerging during the terminal phases of stellar evolution and culminating in a catastrophic explosion that disperses stellar material into the cosmos. Given that SNIa are exceptionally bright, they can be detected at large cosmological distances and are sufficiently common to be found in large numbers. In fact, they have been crucial for mapping the cosmic expansion of the universe. The evidence for the accelerated cosmic expansion came from SNIa data analysis Riess1998 ; Perlmutter1998 .

For the cosmological analysis, the SNIa light curves must be standardized amendola2010dark to correct variations in brightness and other factors. This standardization ensures that their luminosities can be used as reliable distance indicators through the distance modulus equation brout2022pantheon+

μ=mb+αx1βcM,𝜇subscript𝑚𝑏𝛼subscript𝑥1𝛽𝑐𝑀\mu=m_{b}+\alpha x_{1}-\beta c-M,italic_μ = italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT + italic_α italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_β italic_c - italic_M , (32)

where α𝛼\alphaitalic_α and β𝛽\betaitalic_β are parameters that relate stretch x1subscript𝑥1x_{1}italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and color c𝑐citalic_c to luminosity. M𝑀Mitalic_M and mbsubscript𝑚𝑏m_{b}italic_m start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT are the fiducial magnitude and the light-curve amplitude of the supernova, respectively. With this data, the χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT method is applied:

2ln(SNIa)=χ2=ΔDTCstat+syst1ΔD,2𝑙𝑛subscriptSNIasuperscript𝜒2Δsuperscript𝐷𝑇subscriptsuperscript𝐶1𝑠𝑡𝑎𝑡𝑠𝑦𝑠𝑡Δ𝐷\displaystyle-2ln(\mathcal{L_{\rm SNIa}})=\chi^{2}=\Delta\vec{D}^{T}C^{-1}_{% stat+syst}\Delta\vec{D},- 2 italic_l italic_n ( caligraphic_L start_POSTSUBSCRIPT roman_SNIa end_POSTSUBSCRIPT ) = italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = roman_Δ over→ start_ARG italic_D end_ARG start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT italic_C start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s italic_t italic_a italic_t + italic_s italic_y italic_s italic_t end_POSTSUBSCRIPT roman_Δ over→ start_ARG italic_D end_ARG , (33)

being Cstat+syst1subscriptsuperscript𝐶1𝑠𝑡𝑎𝑡𝑠𝑦𝑠𝑡C^{-1}_{stat+syst}italic_C start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s italic_t italic_a italic_t + italic_s italic_y italic_s italic_t end_POSTSUBSCRIPT the combined statistical and systematic covariance matrix, and D𝐷\vec{D}over→ start_ARG italic_D end_ARG, the vector related to the distance module residuals, computed from

ΔDi=μiμmodel(zi).Δsubscript𝐷𝑖subscript𝜇𝑖subscript𝜇𝑚𝑜𝑑𝑒𝑙subscript𝑧𝑖\displaystyle\Delta D_{i}=\mu_{i}-\mu_{model}(z_{i})\,.roman_Δ italic_D start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_μ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_μ start_POSTSUBSCRIPT italic_m italic_o italic_d italic_e italic_l end_POSTSUBSCRIPT ( italic_z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) . (34)

Here, μmodel(zi)=5log(dL(zi)/10pc)subscript𝜇𝑚𝑜𝑑𝑒𝑙subscript𝑧𝑖5𝑙𝑜𝑔subscript𝑑𝐿subscript𝑧𝑖10pc\mu_{model}(z_{i})=5log(d_{L}(z_{i})/10~{}\rm pc)italic_μ start_POSTSUBSCRIPT italic_m italic_o italic_d italic_e italic_l end_POSTSUBSCRIPT ( italic_z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = 5 italic_l italic_o italic_g ( italic_d start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) / 10 roman_pc ) is the theoretical distance modulus estimated from the host galaxy redshift and the luminosity distance dLsubscript𝑑𝐿d_{L}italic_d start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT, which considering a spatially flat universe, is given by

dL(z)=(1+z)c0zzH(z).subscript𝑑𝐿𝑧1𝑧𝑐superscriptsubscript0𝑧superscript𝑧𝐻superscript𝑧d_{L}(z)=(1+z)~{}c\int_{0}^{z}\frac{z^{\prime}}{H(z^{\prime})}.italic_d start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_z ) = ( 1 + italic_z ) italic_c ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT divide start_ARG italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_H ( italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG . (35)

In this paper, we constrain the CJG cosmological parameters using the Pantheon+ dataset, which comprises 1701 data points. This dataset combines SNIa samples, including those located in galaxies with measured Cepheid distances riess2022comprehensive .

IV.3 FRBs

Fast Radio Bursts (FRBs) are intense pulses in the radio spectrum originating from cosmological distances, characterized by an extremely short duration (a few milliseconds). In recent years, they have emerged as interesting complementary cosmological probes. Discovered in 2007 Lorimer2007 , hundreds of bursts have been reported so far. While their progenitors remain unknown (for some progenitor models, see e.g., Bochenek2020 ; Zhang2020 ; Bhandari2020 ), 24 have been localized, allowing determination of their host galaxies and redshifts. In this study, we perform our calculations on a subset of these FRBs, compiled by yang2022finding , excluding the nearest FRB, named FRB200110E, as it carries little cosmological information. An FRB pulse is dispersed by the intergalactic medium during its path to the observer, generating a time delay between different radio frequencies that compose the observed signal. This dispersion is quantified by the dispersion measure DMDM\mathrm{DM}roman_DM, which is related to the column density of free electrons nesubscript𝑛𝑒n_{e}italic_n start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT along the FRB line of sight l𝑙litalic_l, weighted by redshift as

DM=ne(1+z)𝑑l.DMsubscript𝑛𝑒1𝑧differential-d𝑙\mathrm{DM}=\int\frac{n_{e}}{(1+z)}dl.roman_DM = ∫ divide start_ARG italic_n start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_ARG start_ARG ( 1 + italic_z ) end_ARG italic_d italic_l . (36)

From an observational point of view, the observed dispersion measure DMobssubscriptDMobs\rm DM_{obs}roman_DM start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT, is expected to have four different contributions, such that

DMobs=DMISM+DMhalo+DMIGM+DMhost(1+z),subscriptDMobssubscriptDMISMsubscriptDMhalosubscriptDMIGMsubscriptDMhost1z\rm DM_{obs}=\mathrm{DM}_{\mathrm{ISM}}+\mathrm{DM}_{\mathrm{halo}}+\mathrm{DM% }_{\mathrm{IGM}}+\frac{\mathrm{DM_{\mathrm{host}}}}{(1+z)},roman_DM start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT = roman_DM start_POSTSUBSCRIPT roman_ISM end_POSTSUBSCRIPT + roman_DM start_POSTSUBSCRIPT roman_halo end_POSTSUBSCRIPT + roman_DM start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT + divide start_ARG roman_DM start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT end_ARG start_ARG ( 1 + roman_z ) end_ARG , (37)

The first two terms come from the intergalactic medium, and the last two come from the extragalactic medium. DMISMsubscriptDMISM\mathrm{DM}_{\mathrm{ISM}}roman_DM start_POSTSUBSCRIPT roman_ISM end_POSTSUBSCRIPT corresponds to the Milky Way interstellar medium contribution, DMhalosubscriptDMhalo\mathrm{DM}_{\mathrm{halo}}roman_DM start_POSTSUBSCRIPT roman_halo end_POSTSUBSCRIPT is related to the Milky Way galactic halo, DMIGMsubscriptDMIGM\mathrm{DM}_{\mathrm{IGM}}roman_DM start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT is the contribution from the intergalactic medium (IGMIGM\mathrm{IGM}roman_IGM), which incorporates the cosmological dependence, and DMhostsubscriptDMhost\mathrm{DM}_{\mathrm{host}}roman_DM start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT is the host galaxy component corrected with (1+z)1superscript1𝑧1(1+z)^{-1}( 1 + italic_z ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT to account for cosmological expansion for a given FRB source at redshift z𝑧zitalic_z. DMISMsubscriptDMISM\mathrm{DM}_{\mathrm{ISM}}roman_DM start_POSTSUBSCRIPT roman_ISM end_POSTSUBSCRIPT is calculated using galactic electron distribution models (NE2001NE2001\mathrm{NE2001}NE2001 cordes2002ne2001 or YMW16YMW16\mathrm{YMW16}YMW16 yao2017new ). Since recent works have claimed that the YMW16 model may overestimate DMISMsubscriptDMISM\mathrm{DM}_{\mathrm{ISM}}roman_DM start_POSTSUBSCRIPT roman_ISM end_POSTSUBSCRIPT at low Galactic latitudes koch2021 , we use the NE2001 approach. DMhalosubscriptDMhalo\mathrm{DM}_{\mathrm{halo}}roman_DM start_POSTSUBSCRIPT roman_halo end_POSTSUBSCRIPT has been estimated to be in the interval 50<DMhalo<100pc.cm3formulae-sequence50subscriptDMhalo100pcsuperscriptcm350<\mathrm{DM}_{\mathrm{halo}}<100~{}\mathrm{pc}.\mathrm{cm}^{-3}50 < roman_DM start_POSTSUBSCRIPT roman_halo end_POSTSUBSCRIPT < 100 roman_pc . roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT prochaska2019probing . However, to be conservative, we assume DMhalo=50pc.cm3formulae-sequencesubscriptDMhalo50pcsuperscriptcm3\mathrm{DM}_{\mathrm{halo}}=50~{}\mathrm{pc}.\mathrm{cm}^{-3}roman_DM start_POSTSUBSCRIPT roman_halo end_POSTSUBSCRIPT = 50 roman_pc . roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT as in, for example, macquart2020census .

