Self-consistent strong screening applied to thermonuclear reactions

Christopher Grayson Department of Physics, The University of Arizona, Tucson, Arizona 85721, USA chrisgray1044@arizona.edu Cheng Tao Yang Department of Physics, The University of Arizona, Tucson, Arizona 85721, USA Martin Formanek ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, 252 41 Dolní Břežany, Czech Republic Johann Rafelski Department of Physics, The University of Arizona, Tucson, Arizona 85721, USA
Abstract

Self-consistent strong plasma screening around light nuclei is implemented in the Big Bang nucleosynthesis (BBN) epoch to determine the short-range screening potential, eϕ(r)/T1𝑒italic-ϕ𝑟𝑇1e\phi(r)/T\geq 1italic_e italic_ϕ ( italic_r ) / italic_T ≥ 1, relevant for thermonuclear reactions. We numerically solve the non-linear Poisson-Boltzmann equation incorporating Fermi-Dirac statistics, adopting a generalized screening mass to find the electric potential in the cosmic BBN electron-positron plasma for finite-sized 4He nuclei as an example. Although the plasma follows Boltzmann statistics at large distances, Fermi-Dirac statistics is necessary when work performed by ions on electrons is comparable to their rest mass energy. While strong screening effects are generally minor due to the high BBN temperatures, they can enhance the fusion rates of high-Z>2𝑍2Z>2italic_Z > 2 elements while leaving fusion rates of lower-Z2𝑍2Z\leq 2italic_Z ≤ 2 elements relatively unaffected. Our results also reveal a pronounced spatial dependence of the strong screening potential near the nuclear surface. These findings about the electron-positron plasma’s role refine BBN theory predictions and offer broader applications for studying weakly coupled plasmas in diverse cosmic and laboratory settings.

Big Bang nucleosynthesis (151), Plasma astrophysics (1261), Nuclear physics (2077), Nuclear astrophysics (1129), Nuclear fusion (2324), Nuclear reaction cross sections (2087)

1 Introduction

1.1 The Big Bang nucleosynthesis epoch

We address the formation of light elements during the Big Bang nucleosynthesis (BBN) epoch in the temperature range 86keV>T>20keV86keV𝑇20keV86\,\mathrm{keV}>T>20\,\mathrm{keV}86 roman_keV > italic_T > 20 roman_keV (Pitrou et al., 2018). In this temperature regime, electron-positron pairs (ee+superscript𝑒superscript𝑒e^{-}e^{+}italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT plasma) are abundant, as highlighted in various recent studies (Wang et al., 2011; Hwang et al., 2021; Rafelski et al., 2023). We determine the magnitude and effect of the self-consistent strong field screening for finite-sized stationary nuclei in the early Universe induced by this exotic ee+superscript𝑒superscript𝑒e^{-}e^{+}italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT plasma. These effects are of interest for precision BBN calculations at the 0.1% level and are of general interest in exploring the properties of plasma theory.

Here, we explore various static and nonlinear models of charge screening, a collective effect within the plasma that alters the potential between nuclei. Plasma screening involves electrons surrounding an ion’s charge Ze𝑍𝑒Zeitalic_Z italic_e (elementary charge e>0𝑒0e>0italic_e > 0), which effectively ’screens’ or diminishes the influence of other nuclear charges beyond their radius, lowering the Coulomb barrier. In the context of nuclear reactions, this reduction in the Coulomb barrier facilitates increased penetration probability. This, in turn, boosts the rates of thermonuclear reactions and consequently alters the abundance of lighter elements formed in the early universe.

Traditionally, most BBN plasma studies assume the “weak-field” limit where the electromagnetic potential energy ϕ(r)italic-ϕ𝑟\phi(r)italic_ϕ ( italic_r ) is small compared to the thermal energy T𝑇Titalic_T

qϕ(r)T1.much-less-than𝑞italic-ϕ𝑟𝑇1\frac{q\phi(r)}{T}\ll 1\,.divide start_ARG italic_q italic_ϕ ( italic_r ) end_ARG start_ARG italic_T end_ARG ≪ 1 . (1)

In this case, the movement of plasma particles is dominated by thermal fluctuations rather than the Coulomb force. Plasmas satisfying this condition are weakly coupled, indicating plasma effects will lead to linear corrections to the potential, such as in Debye-Hückel theory (Debye & Hückel, 1923).

Due to the relatively low baryon number density nBsubscript𝑛𝐵n_{B}italic_n start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT in the early Universe (Grayson et al., 2023), the internuclear distance a=nB1/3𝑎superscriptsubscript𝑛𝐵13a=n_{B}^{-1/3}italic_a = italic_n start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 / 3 end_POSTSUPERSCRIPT is large and the macroscopic properties of the early Universe plasma satisfy the weak field limit for the inter-nuclear spacing a𝑎aitalic_a because, at this distance, the potential is much weaker than the thermal energy, which is below 868686\,86keV

Zeϕ(a)T1,witha=nB1/3,formulae-sequencemuch-less-than𝑍𝑒italic-ϕ𝑎𝑇1with𝑎superscriptsubscript𝑛𝐵13\frac{Ze\phi(a)}{T}\ll 1\,,\quad\text{with}\quad a=n_{B}^{-1/3}\,,divide start_ARG italic_Z italic_e italic_ϕ ( italic_a ) end_ARG start_ARG italic_T end_ARG ≪ 1 , with italic_a = italic_n start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 / 3 end_POSTSUPERSCRIPT , (2)

for light nuclei with charge Z𝑍Zitalic_Z. The weak field limit can accurately describe the electromagnetic fields in the plasma at large distances on the order of the inter-nuclear spacing a𝑎aitalic_a but not at short distances where Zeϕ/T𝑍𝑒italic-ϕ𝑇Ze\phi/Titalic_Z italic_e italic_ϕ / italic_T could be larger than one.

Although the BBN plasma is weakly coupled, nonlinear corrections to the short-distance electromagnetic potential may be relevant to quantum tunneling in thermonuclear reactions. This is because the Gamow energy EGsubscript𝐸𝐺E_{G}italic_E start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT at which nuclei are most likely to tunnel is higher than the BBN thermal energy (Shaviv & Shaviv, 1996). The internuclear distance corresponding to Gamow energy is on the order of femtometers, such that for the short-range potential

Zeϕ(rEG)T>1,𝑍𝑒italic-ϕsubscript𝑟subscript𝐸𝐺𝑇1\frac{Ze\phi(r_{E_{G}})}{T}>1\,,divide start_ARG italic_Z italic_e italic_ϕ ( italic_r start_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) end_ARG start_ARG italic_T end_ARG > 1 , (3)

where rEGsubscript𝑟subscript𝐸𝐺r_{E_{G}}italic_r start_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT end_POSTSUBSCRIPT is the classical turning point at the Gamow energy.

EG=((πTZ1Z2α)2μr2)1/3.subscript𝐸𝐺superscriptsuperscript𝜋𝑇subscript𝑍1subscript𝑍2𝛼2subscript𝜇𝑟213E_{G}=\left(\frac{(\pi TZ_{1}Z_{2}\alpha)^{2}\mu_{r}}{2}\right)^{1/3}\,.italic_E start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT = ( divide start_ARG ( italic_π italic_T italic_Z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_α ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_μ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT . (4)

The reduced mass of the colliding light nuclei is μrsubscript𝜇𝑟\mu_{r}italic_μ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT, and Z1subscript𝑍1Z_{1}italic_Z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and Z2subscript𝑍2Z_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are the respective charges of the nuclei. The condition Eq. (3) indicates that although the BBN plasma can be treated globally as weakly coupled, locally, the short-range potential can have nonlinear corrections simply because the electrostatic energy close to a nucleus can be much higher than the thermal energy. Naively using Boltzmann statistics, one expects exponential enhancement of the charge density (Grayson et al., 2023). We anticipate that these nonlinear corrections are relevant because they are on the order of the weak-field corrections due to dynamic motion and damping.

1.2 Methods of evaluation

Plasma screening effects were first considered in 1954 by (Salpeter, 1954), who proposed evaluating the enhancement of nuclear reactions by employing the static Debye-Hückel potential (Debye & Hückel, 1923; Salpeter & van Horn, 1969; Famiano et al., 2016). These applications focus on collision-less plasma only. Later, this approach was generalized for nuclei moving in the plasma (Hwang et al., 2021; Carraro et al., 1988; Gruzinov, 1998; Opher & Opher, 2000; Yao et al., 2017) i.e., ‘dynamic’ screening. In our previous work, we addressed scattering damping (Formanek et al., 2021) in the quantum electrodynamic (QED) ee+γsuperscript𝑒superscript𝑒𝛾e^{-}e^{+}\gammaitalic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_γ plasma (Grayson et al., 2023) where the BBN reaction network occurs. Similar numerical simulations were performed to study damping in the ee+γsuperscript𝑒superscript𝑒𝛾e^{-}e^{+}\gammaitalic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_γ plasma (Sasankan et al., 2020; Kedia et al., 2021).

To estimate the damped-dynamic enhancement of thermonuclear reactions during the BBN epoch, we can use the approximate analytic damped-dynamic screening potential denoted as ϕDD(r)subscriptitalic-ϕDD𝑟\phi_{\text{DD}}(r)italic_ϕ start_POSTSUBSCRIPT DD end_POSTSUBSCRIPT ( italic_r ) in (Grayson et al., 2023). For weak screening with potential eϕ/T1much-less-than𝑒italic-ϕ𝑇1e\phi/T\ll 1italic_e italic_ϕ / italic_T ≪ 1, the reaction rate enhancement is related to the usual Salpeter enhancement factor (Salpeter, 1954), which only depends on the value of ϕDD(r)subscriptitalic-ϕDD𝑟\phi_{\text{DD}}(r)italic_ϕ start_POSTSUBSCRIPT DD end_POSTSUBSCRIPT ( italic_r ) at the origin r=0𝑟0r=0italic_r = 0

eϕDD(0)=Zα(mDc232βσ0),𝑒subscriptitalic-ϕDD0𝑍𝛼subscript𝑚𝐷superscript𝑐232𝛽subscript𝜎0e\phi_{\text{DD}}(0)=Z\alpha\left(m_{D}c^{2}-\frac{3}{2}\beta\sigma_{0}\right)\,,italic_e italic_ϕ start_POSTSUBSCRIPT DD end_POSTSUBSCRIPT ( 0 ) = italic_Z italic_α ( italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG 3 end_ARG start_ARG 2 end_ARG italic_β italic_σ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , (5)

where α1/137𝛼1137\alpha\approx 1/137italic_α ≈ 1 / 137 is the fine structure constant, β𝛽\betaitalic_β is the thermal velocity of ions in the plasma

β=2TM𝛽2𝑇𝑀\beta=\sqrt{\frac{2T}{M}}\,italic_β = square-root start_ARG divide start_ARG 2 italic_T end_ARG start_ARG italic_M end_ARG end_ARG (6)

with M𝑀Mitalic_M being the mass of nuclei and T𝑇Titalic_T is the temperature of the BBN electron-positron plasma, with kB=1subscript𝑘𝐵1k_{B}=1italic_k start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = 1. Then mDsubscript𝑚𝐷m_{D}italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT is the Debye screening mass, and σ0subscript𝜎0\sigma_{0}italic_σ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the static conductivity of the early universe during BBN. The Debye screening mass is related to the Debye length λDsubscript𝜆𝐷\lambda_{D}italic_λ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT as

mDc2=cλD,subscript𝑚𝐷superscript𝑐2Planck-constant-over-2-pi𝑐subscript𝜆𝐷m_{D}c^{2}=\frac{\hbar c}{\lambda_{D}}\,,italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG roman_ℏ italic_c end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT end_ARG , (7)

where c=197.3MeVfmPlanck-constant-over-2-pi𝑐197.3MeVfm\hbar c=197.3\ \mathrm{MeV}\ \mathrm{fm}roman_ℏ italic_c = 197.3 roman_MeV roman_fm. From now on, we will absorb c𝑐citalic_c into ctt𝑐𝑡𝑡ct\rightarrow titalic_c italic_t → italic_t, such that mDc2mDsubscript𝑚𝐷superscript𝑐2subscript𝑚𝐷m_{D}c^{2}\rightarrow m_{D}italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT has units of energy. Eq. (5) is only valid in the weak damping limit ωp<κsubscript𝜔𝑝𝜅\omega_{p}<\kappaitalic_ω start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT < italic_κ, with κ𝜅\kappaitalic_κ being the average rate in of collisions and ωpsubscript𝜔𝑝\omega_{p}italic_ω start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT the plasma frequency. The thermal velocity of ions during BBN is very small due to their large mass β<102𝛽superscript102\beta<10^{-2}italic_β < 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT. The conductivity of the early universe σ0subscript𝜎0\sigma_{0}italic_σ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is estimated in (Grayson et al., 2023) to be 0.230.230.23\,0.23keV. Therefore, the dynamic correction in the second term of Eq. (5) is small compared to the static result in the first term, mD2.7subscript𝑚𝐷2.7m_{D}\approx 2.7\,italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ≈ 2.7keV. For this reason, the dynamic contribution to screening will be neglected in this work.

Approaches to strong screening have been previously developed in astrophysical plasmas such as solar plasmas and in 12C plasmas within white dwarfs. This research began with Salpeter in 1954, modeling a strongly coupled plasma with a uniform density of electrons that can completely screen nuclei. The following papers continue this research (Salpeter, 1954; Dewitt et al., 1973; Itoh et al., 1977, 1979; Ichimaru, 1982; Kravchuk & Yakovlev, 2014). Strong screening models are applicable for plasmas where the Coulomb energy is much larger than the thermal energy, even at distances larger than the ion separation. In this work, we study ‘intermediate screening,’ which we call self-consistent strong screening since it captures both the strong and weak field regimes and involves a self-consistent determination of the potential.

The strong screening potential is described by the Poisson-Boltzmann equation (Dzitko et al., 1995; Gruzinov & Bahcall, 1998; Brüggen & Gough, 1997, 2000; Bi et al., 2000; Liolios, 2004; Luo et al., 2020). The Poisson-Boltzmann equation is also used in physical chemistry to calculate the electromagnetic potential in electrolytic solutions (Fogolari et al., 2002). Traditionally, using the Boltzmann approximation assumes point-like charges, which cause the screening potential to diverge near their locations (Gruzinov & Bahcall, 1998). In the past, this issue was circumvented by calculating strong screening using a cluster expansion of weak field screening (Graboske et al., 1973), by considering ion correlations (Dewitt et al., 1973; Itoh et al., 1977), and employing the density matrix equation in quantum statistical mechanics (Gruzinov & Bahcall, 1998; Elsing et al., 2022). We solve the Poisson-Boltzmann equation directly by implementing a finite-sized source charge density and using Fermi-Dirac statistics. Other solution methods to the Poisson-Boltzmann equation using Fermi-Dirac statistics are explored in the context of stellar fusion by (Brüggen & Gough, 2000), where the approximate screening potential is found analytically using matching conditions. Numerical studies of the Poisson-Boltzmann equation were performed in (Cowan & Kirkwood, 1958) to compare with quantum mechanical calculations.

1.3 Novel approaches and results

Our study introduces several advancements and findings in plasma screening during the Big Bang nucleosynthesis (BBN) epoch. Our main result is the short-range potential around light nuclei. We introduce finite-sized nuclei into the Poisson-Boltzmann equation, eliminating singular behavior mentioned in (Gruzinov & Bahcall, 1998) that typically arises with point-like charges. Additionally, we formulate a generalized screening mass that characterizes the strength of polarization within the plasma, providing a framework for comparing various screening models. Our results indicate that Fermi-Dirac statistics is necessary when the work performed by the external potential of ions on electrons is comparable to their rest mass energy, even though the plasma adheres to Boltzmann statistics at larger distances. We establish an analytic strong screening mass in the ultrarelativistic limit for Fermi-Dirac statistics, which could be instrumental in developing a dynamic theory of strong screening in future studies.

While strong screening is generally small due to the high temperatures prevalent during BBN, it is interesting since it enhances the fusion rates of high-Z𝑍Zitalic_Z elements while leaving elements with lower-Z𝑍Zitalic_Z relatively unaffected. Our findings reveal that although the overall screening effect diminishes with decreasing temperature, the relative enhancement of strong screening over weak screening grows as the temperature decreases. We also find that the strong screening potential exhibits a pronounced spatial dependence near the nuclear surface. The step nature of this potential shown in Fig. 2 implies that relying solely on the screening energy near the origin can lead to an overestimate of the reaction rate enhancement due to strong screening. This overestimate was previously noted in (Itoh et al., 1977).

In Section 2, we review the theoretical background of self-consistent strong screening. Section 3 presents numerical Solutions to the Poisson-Boltzmann equation for 4He ions in the BBN plasma. In Section 4, we estimate the strong screening enhancement factor for 4He-4He and 12C-12C Collisions by evaluating the WKB tunneling probability of the strong screening potential. Section 5 reviews our results and discusses their implications for BBN and fusion.

2 Self-Consistent Strong Screening of Light Nuclei

We find the screened potential ϕ(r)italic-ϕ𝑟\phi(r)italic_ϕ ( italic_r ) in plasma by solving the Poisson equation for the induced polarization charge density ρind(r)subscript𝜌ind𝑟\rho_{\mathrm{ind}}(r)italic_ρ start_POSTSUBSCRIPT roman_ind end_POSTSUBSCRIPT ( italic_r ) and the external charge density of the light nuclei ρext(r)subscript𝜌ext𝑟\rho_{\mathrm{ext}}(r)italic_ρ start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT ( italic_r )

2ϕ(r)=ρtot(r)/ε0=[ρext(r)+ρind(r)]/ε0,superscript2italic-ϕ𝑟subscript𝜌tot𝑟subscript𝜀0delimited-[]subscript𝜌ext𝑟subscript𝜌ind𝑟subscript𝜀0-\nabla^{2}\phi(r)=\rho_{\mathrm{tot}}(r)/\varepsilon_{0}=[\rho_{\mathrm{ext}}% (r)+\rho_{\mathrm{ind}}(r)]/\varepsilon_{0}\,,- ∇ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ϕ ( italic_r ) = italic_ρ start_POSTSUBSCRIPT roman_tot end_POSTSUBSCRIPT ( italic_r ) / italic_ε start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = [ italic_ρ start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT ( italic_r ) + italic_ρ start_POSTSUBSCRIPT roman_ind end_POSTSUBSCRIPT ( italic_r ) ] / italic_ε start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , (8)

where ε0subscript𝜀0\varepsilon_{0}italic_ε start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the vacuum permittivity. The equilibrium-induced charge density is the difference between the charge density of electrons and positrons

ρind(r)=en+(r)en(r),subscript𝜌ind𝑟𝑒subscript𝑛𝑟𝑒subscript𝑛𝑟\rho_{\mathrm{ind}}(r)=en_{+}(r)-en_{-}(r)\,,italic_ρ start_POSTSUBSCRIPT roman_ind end_POSTSUBSCRIPT ( italic_r ) = italic_e italic_n start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ( italic_r ) - italic_e italic_n start_POSTSUBSCRIPT - end_POSTSUBSCRIPT ( italic_r ) , (9)

where n±(r)subscript𝑛plus-or-minus𝑟n_{\pm}(r)italic_n start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT ( italic_r ) represents the number density of electrons and positrons. The induced charge density can be calculated by assuming some statistical distribution for charges in the plasma. For the choice of Boltzmann statistics, one recovers the usual Poisson-Boltzmann equation.

We introduce the re-scaled potential

Φ(r)eϕ(r)T,Φ𝑟𝑒italic-ϕ𝑟𝑇\Phi(r)\equiv\frac{e\phi(r)}{T}\,,roman_Φ ( italic_r ) ≡ divide start_ARG italic_e italic_ϕ ( italic_r ) end_ARG start_ARG italic_T end_ARG , (10)

to create a dimensionless variable ΦΦ\Phiroman_Φ which compares the Coulomb energy eϕ𝑒italic-ϕe\phiitalic_e italic_ϕ to the plasma temperature T𝑇Titalic_T. The re-scaled Poisson equation reads

2Φ(r)eρind(r)/(ε0T)=eρext(r)/(ε0T).superscript2Φ𝑟𝑒subscript𝜌ind𝑟subscript𝜀0𝑇𝑒subscript𝜌ext𝑟subscript𝜀0𝑇-\nabla^{2}\Phi(r)-e\rho_{\mathrm{ind}}(r)/(\varepsilon_{0}T)=e\rho_{\mathrm{% ext}}(r)/(\varepsilon_{0}T)\,.- ∇ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ ( italic_r ) - italic_e italic_ρ start_POSTSUBSCRIPT roman_ind end_POSTSUBSCRIPT ( italic_r ) / ( italic_ε start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_T ) = italic_e italic_ρ start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT ( italic_r ) / ( italic_ε start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_T ) . (11)

We introduce the re-scaled external charge distribution Pextsubscript𝑃extP_{\mathrm{ext}}italic_P start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT to simplify the right-hand side

Pext(r)eρext(r)ε0T=4πZαcπ3/2R3Ter2R2,subscript𝑃ext𝑟𝑒subscript𝜌ext𝑟subscript𝜀0𝑇4𝜋𝑍𝛼Planck-constant-over-2-pi𝑐superscript𝜋32superscript𝑅3𝑇superscript𝑒superscript𝑟2superscript𝑅2P_{\mathrm{ext}}(r)\equiv e\frac{\rho_{\mathrm{ext}}(r)}{\varepsilon_{0}T}=% \frac{4\pi Z\alpha\hbar c}{\pi^{3/2}R^{3}T}e^{-\frac{r^{2}}{R^{2}}}\,,italic_P start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT ( italic_r ) ≡ italic_e divide start_ARG italic_ρ start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT ( italic_r ) end_ARG start_ARG italic_ε start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_T end_ARG = divide start_ARG 4 italic_π italic_Z italic_α roman_ℏ italic_c end_ARG start_ARG italic_π start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT italic_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_T end_ARG italic_e start_POSTSUPERSCRIPT - divide start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_POSTSUPERSCRIPT , (12)

where we chose to model the charge distribution of a nucleus as a Gaussian and R𝑅Ritalic_R is the root-mean-squared charge radius

R=23Rα.𝑅23subscript𝑅𝛼R=\sqrt{\frac{2}{3}}R_{\alpha}\,.italic_R = square-root start_ARG divide start_ARG 2 end_ARG start_ARG 3 end_ARG end_ARG italic_R start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT . (13)

For the radius of 4He we use the charge radius Rα=1.67824subscript𝑅𝛼1.67824R_{\alpha}=1.67824\,italic_R start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = 1.67824fm (Krauth et al., 2021). For the radius of 12C, we used an equilateral cluster of alphas (Smith et al., 2020). We rewrite the Poisson equation Eq. (8) in terms of an effective screening mass to make the screening strength more explicit. The screening mass is defined as

ms2(Φ)(c)2eρind(r)/(ε0T)Φ(r).superscriptsubscript𝑚𝑠2ΦsuperscriptPlanck-constant-over-2-pi𝑐2𝑒subscript𝜌ind𝑟subscript𝜀0𝑇Φ𝑟\frac{m_{s}^{2}(\Phi)}{(\hbar c)^{2}}\equiv-\frac{e\rho_{\mathrm{ind}}(r)/(% \varepsilon_{0}T)}{\Phi(r)}\,.divide start_ARG italic_m start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( roman_Φ ) end_ARG start_ARG ( roman_ℏ italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ≡ - divide start_ARG italic_e italic_ρ start_POSTSUBSCRIPT roman_ind end_POSTSUBSCRIPT ( italic_r ) / ( italic_ε start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_T ) end_ARG start_ARG roman_Φ ( italic_r ) end_ARG . (14)

Using this screening mass Eq. (11) takes the form

2Φ(r)+ms2(Φ)(c)2Φ(r)=Pext(r).superscript2Φ𝑟superscriptsubscript𝑚𝑠2ΦsuperscriptPlanck-constant-over-2-pi𝑐2Φ𝑟subscript𝑃ext𝑟-\nabla^{2}\Phi(r)+\frac{m_{s}^{2}(\Phi)}{(\hbar c)^{2}}\Phi(r)=P_{\mathrm{ext% }}(r)\,.- ∇ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ ( italic_r ) + divide start_ARG italic_m start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( roman_Φ ) end_ARG start_ARG ( roman_ℏ italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_Φ ( italic_r ) = italic_P start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT ( italic_r ) . (15)

The screening mass ms2superscriptsubscript𝑚𝑠2m_{s}^{2}italic_m start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is related to the usual Deybe mass but exhibits additional nonlinear behavior due to its dependence on the potential. Using this generalized screening mass, we will compare Boltzmann and Fermi-Dirac equilibrium distributions for the plasma.