The exact characteristics of the host environment and the exact contribution of DMhostsubscriptDMhost\rm DM_{\rm host}roman_DM start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT for each FRB are still uncertain. Therefore, the estimation of DMhostsubscriptDMhost\rm DM_{\rm host}roman_DM start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT considers a probabilistic approach. Following hagstotz2022new , we use the stochastic distribution

P(DMhost)=N(DMhost,σhost2),𝑃subscriptDMhost𝑁delimited-⟨⟩subscriptDMhostsuperscriptsubscript𝜎host2P(\mathrm{DM}_{\mathrm{host}})=N\big{(}\langle\mathrm{DM}_{\mathrm{host}}% \rangle,\sigma_{\mathrm{host}}^{2}\big{)},italic_P ( roman_DM start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT ) = italic_N ( ⟨ roman_DM start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT ⟩ , italic_σ start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) , (38)

where N𝑁Nitalic_N is a normal distribution with a mean value DMhost=100(1+zhost)1pc.cm3formulae-sequencedelimited-⟨⟩subscriptDMhost100superscript1subscript𝑧host1pcsuperscriptcm3\langle\mathrm{DM}_{\mathrm{host}}\rangle=100(1+z_{\mathrm{host}})^{-1}\mathrm% {pc}.\mathrm{cm}^{-3}⟨ roman_DM start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT ⟩ = 100 ( 1 + italic_z start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_pc . roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT and variance σhost=50(1+zhost)1pc.cm3formulae-sequencesubscript𝜎host50superscript1subscript𝑧host1pcsuperscriptcm3\sigma_{\mathrm{host}}=50(1+z_{\mathrm{host}})^{-1}\mathrm{pc}.\mathrm{cm}^{-3}italic_σ start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT = 50 ( 1 + italic_z start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_pc . roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT. On the other hand, the dominant contribution in Eq.(37) is due to DMIGMsubscriptDMIGM\mathrm{DM}_{\mathrm{IGM}}roman_DM start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT. Recently, cosmological simulations have shown that the distribution of DMIGMsubscriptDMIGM{\rm DM_{IGM}}roman_DM start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT is influenced by the distribution of baryons around galactic halos and the number of collapsed structures intersecting a given line of sight. Two different approaches have been used to take this influence into account: the non-Gaussian prochaska2019frbs ; yang2022finding ; wu2020new and the Gaussian jaroszynski2019fast ; hagstotz2022new ; zhang2023cosmology approaches. In this work, we use the Gaussian approach; however, recent studies with the 23 localized FRB data points have shown that there is no appreciable difference between using either approaches Fortunato2023 . The Gaussian approach assumes a normal distribution around the mean

DMIGM=3cΩbH08πGmp0z(1+z)fIGM(z)fe(z)E(z)𝑑z,delimited-⟨⟩subscriptDMIGM3𝑐subscriptΩbsubscript𝐻08𝜋𝐺subscript𝑚psubscriptsuperscript𝑧01superscript𝑧subscript𝑓IGMsuperscript𝑧subscript𝑓esuperscript𝑧𝐸superscript𝑧differential-dsuperscript𝑧{\rm\langle DM_{IGM}\rangle}=\frac{3c\,{\rm\Omega_{b}}H_{0}}{8\pi Gm_{\rm p}}% \int^{z}_{0}\frac{(1+z^{\prime})f_{\rm IGM}(z^{\prime})f_{\rm e}(z^{\prime})}{% E(z^{\prime})}dz^{\prime},⟨ roman_DM start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT ⟩ = divide start_ARG 3 italic_c roman_Ω start_POSTSUBSCRIPT roman_b end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG 8 italic_π italic_G italic_m start_POSTSUBSCRIPT roman_p end_POSTSUBSCRIPT end_ARG ∫ start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT divide start_ARG ( 1 + italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_f start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT ( italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_f start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT ( italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG start_ARG italic_E ( italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG italic_d italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , (39)

with standard deviation interpolated in the range σIGM(z=0)10pc.cm3formulae-sequencesubscript𝜎IGM𝑧010pcsuperscriptcm3\sigma_{\rm IGM}(z=0)\approx 10~{}\mathrm{pc}.\mathrm{cm}^{-3}italic_σ start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT ( italic_z = 0 ) ≈ 10 roman_pc . roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT and σIGM(z=1)400pc.cm3formulae-sequencesubscript𝜎IGM𝑧1400pcsuperscriptcm3\sigma_{\rm IGM}(z=1)\approx 400~{}\mathrm{pc}.\mathrm{cm}^{-3}italic_σ start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT ( italic_z = 1 ) ≈ 400 roman_pc . roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT. In Eq. (39), fe(z)=YHXe,H(z)+12YHeXe,He(z)subscript𝑓e𝑧subscript𝑌Hsubscript𝑋eH𝑧12subscript𝑌Hesubscript𝑋eHe𝑧f_{\rm e}(z)=Y_{\rm H}X_{\rm e,H}(z)+\frac{1}{2}Y_{\rm He}X_{\rm e,He}(z)italic_f start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT ( italic_z ) = italic_Y start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT roman_e , roman_H end_POSTSUBSCRIPT ( italic_z ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_Y start_POSTSUBSCRIPT roman_He end_POSTSUBSCRIPT italic_X start_POSTSUBSCRIPT roman_e , roman_He end_POSTSUBSCRIPT ( italic_z ). The cosmic baryon density, the proton mass, and the fraction of baryon mass in the IGM are denoted as ΩbsubscriptΩ𝑏\Omega_{b}roman_Ω start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT, mpsubscript𝑚pm_{\rm p}italic_m start_POSTSUBSCRIPT roman_p end_POSTSUBSCRIPT, and fIGMsubscript𝑓IGMf_{\rm IGM}italic_f start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT, respectively. Because both hydrogen and helium are completely ionized at z<3𝑧3z<3italic_z < 3, the ionization fractions of each species are Xe,H=Xe,He=1subscript𝑋eHsubscript𝑋eHe1X_{\rm e,H}=X_{\rm e,He}=1italic_X start_POSTSUBSCRIPT roman_e , roman_H end_POSTSUBSCRIPT = italic_X start_POSTSUBSCRIPT roman_e , roman_He end_POSTSUBSCRIPT = 1. Additionally, we consider an IGM with a hydrogen mass fraction YH=0.75subscript𝑌H0.75Y_{\rm H}=0.75italic_Y start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT = 0.75 and a helium mass fraction YHe=0.25subscript𝑌He0.25Y_{\rm He}=0.25italic_Y start_POSTSUBSCRIPT roman_He end_POSTSUBSCRIPT = 0.25. Moreover, several analyses have found a constant value for the fraction of baryon mass, fIGM=0.82subscript𝑓IGM0.82f_{\rm IGM}=0.82italic_f start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT = 0.82 (see e.g., shull2012baryon ; Fortunato2023 ). Finally, in Eq. (37), DMIGMsubscriptDMIGM\mathrm{DM}_{\mathrm{IGM}}roman_DM start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT is estimated by DMIGM=DMobsDMlocalDMhost(1+z)1subscriptDMIGMsubscriptDMobssubscriptDMlocalsubscriptDMhostsuperscript1z1\mathrm{DM}_{\rm IGM}=\rm DM_{\rm obs}-\rm DM_{\rm local}-\rm DM_{\rm host}(1+% z)^{-1}roman_DM start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT = roman_DM start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT - roman_DM start_POSTSUBSCRIPT roman_local end_POSTSUBSCRIPT - roman_DM start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT ( 1 + roman_z ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, with uncertainty given as

σIGM(z)=σobs(z)2+σlocal2+(σhost(z)1+z)2,subscript𝜎IGM𝑧subscript𝜎obssuperscript𝑧2subscriptsuperscript𝜎2localsuperscriptsubscript𝜎host𝑧1𝑧2\sigma_{\rm IGM}(z)=\sqrt{\sigma_{\rm obs}(z)^{2}+\sigma^{2}_{\rm local}+\left% (\frac{\sigma_{\rm host}(z)}{1+z}\right)^{2}},italic_σ start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT ( italic_z ) = square-root start_ARG italic_σ start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT ( italic_z ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_local end_POSTSUBSCRIPT + ( divide start_ARG italic_σ start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT ( italic_z ) end_ARG start_ARG 1 + italic_z end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , (40)

where σobssubscript𝜎obs\sigma_{\rm obs}italic_σ start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT and σhostsubscript𝜎host\sigma_{\rm host}italic_σ start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT are the errors related to DMobssubscriptDMobs\rm DM_{\rm obs}roman_DM start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT and DMhostsubscriptDMhost\rm DM_{\rm host}roman_DM start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT, respectively. Meanwhile, σlocalsubscript𝜎local\sigma_{\rm local}italic_σ start_POSTSUBSCRIPT roman_local end_POSTSUBSCRIPT is the sum of uncertainties in DMISMsubscriptDMISM\rm DM_{\rm ISM}roman_DM start_POSTSUBSCRIPT roman_ISM end_POSTSUBSCRIPT and DMhalosubscriptDMhalo\rm DM_{\rm halo}roman_DM start_POSTSUBSCRIPT roman_halo end_POSTSUBSCRIPT. Following hagstotz2022new , we approximate σlocal30pc.cm3formulae-sequencesubscript𝜎local30pcsuperscriptcm3\sigma_{\rm local}\approx 30~{}\rm{pc.cm}^{-3}italic_σ start_POSTSUBSCRIPT roman_local end_POSTSUBSCRIPT ≈ 30 roman_pc . roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT

In order to compute the likelihood, we must consider that every observed dispersion measure DMisubscriptDMi\rm DM_{i}roman_DM start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT at a given redshift zisubscript𝑧𝑖z_{i}italic_z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is related to a Gaussian individual likelihood through

(DMi,zi)=12πσi2exp[(DMiDMtheo(zi))22σi2],subscriptDMisubscriptzi12𝜋superscriptsubscript𝜎i2superscriptsubscriptDMisuperscriptDMtheosubscriptzi22superscriptsubscript𝜎i2\mathcal{L}(\rm{DM}_{i},z_{i})=\frac{1}{\sqrt{2\pi\sigma_{i}^{2}}}\exp\left[% \frac{\bigl{(}\rm{DM}_{i}-\rm{DM}^{\rm{theo}}(z_{i})\bigr{)}^{2}}{2\sigma_{i}^% {2}}\right]\,,caligraphic_L ( roman_DM start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT , roman_z start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT ) = divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 italic_π italic_σ start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG roman_exp [ divide start_ARG ( roman_DM start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT - roman_DM start_POSTSUPERSCRIPT roman_theo end_POSTSUPERSCRIPT ( roman_z start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_σ start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] , (41)

where DMtheo(zi)superscriptDMtheosubscriptzi\rm{DM}^{\rm theo}(z_{i})roman_DM start_POSTSUPERSCRIPT roman_theo end_POSTSUPERSCRIPT ( roman_z start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT ) is the theoretical contribution computed as DMtheo(zi)=DMobsDMISMDMhalo=DMIGM(zi)+DMhost(zi)superscriptDMtheosubscriptzisubscriptDMobssubscriptDMISMsubscriptDMhalosubscriptDMIGMsubscriptzisubscriptDMhostsubscriptzi\rm{DM}^{\rm{theo}}(z_{i})=\rm DM_{obs}-\rm DM_{\rm ISM}-\rm{DM}_{halo}=\rm{DM% }_{\rm{IGM}}(z_{i})+\rm{DM}_{\rm{host}}(z_{i})roman_DM start_POSTSUPERSCRIPT roman_theo end_POSTSUPERSCRIPT ( roman_z start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT ) = roman_DM start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT - roman_DM start_POSTSUBSCRIPT roman_ISM end_POSTSUBSCRIPT - roman_DM start_POSTSUBSCRIPT roman_halo end_POSTSUBSCRIPT = roman_DM start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT ( roman_z start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT ) + roman_DM start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT ( roman_z start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT ), with

σ2(zi)=σMW2+σhost2(zi)+σIGM2(zi).superscript𝜎2subscript𝑧𝑖superscriptsubscript𝜎MW2superscriptsubscript𝜎host2subscript𝑧𝑖superscriptsubscript𝜎IGM2subscript𝑧𝑖\sigma^{2}(z_{i})=\sigma_{\rm{MW}}^{2}+\sigma_{\rm{host}}^{2}(z_{i})+\sigma_{% \rm{IGM}}^{2}(z_{i})\,.italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = italic_σ start_POSTSUBSCRIPT roman_MW end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_σ start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) + italic_σ start_POSTSUBSCRIPT roman_IGM end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) . (42)

Considering all events as independent, the total likelihood of the sample is

FRBs=ii,subscriptFRBssubscriptproduct𝑖subscript𝑖\mathcal{L}_{\rm{FRBs}}=\prod_{i}\mathcal{L}_{i}\>,caligraphic_L start_POSTSUBSCRIPT roman_FRBs end_POSTSUBSCRIPT = ∏ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT caligraphic_L start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , (43)

and the computation of the product is executed for every the 23 FRB data point.

V Analyses and Results

We have implemented four different MCMC analyses using: a) the CC observational data only, b) SNIa observational data only, c) FRBs observational data only, and d) a joint analysis including these three probes. In order to perform all analyses, we fixed Ωr=5.38×105subscriptΩ𝑟5.38superscript105\Omega_{r}=5.38\times 10^{-5}roman_Ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = 5.38 × 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT to be consistent with CMB observations ParticleDataGroup:2020ssz , and considered the following parameters as free: H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, ΩmsubscriptΩ𝑚\Omega_{m}roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT, α𝛼\alphaitalic_α, Bssubscript𝐵𝑠B_{s}italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, and k𝑘kitalic_k. For consistency, we used the same flat priors in all cases, such as [65,80]6580[65,80][ 65 , 80 ] for H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and [0,1]01[0,1][ 0 , 1 ] for ΩmsubscriptΩ𝑚\Omega_{m}roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT. For α𝛼\alphaitalic_α, Bssubscript𝐵𝑠B_{s}italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, and k𝑘kitalic_k, we suitably considered the sub-regions in 𝒩𝒩{\cal{N}}caligraphic_N. Moreover, in the analyses using only SNIa and CC+SNIa+FRBs, an additional parameter M𝑀Mitalic_M appears. In that case, we used a Gaussian prior for M𝑀Mitalic_M, with mean value of 19.2419.24-19.24- 19.24 and standard deviation σMB=0.04subscript𝜎subscript𝑀𝐵0.04\sigma_{M_{B}}=0.04italic_σ start_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 0.04, as suggested in Camarena2021 .

Results for all four analyses are presented in Fig. 2 and Table 1. All three analyses using only one probe (CC, SNIa, or FRBs) exhibit good agreement within the 1σ𝜎\sigmaitalic_σ statistical confidence level (C.L.), indicating concordance between the CJG cosmology in the region 𝒩𝒩{\cal{N}}caligraphic_N and observations. The best-fit values for the CC data and FRBs data support a de Sitter phase in the future, while the SNIa data support a slowing-down phase. However, neither the CC nor FRBs data exclude a transient acceleration. Nevertheless, the large error bars found for the best-fit values might limit informativeness. These error bars can be reduced in the joint analysis, where we found H0=71.71.3+1.4subscript𝐻0subscriptsuperscript71.71.41.3H_{0}=71.7^{+1.4}_{-1.3}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 71.7 start_POSTSUPERSCRIPT + 1.4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 1.3 end_POSTSUBSCRIPT, Ωm=0.296±0.028subscriptΩ𝑚plus-or-minus0.2960.028\Omega_{m}=0.296\pm 0.028roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = 0.296 ± 0.028, α=1.420.77+1.3𝛼subscriptsuperscript1.421.30.77\alpha=1.42^{+1.3}_{-0.77}italic_α = 1.42 start_POSTSUPERSCRIPT + 1.3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.77 end_POSTSUBSCRIPT, Bs=1.550.67+0.79subscript𝐵𝑠subscriptsuperscript1.550.790.67B_{s}=-1.55^{+0.79}_{-0.67}italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = - 1.55 start_POSTSUPERSCRIPT + 0.79 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.67 end_POSTSUBSCRIPT, and k=0.410.15+0.11𝑘subscriptsuperscript0.410.110.15k=0.41^{+0.11}_{-0.15}italic_k = 0.41 start_POSTSUPERSCRIPT + 0.11 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.15 end_POSTSUBSCRIPT. The contour plots corresponding to the joint analysis are also displayed in Fig. 2, where some general features can be observed. In general, regions with 1+α>01𝛼01+\alpha>01 + italic_α > 0 and Bs<0subscript𝐵𝑠0B_{s}<0italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < 0 are preferred by observations; i.e., the data favor the 𝒩3𝒩4subscript𝒩3subscript𝒩4\cal{N}_{3}\cup\cal{N}_{4}caligraphic_N start_POSTSUBSCRIPT caligraphic_3 end_POSTSUBSCRIPT ∪ caligraphic_N start_POSTSUBSCRIPT caligraphic_4 end_POSTSUBSCRIPT region, with a slight trend toward 𝒩3subscript𝒩3\cal{N}_{3}caligraphic_N start_POSTSUBSCRIPT caligraphic_3 end_POSTSUBSCRIPT. This can be seen in Fig. 3 (left), where the plane Bssubscript𝐵𝑠B_{s}italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT-k𝑘kitalic_k is shown together with the curve Bs=kksubscript𝐵𝑠superscript𝑘𝑘B_{s}=-\frac{k^{\prime}}{k}italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = - divide start_ARG italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_k end_ARG (black dashed curve) separating 𝒩3subscript𝒩3\cal{N}_{3}caligraphic_N start_POSTSUBSCRIPT caligraphic_3 end_POSTSUBSCRIPT (de Sitter future) and 𝒩4subscript𝒩4\cal{N}_{4}caligraphic_N start_POSTSUBSCRIPT caligraphic_4 end_POSTSUBSCRIPT (non-de Sitter future). Notice that the best-fit point indicated by xx\mathrm{x}roman_x is in the slowdown region. Moreover, there is a positive correlation between the Bssubscript𝐵𝑠B_{s}italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and k𝑘kitalic_k parameters, which can be explained by the k𝑘kitalic_k-dependence of the intervals for Bssubscript𝐵𝑠B_{s}italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT (see Sec. II).