2.1 Boltzmann Statistics

The full equilibrium Boltzmann distribution necessary to describe the short-range potential is (Hakim, 1967; Groot et al., 1980)

fB±(x,p)=e{uμ[pμ+qAμ(x)]}/T.superscriptsubscript𝑓𝐵plus-or-minus𝑥𝑝superscript𝑒subscript𝑢𝜇delimited-[]superscript𝑝𝜇𝑞superscript𝐴𝜇𝑥𝑇f_{B}^{\pm}(x,p)=e^{-\left\{u_{\mu}[p^{\mu}+qA^{\mu}(x)]\right\}/T}\,.italic_f start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_x , italic_p ) = italic_e start_POSTSUPERSCRIPT - { italic_u start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT [ italic_p start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT + italic_q italic_A start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ( italic_x ) ] } / italic_T end_POSTSUPERSCRIPT . (16)

The charge of a plasma particle is q𝑞qitalic_q, Aμ(x)superscript𝐴𝜇𝑥A^{\mu}(x)italic_A start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ( italic_x ) is the electromagnetic 4-potential, and T𝑇Titalic_T is the plasma temperature. During the BBN epoch 86keV>T>20keV86keV𝑇20keV86\,\mathrm{keV}>T>20\,\mathrm{keV}86 roman_keV > italic_T > 20 roman_keV, the number of electrons and positrons are almost equal to each other due to the charge neutrality (Grayson et al., 2023). In this temperature range, we set the chemical potential to zero for our study. We assume the plasma is at rest such that its 4-velocity reads uμ=(1,0,0,0)superscript𝑢𝜇1000u^{\mu}=(1,0,0,0)italic_u start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT = ( 1 , 0 , 0 , 0 ), then

uμAμ(x)=ϕ(x).subscript𝑢𝜇superscript𝐴𝜇𝑥italic-ϕ𝑥u_{\mu}A^{\mu}(x)=\phi(x)\,.italic_u start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ( italic_x ) = italic_ϕ ( italic_x ) . (17)

The potential term in Eq. (16) that accounts for the energy change due to the rest frame potential (or equivalently uses the kinetic vs canonical momentum) to describe the rest energy of electrons and positrons in the plasma (Hakim, 1967; Groot et al., 1980). This phase space density leads to a number density that is the normal expression but enhanced by the exponential factor in potential

n±(x)=2d3𝒑(c)3(2π)3p0p0fB±(x,p)=neqequA(x)/T,subscript𝑛plus-or-minus𝑥2superscript𝑑3𝒑superscriptPlanck-constant-over-2-pi𝑐3superscript2𝜋3superscript𝑝0superscript𝑝0superscriptsubscript𝑓𝐵plus-or-minus𝑥𝑝subscript𝑛eqsuperscript𝑒𝑞𝑢𝐴𝑥𝑇n_{\pm}(x)=2\int\frac{d^{3}\boldsymbol{p}}{(\hbar c)^{3}(2\pi)^{3}p^{0}}p^{0}f% _{B}^{\pm}(x,p)=n_{\mathrm{eq}}e^{-qu\cdot A(x)/T}\,,italic_n start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT ( italic_x ) = 2 ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT bold_italic_p end_ARG start_ARG ( roman_ℏ italic_c ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_p start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT end_ARG italic_p start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_x , italic_p ) = italic_n start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_q italic_u ⋅ italic_A ( italic_x ) / italic_T end_POSTSUPERSCRIPT , (18)

where the equilibrium density is defined as

neq2d3𝒑(c)3(2π)3eup/T.subscript𝑛𝑒𝑞2superscript𝑑3𝒑superscriptPlanck-constant-over-2-pi𝑐3superscript2𝜋3superscript𝑒𝑢𝑝𝑇n_{eq}\equiv 2\int\frac{d^{3}\boldsymbol{p}}{(\hbar c)^{3}(2\pi)^{3}}e^{-u% \cdot p/T}\,.italic_n start_POSTSUBSCRIPT italic_e italic_q end_POSTSUBSCRIPT ≡ 2 ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT bold_italic_p end_ARG start_ARG ( roman_ℏ italic_c ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_e start_POSTSUPERSCRIPT - italic_u ⋅ italic_p / italic_T end_POSTSUPERSCRIPT . (19)

The induced equilibrium charge density is used to calculate the screening mass Eq. (14).

Calculating the induced charge density for the Boltzmann case using Eq. (9) and Eq. (18) and then inserting them into the definition for the screening mass Eq. (14), one finds

ms,Boltz2(Φ)=mD2sinh[Φ(r)]Φ(r),superscriptsubscript𝑚𝑠Boltz2Φsuperscriptsubscript𝑚𝐷2Φ𝑟Φ𝑟m_{s,\mathrm{Boltz}}^{2}(\Phi)=m_{D}^{2}\frac{\sinh\left[\Phi(r)\right]}{\Phi(% r)}\,,italic_m start_POSTSUBSCRIPT italic_s , roman_Boltz end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( roman_Φ ) = italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG roman_sinh [ roman_Φ ( italic_r ) ] end_ARG start_ARG roman_Φ ( italic_r ) end_ARG , (20)

since the exponential factors in Eq. (18) combine to give hyperbolic sine. In this expression, the Debye screening mas mDsubscript𝑚𝐷m_{D}italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT has its standard definition

1λD2=mD2(c)2=8παcTneq.1superscriptsubscript𝜆𝐷2superscriptsubscript𝑚𝐷2superscriptPlanck-constant-over-2-pi𝑐28𝜋𝛼Planck-constant-over-2-pi𝑐𝑇subscript𝑛eq\frac{1}{\lambda_{D}^{2}}=\frac{m_{D}^{2}}{(\hbar c)^{2}}=\frac{8\pi\alpha% \hbar c}{T}\,n_{\mathrm{eq}}\,.divide start_ARG 1 end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = divide start_ARG italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( roman_ℏ italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = divide start_ARG 8 italic_π italic_α roman_ℏ italic_c end_ARG start_ARG italic_T end_ARG italic_n start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT . (21)

λDsubscript𝜆𝐷\lambda_{D}italic_λ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT is the characteristic distance over which the linearized field is screened.

2.2 Fermi-Dirac Statistics

We anticipate that the induced charge density near the nuclear surface where eϕme𝑒italic-ϕsubscript𝑚𝑒e\phi\geq m_{e}italic_e italic_ϕ ≥ italic_m start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT may become large enough for degeneracy effects to become important. To model this correctly, we use the relativistic Fermi-Dirac distribution

fF±(x,p)=1e[uμ(pμ+qAμ(x))]/T+1.superscriptsubscript𝑓𝐹plus-or-minus𝑥𝑝1superscript𝑒delimited-[]subscript𝑢𝜇superscript𝑝𝜇𝑞superscript𝐴𝜇𝑥𝑇1f_{F}^{\pm}(x,p)=\frac{1}{e^{\left[u_{\mu}(p^{\mu}+qA^{\mu}(x))\right]/T}+1}\,.italic_f start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_x , italic_p ) = divide start_ARG 1 end_ARG start_ARG italic_e start_POSTSUPERSCRIPT [ italic_u start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ( italic_p start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT + italic_q italic_A start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ( italic_x ) ) ] / italic_T end_POSTSUPERSCRIPT + 1 end_ARG . (22)

We then sum the induced charge densities of electrons and positrons as in Eq. (9). After simplification, one finds

ms,FD2(Φ)=8παTΦ(r)d3𝒑(2π)3sinh[Φ(r)]cosh(p0/T)+cosh[Φ(r)],subscriptsuperscript𝑚2𝑠FDΦ8𝜋𝛼𝑇Φ𝑟superscript𝑑3𝒑superscript2𝜋3Φ𝑟subscript𝑝0𝑇Φ𝑟m^{2}_{s,\mathrm{FD}}(\Phi)=\frac{8\pi\alpha}{T\Phi(r)}\int\frac{d^{3}% \boldsymbol{p}}{(2\pi)^{3}}\frac{\sinh\left[\Phi(r)\right]}{\cosh\left(p_{0}/T% \right)+\cosh\left[\Phi(r)\right]}\,,italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s , roman_FD end_POSTSUBSCRIPT ( roman_Φ ) = divide start_ARG 8 italic_π italic_α end_ARG start_ARG italic_T roman_Φ ( italic_r ) end_ARG ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT bold_italic_p end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG divide start_ARG roman_sinh [ roman_Φ ( italic_r ) ] end_ARG start_ARG roman_cosh ( italic_p start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_T ) + roman_cosh [ roman_Φ ( italic_r ) ] end_ARG , (23)

which does not have a simple analytic form in the full relativistic limit due to the dependence on the re-scaled potential ΦΦ\Phiroman_Φ (Frolov, 2023). An analytic solution to Eq. (23) exists in the ultrarelativistic limit where one can approximate p0=m2+𝒑2|𝒑|subscript𝑝0superscript𝑚2superscript𝒑2𝒑p_{0}=\sqrt{m^{2}+\boldsymbol{p}^{2}}\approx|\boldsymbol{p}|italic_p start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = square-root start_ARG italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + bold_italic_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ≈ | bold_italic_p | or equivalently m/T1much-less-than𝑚𝑇1m/T\ll 1italic_m / italic_T ≪ 1. Eq. (23) is then integrated analytically into the known form (Elze et al., 1980) valid to all orders in Φ(r)Φ𝑟\Phi(r)roman_Φ ( italic_r )

ms,FD2(Φ)4αT23π[π2+(Φ(r)+μT)2].subscriptsuperscript𝑚2𝑠FDΦ4𝛼superscript𝑇23𝜋delimited-[]superscript𝜋2superscriptΦ𝑟𝜇𝑇2\begin{split}m^{2}_{s,\mathrm{FD}}(\Phi)&\approx\frac{4\alpha T^{2}}{3\pi}% \left[\pi^{2}+\left(\Phi(r)+\frac{\mu}{T}\right)^{2}\right]\,.\end{split}start_ROW start_CELL italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s , roman_FD end_POSTSUBSCRIPT ( roman_Φ ) end_CELL start_CELL ≈ divide start_ARG 4 italic_α italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 3 italic_π end_ARG [ italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( roman_Φ ( italic_r ) + divide start_ARG italic_μ end_ARG start_ARG italic_T end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] . end_CELL end_ROW (24)

This is the usual ultra-relativistic Debye mass plus a quadratic dependence in ϕitalic-ϕ\phiitalic_ϕ. This screening mass has much slower quadratic growth than the exponential dependence in ΦΦ\Phiroman_Φ predicted by the Boltzmann distribution Eq. (20).