Refer to caption
Figure 2: 1σ𝜎\sigmaitalic_σ and 2σ𝜎\sigmaitalic_σ C.L. curves from the MCMC analysis using the SNIa (Pantheon+), CC, and FRBs datasets, alongside the joint analysis
Data H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ΩmsubscriptΩ𝑚\Omega_{m}roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT Bssubscript𝐵𝑠B_{s}italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT k𝑘kitalic_k α𝛼\alphaitalic_α
CC 72.0±4.3plus-or-minus72.04.372.0\pm 4.372.0 ± 4.3 0.30±0.05plus-or-minus0.300.050.30\pm 0.050.30 ± 0.05 1.400.82+0.94subscriptsuperscript1.400.940.82-1.40^{+0.94}_{-0.82}- 1.40 start_POSTSUPERSCRIPT + 0.94 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.82 end_POSTSUBSCRIPT 0.360.23+0.18subscriptsuperscript0.360.180.230.36^{+0.18}_{-0.23}0.36 start_POSTSUPERSCRIPT + 0.18 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.23 end_POSTSUBSCRIPT 1.11.1+1.3subscriptsuperscript1.11.31.11.1^{+1.3}_{-1.1}1.1 start_POSTSUPERSCRIPT + 1.3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 1.1 end_POSTSUBSCRIPT
SNIa 73.5±1.5plus-or-minus73.51.573.5\pm 1.573.5 ± 1.5 0.310.04+0.04subscriptsuperscript0.310.040.040.31^{+0.04}_{-0.04}0.31 start_POSTSUPERSCRIPT + 0.04 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.04 end_POSTSUBSCRIPT 1.520.67+0.91subscriptsuperscript1.520.910.67-1.52^{+0.91}_{-0.67}- 1.52 start_POSTSUPERSCRIPT + 0.91 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.67 end_POSTSUBSCRIPT 0.410.16+0.12subscriptsuperscript0.410.120.160.41^{+0.12}_{-0.16}0.41 start_POSTSUPERSCRIPT + 0.12 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.16 end_POSTSUBSCRIPT 1.350.67+1.3subscriptsuperscript1.351.30.671.35^{+1.3}_{-0.67}1.35 start_POSTSUPERSCRIPT + 1.3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.67 end_POSTSUBSCRIPT
FRBs 70.85.1+3.6subscriptsuperscript70.83.65.170.8^{+3.6}_{-5.1}70.8 start_POSTSUPERSCRIPT + 3.6 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 5.1 end_POSTSUBSCRIPT 0.25±0.23plus-or-minus0.250.230.25\pm 0.230.25 ± 0.23 1.270.8+1.0subscriptsuperscript1.271.00.8-1.27^{+1.0}_{-0.8}- 1.27 start_POSTSUPERSCRIPT + 1.0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.8 end_POSTSUBSCRIPT 0.430.30+0.27subscriptsuperscript0.430.270.300.43^{+0.27}_{-0.30}0.43 start_POSTSUPERSCRIPT + 0.27 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.30 end_POSTSUBSCRIPT 1.1±1.2plus-or-minus1.11.21.1\pm 1.21.1 ± 1.2
CC+SNIa +FRBs 71.71.3+1.4subscriptsuperscript71.71.41.371.7^{+1.4}_{-1.3}71.7 start_POSTSUPERSCRIPT + 1.4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 1.3 end_POSTSUBSCRIPT 0.30±0.03plus-or-minus0.300.030.30\pm 0.030.30 ± 0.03 1.550.67+0.79subscriptsuperscript1.550.790.67-1.55^{+0.79}_{-0.67}- 1.55 start_POSTSUPERSCRIPT + 0.79 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.67 end_POSTSUBSCRIPT 0.410.15+0.11subscriptsuperscript0.410.110.150.41^{+0.11}_{-0.15}0.41 start_POSTSUPERSCRIPT + 0.11 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.15 end_POSTSUBSCRIPT 1.420.77+1.3subscriptsuperscript1.421.30.771.42^{+1.3}_{-0.77}1.42 start_POSTSUPERSCRIPT + 1.3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.77 end_POSTSUBSCRIPT
Table 1: Best-fit values and their 1σ𝜎\sigmaitalic_σ errors for the four different cases considered: (a) CC data only, (b) SNIa data only, (c) FRBs data only, and (d) joint analysis.

With the best-fit values from the joint analysis (CC+SNIa+FRBs), we can plot relevant quantities that describe the cosmic evolution at the background level and compare them with those from the ΛΛ\Lambdaroman_ΛCDM model. Fig. 3 (right) shows the plot of relative deviation between the Hubble function of CJG and that of the ΛΛ\Lambdaroman_ΛCDM model, 1HCJG(z)/HΛCDM1subscript𝐻𝐶𝐽𝐺𝑧subscript𝐻ΛCDM1-H_{CJG}(z)/H_{\Lambda\text{CDM}}1 - italic_H start_POSTSUBSCRIPT italic_C italic_J italic_G end_POSTSUBSCRIPT ( italic_z ) / italic_H start_POSTSUBSCRIPT roman_Λ CDM end_POSTSUBSCRIPT. As can be seen from Fig.3, H(z)𝐻𝑧H(z)italic_H ( italic_z ) becomes indistinguishable for both models during the past, while it approaches very close values in the present time, resulting in a very small negative relative difference. In future times, H(z)𝐻𝑧H(z)italic_H ( italic_z ) for CJG becomes smaller than that for the ΛΛ\Lambdaroman_ΛCDM model, leading to a positive relative deviation. Conversely, cosmic acceleration is accounted for by the deceleration parameter, which is depicted in Fig. 4. As can be seen, the best-fit values (black curves) support cosmic deceleration in the future. These findings are interesting because they present a different behavior compared to the ΛΛ\Lambdaroman_ΛCDM case (blue line on the left side of Fig.4) and other types of Chaplygin-like fluids such as NCG, MCG, and GCG, as shown on the right side of Fig.4111To plot the deceleration curve for Chaplygin-like models, we used the best-fit values for NCG, MCG, and GCG found in Zheng2022 . Nevertheless, it is important to note that the 1σ𝜎\sigmaitalic_σ region (gray region in Fig. 4) is relatively large and sufficiently inclusive to also encompass a de Sitter final fate for the universe. In general, further data and analyses are needed to refine our understanding of the final fate of the universe.

Refer to caption
Refer to caption
Figure 3: Left: Bsksubscript𝐵𝑠𝑘B_{s}-kitalic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT - italic_k plane for the joint analysis, alongside the curve BS=kksubscript𝐵𝑆superscript𝑘𝑘B_{S}=-\frac{k^{\prime}}{k}italic_B start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT = - divide start_ARG italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_k end_ARG (black dashed curve), separating regions 𝒩3subscript𝒩3\cal{N}_{3}caligraphic_N start_POSTSUBSCRIPT caligraphic_3 end_POSTSUBSCRIPT and 𝒩4subscript𝒩4\cal{N}_{4}caligraphic_N start_POSTSUBSCRIPT caligraphic_4 end_POSTSUBSCRIPT. Right: plot of the relative deviation between the Hubble function of CJG and that of the ΛΛ\Lambdaroman_ΛCDM model, 1HCJG(z)/HΛCDM1subscript𝐻𝐶𝐽𝐺𝑧subscript𝐻ΛCDM1-H_{CJG}(z)/H_{\Lambda\text{CDM}}1 - italic_H start_POSTSUBSCRIPT italic_C italic_J italic_G end_POSTSUBSCRIPT ( italic_z ) / italic_H start_POSTSUBSCRIPT roman_Λ CDM end_POSTSUBSCRIPT, using the best-fit parameters.

A complementary analysis is provided by the statefinder parameters r𝑟ritalic_r and s𝑠sitalic_s, which account for the deviations of the CJG model from ΛΛ\Lambdaroman_ΛCDM. In Fig. 5 (left), the trajectory traced by the CJG on the sr𝑠𝑟s-ritalic_s - italic_r plane is shown, obtained by parametrically plotting Eqs. (27) and (28) with varying z𝑧zitalic_z. If the role of DE is played by a cosmological constant, the value of r𝑟ritalic_r remains constant at r=1𝑟1r=1italic_r = 1 throughout the matter-dominated epoch and into the future (for z104less-than-or-similar-to𝑧superscript104z\lesssim 10^{4}italic_z ≲ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT). In the sr𝑠𝑟s-ritalic_s - italic_r plane, the fixed point {s,r}={0,1}𝑠𝑟01\{s,r\}=\{0,1\}{ italic_s , italic_r } = { 0 , 1 } corresponds to ΛΛ\Lambdaroman_ΛCDM case. For CJG case, at past times (z>0𝑧0z>0italic_z > 0), the (s,r)𝑠𝑟(s,r)( italic_s , italic_r ) pair is (0,1)similar-toabsent01\sim(0,1)∼ ( 0 , 1 ), indistinguishable from ΛΛ\Lambdaroman_ΛCDM. However, currently, the parameters are s0.27similar-to-or-equals𝑠0.27s\simeq 0.27italic_s ≃ 0.27 and r0.2similar-to-or-equals𝑟0.2r\simeq 0.2italic_r ≃ 0.2, indicating a deviation of the CJG trajectory from ΛΛ\Lambdaroman_ΛCDM. In Fig. 5 (right), the effective EoS parameter weffsubscript𝑤𝑒𝑓𝑓w_{eff}italic_w start_POSTSUBSCRIPT italic_e italic_f italic_f end_POSTSUBSCRIPT (29) is displayed. The solid-blue and dashed-black lines correspond to the CJG and ΛΛ\Lambdaroman_ΛCDM models, respectively. The effective EoS parameter weffsubscript𝑤𝑒𝑓𝑓w_{eff}italic_w start_POSTSUBSCRIPT italic_e italic_f italic_f end_POSTSUBSCRIPT provides a summary of the combined effects of various components in the universe. As observed, weffsubscript𝑤effw_{\text{eff}}italic_w start_POSTSUBSCRIPT eff end_POSTSUBSCRIPT changes during the matter-dominated and dark energy-dominated epochs, reflecting the dominant component’s EoS parameter at that time. For CJG and ΛΛ\Lambdaroman_ΛCDM, the effective EoS parameters are practically indistinguishable in the past. However, around the present epoch, in CJG case, weffsubscript𝑤𝑒𝑓𝑓w_{eff}italic_w start_POSTSUBSCRIPT italic_e italic_f italic_f end_POSTSUBSCRIPT starts to increase and at some point in the future it becomes positive, indicating cosmic deceleration. This corroborates the late-time behavior of CJG initially observed from the deceleration parameter (Fig. 4).

Refer to caption
Refer to caption
Figure 4: Deceleration parameter as a function of redshift for the best-fit values found in the joint analysis (CC+SNIa+FRBs) alongside its 1σ𝜎\sigmaitalic_σ region, together with the ΛΛ\Lambdaroman_ΛCDM case (left) and other Chaplygin-type cases (right).
Refer to caption
Refer to caption
Figure 5: Plots of the trajectory on the sr𝑠𝑟s-ritalic_s - italic_r plane for the statefinder analysis (left panel) and the evolution of the effective EoS parameter against z𝑧zitalic_z for the CJG cosmological model. For both plots, we have used the best fit parameters

VI Conclusions and final remarks

We have explored an extension of the Chaplygin EoS, derived from a specific generalization of the Chaplygin inflationary model within the framework of the Hamilton-Jacobi formalism and elliptic functions Rengo1 . By imposing conditions to obtain physical solutions for the energy density, we reduced the parameter space to different sub-regions where the model is free of singularities within the interval 0<a<10𝑎10<a<10 < italic_a < 1, and the density remains always positive. Interestingly, one of these sub-regions is compatible with the possibility of a new deceleration phase in the future, following the current acceleration. Then, we used different data samples such as SnIa, CC and FRBs to investigate the viability of the CJG cosmological model including radiation and matter. Constraints on the free parameters we obtained using a statistical MCMC analyses and their error bars are presented in Table 1. Best-fit values for the joint analysis support the cosmic slowing down phenomenon (see Fig. 4) with a maximum of acceleration at z0.02similar-to𝑧0.02z\sim 0.02italic_z ∼ 0.02, α𝛼\alphaitalic_α values such that α+1>0𝛼10\alpha+1>0italic_α + 1 > 0 and negative values for Bssubscript𝐵𝑠B_{s}italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT. The preference for negative values for the Bssubscript𝐵𝑠B_{s}italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT parameter implies a lack of direct correspondence with the GCG. Additionally, the best-fit values result in a cosmology almost indistinguishable from ΛΛ\Lambdaroman_ΛCDM in the past, deviating from it only in recent epoch, and diverging from the eternal de Sitter expansion.

Exploring CJG expands two families of models. Firstly, it increases the number of models within the Chaplygin type family. Unlike other models in this family, however, CJG allows for a future acceleration-deceleration transition. Secondly, it enlarges the family of models that predict future deceleration, such as interacting models, w𝑤witalic_w parametrizations, decaying dark matter, extensions of quintessential cosmology, and others (see, for example, Shafieloo2009 ; Vargas2011 ; Magana2014 ; Escobal2023 , and references therein). Moreover, it has been observed that a potential future transition to a decelerating stage, thereby naturally ending the eternal accelerating regime, is significant from a physical perspective Escobal2023 . An eternal de Sitter phase disagrees with the requirements of the S-matrix describing particle interactions and can be problematic within the framework of string theory Fischler2001 ; Cline2001 ; Hellerman2001 . Nevertheless, until a definitive answer regarding the final fate of the universe is reached, preferably in a model-independent and completely data-driven way, the study of DE dynamics, even through phenomenological approaches, is crucial for enhancing our understanding of cosmic evolution and the future of the universe. Our aim here was to explore the potential of the CJG as a DE model with a final phase different than the de Sitter. Furthermore, future cosmological data may offer further insights into these intriguing questions.

Acknowledgements

J.A.S.F. thanks FAPES for the fellowship and financial support (045/2024 - P: 2024-M88VK). Also, J.A.S.F. is grateful for the hospitality of the Instituto Argentino de Radioastronomia (IAR), where part of this work was carried out. W.S.H.R. thanks FAPES (PRONEM No 503/2020) for the financial support under which this work was carried out. N. V. acknowledges the financial support of Fondecyt Grant 1220065. J. R. V. is partially supported by Centro de Física Teórica de Valparaíso (CeFiTeV). N. V. and J. R. V. thank the CEUNES/UFES for their warm hospitality while some of this work was carried out.