Keeping higher order terms in a low density expansion z=m/(ΦT)1𝑧𝑚Φ𝑇much-less-than1z={m}/({\Phi T})\ll 1italic_z = italic_m / ( roman_Φ italic_T ) ≪ 1 [see (Birrell et al., 2024)] and for μ=0𝜇0\mu=0italic_μ = 0 one finds (Kodama, 2002)

ms,FD2(Φ)4α3π(π22T22z21z2+(ΦT)2(1z2)3/2+7π4T440(ΦT)2z4(1z2)5/2).subscriptsuperscript𝑚2𝑠FDΦ4𝛼3𝜋superscript𝜋22superscript𝑇22superscript𝑧21superscript𝑧2superscriptΦ𝑇2superscript1superscript𝑧2327superscript𝜋4superscript𝑇440superscriptΦ𝑇2superscript𝑧4superscript1superscript𝑧252m^{2}_{s,\mathrm{FD}}(\Phi)\approx\frac{4\alpha}{3\pi}\left(\frac{\pi^{2}}{2}T% ^{2}\frac{2-z^{2}}{\sqrt{1-z^{2}}}+(\Phi T)^{2}(1-z^{2})^{3/2}+\frac{7\pi^{4}T% ^{4}}{40(\Phi T)^{2}}\frac{z^{4}}{(1-z^{2})^{5/2}}\right)\,.italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s , roman_FD end_POSTSUBSCRIPT ( roman_Φ ) ≈ divide start_ARG 4 italic_α end_ARG start_ARG 3 italic_π end_ARG ( divide start_ARG italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG 2 - italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG square-root start_ARG 1 - italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG + ( roman_Φ italic_T ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 1 - italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT + divide start_ARG 7 italic_π start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 40 ( roman_Φ italic_T ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG italic_z start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 - italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 5 / 2 end_POSTSUPERSCRIPT end_ARG ) . (25)
Refer to caption
Figure 1: The effective screening mass for both Fermi Eq. (22) and Boltzmann Eq. (16) statistics are shown as a blue-dashed line and a red-dotted line, respectively. We also show the ultrarelativistic expansion as an orange dashed-dotted line and the series expansion derived in (Kodama, 2002) shown as a purple long-dashed line. Strong screening predicts a much larger screening effect at large Φ=eϕ/TΦ𝑒italic-ϕ𝑇\Phi=e\phi/Troman_Φ = italic_e italic_ϕ / italic_T values than weak screening. The Gamow energy EG390subscript𝐸𝐺390E_{G}\approx 390italic_E start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ≈ 390 keV, the most probable tunneling energy, is shown as a gray vertical line, and the value of the potential at the origin eϕ(0)2300𝑒italic-ϕ02300e\phi(0)\approx 2300\,italic_e italic_ϕ ( 0 ) ≈ 2300keV is shown as a dashed gray line.

In Fig. 1, we compare the effective screening mass Eq. (14) for a Fermi-Dirac distribution and a Boltzmann distribution for varying values of the potential ϕitalic-ϕ\phiitalic_ϕ. In general, a larger screening mass indicates more screening charge will be present for a particular external potential ϕitalic-ϕ\phiitalic_ϕ, leading to a larger enhancement of nuclear reaction rates. In Fig. 1, the Boltzmann distribution vastly over-predicts the screening mass and, thus, the screening effect. This is because it does not include the stacking of fermion states of electrons and positrons in the polarization cloud. The domain of the screening mass relevant for quantum tunneling lies between the gamow energy and the potential value near the origin EG<eϕ<eϕ(0)subscript𝐸𝐺𝑒italic-ϕ𝑒italic-ϕ0E_{G}<e\phi<e\phi(0)italic_E start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT < italic_e italic_ϕ < italic_e italic_ϕ ( 0 ). In Fig. 1, we see that in this region, strong screening predicts around a 10>ms,FD2/mD>10010subscriptsuperscript𝑚2𝑠FDsubscript𝑚𝐷10010>m^{2}_{s,\mathrm{FD}}/m_{D}>10010 > italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s , roman_FD end_POSTSUBSCRIPT / italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT > 100 times larger screening mass as compared to weak screening. This is a much larger change in the screening effect than predicted by dynamic collision-less screening (Hwang et al., 2021) and damped dynamic screening (Grayson et al., 2023). For large values of potential ϕitalic-ϕ\phiitalic_ϕ, the Fermi-Dirac screening mass ms,FDsubscript𝑚𝑠FDm_{s,\mathrm{FD}}italic_m start_POSTSUBSCRIPT italic_s , roman_FD end_POSTSUBSCRIPT approaches the ultrarelativistic limit Eq. (24). This indicates that the analytic expression for the ultra-relativistic Fermi-Dirac screening mass fully captures the short-distance potential and the behavior of a high-temperature strong field plasma in general. This could potentially lead to huge simplification of analytic methods. To numerically solve Eq. (15) we must use the relativistic Fermi-Dirac screening mass Eq. (23) instead of the analytic result Eq. (24), since our boundary conditions are given at large distances where Eq. (24) is invalid.

3 Solving the strong field Poisson equation self consistently

To find the numerical solution to Eq. (15) we start the integration of Eq. (15) at large values of r𝑟ritalic_r where the weak field condition Eq. (2) applies since there we know the analytic solution [see Appendix A, Eq. (A3)] up to an overall normalization due to the additional screening that will occur at short ranges. For this calculation, we typically began integration at 1 Å, using the weak field analytic solution,

Φrc/ms(r)QeffemDrr.subscriptΦmuch-greater-than𝑟Planck-constant-over-2-pi𝑐subscript𝑚𝑠𝑟subscript𝑄effsuperscript𝑒subscript𝑚𝐷𝑟𝑟\Phi_{r\gg\hbar c/m_{s}}(r)\approx\frac{Q_{\mathrm{eff}}\,e^{-m_{D}r}}{r}\,.roman_Φ start_POSTSUBSCRIPT italic_r ≫ roman_ℏ italic_c / italic_m start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_r ) ≈ divide start_ARG italic_Q start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT italic_r end_POSTSUPERSCRIPT end_ARG start_ARG italic_r end_ARG . (26)

as a boundary condition at large distances [for better accuracy we use the Debye-Hückel field for Gaussian chargers Eq. (A2)]. One can integrate inwards with any standard solver to small values of r𝑟ritalic_r varying a shooting parameter Qeffsubscript𝑄effQ_{\mathrm{eff}}italic_Q start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT, which represents the effective charge at large distances. The solution will either diverge to positive or negative infinity based on whether the effective charge has been chosen to be too large or too small. One can then iterate the shooting algorithm, increasing or decreasing the effective charge seen at large distances until the divergence point converges sufficiently close to r=0𝑟0r=0italic_r = 0.

The numerical solution can be checked for consistency as discussed in Appendix B. However, the precision of the solution was mainly determined by ensuring the stability of the solution when varying parameters such as step size, boundary conditions, and initial guesses for the shooting algorithm. The overall accuracy of the solution is determined by the choice of boundary conditions, which we assume is the analytic solution at large distances Eq. (A2).

For the Fermi-Dirac case, there is additional complexity since the density cannot be easily integrated analytically over momentum p𝑝pitalic_p. However, since the dependence on the potential is trivial, one can parameterize a numerical solution for various values of potential ΦΦ\Phiroman_Φ and then use the resulting parameterization in the Poisson equation Eq. (15). This parameterization is plotted in Fig. 1.

Refer to caption
Figure 2: The potential eϕind𝑒subscriptitalic-ϕinde\phi_{\text{ind}}italic_e italic_ϕ start_POSTSUBSCRIPT ind end_POSTSUBSCRIPT due to the induced screening charge density for both Fermi Eq. (22) and Boltzmann Eq. (16) statistics, including strong screening shown as a blue dashed line and a red dotted line respectively. The black solid line is the screening potential for the weak-field limit Eq. (A2). This calculation was done at temperature T=86𝑇86T=86\,italic_T = 86keV at the beginning of BBN when the screening effect is largest. The gray area shows the nuclear interior at a radius of R=2/3Rα𝑅23subscript𝑅𝛼R=\sqrt{2/3}R_{\alpha}italic_R = square-root start_ARG 2 / 3 end_ARG italic_R start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT. The potential calculated using Boltzmann statistics levels off near this radius at eϕind=170𝑒subscriptitalic-ϕind170e\phi_{\text{ind}}=170\,italic_e italic_ϕ start_POSTSUBSCRIPT ind end_POSTSUBSCRIPT = 170keV, outside the scope of this plot.
Refer to caption
Figure 3: The potential eϕind𝑒subscriptitalic-ϕinde\phi_{\text{ind}}italic_e italic_ϕ start_POSTSUBSCRIPT ind end_POSTSUBSCRIPT due to the induced screening charge density for Fermi-Dirac strong screening Eq. (22) at various temperatures as solid lines ranging from blue to red. The weak screening potentials are shown as dashed lines ranging from blue to red. Overall screening decreases with temperature T𝑇Titalic_T, but the difference between weak and strong becomes larger for small T𝑇Titalic_T.

We are interested in the potential due to screening charges ϕindsubscriptitalic-ϕind\phi_{\text{ind}}italic_ϕ start_POSTSUBSCRIPT ind end_POSTSUBSCRIPT where

ϕind(r)ϕ(r)ϕvac(r),subscriptitalic-ϕind𝑟italic-ϕ𝑟subscriptitalic-ϕvac𝑟\phi_{\text{ind}}(r)\equiv\phi(r)-\phi_{\text{vac}}(r)\,,italic_ϕ start_POSTSUBSCRIPT ind end_POSTSUBSCRIPT ( italic_r ) ≡ italic_ϕ ( italic_r ) - italic_ϕ start_POSTSUBSCRIPT vac end_POSTSUBSCRIPT ( italic_r ) , (27)

with ϕitalic-ϕ\phiitalic_ϕ being the total potential and ϕvacsubscriptitalic-ϕvac\phi_{\text{vac}}italic_ϕ start_POSTSUBSCRIPT vac end_POSTSUBSCRIPT the potential in vacuum. This quantity is plotted for an alpha particle (4He) in Fig. 2. Strong screening predicts a larger induced screening potential due to the enhancement of screening charge density Eq. (18). This effect is more pronounced near the origin where eϕ/T𝑒italic-ϕ𝑇e\phi/Titalic_e italic_ϕ / italic_T is large. For an alpha particle and T=86𝑇86T=86\,italic_T = 86keV, this value is around eϕ(0)/T27𝑒italic-ϕ0𝑇27e\phi(0)/T\approx 27italic_e italic_ϕ ( 0 ) / italic_T ≈ 27. The Boltzmann screening potential, shown as a red dotted line, calculated using Eq. (20) over-predicts the screening effects by a factor of up to 103superscript10310^{3}10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT since the density quickly becomes large enough that a Fermi-Dirac distribution is required to describe it correctly. The Fermi-Dirac screening potential, shown as a blue dashed line, displays the usual step behavior. The black solid line shows the weak screening potential Eq. (A2), which is nearly constant up to large distances and equal to its value at the origin

eϕweak(0)=ZαmD.𝑒subscriptitalic-ϕweak0𝑍𝛼subscript𝑚𝐷e\phi_{\text{weak}}(0)=Z\alpha m_{D}\,.italic_e italic_ϕ start_POSTSUBSCRIPT weak end_POSTSUBSCRIPT ( 0 ) = italic_Z italic_α italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT . (28)

The overall screening effect in the potential Fig. 2 is much less than what is naively expected by Eq. (14) since the potential at the origin is related linearly to the screening mass in the weak screening limit. In strong screening, the screening mass in Eq. (14) and plotted in Fig. 1 can be used to accurately predict the induced charge density ρindsubscript𝜌ind\rho_{\text{ind}}italic_ρ start_POSTSUBSCRIPT ind end_POSTSUBSCRIPT but not the potential, which can only be found after solving Eq. (15).

In Fig. 3, the screening potential eϕind𝑒subscriptitalic-ϕinde\phi_{\text{ind}}italic_e italic_ϕ start_POSTSUBSCRIPT ind end_POSTSUBSCRIPT is plotted at decreasing temperatures, the BBN temperature range being T=86.250𝑇86.250T=86.2-50\,italic_T = 86.2 - 50keV (Pitrou et al., 2018). Temperatures lower than 202020\,20keV are not considered because, at this temperature in the early Universe, positrons begin to disappear (Grayson et al., 2023). While the overall strength of screening decreases with temperature, the difference between weak and strong screening is much more pronounced at low temperatures, shown in blue, due to the large value of eϕ/T𝑒italic-ϕ𝑇e\phi/Titalic_e italic_ϕ / italic_T near the origin. Thus, it is much more important to consider the effect of strong screening at low temperatures.

4 Enhancement factor for nuclear reaction rate

The thermonuclear reaction rate for a reaction process involving two nuclei is given by (Rose, 1998)

R12=χneq1neq2Isubscript𝑅12𝜒superscriptsubscript𝑛𝑒𝑞1superscriptsubscript𝑛𝑒𝑞2𝐼R_{12}=\chi n_{eq}^{1}n_{eq}^{2}Iitalic_R start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT = italic_χ italic_n start_POSTSUBSCRIPT italic_e italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_e italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_I (29)

where χ𝜒\chiitalic_χ is a symmetry factor corresponding to 1/2121/21 / 2 for identical particles and 1111 for distinguishable, neq1superscriptsubscript𝑛𝑒𝑞1n_{eq}^{1}italic_n start_POSTSUBSCRIPT italic_e italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT and neq2superscriptsubscript𝑛𝑒𝑞2n_{eq}^{2}italic_n start_POSTSUBSCRIPT italic_e italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT are the equilibrium densities of the reacting light nuclei, which in the early universe we can assume to follow Boltzmann distribution since their mass is much larger than the temperature which is in the range of 8650865086-50\,86 - 50keV (Pitrou et al., 2018). The probability of the reaction occurring is determined by the integral

I=8μrπT3Eth𝑑Eσ(E)Eexp(E/T),𝐼8subscript𝜇𝑟𝜋superscript𝑇3superscriptsubscriptsubscript𝐸thdifferential-d𝐸𝜎𝐸𝐸𝐸𝑇I=\sqrt{\frac{8}{\mu_{r}\pi T^{3}}}\int_{E_{\mathrm{th}}}^{\infty}dE\,\sigma(E% )E\exp{\left(-E/T\right)}\,,italic_I = square-root start_ARG divide start_ARG 8 end_ARG start_ARG italic_μ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_π italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG end_ARG ∫ start_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT roman_th end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_d italic_E italic_σ ( italic_E ) italic_E roman_exp ( - italic_E / italic_T ) , (30)

where σ(E)𝜎𝐸\sigma(E)italic_σ ( italic_E ) is the reaction cross-section, μrsubscript𝜇𝑟\mu_{r}italic_μ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT is the reduced mass of the two colliding ions, Ethsubscript𝐸𝑡E_{th}italic_E start_POSTSUBSCRIPT italic_t italic_h end_POSTSUBSCRIPT is the threshold energy for the reaction, and we assume a Boltzmann distribution for the relative energy E𝐸Eitalic_E of the collision. In a plasma environment, the screened cross-section is

σsc(E)=S(E)Eexp(22μrcRrc𝑑rUsc(r)E).subscript𝜎sc𝐸𝑆𝐸𝐸22subscript𝜇𝑟Planck-constant-over-2-pi𝑐superscriptsubscript𝑅subscript𝑟𝑐differential-d𝑟subscript𝑈sc𝑟𝐸\begin{split}\sigma_{\text{sc}}(E)&=\!\frac{S(E)}{E}\exp{\left(\!-\frac{2\sqrt% {2\mu_{r}}}{\hbar c}\!\!\int_{R}^{r_{c}}\!\!\!dr\sqrt{U_{\text{sc}}(r)\!-\!E}% \right)}\,.\end{split}start_ROW start_CELL italic_σ start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ( italic_E ) end_CELL start_CELL = divide start_ARG italic_S ( italic_E ) end_ARG start_ARG italic_E end_ARG roman_exp ( - divide start_ARG 2 square-root start_ARG 2 italic_μ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG end_ARG start_ARG roman_ℏ italic_c end_ARG ∫ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d italic_r square-root start_ARG italic_U start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ( italic_r ) - italic_E end_ARG ) . end_CELL end_ROW (31)

where S(E)𝑆𝐸S(E)italic_S ( italic_E ) is the usual tabulated S-factor, which removes the 1/E1𝐸1/E1 / italic_E dependence of the cross-section and the Coulomb penetration probability from the cross-section. The tunneling probability through the Coulomb barrier for the s-wave potential from the classical turning point rcsubscript𝑟𝑐r_{c}italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT to the nuclear radius R𝑅Ritalic_R is given by the WKB approximation. Usc(r)subscript𝑈sc𝑟U_{\text{sc}}(r)italic_U start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ( italic_r ) is the inter-nuclear potential energy of the screened Coulomb potential.

We are interested in finding the effect of the screened reaction rate involving the integral

Isc=8μrπT3Eth𝑑ES(E)egsc(E),subscript𝐼sc8subscript𝜇𝑟𝜋superscript𝑇3superscriptsubscriptsubscript𝐸thdifferential-d𝐸𝑆𝐸superscript𝑒subscript𝑔sc𝐸I_{\text{sc}}=\sqrt{\frac{8}{\mu_{r}\pi T^{3}}}\int_{E_{\mathrm{th}}}^{\infty}% dES(E)e^{-g_{\text{sc}}(E)}\,,italic_I start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT = square-root start_ARG divide start_ARG 8 end_ARG start_ARG italic_μ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_π italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG end_ARG ∫ start_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT roman_th end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_d italic_E italic_S ( italic_E ) italic_e start_POSTSUPERSCRIPT - italic_g start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ( italic_E ) end_POSTSUPERSCRIPT , (32)

where

gsc(E)E/T+22μrcRrc𝑑rUsc(r)E.subscript𝑔sc𝐸𝐸𝑇22subscript𝜇𝑟Planck-constant-over-2-pi𝑐superscriptsubscript𝑅subscript𝑟𝑐differential-d𝑟subscript𝑈sc𝑟𝐸g_{\text{sc}}(E)\equiv E/T+\frac{2\sqrt{2\mu_{r}}}{\hbar c}\int_{R}^{r_{c}}dr% \sqrt{U_{\text{sc}}(r)-E}\,.italic_g start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ( italic_E ) ≡ italic_E / italic_T + divide start_ARG 2 square-root start_ARG 2 italic_μ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG end_ARG start_ARG roman_ℏ italic_c end_ARG ∫ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d italic_r square-root start_ARG italic_U start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ( italic_r ) - italic_E end_ARG . (33)

To calculate the integral in Eq. (32), we use the usual saddle point approximation to isolate the contribution of Coulomb penetration probability.

Isc16μrT3gsc′′(EG)S(EG)egsc(EG),subscript𝐼sc16subscript𝜇𝑟superscript𝑇3superscriptsubscript𝑔sc′′subscript𝐸𝐺𝑆subscript𝐸𝐺superscript𝑒subscript𝑔scsubscript𝐸𝐺I_{\text{sc}}\approx\sqrt{\frac{16}{\mu_{r}T^{3}g_{\text{sc}}^{\prime\prime}(E% _{G})}}S(E_{G})e^{-g_{\text{sc}}(E_{G})}\,,italic_I start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ≈ square-root start_ARG divide start_ARG 16 end_ARG start_ARG italic_μ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) end_ARG end_ARG italic_S ( italic_E start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) italic_e start_POSTSUPERSCRIPT - italic_g start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT , (34)

with Gamow energy EGsubscript𝐸𝐺E_{G}italic_E start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT defined in Eq. (4). We numerically calculate Eq. (32) using the saddle point approximation and compare it to various screening potential energy models, specifically weak screening to strong screening. We do not compare to Boltzmann statistics since it vastly over-predicts the screening effect.

The potential energy between the two nuclei is related to the potential ϕitalic-ϕ\phiitalic_ϕ calculated in Sect. 3 by the self energy

Usc(r)=12d3rρ(r)ϕ(rr)U(r)=12d3r[ρ1(r)ϕ2(rr)+ρ2(r)ϕ1(rr)].subscript𝑈sc𝑟12superscript𝑑3superscript𝑟𝜌superscript𝑟italic-ϕ𝑟superscript𝑟𝑈𝑟12superscript𝑑3superscript𝑟delimited-[]subscript𝜌1superscript𝑟subscriptitalic-ϕ2𝑟superscript𝑟subscript𝜌2superscript𝑟subscriptitalic-ϕ1𝑟superscript𝑟U_{\text{sc}}(r)=\frac{1}{2}\int d^{3}r^{\prime}\rho(r^{\prime})\phi(r-r^{% \prime})-U(r\rightarrow\infty)=\frac{1}{2}\int d^{3}r^{\prime}\left[\rho_{1}(r% ^{\prime})\phi_{2}(r-r^{\prime})+\rho_{2}(r^{\prime})\phi_{1}(r-r^{\prime})% \right]\,.italic_U start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ( italic_r ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_ρ ( italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_ϕ ( italic_r - italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - italic_U ( italic_r → ∞ ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT [ italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_ϕ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_r - italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r - italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] . (35)

Where we have subtracted the in-plasma self-energies of the two nuclei separated at r𝑟r\rightarrow\inftyitalic_r → ∞

U(r)=12d3r[ρ1(r)ϕ1(rr)+ρ2(r)ϕ2(rr)].𝑈𝑟12superscript𝑑3superscript𝑟delimited-[]subscript𝜌1superscript𝑟subscriptitalic-ϕ1𝑟superscript𝑟subscript𝜌2superscript𝑟subscriptitalic-ϕ2𝑟superscript𝑟U(r\rightarrow\infty)=\frac{1}{2}\int d^{3}r^{\prime}\left[\rho_{1}(r^{\prime}% )\phi_{1}(r-r^{\prime})+\rho_{2}(r^{\prime})\phi_{2}(r-r^{\prime})\right]\,.italic_U ( italic_r → ∞ ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT [ italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r - italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_ϕ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_r - italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] . (36)

The total charge density is the sum of the induced plus the external charge

Usc(r)=12d3r{[ρext1(r)+ρind1(r)]ϕ2(rr)+(12)}.U_{\text{sc}}(r)=\frac{1}{2}\int d^{3}r^{\prime}\left\{\left[{\rho_{\text{ext}% }}_{1}(r^{\prime})+{\rho_{\text{ind}}}_{1}(r^{\prime})\right]\phi_{2}(r-r^{% \prime})+\left(1\leftrightarrow 2\right)\right\}\,.italic_U start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ( italic_r ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT { [ italic_ρ start_POSTSUBSCRIPT ext end_POSTSUBSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_ρ start_POSTSUBSCRIPT ind end_POSTSUBSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] italic_ϕ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_r - italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + ( 1 ↔ 2 ) } . (37)

Then, we use Eq. (14) to rewrite the induced charge density in terms of the total potential

Usc(r>R)=12Z1ϕ2(r)+12d3r[ms2(ϕ1)ϕ1(r)ϕ2(rr)]+(12).U_{\text{sc}}(r>R)=\frac{1}{2}Z_{1}\phi_{2}(r)+\frac{1}{2}\int d^{3}r^{\prime}% \left[m_{s}^{2}(\phi_{1})\phi_{1}(r^{\prime})\phi_{2}(r-r^{\prime})\right]+% \left(1\leftrightarrow 2\right)\,.italic_U start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ( italic_r > italic_R ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_Z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ϕ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_r ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT [ italic_m start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_ϕ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_r - italic_r start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ] + ( 1 ↔ 2 ) . (38)

We approximate ρextsubscript𝜌ext\rho_{\text{ext}}italic_ρ start_POSTSUBSCRIPT ext end_POSTSUBSCRIPT as a point charge at distances larger than R𝑅Ritalic_R, relevant for the tunneling integral in Eq. (31). Often, in the weak screening limit, one only considers the charge of colliding nuclei with the total potential of the other. If the charges are approximately symmetric, the screening potential is then

Usc(r)Z2ϕ1(r).subscript𝑈sc𝑟subscript𝑍2subscriptitalic-ϕ1𝑟U_{\text{sc}}(r)\approx Z_{2}\phi_{1}(r)\,.italic_U start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ( italic_r ) ≈ italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_r ) . (39)

Since we only want to compare weak screening to strong screening, for simplicity, we neglect the second term in Eq. (38). This approximation is only good for small Z𝑍Zitalic_Z when the value of mssubscript𝑚𝑠m_{s}italic_m start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is much smaller than the vacuum potential. To calculate the exact potential energy in this model one would need to calculate the screening of two nuclei as they approach since the the principle of superposition does not apply when nonlinear screening is present. In the weak screening limit, the second term in Eq. (38) is known to lead to a factor 3/2323/23 / 2 in the Salpeter’s usual enhancement factor Eq. (44(Brüggen & Gough, 1997).

We will compare Eq. (32) to the same integral in vacuum, assuming the electric potential used to find the potential energy is given by Eq. (A3)

Ivac=8μrπT3Eth𝑑ES(E)egvac(E),subscript𝐼vac8subscript𝜇𝑟𝜋superscript𝑇3superscriptsubscriptsubscript𝐸thdifferential-d𝐸𝑆𝐸superscript𝑒subscript𝑔vac𝐸I_{\text{vac}}=\sqrt{\frac{8}{\mu_{r}\pi T^{3}}}\int_{E_{\mathrm{th}}}^{\infty% }dES(E)e^{-g_{\text{vac}}(E)}\,,italic_I start_POSTSUBSCRIPT vac end_POSTSUBSCRIPT = square-root start_ARG divide start_ARG 8 end_ARG start_ARG italic_μ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_π italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG end_ARG ∫ start_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT roman_th end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_d italic_E italic_S ( italic_E ) italic_e start_POSTSUPERSCRIPT - italic_g start_POSTSUBSCRIPT vac end_POSTSUBSCRIPT ( italic_E ) end_POSTSUPERSCRIPT , (40)

where

gvac(E)E/T+22μrcRrc𝑑rUvac(r)E.subscript𝑔vac𝐸𝐸𝑇22subscript𝜇𝑟Planck-constant-over-2-pi𝑐superscriptsubscript𝑅subscript𝑟𝑐differential-d𝑟subscript𝑈vac𝑟𝐸g_{\text{vac}}(E)\equiv E/T+\frac{2\sqrt{2\mu_{r}}}{\hbar c}\int_{R}^{r_{c}}dr% \sqrt{U_{\text{vac}}(r)-E}\,.italic_g start_POSTSUBSCRIPT vac end_POSTSUBSCRIPT ( italic_E ) ≡ italic_E / italic_T + divide start_ARG 2 square-root start_ARG 2 italic_μ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG end_ARG start_ARG roman_ℏ italic_c end_ARG ∫ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d italic_r square-root start_ARG italic_U start_POSTSUBSCRIPT vac end_POSTSUBSCRIPT ( italic_r ) - italic_E end_ARG . (41)

In this expression, Uvacsubscript𝑈vacU_{\text{vac}}italic_U start_POSTSUBSCRIPT vac end_POSTSUBSCRIPT is the vacuum internuclear potential. We represent the enhancement of the thermonuclear reaction rate as

scRscRvac=IscIvac.subscriptscsubscript𝑅scsubscript𝑅vacsubscript𝐼scsubscript𝐼vac\mathcal{F}_{\text{sc}}\equiv\frac{R_{\text{sc}}}{R_{\text{vac}}}=\frac{I_{% \text{sc}}}{I_{\text{vac}}}\,.caligraphic_F start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ≡ divide start_ARG italic_R start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT end_ARG start_ARG italic_R start_POSTSUBSCRIPT vac end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_I start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT end_ARG start_ARG italic_I start_POSTSUBSCRIPT vac end_POSTSUBSCRIPT end_ARG . (42)

In Appendix C, we mention the effect of finite size on reaction rates, which is much larger than screening and essential to include.

When the Debye length λDsubscript𝜆𝐷\lambda_{D}italic_λ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT is very large compared to classical turning point rcsubscript𝑟𝑐r_{c}italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, the screening charge density can be approximated to be constant near the origin. In that case, the screening effect can be described as a shift in the energy of the reaction rate leading to a simple exponential enhancement referred to as the Salpeter enhancement factor given by the change in the potential energy at the origin.

sc(0)=exp(Uvac(0)Usc(0)T)=exp(H(0)T).subscriptsc0subscript𝑈𝑣𝑎𝑐0subscript𝑈sc0𝑇𝐻0𝑇\mathcal{F}_{\text{sc}}(0)=\exp{\left(\frac{U_{vac}(0)-U_{\text{sc}}(0)}{T}% \right)}=\exp{\left(\frac{H(0)}{T}\right)}\,.caligraphic_F start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ( 0 ) = roman_exp ( divide start_ARG italic_U start_POSTSUBSCRIPT italic_v italic_a italic_c end_POSTSUBSCRIPT ( 0 ) - italic_U start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT ( 0 ) end_ARG start_ARG italic_T end_ARG ) = roman_exp ( divide start_ARG italic_H ( 0 ) end_ARG start_ARG italic_T end_ARG ) . (43)

H(0)𝐻0H(0)italic_H ( 0 ) is often used in literature to represent the electric potential energy of the induced charge density. Alternative derivations of Eq. (44) lead to different forms of the Slapeter enhancement factor, summarized in (Bahcall et al., 2002). Since we compare the enhancement factor for strong screening to weak screening, the exact form of scsubscriptsc\mathcal{F}_{\text{sc}}caligraphic_F start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT is not important since multiplicative factors will cancel. For the weak screening limit using only the leading order potential energy Eq. (39), one finds (Salpeter, 1954)

weak(0)=exp(Z1Z2αmDT).subscriptweak0subscript𝑍1subscript𝑍2𝛼subscript𝑚𝐷𝑇\begin{split}\mathcal{F}_{\text{weak}}(0)=\exp\left(\frac{Z_{1}Z_{2}\alpha m_{% D}}{T}\right)\,.\end{split}start_ROW start_CELL caligraphic_F start_POSTSUBSCRIPT weak end_POSTSUBSCRIPT ( 0 ) = roman_exp ( divide start_ARG italic_Z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_α italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT end_ARG start_ARG italic_T end_ARG ) . end_CELL end_ROW (44)
Refer to caption
Figure 4: Reaction rate enhancement scsubscriptsc\mathcal{F}_{\text{sc}}caligraphic_F start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT [see Eq. (42)] for 4He-4He scattering as a function of temperature. The weak screening model is shown as a black solid line, and the strong screening model is plotted as a blue dashed line. The approximate enhancement factors using the screening potential energy at the origin Eq. (44) are shown as a red dotted line for weak screening and an orange dashed line for strong screening. The orange shaded region marks the BBN temperature range T=5086.2𝑇5086.2T=50-86.2\,italic_T = 50 - 86.2keV.

In Fig. 4, we calculate the enhancement due to screening in the BBN plasma environment by numerically calculating the ratio scsubscriptsc\mathcal{F}_{\text{sc}}caligraphic_F start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT from Eq. (42) using the weak the screening potential Eq. (A2) shown as a black solid line and the strong screening potential, found by solving Eq. (15) with Fermi-Dirac statistics, shown as a blue dashed line. This is done by calculating the WKB tunneling integral in Eq. (33) using the numerical solutions for the potential plotted in Fig. 3 and then estimating the integral Eq. (32) using the saddle point approximation Eq. (34). The blue dashed line and the black solid line include the finite size of the colliding nuclei and the screening potential’s spatial dependence. In the calculation of Eq. (34), the change in the Gamow energy due to screening is calculated for completeness, but, in general, this change is negligible since screening does not change the distribution of ions or the penetration probability significantly.

Strong screening generally predicts a larger enhancement of reaction rates. However, for 4He-4He collisions, this enhancement is very small, as indicated by the blue dashed line almost tracing the black solid line. This is expected since predicted 4He abundances match theoretical measurements (Pitrou et al., 2018). The discrepancy between weak and strong screening becomes a constant at high temperatures 106similar-toabsentsuperscript106\sim 10^{-6}∼ 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT, indicating the polarization density is approaching the ultrarelativistic limit of Fermi-Dirac statistics Eq. (24).

The Salpeter enhancement factor weak(0)subscriptweak0\mathcal{F}_{\text{weak}}(0)caligraphic_F start_POSTSUBSCRIPT weak end_POSTSUBSCRIPT ( 0 ) reasonably approximates the enhancement due to weak screening, as seen by the red dotted line tracing the black solid line. The Salpeter enhancement factor for strong screening is shown as an orange dashed line in Fig. 4 using the value of the strong screening potential in Fig. 3 at the origin. One can see in Fig. 4 that the Salpeter approximation for screening strong(0)subscriptstrong0\mathcal{F}_{\text{strong}}(0)caligraphic_F start_POSTSUBSCRIPT strong end_POSTSUBSCRIPT ( 0 ) overestimates the numerical solution. This is because the induced charge density is not constant near the origin but has a step in the potential created by the Fermi function in the calculation of the strong screening potential. This overestimation of the Salpeter enhancement factor is also found in (Itoh et al., 1977). The Salpeter enhancement factor is a less accurate approximation at low temperatures where the jump in potential is much more pronounced.

Refer to caption
Figure 5: Reaction rate enhancement scsubscriptsc\mathcal{F}_{\text{sc}}caligraphic_F start_POSTSUBSCRIPT sc end_POSTSUBSCRIPT [see Eq. (42)] for 12C-12C scattering as a function of temperature. The weak screening model is shown as a black solid line, and the strong screening model is plotted as a blue dashed line. The approximate enhancement factors using the screening potential energy at the origin Eq. (44) are shown as a red dotted line for weak screening and an orange dashed line for strong screening. The orange-shaded region marks the BBN temperature range T=5086.2𝑇5086.2T=50-86.2\,italic_T = 50 - 86.2keV.

As an informative exercise, we show the enhancement factor for 12C-12C fusion in Fig. 5. This choice of reaction is to connect to stellar fusion in white dwarfs. We can see that at higher Z𝑍Zitalic_Z, the strong screening is becoming more important due to its nonlinear dependence on Z𝑍Zitalic_Z. Here, the enhancement at large temperatures is compared to weak screening is 5×104similar-toabsent5superscript104\sim 5\times 10^{-4}∼ 5 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT. Compared to 4He-4He, This is a 500similar-toabsent500\sim 500∼ 500 times the stronger effect for an increase in Z𝑍Zitalic_Z of only 4. Although this effect is too small to account for issues in the abundance of light elements, such as the Lithium problem (Pitrou et al., 2018), strong screening is very interesting because it can affect reactions with higher Z while leaving low Z reactions unchanged.

The enhancement predicted by strong screening at the origin, shown as the orange dashed line in Fig. 4, deviates more since the step in the screening potential is more pronounced at higher Z𝑍Zitalic_Z. In Fig. 5, the strong screening enhancement at low temperatures is offset from the weak field limit because the increase in ϕ/Titalic-ϕ𝑇\phi/Titalic_ϕ / italic_T compensates for the decrease in the Debye mass.

5 Conclusion and discussion

5.1 Summary

In this study, we implemented self-consistent strong electron-positron plasma screening to determine the short-range screening potential relevant to thermonuclear reactions during the Big Bang nucleosynthesis (BBN) epoch. This research direction was originally proposed in our previous work on BBN screening (Grayson et al., 2023). Our approach included incorporating finite-sized nuclei into the Poisson-Boltzmann equation and introducing a generalized screening mass to facilitate the comparison of various screening models.

Our results in Fig. 4 and Fig. 5 indicate that strong screening, while generally small due to the high temperatures prevalent during BBN, can enhance the fusion rates of high-Z𝑍Zitalic_Z elements while leaving lower-Z𝑍Zitalic_Z elements relatively unaffected.

One of our key findings is the necessity of using relativistic Fermi-Dirac statistics to describe the polarization cloud accurately at short distances, particularly when the electromagnetic work performed by ions on electrons is comparable to their rest mass energy creating a large polarization density around the nucleus. This is true even when the plasma adheres to Boltzmann statistics at larger distances.

Additionally, we show in Fig. 3 that the spatial dependence of the strong screening potential near the nuclear surface is very pronounced, having a Fermi-function “step shape.” Relying solely on the screening energy near the origin can lead to overestimating reaction rate enhancement due to strong screening.

In this work we accounted for strong screening, the finite size of nuclei, and finite tunneling distances to calculate reaction rate enhancement in the BBN epoch for two simple cases of 4He-4He and 12C-12C collisions. These improvements provide a more precise framework for understanding plasma screening effects during BBN and have broader applications in studying weakly coupled plasmas in various cosmic and laboratory settings.

5.2 Outlook

Usually, a formulation of strong field dynamics in the semi-classical regime using the Vlasov-Boltzmann equation is intractable due to the nonlinear exponential behavior of the induced charge density in the plasma. We think that the novel analytic form of the Fermi-Dirac screening mass in the ultrarelativistic limit Eq. (24) could lead to a solvable strong field theory of plasma dynamics in the high-temperature regime. Our strong screening approach could be relevant to the dynamics of heavy quarks in quark-gluon plasma, where light quarks are ultrarelativistic and strongly screen slow-moving heavier quarks (Mrówczyński, 2018; Carrington et al., 2020).

Strong screening has recently gained interest in the context of laser plasma fusion, as demonstrated by studies predicting in the context of the Boltzmann limit large enhancements of fusion reactions as compared to weak screening at low temperatures and high densities (Elsing et al., 2022).

Additionally, we are interested in exploring nuclear fusion catalysis by heavy ions. Strong screening predicts a significant screening cloud in proximity to large Z𝑍Zitalic_Z nuclei. Light elements could collide in an environment near the heavy nuclei where their repulsion is mostly neutralized, leading to a consequential enhancement of fusion reactions.

In future studies, we are interested in exploring how the pion exchange impacts the nuclear attraction to refine our understanding of the nuclear charge distribution and the effective tunneling distance. The effective nuclear radius R𝑅Ritalic_R used in tunneling is an important factor affecting strong screening. Considering a more accurate model of nuclear size would alter the tunneling distance through potential wall.

Historically, experimental determinations of astrophysical S-factors have found anomalous screening at low temperatures (Shoppa et al., 1993). This anomalous screening was measured again recently (Zhang et al., 2020). We speculate that this anomalous screening at low collision energy could be explained by strong screening effects obtained in this work.

The highly nonlinear response of the strong screening effect to Z𝑍Zitalic_Z suggests that strong screening could help address the observed lithium over-abundance problem by enhancing the fusion of higher-Z𝑍Zitalic_Z elements (Pitrou et al., 2018). However, based on the screening enhancements obtained in this study, an explanation of the observed Lithium abundance would require an additional screening mechanism, such as a combined strong-dynamic screening theory.

6 Acknowledgements

This research did not receive specific grants from funding agencies in the public, commercial, or not-for-profit sectors. However, we thank Tamás Biró for his hospitality at the PP2024 Particles & Plasmas Symposium, where this work was presented.

Appendix A Solving the Poisson-Boltzmann equation in the weak-field limit

In the weak field approximation Zeϕ/T1much-less-than𝑍𝑒italic-ϕ𝑇1Ze\phi/T\ll 1italic_Z italic_e italic_ϕ / italic_T ≪ 1, the hyperbolic sine term in Eq. (20) can be approximated to first order

d2dr2Φ(r)2rddrΦ(r)+1λD2Φ(r)=Pext(r),superscript𝑑2𝑑superscript𝑟2Φ𝑟2𝑟𝑑𝑑𝑟Φ𝑟1superscriptsubscript𝜆𝐷2Φ𝑟subscript𝑃ext𝑟-\frac{d^{2}}{dr^{2}}\Phi(r)-\frac{2}{r}\frac{d}{dr}\Phi(r)+\frac{1}{\lambda_{% D}^{2}}\Phi(r)=P_{\mathrm{ext}}(r)\,,- divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_d italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_Φ ( italic_r ) - divide start_ARG 2 end_ARG start_ARG italic_r end_ARG divide start_ARG italic_d end_ARG start_ARG italic_d italic_r end_ARG roman_Φ ( italic_r ) + divide start_ARG 1 end_ARG start_ARG italic_λ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_Φ ( italic_r ) = italic_P start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT ( italic_r ) , (A1)

for the external charge distribution given in Eq. (12) this has an analytic solution that can be found via Fourier-transform-methods using the boundary condition of vanishing potential for large distances (Grayson et al., 2023)

ϕweak(r)=Ze4πε0eR2/(4λD)r(Erf(rRR2λD)2er/λD+Erf(rR+R2λD)2er/λDsinh(r/λD)).subscriptitalic-ϕweak𝑟𝑍𝑒4𝜋subscript𝜀0superscript𝑒superscript𝑅24subscript𝜆𝐷𝑟Erf𝑟𝑅𝑅2subscript𝜆𝐷2superscript𝑒𝑟subscript𝜆𝐷Erf𝑟𝑅𝑅2subscript𝜆𝐷2superscript𝑒𝑟subscript𝜆𝐷𝑟subscript𝜆𝐷\phi_{\text{weak}}(r)=\frac{Ze}{4\pi\varepsilon_{0}}\frac{e^{R^{2}/(4\lambda_{% D})}}{r}\left(\frac{\text{Erf}\left(\frac{r}{R}-\frac{R}{2\lambda_{D}}\right)}% {2}e^{-r/\lambda_{D}}+\frac{\text{Erf}\left(\frac{r}{R}+\frac{R}{2\lambda_{D}}% \right)}{2}e^{r/\lambda_{D}}-\sinh(r/\lambda_{D})\right)\,.italic_ϕ start_POSTSUBSCRIPT weak end_POSTSUBSCRIPT ( italic_r ) = divide start_ARG italic_Z italic_e end_ARG start_ARG 4 italic_π italic_ε start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG divide start_ARG italic_e start_POSTSUPERSCRIPT italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( 4 italic_λ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT end_ARG start_ARG italic_r end_ARG ( divide start_ARG Erf ( divide start_ARG italic_r end_ARG start_ARG italic_R end_ARG - divide start_ARG italic_R end_ARG start_ARG 2 italic_λ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT end_ARG ) end_ARG start_ARG 2 end_ARG italic_e start_POSTSUPERSCRIPT - italic_r / italic_λ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT end_POSTSUPERSCRIPT + divide start_ARG Erf ( divide start_ARG italic_r end_ARG start_ARG italic_R end_ARG + divide start_ARG italic_R end_ARG start_ARG 2 italic_λ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT end_ARG ) end_ARG start_ARG 2 end_ARG italic_e start_POSTSUPERSCRIPT italic_r / italic_λ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - roman_sinh ( italic_r / italic_λ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) ) . (A2)

This solution is valid for large distances where the potential is small enough compared to temperature that the exponential term in Eq. (18) is close to one. The vacuum result for mD0subscript𝑚𝐷0m_{D}\rightarrow 0italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT → 0 or λDsubscript𝜆𝐷\lambda_{D}\rightarrow\inftyitalic_λ start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT → ∞

ϕvac(r)=Ze4πε0Erf(rR)r,subscriptitalic-ϕvac𝑟𝑍𝑒4𝜋subscript𝜀0Erf𝑟𝑅𝑟\phi_{\text{vac}}(r)=\frac{Ze}{4\pi\varepsilon_{0}}\frac{\text{Erf}\left(\frac% {r}{R}\right)}{r}\,,italic_ϕ start_POSTSUBSCRIPT vac end_POSTSUBSCRIPT ( italic_r ) = divide start_ARG italic_Z italic_e end_ARG start_ARG 4 italic_π italic_ε start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG divide start_ARG Erf ( divide start_ARG italic_r end_ARG start_ARG italic_R end_ARG ) end_ARG start_ARG italic_r end_ARG , (A3)

is often used to model the Coulomb field of 4He (Kumar et al., 2022).

Appendix B Checking the numerical solution

One can check for consistency of the solution by integrating the solution to find the total charge and comparing it to the effective charge at large distances represented by the large distance behavior of the solution. To find the total charge predicted by the numerical solution, one rearranges the Poisson equation

2Φ(r)+mD2(c)2Φ(r)=[Pext(r)+(mD2(c)2ms2(r)(c)2)Φ(r)].superscript2Φ𝑟superscriptsubscript𝑚𝐷2superscriptPlanck-constant-over-2-pi𝑐2Φ𝑟delimited-[]subscript𝑃ext𝑟superscriptsubscript𝑚𝐷2superscriptPlanck-constant-over-2-pi𝑐2superscriptsubscript𝑚𝑠2𝑟superscriptPlanck-constant-over-2-pi𝑐2Φ𝑟-\nabla^{2}\Phi(r)+\frac{m_{D}^{2}}{(\hbar c)^{2}}\Phi(r)=\left[P_{\mathrm{ext% }}(r)+\left(\frac{m_{D}^{2}}{(\hbar c)^{2}}-\frac{m_{s}^{2}(r)}{(\hbar c)^{2}}% \right)\Phi(r)\right]\,.- ∇ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ ( italic_r ) + divide start_ARG italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( roman_ℏ italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_Φ ( italic_r ) = [ italic_P start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT ( italic_r ) + ( divide start_ARG italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( roman_ℏ italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG italic_m start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_r ) end_ARG start_ARG ( roman_ℏ italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) roman_Φ ( italic_r ) ] . (B1)

We then identify the right-hand side as the source for the left-hand side

Qeff=𝑑V[Pext(r)+(mD2(c)2ms2(r)(c)2)Φ(r)].subscript𝑄effdifferential-d𝑉delimited-[]subscript𝑃ext𝑟superscriptsubscript𝑚𝐷2superscriptPlanck-constant-over-2-pi𝑐2superscriptsubscript𝑚𝑠2𝑟superscriptPlanck-constant-over-2-pi𝑐2Φ𝑟\begin{split}Q_{\mathrm{eff}}=\int dV\Big{[}P_{\mathrm{ext}}(r)+\left(\frac{m_% {D}^{2}}{(\hbar c)^{2}}-\frac{m_{s}^{2}(r)}{(\hbar c)^{2}}\right)\Phi(r)\Big{]% }\,.\end{split}start_ROW start_CELL italic_Q start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = ∫ italic_d italic_V [ italic_P start_POSTSUBSCRIPT roman_ext end_POSTSUBSCRIPT ( italic_r ) + ( divide start_ARG italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( roman_ℏ italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG italic_m start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_r ) end_ARG start_ARG ( roman_ℏ italic_c ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) roman_Φ ( italic_r ) ] . end_CELL end_ROW (B2)

The large distance solution to the left-hand side is of the Debye-Hückel form

Φrc/ms(r)=QeffemDrr.subscriptΦmuch-greater-than𝑟Planck-constant-over-2-pi𝑐subscript𝑚𝑠𝑟subscript𝑄effsuperscript𝑒subscript𝑚𝐷𝑟𝑟\Phi_{r\gg\hbar c/m_{s}}(r)=\frac{Q_{\mathrm{eff}}\,e^{-m_{D}r}}{r}\,.roman_Φ start_POSTSUBSCRIPT italic_r ≫ roman_ℏ italic_c / italic_m start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_r ) = divide start_ARG italic_Q start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_m start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT italic_r end_POSTSUPERSCRIPT end_ARG start_ARG italic_r end_ARG . (B3)

Then the consistency of the numerical solution can be checked by comparing the value of the effective charge found from Eq. (B2) and Eq. (B3).

Appendix C Enhancement due to finite size

The textbook formula for the penetration probability of tunneling to some finite distance R𝑅Ritalic_R at the surface of the nuclei is (Griffiths & Schroeter, 2018)

𝒫(R)=exp[22μrEGc(π2rc2Rrc)].𝒫𝑅22subscript𝜇𝑟subscript𝐸𝐺Planck-constant-over-2-pi𝑐𝜋2subscript𝑟𝑐2𝑅subscript𝑟𝑐\mathcal{P}(R)=\exp{\left[\frac{2\sqrt{2\mu_{r}E_{G}}}{\hbar c}\left(\frac{\pi% }{2}r_{c}-2\sqrt{Rr_{c}}\right)\right]}\,.caligraphic_P ( italic_R ) = roman_exp [ divide start_ARG 2 square-root start_ARG 2 italic_μ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT end_ARG end_ARG start_ARG roman_ℏ italic_c end_ARG ( divide start_ARG italic_π end_ARG start_ARG 2 end_ARG italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT - 2 square-root start_ARG italic_R italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG ) ] . (C1)

Comparison can also be made with point nuclei charge, where the finite size of the nuclei is neglected, and the tunneling distance goes from the classical turning point to the origin

σSom(E)=S(E)Eexp[2πη(E)],subscript𝜎Som𝐸𝑆𝐸𝐸2𝜋𝜂𝐸\sigma_{\text{Som}}(E)=\frac{S(E)}{E}\exp{\left[-2\pi\eta(E)\right]}\,,italic_σ start_POSTSUBSCRIPT Som end_POSTSUBSCRIPT ( italic_E ) = divide start_ARG italic_S ( italic_E ) end_ARG start_ARG italic_E end_ARG roman_exp [ - 2 italic_π italic_η ( italic_E ) ] , (C2)

where η(E)𝜂𝐸\eta(E)italic_η ( italic_E ) in the exponential is often referred to as the Sommerfeld parameter

η(E)=Z1Z2αμr2E.𝜂𝐸subscript𝑍1subscript𝑍2𝛼subscript𝜇𝑟2𝐸\eta(E)=Z_{1}Z_{2}\alpha\sqrt{\frac{\mu_{r}}{2E}}\,.italic_η ( italic_E ) = italic_Z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_α square-root start_ARG divide start_ARG italic_μ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_E end_ARG end_ARG . (C3)

For the integral Eq. (30) using Eq. (C2) one finds the usual

ISom=42EG3μS(EG)Te3EG/T.subscript𝐼Som42subscript𝐸𝐺3𝜇𝑆subscript𝐸𝐺𝑇superscript𝑒3subscript𝐸𝐺𝑇I_{\text{Som}}=4\sqrt{\frac{2E_{G}}{3\mu}}\frac{S(E_{G})}{T}e^{-3E_{G}/T}\,.italic_I start_POSTSUBSCRIPT Som end_POSTSUBSCRIPT = 4 square-root start_ARG divide start_ARG 2 italic_E start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT end_ARG start_ARG 3 italic_μ end_ARG end_ARG divide start_ARG italic_S ( italic_E start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT ) end_ARG start_ARG italic_T end_ARG italic_e start_POSTSUPERSCRIPT - 3 italic_E start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT / italic_T end_POSTSUPERSCRIPT . (C4)

The ratio of the finite size expression to the Sommerfeld parameter is

𝒫(R)e2πηexp(42Z1Z2αRμrc),𝒫𝑅superscript𝑒2𝜋𝜂42subscript𝑍1subscript𝑍2𝛼𝑅subscript𝜇𝑟Planck-constant-over-2-pi𝑐\frac{\mathcal{P}(R)}{e^{-2\pi\eta}}\approx\exp\left(4\sqrt{2Z_{1}Z_{2}\alpha% \frac{R\mu_{r}}{\hbar c}}\right)\,,divide start_ARG caligraphic_P ( italic_R ) end_ARG start_ARG italic_e start_POSTSUPERSCRIPT - 2 italic_π italic_η end_POSTSUPERSCRIPT end_ARG ≈ roman_exp ( 4 square-root start_ARG 2 italic_Z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_α divide start_ARG italic_R italic_μ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG start_ARG roman_ℏ italic_c end_ARG end_ARG ) , (C5)

which is around 32.8 for alpha-alpha collisions during BBN, a substantial enhancement compared to the effect produced by screening.

References

  • Bahcall et al. (2002) Bahcall, J. N., Brown, L. S., Gruzinov, A., & Sawyer, R. F. 2002, Astron. Astrophys., 388, 660, doi: 10.1051/0004-6361:20020462
  • Bi et al. (2000) Bi, S. L., Mauro, M. P. D., & Christensen-Dalsgaard, J. 2000, Astron. Astrophys., 364, 157
  • Birrell et al. (2024) Birrell, J., Formanek, M., Steinmetz, A., Yang, C. T., & Rafelski, J. 2024, International Journal of Theoretical Physics. https://arxiv.org/abs/2405.05287
  • Brüggen & Gough (1997) Brüggen, M., & Gough, D. O. 1997, Astrophys. J., 488, 867, doi: 10.1086/304718
  • Brüggen & Gough (2000) —. 2000, Journal of Mathematical Physics, 41, 260
  • Carraro et al. (1988) Carraro, C., Schafer, A., & Koonin, S. E. 1988, Astrophys. J., 331, 565, doi: 10.1086/166582
  • Carrington et al. (2020) Carrington, M. E., Czajka, A., & Mrówczyński, S. 2020, Nuclear Physics A, 1001, 121914, doi: https://doi.org/10.1016/j.nuclphysa.2020.121914
  • Cowan & Kirkwood (1958) Cowan, R. D., & Kirkwood, J. G. 1958, Phys. Rev., 111, 1460, doi: 10.1103/PhysRev.111.1460
  • Debye & Hückel (1923) Debye, P., & Hückel, E. 1923, Physikalische Zeitschrift, 24, 185–206
  • Dewitt et al. (1973) Dewitt, H. E., Graboske, H. C., & Cooper, M. S. 1973, Astrophysical Journal, 181, 439
  • Dzitko et al. (1995) Dzitko, H., Turck-Chieze, S., Delbourgo-Salvador, P., & Lagrange, C. 1995, Astrophys. J., 447, 428, doi: 10.1086/175887
  • Elsing et al. (2022) Elsing, D., Pálffy, A., & Wu, Y. 2022, Phys. Rev. Res., 4, L022004, doi: 10.1103/PhysRevResearch.4.L022004
  • Elze et al. (1980) Elze, H. T., Greiner, W., & Rafelski, J. 1980, J. Phys. G, 6, L149, doi: 10.1088/0305-4616/6/9/003
  • Famiano et al. (2016) Famiano, M. A., Balantekin, A. B., & Kajino, T. 2016, Phys. Rev. C, 93, 045804, doi: 10.1103/PhysRevC.93.045804
  • Fogolari et al. (2002) Fogolari, F., Brigo, A., & Molinari, H. 2002, J. Mol. Recognit., 15, 377
  • Formanek et al. (2021) Formanek, M., Grayson, C., Rafelski, J., & Müller, B. 2021, Annals Phys., 434, 168605, doi: 10.1016/j.aop.2021.168605
  • Frolov (2023) Frolov, A. M. 2023, Phys. Plasmas, 30, 102701, doi: 10.1063/5.0156153
  • Graboske et al. (1973) Graboske, H. C., Dewitt, H. E., Grossman, A. S., & Cooper, M. S. 1973, Astrophys. J., 181, 457, doi: 10.1086/152062
  • Grayson et al. (2023) Grayson, C., Yang, C. T., Formanek, M., & Rafelski, J. 2023, Annals Phys., 458, 169453, doi: 10.1016/j.aop.2023.169453
  • Griffiths & Schroeter (2018) Griffiths, D. J., & Schroeter, D. F. 2018, Introduction to Quantum Mechanics (Cambridge University Press)
  • Groot et al. (1980) Groot, S. R. D., Leeuwen, W. A. V., & Weert, C. G. V. 1980, Relativistic Kinetic Theory. Principles and Applications (North-Holland Publishing Company)
  • Gruzinov (1998) Gruzinov, A. V. 1998, Astrophys. J., 496, 503, doi: 10.1086/305349
  • Gruzinov & Bahcall (1998) Gruzinov, A. V., & Bahcall, J. N. 1998, Astrophys. J., 504, 996, doi: 10.1086/306116
  • Hakim (1967) Hakim, R. 1967, Phys. Rev., 162, 128, doi: 10.1103/PhysRev.162.128
  • Hwang et al. (2021) Hwang, E., Jang, D., Park, K., et al. 2021, JCAP, 11, 017, doi: 10.1088/1475-7516/2021/11/017
  • Ichimaru (1982) Ichimaru, S. 1982, Rev. Mod. Phys., 54, 1017, doi: 10.1103/RevModPhys.54.1017
  • Itoh et al. (1977) Itoh, N., Totsuji, H., & Ichimaru, S. 1977, Astrophysical Journal, 218, 477, doi: 10.1086/155701
  • Itoh et al. (1979) Itoh, N., Totsuji, H., Ichimaru, S., & DeWitt, H. E. 1979, Astrophysical Journal, 234, 1079, doi: 10.1086/157590
  • Kedia et al. (2021) Kedia, A., Sasankan, N., Mathews, G. J., & Kusakabe, M. 2021, Phys. Rev. E, 103, 032101, doi: 10.1103/PhysRevE.103.032101
  • Kodama (2002) Kodama, T. 2002, in AIP Conference Proceedings, Vol. 631 (AIP), 3–26
  • Krauth et al. (2021) Krauth, J. J., Schuhmann, K., Ahmed, M. A., et al. 2021, Nature, 589, 527, doi: 10.1038/s41586-021-03183-1
  • Kravchuk & Yakovlev (2014) Kravchuk, P. A., & Yakovlev, D. G. 2014, Phys. Rev. C, 89, 015802, doi: 10.1103/PhysRevC.89.015802
  • Kumar et al. (2022) Kumar, L., Awasthi, S., Khachi, A., & Sastri, O. S. K. S. 2022. https://arxiv.org/abs/2209.00951
  • Liolios (2004) Liolios, T. E. 2004, Eur. Phys. J. A, 18, s1, doi: 10.1140/epjad/s2003-01-001-7
  • Luo et al. (2020) Luo, Y., Famiano, M. A., Kajino, T., Kusakabe, M., & Balantekin, A. B. 2020, Phys. Rev. D, 101, 083010, doi: 10.1103/PhysRevD.101.083010
  • Mrówczyński (2018) Mrówczyński, S. 2018, The European Physical Journal A, 54, 1
  • Opher & Opher (2000) Opher, M., & Opher, R. 2000, Astrophys. J., 535, 473, doi: 10.1086/308808
  • Pitrou et al. (2018) Pitrou, C., Coc, A., Uzan, J. P., & Vangioni, E. 2018, Phys. Rept., 754, 1, doi: 10.1016/j.physrep.2018.04.005
  • Rafelski et al. (2023) Rafelski, J., Birrell, J., Steinmetz, A., & Yang, C. T. 2023, Universe, 9, 309, doi: 10.3390/Universe9070309
  • Rose (1998) Rose, W. K. 1998, Advanced Stellar Astrophysics (Cambridge University Press)
  • Salpeter (1954) Salpeter, E. E. 1954, Austral. J. Phys., 7, 373, doi: 10.1071/PH540373
  • Salpeter & van Horn (1969) Salpeter, E. E., & van Horn, H. M. 1969, Astrophys. J., 155, 183, doi: 10.1086/149858
  • Sasankan et al. (2020) Sasankan, N., Kedia, A., Kusakabe, M., & Mathews, G. J. 2020, Phys. Rev. D, 101, 123532, doi: 10.1103/PhysRevD.101.123532
  • Shaviv & Shaviv (1996) Shaviv, N. J., & Shaviv, G. 1996, Astrophys. J., 468, 433, doi: 10.1086/177702
  • Shoppa et al. (1993) Shoppa, T. D., Koonin, S. E., Langanke, K., & Seki, R. 1993, Phys. Rev. C, 48, 837, doi: 10.1103/PhysRevC.48.837
  • Smith et al. (2020) Smith, R., Bishop, J., Hirst, J., et al. 2020, Few-Body Systems, 61, 14, doi: 10.1007/s00601-020-1545-5
  • Wang et al. (2011) Wang, B., Bertulani, C. A., & Balantekin, A. B. 2011, Phys. Rev. C, 83, 018801, doi: 10.1103/PhysRevC.83.018801
  • Yao et al. (2017) Yao, X., Mehen, T., & Müller, B. 2017, Phys. Rev. D, 95, 116002, doi: 10.1103/PhysRevD.95.116002
  • Zhang et al. (2020) Zhang, Q., Huang, Z., Hu, J., et al. 2020, ApJ, 893, 126, doi: 10.3847/1538-4357/ab8222