References

  • (1) A. Einstein, “The foundation of the general theory of relativity.,” Annalen Phys., vol. 49, no. 7, pp. 769–822, 1916.
  • (2) K. N. Abazajian et al., “Inflation Physics from the Cosmic Microwave Background and Large Scale Structure,” Astropart. Phys., vol. 63, pp. 55–65, 2015.
  • (3) A. G. Riess et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J., vol. 116, pp. 1009–1038, 1998.
  • (4) S. Perlmutter et al., “Measurements of ΩΩ\Omegaroman_Ω and ΛΛ\Lambdaroman_Λ from 42 high redshift supernovae,” Astrophys. J., vol. 517, pp. 565–586, 1999.
  • (5) D. N. Spergel et al., “First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters,” Astrophys. J. Suppl., vol. 148, pp. 175–194, 2003.
  • (6) N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys., vol. 641, p. A6, 2020. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  • (7) R. J. Cooke, M. Pettini, and C. C. Steidel, “One percent determination of the primordial deuterium abundance,” The Astrophysical Journal, vol. 855, no. 2, p. 102, 2018.
  • (8) D. J. Eisenstein et al., “Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies,” Astrophys. J., vol. 633, pp. 560–574, 2005.
  • (9) T. Padmanabhan, “Cosmological constant: The Weight of the vacuum,” Phys. Rept., vol. 380, pp. 235–320, 2003.
  • (10) V. Sahni and A. A. Starobinsky, “The Case for a positive cosmological Lambda term,” Int. J. Mod. Phys. D, vol. 9, pp. 373–444, 2000.
  • (11) S. M. Carroll, “The Cosmological constant,” Living Rev. Rel., vol. 4, p. 1, 2001.
  • (12) S. Weinberg, “The Cosmological Constant Problem,” Rev. Mod. Phys., vol. 61, pp. 1–23, 1989.
  • (13) J. Martin, “Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask),” Comptes Rendus Physique, vol. 13, pp. 566–665, 2012.
  • (14) I. Zlatev, L.-M. Wang, and P. J. Steinhardt, “Quintessence, cosmic coincidence, and the cosmological constant,” Phys. Rev. Lett., vol. 82, pp. 896–899, 1999.
  • (15) N. Arkani-Hamed, L. J. Hall, C. F. Kolda, and H. Murayama, “A New perspective on cosmic coincidence problems,” Phys. Rev. Lett., vol. 85, pp. 4434–4437, 2000.
  • (16) E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, “In the realm of the Hubble tension—a review of solutions,” Class. Quant. Grav., vol. 38, no. 15, p. 153001, 2021.
  • (17) A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri, J. C. Zinn, and D. Scolnic, “Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛΛ\Lambdaroman_ΛCDM,” Astrophys. J. Lett., vol. 908, no. 1, p. L6, 2021.
  • (18) E. Di Valentino et al., “Cosmology Intertwined III: fσ8𝑓subscript𝜎8f\sigma_{8}italic_f italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and S8subscript𝑆8S_{8}italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT,” Astropart. Phys., vol. 131, p. 102604, 2021.
  • (19) E. J. Copeland, M. Sami, and S. Tsujikawa, “Dynamics of dark energy,” Int. J. Mod. Phys. D, vol. 15, pp. 1753–1936, 2006.
  • (20) S. Nojiri and S. D. Odintsov, “Introduction to modified gravity and gravitational alternative for dark energy,” eConf, vol. C0602061, p. 06, 2006.
  • (21) T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, “Modified Gravity and Cosmology,” Phys. Rept., vol. 513, pp. 1–189, 2012.
  • (22) A. Joyce, L. Lombriser, and F. Schmidt, “Dark Energy Versus Modified Gravity,” Ann. Rev. Nucl. Part. Sci., vol. 66, pp. 95–122, 2016.
  • (23) N. Bilic, G. B. Tupper, and R. D. Viollier, “Unification of dark matter and dark energy: The Inhomogeneous Chaplygin gas,” Phys. Lett. B, vol. 535, pp. 17–21, 2002.
  • (24) M. Heydari-Fard and H. R. Sepangi, “Generalized Chaplygin gas as geometrical dark energy,” Phys. Rev. D, vol. 76, p. 104009, 2007.
  • (25) R. Jackiw, “A Particle field theorist’s lectures on supersymmetric, nonAbelian fluid mechanics and d-branes,” 10 2000.
  • (26) A. Y. Kamenshchik, U. Moschella, and V. Pasquier, “An Alternative to quintessence,” Phys. Lett. B, vol. 511, pp. 265–268, 2001.
  • (27) J. C. Fabris, S. V. B. Goncalves, and P. E. De Souza, “Mass power spectrum in a universe dominated by the Chaplygin gas,” Gen. Rel. Grav., vol. 34, pp. 2111–2126, 2002.
  • (28) V. Gorini, A. Kamenshchik, and U. Moschella, “Can the Chaplygin gas be a plausible model for dark energy?,” Phys. Rev. D, vol. 67, p. 063509, 2003.
  • (29) M. C. Bento, O. Bertolami, and A. A. Sen, “Generalized Chaplygin gas, accelerated expansion and dark energy matter unification,” Phys. Rev. D, vol. 66, p. 043507, 2002.
  • (30) W. S. Hipolito-Ricaldi, H. E. S. Velten, and W. Zimdahl, “Non-adiabatic dark fluid cosmology,” JCAP, vol. 06, p. 016, 2009.
  • (31) W. S. Hipolito-Ricaldi, H. E. S. Velten, and W. Zimdahl, “The Viscous Dark Fluid Universe,” Phys. Rev. D, vol. 82, p. 063507, 2010.
  • (32) F. Perrotta, S. Matarrese, and M. Torki, “Instability of chaplygin gas trajectories in unified dark matter models,” Phys. Rev. D, vol. 70, p. 121304, Dec 2004.
  • (33) M. Biesiada, W. Godłowski, and M. Szydłowski, “Generalized Chaplygin Gas Models Tested with Type Ia Supernovae,” Astrophys. J. , vol. 622, pp. 28–38, Mar. 2005.
  • (34) R. Colistete, Jr. and J. C. Fabris, “Bayesian analysis of the (generalized) Chaplygin gas and cosmological constant models using the 157 gold SNe Ia data,” Class. Quant. Grav., vol. 22, pp. 2813–2834, 2005.
  • (35) Z.-H. Zhu, “Generalized Chaplygin gas as a unified scenario of dark matter/energy: Observational constraints,” Astron. Astrophys., vol. 423, pp. 421–426, 2004.
  • (36) P. Wu and H. W. Yu, “Generalized Chaplygin gas model: Constraints from Hubble parameter versus redshift data,” Phys. Lett. B, vol. 644, pp. 16–19, 2007.
  • (37) M. Makler, S. Quinet de Oliveira, and I. Waga, “Constraints on the generalized Chaplygin gas from supernovae observations,” Phys. Lett. B, vol. 555, p. 1, 2003.
  • (38) S. del Campo and J. R. Villanueva, “Observational Constraints on the Generalized Chaplygin Gas,” Int. J. Mod. Phys. D, vol. 18, pp. 2007–2022, 2009.
  • (39) H. Sandvik, M. Tegmark, M. Zaldarriaga, and I. Waga, “The end of unified dark matter?,” Phys. Rev. D, vol. 69, p. 123524, 2004.
  • (40) R. F. vom Marttens, L. Casarini, W. Zimdahl, W. S. Hipólito-Ricaldi, and D. F. Mota, “Does a generalized Chaplygin gas correctly describe the cosmological dark sector?,” Phys. Dark Univ., vol. 15, pp. 114–124, 2017.
  • (41) H. Benaoum, “Accelerated Universe from Modified Chaplygin Gas and Tachyonic Fluid,” Universe, vol. 8, no. 7, p. 340, 2022.
  • (42) U. Debnath, A. Banerjee, and S. Chakraborty, “Role of modified Chaplygin gas in accelerated universe,” Class. Quant. Grav., vol. 21, pp. 5609–5618, 2004.
  • (43) X. Zhang, F.-Q. Wu, and J. Zhang, “A New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter,” JCAP, vol. 01, p. 003, 2006.
  • (44) X.-H. Zhai, Y.-D. Xu, and X.-Z. Li, “Viscous generalized Chaplygin gas,” Int. J. Mod. Phys. D, vol. 15, pp. 1151–1162, 2006.
  • (45) A. Hernández-Almada, M. A. García-Aspeitia, M. A. Rodríguez-Meza, and V. Motta, “A hybrid model of viscous and Chaplygin gas to tackle the Universe acceleration,” Eur. Phys. J. C, vol. 81, no. 4, p. 295, 2021.
  • (46) J. Zheng, S. Cao, Y. Lian, T. Liu, Y. Liu, and Z.-H. Zhu, “Revisiting Chaplygin gas cosmologies with the recent observations of high-redshift quasars,” Eur. Phys. J. C, vol. 82, no. 7, p. 582, 2022.
  • (47) J. R. Villanueva, “The generalized Chaplygin-Jacobi gas,” JCAP, vol. 07, p. 045, 2015.
  • (48) W. S. Hipólito-Ricaldi and J. R. Villanueva, “A Jacobian generalization of the pseudo-Nambu–Goldstone boson potential,” Int. J. Mod. Phys. D, vol. 26, no. 03, p. 1750019, 2016.
  • (49) A. Gallego Cadavid and J. R. Villanueva, “No slow-roll inflation à la generalized Chaplygin gas in general relativity,” JCAP, vol. 12, p. 044, 2020.
  • (50) U. Debnath, “Roles of modified Chaplygin–Jacobi and Chaplygin–Abel gases in FRW universe,” Int. J. Mod. Phys. A, vol. 36, no. 33, p. 2150245, 2021.
  • (51) P. Mukherjee, U. Debnath, and A. Pradhan, “Accretion of modified Chaplygin–Jacobi gas and modified Chaplygin–Abel gas onto Schwarzschild black hole,” Int. J. Geom. Meth. Mod. Phys., vol. 20, no. 12, p. 2350218, 2023.
  • (52) H. Chaudhary, U. Debnath, T. Roy, S. Maity, G. Mustafa, and M. Arora, “Constraints on the parameters of modified Chaplygin-Jacobi and modified Chaplygin-Abel gases in f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity,” 7 2023.
  • (53) M. Fathi, J. R. Villanueva, G. Aguilar-Pérez, and M. Cruz, “Black hole in a generalized Chaplygin-Jacobi dark fluid: shadow and light deflection angle,” 6 2024.
  • (54) V. Sahni, T. D. Saini, A. A. Starobinsky, and U. Alam, “Statefinder: A New geometrical diagnostic of dark energy,” JETP Lett., vol. 77, pp. 201–206, 2003.
  • (55) U. Alam, V. Sahni, T. D. Saini, and A. A. Starobinsky, “Exploring the expanding universe and dark energy using the Statefinder diagnostic,” Mon. Not. Roy. Astron. Soc., vol. 344, p. 1057, 2003.
  • (56) M.-J. Zhang and J.-Q. Xia, “Physical condition for the slowing down of cosmic acceleration,” Nucl. Phys. B, vol. 929, pp. 438–451, 2018.
  • (57) C. Z. Vargas, W. S. Hipolito-Ricaldi, and W. Zimdahl, “Perturbations for transient acceleration,” JCAP, vol. 04, p. 032, 2012.
  • (58) Y. Hu, M. Li, N. Li, and S. Wang, “A comprehensive investigation on the slowing down of cosmic acceleration,” Astrophys. J., vol. 821, no. 1, p. 60, 2016.
  • (59) J. Magaña, V. H. Cárdenas, and V. Motta, “Cosmic slowing down of acceleration for several dark energy parametrizations,” JCAP, vol. 10, p. 017, 2014.
  • (60) Y. L. Bolotin, V. A. Cherkaskiy, M. I. Konchatnyi, S. Pan, and W. Yang, “Do current observations support transient acceleration of our universe?,” Int. J. Mod. Phys. D, vol. 31, no. 05, p. 2250036, 2022.
  • (61) A. Shafieloo, V. Sahni, and A. A. Starobinsky, “Is cosmic acceleration slowing down?,” Phys. Rev. D, vol. 80, p. 101301, 2009.
  • (62) A. C. C. Guimarães and J. A. S. Lima, “Could the cosmic acceleration be transient? A cosmographic evaluation,” Classical and Quantum Gravity, vol. 28, p. 125026, June 2011.
  • (63) R.-G. Cai and Z.-L. Tuo, “Detecting the cosmic acceleration with current data,” Phys. Lett. B, vol. 706, pp. 116–122, 2011.
  • (64) F. E. M. Costa and J. S. Alcaniz, “Cosmological consequences of a possible ΛΛ\Lambdaroman_Λ-dark matter interaction,” Phys. Rev. D, vol. 81, p. 043506, Feb. 2010.
  • (65) J. C. Fabris, B. Fraga, N. Pinto-Neto, and W. Zimdahl, “Transient cosmic acceleration from interacting fluids,” JCAP, vol. 04, p. 008, 2010.
  • (66) M. Shahalam, S. Sami, and A. Agarwal, “Om𝑂𝑚Omitalic_O italic_m diagnostic applied to scalar field models and slowing down of cosmic acceleration,” Mon. Not. Roy. Astron. Soc., vol. 448, no. 3, pp. 2948–2959, 2015.
  • (67) A. A. Escobal, J. F. Jesus, S. H. Pereira, and J. A. S. Lima, “Can the Universe decelerate in the future?,” Phys. Rev. D, vol. 109, no. 2, p. 023514, 2024.
  • (68) A. Albrecht and C. Skordis, “Phenomenology of a realistic accelerating universe using only Planck scale physics,” Phys. Rev. Lett., vol. 84, pp. 2076–2079, 2000.
  • (69) J. Barrow, R. Bean, and J. Magueijo, “Can the universe escape eternal acceleration?,” Mon. Not. Roy. Astron. Soc., vol. 316, p. L41, 2000.
  • (70) M. C. Bento, O. Bertolami, and N. M. C. Santos, “A Two field quintessence model,” Phys. Rev. D, vol. 65, p. 067301, 2002.
  • (71) W. Handley, M. Hobson, and A. Lasenby, “Polychord: nested sampling for cosmology,” Monthly Notices of the Royal Astronomical Society: Letters, vol. 450, no. 1, pp. L61–L65, 2015.
  • (72) R. Jimenez and A. Loeb, “Constraining cosmological parameters based on relative galaxy ages,” Astrophys. J., vol. 573, pp. 37–42, 2002.
  • (73) D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, and S. A. Stanford, “Cosmic chronometers: constraining the equation of state of dark energy. I: H(z) measurements,” JCAP, vol. 2010, p. 008, Feb. 2010.
  • (74) C. Zhang, H. Zhang, S. Yuan, S. Liu, T.-J. Zhang, and Y.-C. Sun, “Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven,” Research in Astronomy and Astrophysics, vol. 14, pp. 1221–1233, Oct. 2014.
  • (75) M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L. Verde, D. Thomas, A. Citro, R. Tojeiro, and D. Wilkinson, “A 6% measurement of the Hubble parameter at z0.45similar-to𝑧0.45z\sim 0.45italic_z ∼ 0.45: direct evidence of the epoch of cosmic re-acceleration,” JCAP, vol. 05, p. 014, 2016.
  • (76) E. Gaztanaga, A. Cabre, and L. Hui, “Clustering of Luminous Red Galaxies IV: Baryon Acoustic Peak in the Line-of-Sight Direction and a Direct Measurement of H(z),” Mon. Not. Roy. Astron. Soc., vol. 399, pp. 1663–1680, 2009.
  • (77) N. G. Busca et al., “Baryon Acoustic Oscillations in the Ly-α𝛼\alphaitalic_α forest of BOSS quasars,” Astron. Astrophys., vol. 552, p. A96, 2013.
  • (78) A. Font-Ribera et al., “Quasar-Lyman α𝛼\alphaitalic_α Forest Cross-Correlation from BOSS DR11 : Baryon Acoustic Oscillations,” JCAP, vol. 05, p. 027, 2014.
  • (79) T. Delubac et al., “Baryon acoustic oscillations in the Lyα𝛼\alphaitalic_α forest of BOSS DR11 quasars,” Astron. Astrophys., vol. 574, p. A59, 2015.
  • (80) K. Jiao, N. Borghi, M. Moresco, and T.-J. Zhang, “New Observational H(z) Data from Full-spectrum Fitting of Cosmic Chronometers in the LEGA-C Survey,” Astrophys. J. Suppl., vol. 265, no. 2, p. 48, 2023.
  • (81) G.-J. Wang, X.-J. Ma, S.-Y. Li, and J.-Q. Xia, “Reconstructing functions and estimating parameters with artificial neural networks: A test with a hubble parameter and sne ia,” The Astrophysical Journal Supplement Series, vol. 246, no. 1, p. 13, 2020.
  • (82) L. Amendola and S. Tsujikawa, Dark energy: theory and observations. Cambridge University Press, 2010.
  • (83) D. Brout, D. Scolnic, B. Popovic, A. G. Riess, A. Carr, J. Zuntz, R. Kessler, T. M. Davis, S. Hinton, D. Jones, et al., “The pantheon+ analysis: cosmological constraints,” The Astrophysical Journal, vol. 938, no. 2, p. 110, 2022.
  • (84) A. G. Riess, W. Yuan, L. M. Macri, D. Scolnic, D. Brout, S. Casertano, D. O. Jones, Y. Murakami, G. S. Anand, L. Breuval, et al., “A comprehensive measurement of the local value of the hubble constant with 1 km s- 1 mpc- 1 uncertainty from the hubble space telescope and the sh0es team,” The Astrophysical journal letters, vol. 934, no. 1, p. L7, 2022.
  • (85) D. R. Lorimer, M. Bailes, M. A. McLaughlin, D. J. Narkevic, and F. Crawford, “A bright millisecond radio burst of extragalactic origin,” Science, vol. 318, no. 5851, pp. 777–780, 2007.
  • (86) C. D. Bochenek, V. Ravi, K. V. Belov, G. Hallinan, J. Kocz, S. R. Kulkarni, and D. L. McKenna, “A fast radio burst associated with a galactic magnetar,” Nature, vol. 587, no. 7832, pp. 59–62, 2020.
  • (87) B. Zhang, “The physical mechanisms of fast radio bursts,” Nature, vol. 587, no. 7832, pp. 45–53, 2020.
  • (88) S. Bhandari, E. M. Sadler, J. X. Prochaska, S. Simha, S. D. Ryder, L. Marnoch, K. W. Bannister, J.-P. Macquart, C. Flynn, R. M. Shannon, et al., “The host galaxies and progenitors of fast radio bursts localized with the australian square kilometre array pathfinder,” The Astrophysical Journal Letters, vol. 895, no. 2, p. L37, 2020.
  • (89) K. Yang, Q. Wu, and F. Wang, “Finding the missing baryons in the intergalactic medium with localized fast radio bursts,” The Astrophysical Journal Letters, vol. 940, no. 2, p. L29, 2022.
  • (90) J. M. Cordes and T. J. W. Lazio, “Ne2001. i. a new model for the galactic distribution of free electrons and its fluctuations,” arXiv preprint astro-ph/0207156, 2002.
  • (91) J. Yao, R. Manchester, and N. Wang, “A new electron-density model for estimation of pulsar and frb distances,” The Astrophysical Journal, vol. 835, no. 1, p. 29, 2017.
  • (92) S. K. Ocker, J. M. Cordes, and S. Chatterjee, “Constraining Galaxy Halos from the Dispersion and Scattering of Fast Radio Bursts and Pulsars,” Astrophys. J. , vol. 911, p. 102, Apr. 2021.
  • (93) J. X. Prochaska and Y. Zheng, “Probing galactic haloes with fast radio bursts,” Monthly Notices of the Royal Astronomical Society, vol. 485, no. 1, pp. 648–665, 2019.
  • (94) J.-P. Macquart, J. Prochaska, M. McQuinn, K. Bannister, S. Bhandari, C. Day, A. Deller, R. Ekers, C. James, L. Marnoch, et al., “A census of baryons in the universe from localized fast radio bursts,” Nature, vol. 581, no. 7809, pp. 391–395, 2020.
  • (95) S. Hagstotz, R. Reischke, and R. Lilow, “A new measurement of the hubble constant using fast radio bursts,” Monthly Notices of the Royal Astronomical Society, vol. 511, no. 1, pp. 662–667, 2022.
  • (96) J. X. Prochaska, S. Simha, C. Law, N. Tejos, et al., “Frbs/frb: First doi release of this repository,” Zenodo, 2019.
  • (97) Q. Wu, H. Yu, and F. Wang, “A new method to measure hubble parameter h (z) using fast radio bursts,” The Astrophysical Journal, vol. 895, no. 1, p. 33, 2020.
  • (98) M. Jaroszynski, “Fast radio bursts and cosmological tests,” Monthly Notices of the Royal Astronomical Society, vol. 484, no. 2, pp. 1637–1644, 2019.
  • (99) J.-G. Zhang, Z.-W. Zhao, Y. Li, J.-F. Zhang, D. Li, and X. Zhang, “Cosmology with fast radio bursts in the era of ska,” arXiv preprint arXiv:2307.01605, 2023.
  • (100) J. A. S. Fortunato, W. S. Hipólito-Ricaldi, and M. V. dos Santos, “Cosmography from well-localized fast radio bursts,” Mon. Not. Roy. Astron. Soc., vol. 526, no. 2, pp. 1773–1782, 2023.
  • (101) J. M. Shull, B. D. Smith, and C. W. Danforth, “The baryon census in a multiphase intergalactic medium: 30% of the baryons may still be missing,” The Astrophysical Journal, vol. 759, no. 1, p. 23, 2012.
  • (102) P. A. Zyla et al., “Review of Particle Physics,” PTEP, vol. 2020, no. 8, p. 083C01, 2020.
  • (103) D. Camarena and V. Marra, “On the use of the local prior on the absolute magnitude of type ia supernovae in cosmological inference,” Monthly Notices of the Royal Astronomical Society, vol. 504, no. 4, pp. 5164–5171, 2021.
  • (104) W. Fischler, A. Kashani-Poor, R. McNees, and S. Paban, “The Acceleration of the universe, a challenge for string theory,” JHEP, vol. 07, p. 003, 2001.
  • (105) J. M. Cline, “Quintessence, cosmological horizons, and self-tuning,” Journal of High Energy Physics, vol. 2001, p. 035, Aug. 2001.
  • (106) S. Hellerman, N. Kaloper, and L. Susskind, “String theory and quintessence,” JHEP, vol. 06, p. 003, 2001.

Appendix A Sub-region for cosmic slowing down

In this appendix, we present a detailed computation of the condition for having cosmic slowing down of the current acceleration. First, we consider the EoS parameter for the CJG model as a function of redshift

ω(z)=1+(1Bs)kk(1Bs)+(k+Bsk)(1+z)3(1+α)+(1Bs)k(k+Bsk)(1z)3(1+α)(1Bs)k.𝜔𝑧11subscript𝐵𝑠𝑘𝑘1subscript𝐵𝑠superscript𝑘subscript𝐵𝑠𝑘superscript1𝑧31𝛼1subscript𝐵𝑠superscript𝑘superscript𝑘subscript𝐵𝑠𝑘superscriptsubscript1𝑧31𝛼1subscript𝐵𝑠superscript𝑘\displaystyle\omega(z)=-1+\frac{(1-B_{s})k}{k(1-B_{s})+(k^{\prime}+B_{s}k)(1+z% )^{-3(1+\alpha)}}+\frac{(1-B_{s})k^{\prime}}{(k^{\prime}+B_{s}k)(1_{z})^{-3(1+% \alpha)}-(1-B_{s})k^{\prime}}\,.italic_ω ( italic_z ) = - 1 + divide start_ARG ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) italic_k end_ARG start_ARG italic_k ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) + ( italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k ) ( 1 + italic_z ) start_POSTSUPERSCRIPT - 3 ( 1 + italic_α ) end_POSTSUPERSCRIPT end_ARG + divide start_ARG ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k ) ( 1 start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 3 ( 1 + italic_α ) end_POSTSUPERSCRIPT - ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG . (44)

Next, we use the change of variable y=ρ1+α𝑦superscript𝜌1𝛼y=\rho^{1+\alpha}italic_y = italic_ρ start_POSTSUPERSCRIPT 1 + italic_α end_POSTSUPERSCRIPT in Eq. (4). The EoS parameter and its derivative as functions of the new variable are

w=Bsky2k+kBsy,dwdy=Bsky2+kBs.formulae-sequence𝑤subscript𝐵𝑠𝑘𝑦2superscript𝑘superscript𝑘subscript𝐵𝑠𝑦𝑑𝑤𝑑𝑦subscript𝐵𝑠𝑘superscript𝑦2superscript𝑘subscript𝐵𝑠\displaystyle w=-\frac{B_{s}k}{y}-2k^{\prime}+\frac{k^{\prime}}{B_{s}}y\,,% \qquad\frac{dw}{dy}=\frac{B_{s}k}{y^{2}}+\frac{k^{\prime}}{B_{s}}\,.italic_w = - divide start_ARG italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k end_ARG start_ARG italic_y end_ARG - 2 italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + divide start_ARG italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG italic_y , divide start_ARG italic_d italic_w end_ARG start_ARG italic_d italic_y end_ARG = divide start_ARG italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k end_ARG start_ARG italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG . (45)

Considering the y𝑦yitalic_y variable, the condition for cosmic deceleration (22) can be written as

dwdz=dwdydydz<0.𝑑𝑤𝑑𝑧𝑑𝑤𝑑𝑦𝑑𝑦𝑑𝑧0\displaystyle\frac{dw}{dz}=\frac{dw}{dy}\frac{dy}{dz}<0\,.divide start_ARG italic_d italic_w end_ARG start_ARG italic_d italic_z end_ARG = divide start_ARG italic_d italic_w end_ARG start_ARG italic_d italic_y end_ARG divide start_ARG italic_d italic_y end_ARG start_ARG italic_d italic_z end_ARG < 0 . (46)

For Bs<0subscript𝐵𝑠0B_{s}<0italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < 0, dwdy𝑑𝑤𝑑𝑦\frac{dw}{dy}divide start_ARG italic_d italic_w end_ARG start_ARG italic_d italic_y end_ARG is always negative, so dydz𝑑𝑦𝑑𝑧\frac{dy}{dz}divide start_ARG italic_d italic_y end_ARG start_ARG italic_d italic_z end_ARG must be always positive. In other words,

dydz=3(1+α)Bs(1Bs)(k+Bsk)(1+z)13(1+α)[(k+Bsk)(1+z)3(1+α)(1BS)k]2>0𝑑𝑦𝑑𝑧31𝛼subscript𝐵𝑠1subscript𝐵𝑠superscript𝑘subscript𝐵𝑠𝑘superscript1𝑧131𝛼superscriptdelimited-[]superscript𝑘subscript𝐵𝑠𝑘superscript1𝑧31𝛼1subscript𝐵𝑆superscript𝑘20\displaystyle\frac{dy}{dz}=3(1+\alpha)B_{s}(1-B_{s})\frac{(k^{\prime}+B_{s}\,k% )(1+z)^{-1-3(1+\alpha)}}{[(k^{\prime}+B_{s}\,k)(1+z)^{-3(1+\alpha)}-(1-B_{S})k% ^{\prime}]^{2}}>0divide start_ARG italic_d italic_y end_ARG start_ARG italic_d italic_z end_ARG = 3 ( 1 + italic_α ) italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) divide start_ARG ( italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k ) ( 1 + italic_z ) start_POSTSUPERSCRIPT - 1 - 3 ( 1 + italic_α ) end_POSTSUPERSCRIPT end_ARG start_ARG [ ( italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k ) ( 1 + italic_z ) start_POSTSUPERSCRIPT - 3 ( 1 + italic_α ) end_POSTSUPERSCRIPT - ( 1 - italic_B start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ) italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG > 0 (47)

Then, this last condition reduces to

(1+α)(k+Bsk)<0.1𝛼superscript𝑘subscript𝐵𝑠𝑘0\displaystyle(1+\alpha)(k^{\prime}+B_{s}\,k)<0\,.( 1 + italic_α ) ( italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_k ) < 0 . (48)

In the case α+10𝛼10\alpha+1\geq 0italic_α + 1 ≥ 0, this is valid for Bs<kksubscript𝐵𝑠superscript𝑘𝑘B_{s}<-\frac{k^{\prime}}{k}italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT < - divide start_ARG italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_k end_ARG.

For Bs>0subscript𝐵𝑠0B_{s}>0italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT > 0, dwdy𝑑𝑤𝑑𝑦\frac{dw}{dy}divide start_ARG italic_d italic_w end_ARG start_ARG italic_d italic_y end_ARG is always positive, and then condition (47) reduces to

(1+α)(1Bs)<01𝛼1subscript𝐵𝑠0\displaystyle(1+\alpha)(1-B_{s})<0( 1 + italic_α ) ( 1 - italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) < 0 (49)

α+1<0𝛼10\alpha+1<0italic_α + 1 < 0, this condition is valid when Bs>1subscript𝐵𝑠1B_{s}>1italic_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT > 1. Therefore , the CJG presents cosmic slowdown in 𝒩1subscript𝒩1{\cal{N}}_{1}caligraphic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and 𝒩4subscript𝒩4{\cal{N}}_{4}caligraphic_N start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT.