Warm and Fuzzy Dark Matter: Free Streaming of Wave Dark Matter

Rayne Liu Kavli Institute for Cosmological Physics, Enrico Fermi Institute, and Department of Astronomy & Astrophysics, University of Chicago, Chicago IL 60637    Wayne Hu Kavli Institute for Cosmological Physics, Enrico Fermi Institute, and Department of Astronomy & Astrophysics, University of Chicago, Chicago IL 60637    Huangyu Xiao Kavli Institute for Cosmological Physics, Enrico Fermi Institute, and Department of Astronomy & Astrophysics, University of Chicago, Chicago IL 60637 Theory Division, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
(June 18, 2024)
Abstract

Wave or fuzzy dark matter that is produced with relativistic wavenumbers exhibits free streaming effects analogous to warm or hot particle dark matter with relativistic momenta. Axions produced after inflation provide such a warm or mildly relativistic candidate, where the enhanced suppression and observational bounds are only moderately stronger than that from wave propagation of initially cold axions. More generally, the free streaming damping also impacts isocurvature fluctuations from generation in causally disconnected patches. As coherent spatial fluctuations free stream away they leave incoherent and transient superpositions in their wakes. These multiple wave momentum streams are the wave analogue of particle phase space fluctuations or directional collisionless damping of massive neutrinos or hot dark matter. The observable impact on both adiabatic and isocurvature fluctuations of fuzzy dark matter can differ from their cold dark matter counterparts due to free streaming depending on how warm or hot is their momentum distribution.

preprint: FERMILAB-PUB-24-0296-T

I Introduction

Wave dark matter refers to bosonic dark matter with masses m30less-than-or-similar-to𝑚30m\lesssim 30italic_m ≲ 30 eV such that the occupation number is much greater than one, and can arise in a variety of theoretical contexts (see e.g. [1] for a review). One of the leading candidates is axion dark matter, where dark matter behaves as a classical wave below the de Broglie scale. The axion, originally proposed to explain upper limits on the neutron electric dipole moment and solve the strong CP problem [2, 3, 4, 5, 6], is also a viable dark matter candidate [7, 8, 9] and has stimulated much interest in dark matter physics and numerical experiment searches [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. The mass spectrum of axions extends beyond the original QCD axion for the strong CP problem [39], and we will use the term “axion” for any light (pseudo)scalar dark matter that has similar interactions to the QCD axion. Another interesting candidate is the dark photon dark matter that can be produced from a variety of mechanisms [40, 41, 42, 43, 44, 45, 46]. While we focus on ultralight axions in this work, similar physical phenomena often apply to the dark photon and axion dark matter in general.

For wave dark matter on the higher mass end, its de Broglie wavelength is much shorter than astrophysical scales, and laboratory experiments are necessary. Once the wave dark matter is ultralight (often called fuzzy dark matter [47]), cosmological measurements on the linear power spectrum or stellar kinematics of ultrafaint dwarfs can constrain lower mass ranges [47, 48, 49, 50, 51, 52, 53]. The wave nature of fuzzy dark matter can lead to rich phenomenology such as the formation of soliton cores at halo centers and interference effects [54, 55, 56, 57, 58, 59]. Therefore, fuzzy dark matter can also be probed by compact objects through its wave dynamics [60, 61, 62, 63, 64, 65, 66], and the nature of its couplings with visible matter can be constrained by various observables [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 99, 101, 63, 64, 65, 66, 102, 103].

Though usually not thermally produced, fuzzy dark matter can still have a significant relativistic component, for instance post-inflation axions produced from relaxation of string networks. Ref. [104] pointed out that in such a relativistic regime, wave dark matter exhibits free streaming behavior much like the collisionless damping of warm or hot particle dark matter [105]. Such dark matter is thus warm and fuzzy simultaneously.

Ref. [104] highlights the apparent differences between free streaming behavior associated with the wavenumber distribution for wave dark matter and that with the particle momenta distribution for particle dark matter, and thus their respective effects on cosmological perturbations. These apparent differences are important to understand when applying free streaming considerations to bounds on the dark matter mass and the evolution of isocurvature fluctuations from post-inflation causal production as compared to cold dark matter isocurvature perturbations.

In this work, we further explore the relationship between the free streaming of wave and particle dark matter and resolve their apparent differences. We begin in §II by relating the particle and wave pictures of free streaming and the impact of wavenumber versus particle momentum distribution on the transfer function of density perturbations. We show that axion wave dark matter produced after inflation is warm in this sense and only moderately enhances the Jeans or free streaming damping already present for initially cold axions. In §III, we study with simulations the effect of free streaming on the causally produced isocurvature fluctuations of an even hotter, i.e. more relativistic, wave dark matter than axions, and resolve the paradox that the effective number density fluctuations do not damp even though the waves that compose them do – for particles, the initial number density fluctuations are averaged out over the free streaming volume; for waves, free-streaming damping causes the momentum or wavenumber distribution to become incoherent, effectively transferring power from spatial inhomogeneities to anisotropies in the momentum distribution. In §IV, we show that the impact of the incoherence of these fluctuations prevents their appearance in time- or spatially-averaged quantities, and should be thought of as the wave analogue of multiple streams in the phase space density. We discuss the implication of these results in §V and provide appendices on the computation of free streaming (App. A) for general wavenumber or momentum distributions and their impact on mass bounds (App. B). Throughout we employ units where =c=1Planck-constant-over-2-pi𝑐1\hbar=c=1roman_ℏ = italic_c = 1.

II Free Streaming Duality

The free streaming of wave and particle dark matter shares the same underlying principles and can impact cosmological structure formation on scales smaller than the maximal free streaming scale. Given a particle mass m𝑚mitalic_m and comoving momentum q𝑞qitalic_q, a non-interacting particle will stream with a velocity

v=qq2+a2m2,𝑣𝑞superscript𝑞2superscript𝑎2superscript𝑚2v=\frac{q}{\sqrt{q^{2}+a^{2}m^{2}}},italic_v = divide start_ARG italic_q end_ARG start_ARG square-root start_ARG italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG , (1)

where a𝑎aitalic_a is the scale factor. Similarly, a free wavepacket of a field ϕitalic-ϕ\phiitalic_ϕ that obeys a relativistic wave equation such as the Klein-Gordon equation, with a dispersion relation ω=q2+a2m2𝜔superscript𝑞2superscript𝑎2superscript𝑚2\omega=\sqrt{q^{2}+a^{2}m^{2}}italic_ω = square-root start_ARG italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG, will propagate at the group velocity

v=ωq=qq2+a2m2𝑣𝜔𝑞𝑞superscript𝑞2superscript𝑎2superscript𝑚2v=\frac{\partial\omega}{\partial q}=\frac{q}{\sqrt{q^{2}+a^{2}m^{2}}}italic_v = divide start_ARG ∂ italic_ω end_ARG start_ARG ∂ italic_q end_ARG = divide start_ARG italic_q end_ARG start_ARG square-root start_ARG italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG (2)

around a comoving wavenumber q𝑞qitalic_q. We use the terms momentum and wavenumber interchangeably throughout.

In both cases the free streaming length becomes

λfs(q;a)=𝑑τv(q,τ)=dlnaaH(a)qq2+a2m2,subscript𝜆fs𝑞𝑎differential-d𝜏𝑣𝑞𝜏𝑑𝑎𝑎𝐻𝑎𝑞superscript𝑞2superscript𝑎2superscript𝑚2\lambda_{\rm fs}(q;a)=\int d\tau v(q,\tau)=\int\frac{d\ln a}{aH(a)}\frac{q}{% \sqrt{q^{2}+a^{2}m^{2}}},italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_q ; italic_a ) = ∫ italic_d italic_τ italic_v ( italic_q , italic_τ ) = ∫ divide start_ARG italic_d roman_ln italic_a end_ARG start_ARG italic_a italic_H ( italic_a ) end_ARG divide start_ARG italic_q end_ARG start_ARG square-root start_ARG italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG , (3)

where τ=𝑑t/a𝜏differential-d𝑡𝑎\tau=\int dt/aitalic_τ = ∫ italic_d italic_t / italic_a is the conformal time. Where no confusion should arise, we suppress the evaluation scale factor (“a𝑎aitalic_a”) in the argument of functions, e.g. λfs(q)λfs(q;a)subscript𝜆fs𝑞subscript𝜆fs𝑞𝑎\lambda_{\rm fs}(q)\equiv\lambda_{\rm fs}(q;a)italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_q ) ≡ italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_q ; italic_a ).

For ultrarelativistic momenta qammuch-greater-than𝑞𝑎𝑚q\gg amitalic_q ≫ italic_a italic_m, v1𝑣1v\approx 1italic_v ≈ 1 and λfs(q)τsubscript𝜆fs𝑞𝜏\lambda_{\rm fs}(q)\approx\tauitalic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_q ) ≈ italic_τ. For nonrelativistic momenta qammuch-less-than𝑞𝑎𝑚q\ll amitalic_q ≪ italic_a italic_m, vq/am𝑣𝑞𝑎𝑚v\approx q/amitalic_v ≈ italic_q / italic_a italic_m, and the free streaming length grows logarithmically from its value of τ|a=q/mevaluated-at𝜏𝑎𝑞𝑚\tau|_{a=q/m}italic_τ | start_POSTSUBSCRIPT italic_a = italic_q / italic_m end_POSTSUBSCRIPT during radiation domination and ceases to grow during matter domination. It is therefore convenient to scale λfs(q)subscript𝜆fs𝑞\lambda_{\rm fs}(q)italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_q ) to the comoving Hubble length at equality a=aeq𝑎subscript𝑎eqa=a_{\rm eq}italic_a = italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT

λfs(q;a)2aeqHeqF(qaeqm;aaeq)2aeqHeqF(q^;y),subscript𝜆fs𝑞𝑎2subscript𝑎eqsubscript𝐻eq𝐹𝑞subscript𝑎eq𝑚𝑎subscript𝑎eq2subscript𝑎eqsubscript𝐻eq𝐹^𝑞𝑦\lambda_{\rm fs}(q;a)\approx\frac{\sqrt{2}}{a_{\rm eq}H_{\rm eq}}F\left(\frac{% q}{a_{\rm eq}m};\frac{a}{a_{\rm eq}}\right)\equiv\frac{\sqrt{2}}{a_{\rm eq}H_{% \rm eq}}F(\hat{q};y),italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_q ; italic_a ) ≈ divide start_ARG square-root start_ARG 2 end_ARG end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT end_ARG italic_F ( divide start_ARG italic_q end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT italic_m end_ARG ; divide start_ARG italic_a end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT end_ARG ) ≡ divide start_ARG square-root start_ARG 2 end_ARG end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT end_ARG italic_F ( over^ start_ARG italic_q end_ARG ; italic_y ) , (4)

where

2aeqHeq=1H0aeqΩm,2subscript𝑎eqsubscript𝐻eq1subscript𝐻0subscript𝑎eqsubscriptΩ𝑚\frac{\sqrt{2}}{a_{\rm eq}H_{\rm eq}}=\frac{1}{H_{0}}\sqrt{\frac{a_{\rm eq}}{% \Omega_{m}}},divide start_ARG square-root start_ARG 2 end_ARG end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT end_ARG = divide start_ARG 1 end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG square-root start_ARG divide start_ARG italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT end_ARG start_ARG roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT end_ARG end_ARG , (5)

and carry the scaling behaviors in the various regimes with the dimensionless function F𝐹Fitalic_F. The exact analytic form of this function and its scaling behaviors are given in Appendix A.

Of particular interest for viable dark matter models that mimic CDM on large scales are candidates that become nonrelativistic well before equality. The maximal scale for the impact of free streaming is the value that λfssubscript𝜆fs\lambda_{\rm fs}italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT achieves well after equality. Combining these two limits, we find the asymptotic approximation

F(q^;y)𝐹^𝑞𝑦\displaystyle F(\hat{q};y)italic_F ( over^ start_ARG italic_q end_ARG ; italic_y ) \displaystyle\approx q^ln(8/q^)^𝑞8^𝑞\displaystyle\hat{q}\ln(8/\hat{q})over^ start_ARG italic_q end_ARG roman_ln ( 8 / over^ start_ARG italic_q end_ARG )
=\displaystyle== qaeqmln(8aeqmq),qaeqm,aaeq.formulae-sequencemuch-less-than𝑞subscript𝑎eq𝑚8subscript𝑎eq𝑚𝑞𝑞subscript𝑎eq𝑚much-greater-than𝑎subscript𝑎eq\displaystyle\frac{q}{a_{\rm eq}m}\ln\left(\frac{8a_{\rm eq}m}{q}\right),\quad q% \ll a_{\rm eq}m,a\gg a_{\rm eq}.divide start_ARG italic_q end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT italic_m end_ARG roman_ln ( divide start_ARG 8 italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT italic_m end_ARG start_ARG italic_q end_ARG ) , italic_q ≪ italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT italic_m , italic_a ≫ italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT .

The log term represents the logarithmic growth from the epoch that the momenta become nonrelativistic anrq/msimilar-tosubscript𝑎nr𝑞𝑚a_{\rm nr}\sim q/mitalic_a start_POSTSUBSCRIPT roman_nr end_POSTSUBSCRIPT ∼ italic_q / italic_m through aeqsubscript𝑎eqa_{\mathrm{eq}}italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT, and the q^=q/aeqm^𝑞𝑞subscript𝑎eq𝑚\hat{q}=q/a_{\mathrm{eq}}mover^ start_ARG italic_q end_ARG = italic_q / italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT italic_m prefactor likewise scales the comoving horizon at equality to anrsubscript𝑎nra_{\rm nr}italic_a start_POSTSUBSCRIPT roman_nr end_POSTSUBSCRIPT given 2aH(a)/aeqHeq=aeq/a2𝑎𝐻𝑎subscript𝑎eqsubscript𝐻eqsubscript𝑎eq𝑎\sqrt{2}aH(a)/a_{\rm eq}H_{\rm eq}=a_{\rm eq}/asquare-root start_ARG 2 end_ARG italic_a italic_H ( italic_a ) / italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT / italic_a in radiation domination.

The distinction between various types of dark matter therefore mainly comes from their momentum or wavenumber distributions. For thermally produced dark matter, this comes from the distribution at the relevant temperature for production and kinetic decoupling. For non-interacting scalar wave dark matter ϕitalic-ϕ\phiitalic_ϕ, the number density scales as mϕ2𝑚superscriptitalic-ϕ2m\phi^{2}italic_m italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT in the nonrelativistic regime, and thus the momentum spectrum is provided by the power spectrum of ϕitalic-ϕ\phiitalic_ϕ itself. Below we will use the terms power spectrum of field fluctuations and momentum distribution of the number density interchangeably where no confusion should arise.

For the axion, if the Peccei-Quinn symmetry breaking occurs after inflation, the axion field is uncorrelated across different horizon patches, resulting in white-noise field fluctuations above the horizon. At the critical time when axions acquire masses their potential becomes

V(ϕ)=m2fax2[1cos(ϕ/fax)]𝑉italic-ϕsuperscript𝑚2superscriptsubscript𝑓ax2delimited-[]1italic-ϕsubscript𝑓axV(\phi)=m^{2}f_{\rm ax}^{2}[1-\cos(\phi/f_{\rm ax})]italic_V ( italic_ϕ ) = italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT roman_ax end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ 1 - roman_cos ( italic_ϕ / italic_f start_POSTSUBSCRIPT roman_ax end_POSTSUBSCRIPT ) ] (7)

and once H(a)=m𝐻subscript𝑎𝑚H(a_{*})=mitalic_H ( italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) = italic_m, the potential energy stored in the random initial field ϕ/fax[π,π)italic-ϕsubscript𝑓ax𝜋𝜋\phi/f_{\rm ax}\in[-\pi,\pi)italic_ϕ / italic_f start_POSTSUBSCRIPT roman_ax end_POSTSUBSCRIPT ∈ [ - italic_π , italic_π ) will convert to locally coherent oscillations of the axion field, which produces mostly cold axions whose spatial number density varies from horizon patch to patch. This mechanism is known as vacuum misalignment production.

Furthermore, the post-inflationary axion also predicts the existence of topological defects such as axion strings due to the Kibble mechanism [106]. The string network evolves in such a pattern that the number of strings per horizon is nearly constant, and the energy stored in string cores is lost through the radiation of relativistic axion waves [107, 108]. This emission may contribute significantly to the axion relic density [109, 110, 111] and extend the axion momentum distribution to q>am𝑞subscript𝑎𝑚q>a_{*}mitalic_q > italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_m, providing a “warm” component.

In the post-inflationary case, the power spectrum of field fluctuations then gives the momentum spectrum of the average number density of axions after the relevant momenta become non-relativistic

ϕ2=d3q(2π)3Pϕ(q)=dlnqq32π2Pϕ(q)delimited-⟨⟩superscriptitalic-ϕ2superscript𝑑3𝑞superscript2𝜋3subscript𝑃italic-ϕ𝑞𝑑𝑞superscript𝑞32superscript𝜋2subscript𝑃italic-ϕ𝑞\langle\phi^{2}\rangle=\int\frac{d^{3}q}{(2\pi)^{3}}P_{\phi}(q)=\int d\ln q% \frac{q^{3}}{2\pi^{2}}P_{\phi}(q)⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ = ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_q end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( italic_q ) = ∫ italic_d roman_ln italic_q divide start_ARG italic_q start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( italic_q ) (8)

with

ϕ(𝐪)ϕ(𝐪)=(2π)3δ(𝐪+𝐪)Pϕ(q).delimited-⟨⟩italic-ϕ𝐪italic-ϕsuperscript𝐪superscript2𝜋3𝛿𝐪superscript𝐪subscript𝑃italic-ϕ𝑞\langle\phi({\bf q})\phi({\bf q}^{\prime})\rangle=(2\pi)^{3}\delta({\bf q}+{% \bf q}^{\prime})P_{\phi}(q).⟨ italic_ϕ ( bold_q ) italic_ϕ ( bold_q start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ⟩ = ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_δ ( bold_q + bold_q start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( italic_q ) . (9)

This spectrum is white Pϕ=subscript𝑃italic-ϕabsentP_{\phi}=italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT = const. for qqammuch-less-than𝑞subscript𝑞subscript𝑎𝑚q\ll q_{*}\equiv a_{*}mitalic_q ≪ italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≡ italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_m. For qqmuch-greater-than𝑞subscript𝑞q\gg q_{*}italic_q ≫ italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, the axions produced by misalignment and by decay of the scaling string network at higher redshifts a<a𝑎subscript𝑎a<a_{*}italic_a < italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT dilute their number density as na3proportional-to𝑛superscript𝑎3n\propto a^{-3}italic_n ∝ italic_a start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT (e.g. [112]) leading to the scaling expectation dn/dlnqq1proportional-to𝑑𝑛𝑑𝑞superscript𝑞1dn/d\ln q\propto q^{-1}italic_d italic_n / italic_d roman_ln italic_q ∝ italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT [107]. Following [104], we combine these behavior for aamuch-greater-than𝑎subscript𝑎a\gg a_{*}italic_a ≫ italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT as

q3Pϕ(q)(qq)3θ(qq)+(qq)αθ(qq).proportional-tosuperscript𝑞3subscript𝑃italic-ϕ𝑞superscript𝑞subscript𝑞3𝜃subscript𝑞𝑞superscriptsubscript𝑞𝑞𝛼𝜃𝑞subscript𝑞q^{3}P_{\phi}(q)\propto\left(\frac{q}{q_{*}}\right)^{3}\theta(q_{*}-q)+\left(% \frac{q_{*}}{q}\right)^{\alpha}\theta(q-q_{*}).italic_q start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( italic_q ) ∝ ( divide start_ARG italic_q end_ARG start_ARG italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_θ ( italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT - italic_q ) + ( divide start_ARG italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_q end_ARG ) start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_θ ( italic_q - italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) . (10)

Simulations differ on whether the q>q𝑞subscript𝑞q>q_{*}italic_q > italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT power law qαsuperscript𝑞𝛼q^{-\alpha}italic_q start_POSTSUPERSCRIPT - italic_α end_POSTSUPERSCRIPT is strictly the scaling value of α=1𝛼1\alpha=1italic_α = 1 and therefore how much of the string network energy is radiated at a given momentum, which can make a large change in the overall relic number abundance [109, 110, 111]. Notice however that as long as α>0𝛼0\alpha>0italic_α > 0, the number density spectrum is still dominated by momenta around qsubscript𝑞q_{*}italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT as is the energy density ρmn𝜌𝑚𝑛\rho\approx mnitalic_ρ ≈ italic_m italic_n after all momenta are non-relativistic (cf. Eq. 31).

On the other hand around qsubscript𝑞q_{*}italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, we have simply joined the two asymptotic behaviors as a broken power law spectrum. In simulations of string dynamics, the spectrum around qsubscript𝑞q_{*}italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT is smoother and can have transient plateau-like features before the asymptotic qqmuch-greater-than𝑞subscript𝑞q\gg q_{*}italic_q ≫ italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT break [108, 109, 113]. In the main paper we will simply assume this broken power law form with α=1𝛼1\alpha=1italic_α = 1 and in App. B we explore variations and their consequences (see also [104]v2, their App. B).

Since this number density spectrum of axions is peaked around qsubscript𝑞q_{*}italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, we can expect that the net effect of averaging the free streaming of the momenta components in the spectra is dominated by these qsimilar-toabsentsubscript𝑞\sim q_{*}∼ italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT modes, which are only quasirelativistic or “warm” at birth. Correspondingly, we would expect the impact of free streaming on density perturbations to occur at (see App. B and Fig. 10)

kfssubscript𝑘fs\displaystyle k_{\rm fs}italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT \displaystyle\equiv λfs1(q=am)=aeq2mHeq21/4ln(8aeq/a).superscriptsubscript𝜆fs1subscript𝑞subscript𝑎𝑚superscriptsubscript𝑎eq2𝑚subscript𝐻eqsuperscript2148subscript𝑎eqsubscript𝑎\displaystyle\lambda_{\rm fs}^{-1}(q_{*}=a_{*}m)=\frac{\sqrt{a_{\rm eq}^{2}mH_% {\rm eq}}}{2^{1/4}\ln(8a_{\rm eq}/a_{*})}.italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_m ) = divide start_ARG square-root start_ARG italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_m italic_H start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT end_ARG end_ARG start_ARG 2 start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT roman_ln ( 8 italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT / italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) end_ARG . (11)

Throughout, when we compute numerical values for such quantities we take a cosmology with matter density Ωmh2=0.142subscriptΩ𝑚superscript20.142\Omega_{m}h^{2}=0.142roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_h start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0.142 and 3 massless neutrinos.

This scale should be compared to the similar suppression of the transfer function at the Jeans scale in the case of Pecci-Quinn symmetry breaking before the end of inflation. Here the initial misalignment is coherent across the whole horizon volume today by the end of inflation and there is only an initially cold component to the axions. Curvature fluctuations of wavenumber k𝑘kitalic_k then imprint field fluctuations ϕ(q)italic-ϕ𝑞\phi(q)italic_ϕ ( italic_q ) at wavenumber q=k𝑞𝑘q=kitalic_q = italic_k and the density fluctuations are carried by ϕ2(k)2ϕ(k)ϕsuperscriptitalic-ϕ2𝑘2italic-ϕ𝑘delimited-⟨⟩italic-ϕ\phi^{2}(k)\approx 2\phi(k)\langle\phi\rangleitalic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ) ≈ 2 italic_ϕ ( italic_k ) ⟨ italic_ϕ ⟩. Throughout, “k𝑘kitalic_k” identifies the wavenumber of quadratic quantities such as ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, number, and energy density, whereas “q𝑞qitalic_q” when different from k𝑘kitalic_k distinguishes the wavenumber of field fluctuations that compose them.

Refer to caption
Figure 1: Relative transfer function (15) due to the effect of free-streaming on the “warm” axions of the post-inflationary mechanism compared with that of the cold axions of the pre-inflationary case. Here m=2.0×1020𝑚2.0superscript1020m=2.0\times 10^{-20}italic_m = 2.0 × 10 start_POSTSUPERSCRIPT - 20 end_POSTSUPERSCRIPT eV and the warm spectrum peaks at q=amsubscript𝑞subscript𝑎𝑚q_{*}=a_{*}mitalic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_m, the horizon wavenumber at the start of axion oscillations, and the evaluation epoch a=0.2𝑎0.2a=0.2italic_a = 0.2 is chosen to reflect that of the Lyman-α𝛼\alphaitalic_α forest.

The relevant free streaming scale for the pre-inflationary case is the comoving wavenumber whose associated free streaming length overtakes its wavelength

λfs(kJ)λJ6/kJ,subscript𝜆fssubscript𝑘𝐽subscript𝜆𝐽6subscript𝑘𝐽\lambda_{\rm fs}(k_{J})\approx\lambda_{J}\approx\sqrt{6}/k_{J},italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ) ≈ italic_λ start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ≈ square-root start_ARG 6 end_ARG / italic_k start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT , (12)

and by employing Eq. (II), we have

kJ31/4aeq2mHeqln(8aeq/a).subscript𝑘𝐽superscript314superscriptsubscript𝑎eq2𝑚subscript𝐻eq8subscript𝑎eqsubscript𝑎k_{J}\approx 3^{1/4}\sqrt{\frac{a_{\rm eq}^{2}mH_{\rm eq}}{\ln(8a_{\rm eq}/a_{% *})}}.italic_k start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ≈ 3 start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT square-root start_ARG divide start_ARG italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_m italic_H start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT end_ARG start_ARG roman_ln ( 8 italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT / italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) end_ARG end_ARG . (13)

Note that the 66\sqrt{6}square-root start_ARG 6 end_ARG in Eq. (12) is added so that Eq. (13) matches the definition in the literature [47] (their Eq. 9), modulo the log factor which we have here approximated at kJam=21/4aeqmHeqsimilar-tosubscript𝑘𝐽subscript𝑎𝑚superscript214subscript𝑎eq𝑚subscript𝐻eqk_{J}\sim a_{*}m=2^{-1/4}a_{\rm eq}\sqrt{mH_{\rm eq}}italic_k start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ∼ italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_m = 2 start_POSTSUPERSCRIPT - 1 / 4 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT square-root start_ARG italic_m italic_H start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT end_ARG but is usually incorporated more precisely as a mass-dependent fitting factor to numerical calculations of the transfer function ([114] their Eq. 44).

We therefore expect that the free streaming of the quasirelativistic or “warm” axions in the post-inflationary scenario to scale in the same way as the Jeans scale of cold axions in the pre-inflationary scenario and differ only by the ratio

kJkfs=61/4ln(8aeq/a).subscript𝑘𝐽subscript𝑘fssuperscript6148subscript𝑎eqsubscript𝑎\frac{k_{J}}{k_{\rm fs}}={6^{1/4}}\sqrt{\ln(8a_{\rm eq}/a_{*})}.divide start_ARG italic_k start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT end_ARG = 6 start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT square-root start_ARG roman_ln ( 8 italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT / italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) end_ARG . (14)

We can improve on this estimate by averaging over the momentum spectrum q3Pϕsuperscript𝑞3subscript𝑃italic-ϕq^{3}P_{\phi}italic_q start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT instead of evaluating at the peak to define an effective transfer function for density perturbations due to the free streaming effect following Ref. [104]

Trel(k)TaxTCDM(k)dlnqq32π2Pϕ(q)sin[kλfs(q)]kλfs(q)dlnqq32π2Pϕ(q),subscript𝑇rel𝑘subscript𝑇axsubscript𝑇CDM𝑘𝑑𝑞superscript𝑞32superscript𝜋2subscript𝑃italic-ϕ𝑞𝑘subscript𝜆fs𝑞𝑘subscript𝜆fs𝑞𝑑𝑞superscript𝑞32superscript𝜋2subscript𝑃italic-ϕ𝑞T_{\rm rel}(k)\equiv\frac{T_{\rm ax}}{T_{\rm CDM}}(k)\approx\frac{\int d\ln q% \frac{q^{3}}{2\pi^{2}}P_{\phi}(q)\frac{\sin[k\lambda_{\rm fs}(q)]}{k\lambda_{% \rm fs}(q)}}{\int d\ln q\frac{q^{3}}{2\pi^{2}}P_{\phi}(q)},italic_T start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ( italic_k ) ≡ divide start_ARG italic_T start_POSTSUBSCRIPT roman_ax end_POSTSUBSCRIPT end_ARG start_ARG italic_T start_POSTSUBSCRIPT roman_CDM end_POSTSUBSCRIPT end_ARG ( italic_k ) ≈ divide start_ARG ∫ italic_d roman_ln italic_q divide start_ARG italic_q start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( italic_q ) divide start_ARG roman_sin [ italic_k italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_q ) ] end_ARG start_ARG italic_k italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_q ) end_ARG end_ARG start_ARG ∫ italic_d roman_ln italic_q divide start_ARG italic_q start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( italic_q ) end_ARG , (15)

who derive this form from the WKB approximation for the amplitude of the free-streaming waves and linearizing adiabatic perturbations as a means of estimating where free streaming has an O(1)𝑂1O(1)italic_O ( 1 ) effect. Here TCDMsubscript𝑇CDMT_{\rm CDM}italic_T start_POSTSUBSCRIPT roman_CDM end_POSTSUBSCRIPT is the cold dark matter (CDM) density transfer function (with no axions) and Taxsubscript𝑇axT_{\rm ax}italic_T start_POSTSUBSCRIPT roman_ax end_POSTSUBSCRIPT is the axion transfer function (with no CDM), with the same cosmological parameters otherwise. This ratio serves to isolate the free streaming effect by removing other cosmological effects from matter radiation equality and baryon acoustic oscillations. The amplitude reduction term can also be motivated from the treatment of wave propagation in §III where free streaming modifies the initial wave amplitude for each momentum q𝑞qitalic_q according to the solution to the wave equation (see Eq. (20)). We will discuss the impact of the slowly varying phases of the momentum components in §IV.

Refer to caption
Figure 2: Mass scaling of the relative transfer function of warm axions relative to the cold axions in Fig. 1. As predicted from Eqn. (14), a warm axion mass of 5.6×10195.6superscript10195.6\times 10^{-19}5.6 × 10 start_POSTSUPERSCRIPT - 19 end_POSTSUPERSCRIPT eV produces a comparable scale of suppression to cold axions of 2.0×10202.0superscript10202.0\times 10^{-20}2.0 × 10 start_POSTSUPERSCRIPT - 20 end_POSTSUPERSCRIPT eV.

In Fig. 1, we compare the relative transfer function (15) with the usual Jeans suppression for cold axions from a numerical calculation using a modified version of CAMB111CAMB: http://camb.info[115] (see also [114] their Eq. 44, which closely match these results). We illustrate this with a mass of m=2.0×1020𝑚2.0superscript1020m=2.0\times 10^{-20}italic_m = 2.0 × 10 start_POSTSUPERSCRIPT - 20 end_POSTSUPERSCRIPTeV which is motivated by the bound on cold axions from the Lymanα𝛼-\alpha- italic_α forest [116]. Correspondingly we take a redshift of z=4𝑧4z=4italic_z = 4 or a=0.2𝑎0.2a=0.2italic_a = 0.2 as the evaluation epoch. As expected, the free streaming transfer function for the “warm” axions gives a stronger suppression than the cold, pre-inflationary case but only by a log factor. In fact, Eq. (14) predicts kJ/kfs5.3subscript𝑘𝐽subscript𝑘fs5.3k_{J}/k_{\rm fs}\approx 5.3italic_k start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ≈ 5.3, which captures most of the difference. This ratio can be then be used to approximately scale up any given Lyman-α𝛼\alphaitalic_α bound on cold axions since kJm1/2proportional-tosubscript𝑘𝐽superscript𝑚12k_{J}\propto m^{1/2}italic_k start_POSTSUBSCRIPT italic_J end_POSTSUBSCRIPT ∝ italic_m start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT, here nominally m5.6×1019greater-than-or-equivalent-to𝑚5.6superscript1019m\gtrsim 5.6\times 10^{-19}italic_m ≳ 5.6 × 10 start_POSTSUPERSCRIPT - 19 end_POSTSUPERSCRIPTeV. Fig. 2 demonstrates that warm axions of this mass give a transfer function comparable to the “cold” axions of m=2.0×1020𝑚2.0superscript1020m=2.0\times 10^{-20}italic_m = 2.0 × 10 start_POSTSUPERSCRIPT - 20 end_POSTSUPERSCRIPT eV.

For heavier masses, where free streaming is negligible on observationally relevant scales, the random number of cold axions in each horizon patch at asubscript𝑎a_{*}italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT leads to so-called isocurvature fluctuations on large scales, which is also constrained by the Lyman-α𝛼\alphaitalic_α forest observations. At large scales, the isocurvature perturbation is well described by the white-noise power spectrum and is not sensitive to the behavior of the power spectrum at kqsimilar-to𝑘subscript𝑞k\sim q_{*}italic_k ∼ italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT which determines the free-streaming effect. Therefore, the ratio of the amplitude of the isocurvature fluctuations to that of the adiabatic is fiso21/q3proportional-tosuperscriptsubscript𝑓iso21superscriptsubscript𝑞3f_{\rm iso}^{2}\propto 1/q_{*}^{3}italic_f start_POSTSUBSCRIPT roman_iso end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ 1 / italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. A lower qsubscript𝑞q_{*}italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, corresponding to a lighter axion in this range, gives a larger isocurvature to adiabatic ratio on large scales, imposing a lower bound on the axion mass in the post-inflationary scenario, m>3×1018𝑚3superscript1018m>3\times 10^{-18}italic_m > 3 × 10 start_POSTSUPERSCRIPT - 18 end_POSTSUPERSCRIPT eV from Lyman-α𝛼\alphaitalic_α forest constraints [117], which is stronger than the nominal free streaming bound above. For this mass, the free-streaming length λfs(q)=0.014subscript𝜆fssubscript𝑞0.014\lambda_{\rm fs}(q_{*})=0.014italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) = 0.014 Mpc, which implies that the free streaming effect can be neglected when applying this isocurvature bound.

III Causally Coherent Patches

We have seen in the previous section that for axion dark matter produced around the beginning of the oscillation epoch H(a)=m𝐻subscript𝑎𝑚H(a_{*})=mitalic_H ( italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) = italic_m with only a mildly relativistic or “warm” component, the free-streaming scale for the post-inflationary production mechanism remains close to that of cold axions from the pre-inflationary production mechanism. Thus, the main new large scale effect in the post-inflationary case is that the causally random patches on the horizon scale at asubscript𝑎a_{*}italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT produce a white noise spectrum of axion number or mass density fluctuations.

For a hypothetical wave dark matter candidate produced causally after inflation with more relativistic momenta, the free streaming scale can be larger; simultaneously, the white noise fluctuations can be smaller in amplitude on a fixed observational scale given the smaller horizon scale at production, and therefore weaken the isocurvature bounds on the mass until the free streaming limit comes to dominate [104].

More concretely as shown in App. B, if the number density spectrum peaks at qpeak=Rq=Ramsubscript𝑞peak𝑅subscript𝑞𝑅subscript𝑎𝑚q_{\rm peak}=Rq_{*}=Ra_{*}mitalic_q start_POSTSUBSCRIPT roman_peak end_POSTSUBSCRIPT = italic_R italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = italic_R italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_m, then the effective free streaming length increases as λfs(qpeak)Rproportional-tosubscript𝜆fssubscript𝑞peak𝑅\lambda_{\rm fs}(q_{\rm peak})\propto Ritalic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_q start_POSTSUBSCRIPT roman_peak end_POSTSUBSCRIPT ) ∝ italic_R up to a log correction using Eq. (II). For moderate increases where R𝒪(1)similar-to𝑅𝒪1R\sim{\cal O}(1)italic_R ∼ caligraphic_O ( 1 ), this can make free streaming more important and become competitive or stronger than the isocurvature bound. The combination of the two is therefore more robust for changes in the axion spectrum for masses in the m10181019similar-to𝑚superscript1018superscript1019m\sim 10^{-18}-10^{-19}italic_m ∼ 10 start_POSTSUPERSCRIPT - 18 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT - 19 end_POSTSUPERSCRIPTeV range [104].

For R1much-greater-than𝑅1R\gg 1italic_R ≫ 1, most of the scalar wave dark matter is ultrarelativistic at asubscript𝑎a_{*}italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. In this case, the dark matter is “hot” at birth. Note that this does not occur with axions, since at any given epoch after Peccei-Quinn symmetry breaking but before Hmsimilar-to𝐻𝑚H\sim mitalic_H ∼ italic_m, the Kibble mechanism establishes a coherent field with a random value of ϕ/fax[π,π)italic-ϕsubscript𝑓ax𝜋𝜋\phi/f_{\rm ax}\in[-\pi,\pi)italic_ϕ / italic_f start_POSTSUBSCRIPT roman_ax end_POSTSUBSCRIPT ∈ [ - italic_π , italic_π ) across the Hubble patch 1/aH1𝑎𝐻1/aH1 / italic_a italic_H with a self similar network of strings and their decay products.

In the more general case, it is also important to understand the evolution of the isocurvature density fluctuations from the causally random initial field fluctuations, since free streaming suppression and isocurvature enhancement work in opposite directions. In Ref. [104], it was shown that a certain characterization of these field fluctuations, namely fractional fluctuations in ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, remains constant and white in power despite the free streaming of the waves that compose them. In this section, we seek to clarify the nature of these fluctuations from the standpoint of the free streaming of the causally coherent initial horizon scale patches.

To understand the impact of free-streaming on causally coherent patches, let us begin with an initial field profile that is a spherical tophat222We have also tested Gaussian profiles and found similar results. We choose tophat here for clarity of wavefront visualizations. of radius τisubscript𝜏𝑖\tau_{i}italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and set the field normalization to unity at r<R𝑟𝑅r<Ritalic_r < italic_R. The Fourier transform of the tophat gives the momentum distribution of the patch

ϕp(q;0)=3Vp(qτi)3[sin(qτi)qτicos(qτi)],subscriptitalic-ϕ𝑝𝑞03subscript𝑉𝑝superscript𝑞subscript𝜏𝑖3delimited-[]𝑞subscript𝜏𝑖𝑞subscript𝜏𝑖𝑞subscript𝜏𝑖\phi_{p}(q;0)=\frac{3V_{p}}{(q\tau_{i})^{3}}\left[{\sin(q\tau_{i})-q\tau_{i}% \cos(q\tau_{i})}\right],italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_q ; 0 ) = divide start_ARG 3 italic_V start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG start_ARG ( italic_q italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG [ roman_sin ( italic_q italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) - italic_q italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_cos ( italic_q italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ] , (16)

where Vp=4πτi3/3subscript𝑉𝑝4𝜋superscriptsubscript𝜏𝑖33V_{p}=4\pi\tau_{i}^{3}/3italic_V start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = 4 italic_π italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT / 3 is the volume of the tophat patch. The spectrum is a constant ϕp(q;0)=Vpsubscriptitalic-ϕ𝑝𝑞0subscript𝑉𝑝\phi_{p}(q;0)=V_{p}italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_q ; 0 ) = italic_V start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT for qτi1much-less-than𝑞subscript𝜏𝑖1q\tau_{i}\ll 1italic_q italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≪ 1 and a random distribution of these causal patches would produce white noise on large scales as desired.

Refer to caption
Figure 3: Free streaming of 4 coherent tophat field patches (see text) for the field ϕitalic-ϕ\phiitalic_ϕ (top panel) and the proxy for number density fluctuations ϕ2/ϕ2superscriptitalic-ϕ2delimited-⟨⟩superscriptitalic-ϕ2\phi^{2}/\langle\phi^{2}\rangleitalic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ (bottom panel) for a series of snapshots in conformal time τ𝜏\tauitalic_τ. As the waves from different patches free stream, they individually damp in amplitude and spread in scale. When multiple wave fronts intersect and superimpose, fluctuations appear that are transient and reflect multiple momentum streams from different patches.
Refer to caption
Figure 4: Power spectra of ϕitalic-ϕ\phiitalic_ϕ and ϕ2/ϕ2superscriptitalic-ϕ2delimited-⟨⟩superscriptitalic-ϕ2\phi^{2}/\langle\phi^{2}\rangleitalic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ for the 4 patch case of Fig. 3. Free streaming damping in both cases scales as kλfs1=τ1proportional-to𝑘superscriptsubscript𝜆fs1superscript𝜏1k\propto\lambda_{\rm fs}^{-1}=\tau^{-1}italic_k ∝ italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_τ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and here the phase-coherent autocorrelation of momentum modes from individual patches dominates.

The Klein-Gordon equation in q𝑞qitalic_q-space for a free field

ϕ¨+2aHϕ˙+(q2+a2m2)ϕ=0,¨italic-ϕ2𝑎𝐻˙italic-ϕsuperscript𝑞2superscript𝑎2superscript𝑚2italic-ϕ0\ddot{\phi}+2aH\dot{\phi}+(q^{2}+a^{2}m^{2})\phi=0,over¨ start_ARG italic_ϕ end_ARG + 2 italic_a italic_H over˙ start_ARG italic_ϕ end_ARG + ( italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_ϕ = 0 , (17)

evolves the initial modes, where overdots denote conformal time derivatives. More specifically, each mode evolves via the growth function

ϕ(q;τ)=ϕ(q;0)D(q;τ),italic-ϕ𝑞𝜏italic-ϕ𝑞0𝐷𝑞𝜏\phi(q;\tau)=\phi(q;0)D(q;\tau),italic_ϕ ( italic_q ; italic_τ ) = italic_ϕ ( italic_q ; 0 ) italic_D ( italic_q ; italic_τ ) , (18)

where D𝐷Ditalic_D solves the Klein-Gordon equation (17) with an initially frozen field due to the Hubble drag, ϕ˙(q;0)=0˙italic-ϕ𝑞00\dot{\phi}(q;0)=0over˙ start_ARG italic_ϕ end_ARG ( italic_q ; 0 ) = 0. During radiation domination, τ=1/aH𝜏1𝑎𝐻\tau=1/aHitalic_τ = 1 / italic_a italic_H and a2m2=τ2/τ4superscript𝑎2superscript𝑚2superscript𝜏2superscriptsubscript𝜏4a^{2}m^{2}=\tau^{2}/\tau_{*}^{4}italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_τ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT, and the growth function of the field is given by

D(q;τ)=ei(τ/τ)2/2F11[34+i(qτ)24,32,i(ττ)2],𝐷𝑞𝜏superscript𝑒𝑖superscript𝜏subscript𝜏22subscriptsubscript𝐹1134𝑖superscript𝑞subscript𝜏2432𝑖superscript𝜏subscript𝜏2D(q;\tau)=e^{-i(\tau/\tau_{*})^{2}/2}{}_{1}F_{1}\left[\frac{3}{4}+i\frac{(q% \tau_{*})^{2}}{4},\frac{3}{2},i\left(\frac{\tau}{\tau_{*}}\right)^{2}\right],italic_D ( italic_q ; italic_τ ) = italic_e start_POSTSUPERSCRIPT - italic_i ( italic_τ / italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 2 end_POSTSUPERSCRIPT start_FLOATSUBSCRIPT 1 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT [ divide start_ARG 3 end_ARG start_ARG 4 end_ARG + italic_i divide start_ARG ( italic_q italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG , divide start_ARG 3 end_ARG start_ARG 2 end_ARG , italic_i ( divide start_ARG italic_τ end_ARG start_ARG italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] , (19)

where F11subscriptsubscript𝐹11{}_{1}F_{1}start_FLOATSUBSCRIPT 1 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT a hypergeometric function. For ττmuch-less-than𝜏subscript𝜏\tau\ll\tau_{*}italic_τ ≪ italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, D(q;τ)𝐷𝑞𝜏D(q;\tau)italic_D ( italic_q ; italic_τ ) takes the simple form

limτ/τ1D(q;τ)=sin(qτ)qτ,subscriptmuch-less-than𝜏subscript𝜏1𝐷𝑞𝜏𝑞𝜏𝑞𝜏\lim_{\tau/\tau_{*}\ll 1}D(q;\tau)=\frac{\sin(q\tau)}{q\tau},roman_lim start_POSTSUBSCRIPT italic_τ / italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≪ 1 end_POSTSUBSCRIPT italic_D ( italic_q ; italic_τ ) = divide start_ARG roman_sin ( italic_q italic_τ ) end_ARG start_ARG italic_q italic_τ end_ARG , (20)

(cf. Eq. 15). Here the field is frozen above the horizon qτ1much-less-than𝑞𝜏1q\tau\ll 1italic_q italic_τ ≪ 1 and oscillates with amplitude D1/τ1/aproportional-to𝐷1𝜏proportional-to1𝑎D\propto 1/\tau\propto 1/aitalic_D ∝ 1 / italic_τ ∝ 1 / italic_a below the horizon. This amplitude decay reflects the redshifting of relativistic waves inside the horizon. Furthermore, the number density associated with q𝑞qitalic_q goes as n(ω/a)ϕ2a3proportional-to𝑛𝜔𝑎superscriptitalic-ϕ2proportional-tosuperscript𝑎3n\propto(\omega/a)\phi^{2}\propto a^{-3}italic_n ∝ ( italic_ω / italic_a ) italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ italic_a start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT, and particle number in each mode is conserved in comoving coordinates.

With the initial tophat wavepacket, Fourier transforming the product of Eq. (16) and (20) gives in real space

ϕp(r;τ)={1,r<τiτ,τ<τi0,r<ττi,ττi(τi+τr)(τiτ+r)4rτ,|τiτ|r<τi+τ0,r>τi+τsubscriptitalic-ϕ𝑝𝑟𝜏cases1formulae-sequence𝑟subscript𝜏𝑖𝜏𝜏subscript𝜏𝑖0formulae-sequence𝑟𝜏subscript𝜏𝑖𝜏subscript𝜏𝑖subscript𝜏𝑖𝜏𝑟subscript𝜏𝑖𝜏𝑟4𝑟𝜏subscript𝜏𝑖𝜏𝑟subscript𝜏𝑖𝜏0𝑟subscript𝜏𝑖𝜏\phi_{p}(r;\tau)=\begin{cases}1,&r<\tau_{i}-\tau,\tau<\tau_{i}\\ 0,&r<\tau-\tau_{i},\tau\geq\tau_{i}\\ \frac{(\tau_{i}+\tau-r)(\tau_{i}-\tau+r)}{4r\tau},&|\tau_{i}-\tau|\leq r<\tau_% {i}+\tau\\ 0,&r>\tau_{i}+\tau\end{cases}italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_r ; italic_τ ) = { start_ROW start_CELL 1 , end_CELL start_CELL italic_r < italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_τ , italic_τ < italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 0 , end_CELL start_CELL italic_r < italic_τ - italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_τ ≥ italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL divide start_ARG ( italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_τ - italic_r ) ( italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_τ + italic_r ) end_ARG start_ARG 4 italic_r italic_τ end_ARG , end_CELL start_CELL | italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_τ | ≤ italic_r < italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_τ end_CELL end_ROW start_ROW start_CELL 0 , end_CELL start_CELL italic_r > italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_τ end_CELL end_ROW (21)

which represents a spherically symmetric shell expanding radially where r=|𝐱|𝑟𝐱r=|{\bf x}|italic_r = | bold_x | with a front at τi+τsubscript𝜏𝑖𝜏\tau_{i}+\tauitalic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_τ, reflecting causal propagation at the speed of light. As expected, the field amplitude damps as it spreads outwards and transfers its coherent fluctuations to the larger physical scales associated with the free streaming scale λfs=τsubscript𝜆fs𝜏\lambda_{\rm fs}=\tauitalic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT = italic_τ.

For ϕp2superscriptsubscriptitalic-ϕ𝑝2\phi_{p}^{2}italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, its Fourier components are composed by a convolution of the field momenta

ϕp2(𝐤;τ)superscriptsubscriptitalic-ϕ𝑝2𝐤𝜏\displaystyle\phi_{p}^{2}({\bf k};\tau)italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_k ; italic_τ ) =\displaystyle== d3q(2π)3ϕp(𝐪;τ)ϕp(𝐤𝐪;τ)superscript𝑑3𝑞superscript2𝜋3subscriptitalic-ϕ𝑝𝐪𝜏subscriptitalic-ϕ𝑝𝐤𝐪𝜏\displaystyle\int\frac{d^{3}q}{(2\pi)^{3}}\phi_{p}({{\bf q}};\tau)\phi_{p}({{% \bf k}-{\bf q}};\tau)∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_q end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( bold_q ; italic_τ ) italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( bold_k - bold_q ; italic_τ ) (22)
=\displaystyle== d3q(2π)3sin(qτ)qτsin(|𝐤𝐪|τ)|𝐤𝐪|τsuperscript𝑑3𝑞superscript2𝜋3𝑞𝜏𝑞𝜏𝐤𝐪𝜏𝐤𝐪𝜏\displaystyle\int\frac{d^{3}q}{(2\pi)^{3}}\frac{\sin(q\tau)}{q\tau}\frac{\sin(% |{\bf k}-{\bf q}|\tau)}{|{\bf k}-{\bf q}|\tau}∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_q end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG divide start_ARG roman_sin ( italic_q italic_τ ) end_ARG start_ARG italic_q italic_τ end_ARG divide start_ARG roman_sin ( | bold_k - bold_q | italic_τ ) end_ARG start_ARG | bold_k - bold_q | italic_τ end_ARG
×ϕp(𝐪;0)ϕp(𝐤𝐪;0).absentsubscriptitalic-ϕ𝑝𝐪0subscriptitalic-ϕ𝑝𝐤𝐪0\displaystyle\times\phi_{p}({{\bf q}};0)\phi_{p}({{\bf k}-{\bf q}};0).× italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( bold_q ; 0 ) italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( bold_k - bold_q ; 0 ) .

Since the initial profile is coherent at r<τi𝑟subscript𝜏𝑖r<\tau_{i}italic_r < italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, different field momenta 𝐪𝐪\bf qbold_q are correlated in their phase and coherently superimpose in this quadratic combination to produce the spatially coherent fluctuation ϕp2(𝐱;τ)superscriptsubscriptitalic-ϕ𝑝2𝐱𝜏\phi_{p}^{2}({\bf x};\tau)italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_x ; italic_τ ). As with ϕpsubscriptitalic-ϕ𝑝\phi_{p}italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, the power spectrum of ϕp2superscriptsubscriptitalic-ϕ𝑝2\phi_{p}^{2}italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is strongly damped by free streaming and represents the dilution or averaging out of the coherent fluctuation in a given patch. Interpreted in the particle picture, the initial axion number fluctuation in a given coherent patch is averaged out over the free streaming scale.

On the other hand, the total ϕitalic-ϕ\phiitalic_ϕ is a sum over all horizon patches, each with a random amplitude, and ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT receives contributions not just from the coherent propagation of modes of a single patch but also all of the phase-incoherent cross terms between patches. In this case, there is a sum over N𝑁Nitalic_N patches:

ϕ(𝐪;τ)italic-ϕ𝐪𝜏\displaystyle\phi({\bf q};\tau)italic_ϕ ( bold_q ; italic_τ ) =\displaystyle== α=1Nϕα(𝐪;τ),superscriptsubscript𝛼1𝑁subscriptitalic-ϕ𝛼𝐪𝜏\displaystyle\sum_{\alpha=1}^{N}\phi_{\alpha}({\bf q};\tau),∑ start_POSTSUBSCRIPT italic_α = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( bold_q ; italic_τ ) ,
ϕα(𝐪;τ)subscriptitalic-ϕ𝛼𝐪𝜏\displaystyle\phi_{\alpha}({\bf q};\tau)italic_ϕ start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( bold_q ; italic_τ ) \displaystyle\equiv Aαϕp(𝐪;τ)ei𝐪𝐝α,subscript𝐴𝛼subscriptitalic-ϕ𝑝𝐪𝜏superscript𝑒𝑖𝐪subscript𝐝𝛼\displaystyle A_{\alpha}\phi_{p}({\bf q};\tau)e^{i{\bf q}\cdot{\bf d}_{\alpha}},italic_A start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( bold_q ; italic_τ ) italic_e start_POSTSUPERSCRIPT italic_i bold_q ⋅ bold_d start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , (23)

where Aαsubscript𝐴𝛼A_{\alpha}italic_A start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT is the field value at the center of patch α𝛼\alphaitalic_α at spatial coordinate 𝐝αsubscript𝐝𝛼{\bf d}_{\alpha}bold_d start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT. Correspondingly,

ϕ2(𝐤;τ)superscriptitalic-ϕ2𝐤𝜏\displaystyle\phi^{2}({\bf k};\tau)italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_k ; italic_τ ) =\displaystyle== αβϕαβ2(𝐤;τ),subscript𝛼𝛽superscriptsubscriptitalic-ϕ𝛼𝛽2𝐤𝜏\displaystyle\sum_{\alpha\beta}\phi_{\alpha\beta}^{2}({\bf k};\tau),∑ start_POSTSUBSCRIPT italic_α italic_β end_POSTSUBSCRIPT italic_ϕ start_POSTSUBSCRIPT italic_α italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_k ; italic_τ ) ,
ϕαβ2(𝐤;τ)superscriptsubscriptitalic-ϕ𝛼𝛽2𝐤𝜏\displaystyle\phi_{\alpha\beta}^{2}({\bf k};\tau)italic_ϕ start_POSTSUBSCRIPT italic_α italic_β end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_k ; italic_τ ) \displaystyle\equiv d3q(2π)3sin(qτ)qτsin(|𝐤𝐪|τ)|𝐤𝐪|superscript𝑑3𝑞superscript2𝜋3𝑞𝜏𝑞𝜏𝐤𝐪𝜏𝐤𝐪\displaystyle\int\frac{d^{3}q}{(2\pi)^{3}}\frac{\sin(q\tau)}{q\tau}\frac{\sin(% |{\bf k}-{\bf q}|\tau)}{|{\bf k}-{\bf q}|}∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_q end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG divide start_ARG roman_sin ( italic_q italic_τ ) end_ARG start_ARG italic_q italic_τ end_ARG divide start_ARG roman_sin ( | bold_k - bold_q | italic_τ ) end_ARG start_ARG | bold_k - bold_q | end_ARG (24)
×ϕα(𝐪;τ)ϕβ(𝐤𝐪;τ),absentsubscriptitalic-ϕ𝛼𝐪𝜏subscriptitalic-ϕ𝛽𝐤𝐪𝜏\displaystyle\times\phi_{\alpha}({{\bf q}};\tau)\phi_{\beta}({{\bf k}-{\bf q}}% ;\tau),× italic_ϕ start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( bold_q ; italic_τ ) italic_ϕ start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT ( bold_k - bold_q ; italic_τ ) ,

now has autocorrelation terms between modes from the same patch α=β𝛼𝛽\alpha=\betaitalic_α = italic_β and cross terms between patches αβ𝛼𝛽\alpha\neq\betaitalic_α ≠ italic_β. Both the evolution and the physical interpretation of the auto and cross terms differ. In particular, for the autocorrelation terms, the power spectrum of ϕαα2=ϕp2subscriptsuperscriptitalic-ϕ2𝛼𝛼subscriptsuperscriptitalic-ϕ2𝑝\phi^{2}_{\alpha\alpha}=\phi^{2}_{p}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_α italic_α end_POSTSUBSCRIPT = italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT contains phase correlations between differing momenta and damps with free streaming, whereas the cross terms carry incoherent phase shifts due to the displacements 𝐝αsubscript𝐝𝛼{\bf d}_{\alpha}bold_d start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT, though these vanish when pairing the same momenta in the ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT power spectrum, i.e. ϕ(𝐪)ϕ(𝐪)italic-ϕ𝐪italic-ϕ𝐪\phi({\bf q})\phi(-{\bf q})italic_ϕ ( bold_q ) italic_ϕ ( - bold_q ).

Refer to caption
Figure 5: Free streaming evolution as in Fig. 3 but with pixel scale horizon patches and field values drawn from a uniform distribution. While the field ϕitalic-ϕ\phiitalic_ϕ free streams and becomes smoother and lower in amplitude with time, ϕ2/ϕ2superscriptitalic-ϕ2delimited-⟨⟩superscriptitalic-ϕ2\phi^{2}/\langle\phi^{2}\rangleitalic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ becomes statistically time invariant with transient fluctuations at a given position.

To visualize the difference, consider explicitly a simple superposition of such patches. In Fig. 3 we set up 4 patches in a periodic box of length 64τi64subscript𝜏𝑖64\tau_{i}64 italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT on each side, with displacements dαsubscript𝑑𝛼d_{\alpha}italic_d start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT of ±4τiplus-or-minus4subscript𝜏𝑖\pm 4\tau_{i}± 4 italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT from the center of the box in the x𝑥xitalic_x and y𝑦yitalic_y directions, and positive and negative amplitudes respectively such that the total field has zero mean. The box is represented by 5123superscript5123512^{3}512 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT discrete pixels, with 8888 pixels per unit τisubscript𝜏𝑖\tau_{i}italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. We evolve this configuration until τ=8τi𝜏8subscript𝜏𝑖\tau=8\tau_{i}italic_τ = 8 italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, again by employing Eq. (20) in Fourier space. We have tested the simulation procedure by verifying that the time evolution of one such patch is consistent with the analytic radial solution (21).

In Fig. 3 (top panels) we show the field profile itself in a z=0𝑧0z=0italic_z = 0 slice of the box. Notice that the free streaming of the individual patches brings the wavefronts to intersect at the center of the box at around τ=4τi𝜏4subscript𝜏𝑖\tau=4\tau_{i}italic_τ = 4 italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. Therefore the momentum distribution of the field fluctuations at the center is anisotropic, specifically quadrupolar. More generally, at any given time after the free-streaming intersection of fronts, the total field represents a transient superposition of waves composed of multiple field momentum streams at any given physical position. This is the same behavior as the particle free streaming of CMB photons after recombination or cosmic neutrinos after their decoupling: the initial particle number inhomogeneity becomes a phase space anisotropy after free streaming. In those cases, the total power in fluctuations of a given k𝑘kitalic_k-mode is conserved (e.g. [118], their Eq. 10), but its nature and effect on gravitational structure formation differ qualitatively. In the free-streaming damping context, this is known as the directional damping of collisionless components [105].

These free streaming considerations apply to ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT as well. In Fig. 3 (bottom panels), we show ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT normalized to its average in the box ϕ2delimited-⟨⟩superscriptitalic-ϕ2\langle\phi^{2}\rangle⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩. This normalization removes the redshifting effect of the subhorizon modes and we can see the remaining strong effect of free streaming damping of the amplitude of ϕ2/ϕ2superscriptitalic-ϕ2delimited-⟨⟩superscriptitalic-ϕ2\phi^{2}/\langle\phi^{2}\rangleitalic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ of each patch, from the change in scale of the panels with τ𝜏\tauitalic_τ. Moreover, even though ϕ2(𝐱)superscriptitalic-ϕ2𝐱\phi^{2}({\bf x})italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_x ) itself is not a directional quantity, its local value reflects the directionally dependent propagation of the fronts of each of the 4 patches.

Refer to caption
Figure 6: Power spectra of the pixel scale horizon patches of Fig. 5 as in Fig. 4. While the field power (top panel) continues to evolve and oscillate with free streaming, the power in ϕ2/ϕ2superscriptitalic-ϕ2delimited-⟨⟩superscriptitalic-ϕ2\phi^{2}/\langle\phi^{2}\rangleitalic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ (bottom panel) approaches a constant power law behavior below the free streaming scale.

The corresponding power spectra for ϕitalic-ϕ\phiitalic_ϕ and ϕ2/ϕ2superscriptitalic-ϕ2delimited-⟨⟩superscriptitalic-ϕ2\phi^{2}/\langle\phi^{2}\rangleitalic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ are shown in Fig. 4. Note that Pϕ2/ϕ2=Pϕ2/ϕ22subscript𝑃superscriptitalic-ϕ2delimited-⟨⟩superscriptitalic-ϕ2subscript𝑃superscriptitalic-ϕ2superscriptdelimited-⟨⟩superscriptitalic-ϕ22P_{\phi^{2}/\langle\phi^{2}\rangle}=P_{\phi^{2}}/\langle\phi^{2}\rangle^{2}italic_P start_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ end_POSTSUBSCRIPT = italic_P start_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT / ⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. In this 4-patch case, the power spectra themselves are still dominated by the autocorrelation terms of each patch, and the total ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT still strongly damps with free streaming. We can see that the turnover into the free streaming oscillation behavior scales with the free streaming length λfs=τsubscript𝜆fs𝜏\lambda_{\rm fs}=\tauitalic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT = italic_τ, k1/τproportional-to𝑘1𝜏k\propto 1/\tauitalic_k ∝ 1 / italic_τ, as expected.

On the other hand, as the number of patches N𝑁Nitalic_N grows, the number of cross terms grows as N2superscript𝑁2N^{2}italic_N start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. In fact, since the number of patches that fill a volume V𝑉Vitalic_V will be N=V/Vp𝑁𝑉subscript𝑉𝑝N=V/V_{p}italic_N = italic_V / italic_V start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, it is the cross terms that become the dominant source of fluctuations in ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. At τ=0𝜏0\tau=0italic_τ = 0 the auto and cross correlation contributions to the power spectrum of ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT are comparable, but the autocorrelation terms free stream away at later times. These remaining contributions represent the incoherent superposition of fluctuations of different momenta 𝐪𝐪{\bf q}bold_q.

From Eq. (III), we can see that cross terms have no time averaged effect on ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT since q𝑞qitalic_q and |𝐤𝐪|𝐤𝐪|{\bf k}-{\bf q}|| bold_k - bold_q | modes oscillate incoherently, but provide a source of instantaneous power

Pϕ2(k;τ)subscript𝑃superscriptitalic-ϕ2𝑘𝜏\displaystyle P_{\phi^{2}}(k;\tau)italic_P start_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_k ; italic_τ ) \displaystyle\approx 2d3q(2π)3[sin(qτ)qτsin(|𝐤𝐪|τ)|𝐤𝐪|]22superscript𝑑3𝑞superscript2𝜋3superscriptdelimited-[]𝑞𝜏𝑞𝜏𝐤𝐪𝜏𝐤𝐪2\displaystyle 2\int\frac{d^{3}q}{(2\pi)^{3}}\left[\frac{\sin(q\tau)}{q\tau}% \frac{\sin(|{\bf k}-{\bf q}|\tau)}{|{\bf k}-{\bf q}|}\right]^{2}2 ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_q end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG [ divide start_ARG roman_sin ( italic_q italic_τ ) end_ARG start_ARG italic_q italic_τ end_ARG divide start_ARG roman_sin ( | bold_k - bold_q | italic_τ ) end_ARG start_ARG | bold_k - bold_q | end_ARG ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (25)
×Pϕ(𝐪;0)Pϕ(𝐤𝐪;0),absentsubscript𝑃italic-ϕ𝐪0subscript𝑃italic-ϕ𝐤𝐪0\displaystyle\times P_{\phi}({{\bf q}};0)P_{\phi}({{\bf k}-{\bf q}};0),× italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( bold_q ; 0 ) italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( bold_k - bold_q ; 0 ) ,

since the square of the oscillating growth function is positive definite. Here we have dropped the autocorrelation terms that contain the phase coherence between the momentum modes, i.e. the connected pieces of the trispectrum of ϕitalic-ϕ\phiitalic_ϕ.

This behavior can be seen directly in Fig. 5 where we take τisubscript𝜏𝑖\tau_{i}italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT to be the grid spacing such that each pixel represents a horizon patch. The box size is 256τi256subscript𝜏𝑖256\tau_{i}256 italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT in this simulation and the field value at each pixel is a uniform random deviate with ϕ[π,π)italic-ϕ𝜋𝜋\phi\in[-\pi,\pi)italic_ϕ ∈ [ - italic_π , italic_π ).333The [M]delimited-[]𝑀[M][ italic_M ] scale of ϕitalic-ϕ\phiitalic_ϕ, e.g. faxsubscript𝑓axf_{\rm ax}italic_f start_POSTSUBSCRIPT roman_ax end_POSTSUBSCRIPT for axions, drops out of the normalized quantities we consider here. Beyond the axion context, we have also separately checked that a Gaussian random deviate produces qualitatively the same free streaming effects we describe below but with a larger number of rare high density peaks at the pixel scale. Again the top panels in Fig. 5 show the time evolution of ϕitalic-ϕ\phiitalic_ϕ and the bottom panels that of ϕ2/ϕ2superscriptitalic-ϕ2delimited-⟨⟩superscriptitalic-ϕ2\phi^{2}/\langle\phi^{2}\rangleitalic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩. Instead of the coherent propagation of discrete horizon scale patches, we are now dominated at late times by the cross terms between the 2563superscript2563256^{3}256 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT initial pixel scale patches.

Notice also that the statistical properties of the ϕ2(𝐱)/ϕ2superscriptitalic-ϕ2𝐱delimited-⟨⟩superscriptitalic-ϕ2\phi^{2}({\bf x})/\langle\phi^{2}\rangleitalic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_x ) / ⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ field become nearly time-invariant. This is in contrast to the 4 patch case even though both cases show the field ϕ(𝐱)italic-ϕ𝐱\phi({\bf x})italic_ϕ ( bold_x ) continuing to evolve, especially in amplitude, as their respective patches free stream.

We quantify this in Fig. 6 for the respective power spectra. The initially white q3Pϕ(q)q3proportional-tosuperscript𝑞3subscript𝑃italic-ϕ𝑞superscript𝑞3q^{3}P_{\phi}(q)\propto q^{3}italic_q start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( italic_q ) ∝ italic_q start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT turns over to oscillate with a q1proportional-toabsentsuperscript𝑞1\propto q^{1}∝ italic_q start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT scaling and decreasing amplitude which reflects the redshifting behavior of the growth function D𝐷Ditalic_D in Eq. (20) as with the 4 patch case. On the other hand, the power spectrum of ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT gains a non-oscillating and nearly constant in time k3Pϕ2/ϕ2k2proportional-tosuperscript𝑘3subscript𝑃superscriptitalic-ϕ2delimited-⟨⟩superscriptitalic-ϕ2superscript𝑘2k^{3}P_{\phi^{2}/\langle\phi^{2}\rangle}\propto k^{2}italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ end_POSTSUBSCRIPT ∝ italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT spectrum on scales below the free streaming scale. This reflects the scaling of Eq. (25) after normalization by ϕ2delimited-⟨⟩superscriptitalic-ϕ2\langle\phi^{2}\rangle⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ which removes the redshifting effect.

In particular, ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT retains fluctuations across a range of scales below the free streaming scale but above the initial horizon scale τisubscript𝜏𝑖\tau_{i}italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. To better see this, we low pass filter ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT to retain only kτi<0.3𝑘subscript𝜏𝑖0.3k\tau_{i}<0.3italic_k italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < 0.3 and show two late time snapshots τ=16τi𝜏16subscript𝜏𝑖\tau=16\tau_{i}italic_τ = 16 italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and 24τi24subscript𝜏𝑖24\tau_{i}24 italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT in Fig. 7. Notice that even though the power in fluctuations on these scales is nearly constant, the ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT field evolves on a time scale much shorter than the Hubble time reflecting the chance superposition of the underlying free-streaming modes. Again, in the particle picture, this reflects a phase space anisotropy in the distribution rather than a physical space inhomogeneity. Also, it is important to note that a low pass filter in k𝑘kitalic_k for ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is not in general the same as a low pass filter in q𝑞qitalic_q in ϕitalic-ϕ\phiitalic_ϕ since high momenta modes can still contribute to low wavenumbers 𝐤=𝐪1+𝐪2𝐤subscript𝐪1subscript𝐪2{\bf k}={\bf q}_{1}+{\bf q}_{2}bold_k = bold_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + bold_q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT if 𝐪1𝐪2subscript𝐪1subscript𝐪2{\bf q}_{1}\approx-{\bf q}_{2}bold_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≈ - bold_q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, which as we shall see below is the physically relevant case after all populated modes have become nonrelativistic.

Refer to caption
Figure 7: Long wavelength fluctuations in ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT at late times as in Fig. 5 but low pass filtered to kτi<0.3𝑘subscript𝜏𝑖0.3k\tau_{i}<0.3italic_k italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT < 0.3. Although statistically the same, the two snapshots at τ=16τi𝜏16subscript𝜏𝑖\tau=16\tau_{i}italic_τ = 16 italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and 24τi24subscript𝜏𝑖24\tau_{i}24 italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT show strong time evolution that reflects the transient nature of incoherent superposition.

In fact, during the simulated epochs where the q𝑞qitalic_q-modes are still ultrarelativistic, this free streaming behavior fully parallels that of relativistic particles and the remaining phase space fluctuations would not contribute to the gravitational formation of structure.

The distinction between wave dark matter and the relativistic particle case is that ϕitalic-ϕ\phiitalic_ϕ is a massive field and even for initially relativistic q𝑞qitalic_q modes, the redshifting due to cosmic expansion will eventually make the modes nonrelativistic, much like the massive neutrino component of dark matter in ΛΛ\Lambdaroman_ΛCDM. For viable dark matter models, this occurs well before matter radiation equality and we must consider the impact of their further evolution until non-relativistic. Since these modes are ultrarelativistic at τsubscript𝜏\tau_{*}italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT where H=m𝐻𝑚H=mitalic_H = italic_m by construction, this means that we must consider their evolution at τ>τ𝜏subscript𝜏\tau>\tau_{*}italic_τ > italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT and account for the change in the spectrum as progressively larger q𝑞qitalic_q modes become nonrelativistic.

For τ>τ𝜏subscript𝜏\tau>\tau_{*}italic_τ > italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, even the superhorizon modes that are non-relativistic at τsubscript𝜏\tau_{*}italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT evolve with D(q;τ)𝐷𝑞𝜏D(q;\tau)italic_D ( italic_q ; italic_τ ) reflecting the coherent oscillations of the axion field due to the mass term. For modes that are above the horizon at τsubscript𝜏\tau_{*}italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, qτ1much-less-than𝑞subscript𝜏1q\tau_{*}\ll 1italic_q italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≪ 1, the growth function becomes

limqτ1D(q;τ)=2ττΓ(54)J1/4(τ2/2τ2).subscriptmuch-less-than𝑞subscript𝜏1𝐷𝑞𝜏2subscript𝜏𝜏Γ54subscript𝐽14superscript𝜏22superscriptsubscript𝜏2\lim_{q\tau_{*}\ll 1}D(q;\tau)=\sqrt{\frac{2\tau_{*}}{\tau}}\Gamma\left(\frac{% 5}{4}\right)J_{1/4}(\tau^{2}/2\tau_{*}^{2}).roman_lim start_POSTSUBSCRIPT italic_q italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≪ 1 end_POSTSUBSCRIPT italic_D ( italic_q ; italic_τ ) = square-root start_ARG divide start_ARG 2 italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_τ end_ARG end_ARG roman_Γ ( divide start_ARG 5 end_ARG start_ARG 4 end_ARG ) italic_J start_POSTSUBSCRIPT 1 / 4 end_POSTSUBSCRIPT ( italic_τ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 2 italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) . (26)

Note that (τ/τ)2/2=mtsuperscript𝜏subscript𝜏22𝑚𝑡(\tau/\tau_{*})^{2}/2=mt( italic_τ / italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 2 = italic_m italic_t where t𝑡titalic_t is coordinate time so that the Bessel function carries the mass scale oscillations for mt=m/2H1𝑚𝑡𝑚2𝐻much-greater-than1mt=m/2H\gg 1italic_m italic_t = italic_m / 2 italic_H ≫ 1. The amplitude of these oscillations scale as Dτ3/2a3/2proportional-to𝐷superscript𝜏32proportional-tosuperscript𝑎32D\propto\tau^{-3/2}\propto a^{-3/2}italic_D ∝ italic_τ start_POSTSUPERSCRIPT - 3 / 2 end_POSTSUPERSCRIPT ∝ italic_a start_POSTSUPERSCRIPT - 3 / 2 end_POSTSUPERSCRIPT. This behavior again reflects the redshifting of non-relativistic matter n(ω/a)ϕ2mϕ2a3proportional-to𝑛𝜔𝑎superscriptitalic-ϕ2proportional-to𝑚superscriptitalic-ϕ2proportional-tosuperscript𝑎3n\propto(\omega/a)\phi^{2}\propto m\phi^{2}\propto a^{-3}italic_n ∝ ( italic_ω / italic_a ) italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ italic_m italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ italic_a start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT. Notice that for modes that remain relativistic until after τ>τ𝜏subscript𝜏\tau>\tau_{*}italic_τ > italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, even though their number density na3proportional-to𝑛superscript𝑎3n\propto a^{-3}italic_n ∝ italic_a start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT, the extra redshifting of the frequency means that the field fluctuations decay less quickly as a1superscript𝑎1a^{-1}italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT instead of a3/2superscript𝑎32a^{-3/2}italic_a start_POSTSUPERSCRIPT - 3 / 2 end_POSTSUPERSCRIPT.

In general, the k𝑘kitalic_k-modes of ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT are then constructed out of the q𝑞qitalic_q-modes of ϕitalic-ϕ\phiitalic_ϕ as

ϕ2(𝐤;τ)superscriptitalic-ϕ2𝐤𝜏\displaystyle\phi^{2}({\bf k};\tau)italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_k ; italic_τ ) =\displaystyle== d3q(2π)3D(q;τ)D(||𝐤𝐪|;τ)\displaystyle\int\frac{d^{3}q}{(2\pi)^{3}}D(q;\tau)D(||{\bf k}-{\bf q}|;\tau)∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_q end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_D ( italic_q ; italic_τ ) italic_D ( | | bold_k - bold_q | ; italic_τ ) (27)
×ϕ(𝐪;0)ϕ(𝐤𝐪;0),absentitalic-ϕ𝐪0italic-ϕ𝐤𝐪0\displaystyle\times\phi({{\bf q}};0)\phi({{\bf k}-{\bf q}};0),× italic_ϕ ( bold_q ; 0 ) italic_ϕ ( bold_k - bold_q ; 0 ) ,

and the different behavior of D𝐷Ditalic_D as a function of momentum q𝑞qitalic_q changes the weights of the field fluctuations that factor into a given k𝑘kitalic_k. On the other hand, since these subhorizon modes simply redshift, the number density simply dilutes with the expansion for all modes after aamuch-greater-than𝑎subscript𝑎a\gg a_{*}italic_a ≫ italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. We can therefore infer the later behavior of all relevant momenta modes directly from the relativistic simulations using number conservation instead of explicitly extending them to late times using computationally expensive evaluations of Eq. (19) for the general growth function D𝐷Ditalic_D.

More specifically, during an epoch where the relevant q𝑞qitalic_q modes are still relativistic and ωϕ2/aqϕ2/aqϕ2/τ𝜔superscriptitalic-ϕ2𝑎𝑞superscriptitalic-ϕ2𝑎proportional-to𝑞superscriptitalic-ϕ2𝜏\omega\phi^{2}/a\approx q\phi^{2}/a\propto q\phi^{2}/\tauitalic_ω italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_a ≈ italic_q italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_a ∝ italic_q italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_τ, we can define an effective number density

neff(𝐤;τ)subscript𝑛eff𝐤𝜏\displaystyle n_{\rm eff}({\bf k};\tau)italic_n start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( bold_k ; italic_τ ) proportional-to\displaystyle\propto d3q(2π)3sin(qτ)qτsin(|𝐤𝐪|τ)|𝐤𝐪|τ1τ2superscript𝑑3𝑞superscript2𝜋3𝑞𝜏𝑞𝜏𝐤𝐪𝜏𝐤𝐪𝜏1superscript𝜏2\displaystyle\int\frac{d^{3}q}{(2\pi)^{3}}\frac{\sin(q\tau)}{\sqrt{q\tau}}% \frac{\sin(|{\bf k}-{\bf q}|\tau)}{\sqrt{|{\bf k}-{\bf q}|\tau}}\frac{1}{\tau^% {2}}∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_q end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG divide start_ARG roman_sin ( italic_q italic_τ ) end_ARG start_ARG square-root start_ARG italic_q italic_τ end_ARG end_ARG divide start_ARG roman_sin ( | bold_k - bold_q | italic_τ ) end_ARG start_ARG square-root start_ARG | bold_k - bold_q | italic_τ end_ARG end_ARG divide start_ARG 1 end_ARG start_ARG italic_τ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG (28)
×ϕp(𝐪;0)ϕp(𝐤𝐪;0),absentsubscriptitalic-ϕ𝑝𝐪0subscriptitalic-ϕ𝑝𝐤𝐪0\displaystyle\times\phi_{p}({{\bf q}};0)\phi_{p}({{\bf k}-{\bf q}};0),× italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( bold_q ; 0 ) italic_ϕ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( bold_k - bold_q ; 0 ) ,

which then reflects the spectrum of ϕ2(𝐤)superscriptitalic-ϕ2𝐤\phi^{2}({\bf k})italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_k ) and their weights in ϕ(𝐪)italic-ϕ𝐪\phi({\bf q})italic_ϕ ( bold_q ) after the waves have become nonrelativistic. Notice that given an initial white noise spectrum for q1/τiless-than-or-similar-to𝑞1subscript𝜏𝑖q\lesssim 1/\tau_{i}italic_q ≲ 1 / italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, the field modes are no longer white after free streaming, but the integral in Eq. (28) is still dominated by q1/τisimilar-to𝑞1subscript𝜏𝑖q\sim 1/\tau_{i}italic_q ∼ 1 / italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and these modes produce a white noise spectrum in neff/neffsubscript𝑛effdelimited-⟨⟩subscript𝑛effn_{\rm eff}/\langle n_{\rm eff}\rangleitalic_n start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT / ⟨ italic_n start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ⟩ for k1/τiless-than-or-similar-to𝑘1subscript𝜏𝑖k\lesssim 1/\tau_{i}italic_k ≲ 1 / italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT that is constant in time. Therefore, the white noise power at k1/τimuch-less-than𝑘1subscript𝜏𝑖k\ll 1/\tau_{i}italic_k ≪ 1 / italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT still comes mainly from momentum modes q1/τisimilar-to𝑞1subscript𝜏𝑖q\sim 1/\tau_{i}italic_q ∼ 1 / italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT (see discussion of Fig. 7), which as we will see in the next section is analogous to the beat frequency from the superposition of closely spaced high frequency modes.

We illustrate this behavior and construction using the random pixel simulations of Fig. 6 in Fig. 8. Notice that the power spectrum now remains constant and white for the effective number density and now reflects ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT after all of the relevant momenta are nonrelativistic.

On the other hand, this constancy of the power spectrum of neff/neffsubscript𝑛effdelimited-⟨⟩subscript𝑛effn_{\rm eff}/\langle n_{\rm eff}\rangleitalic_n start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT / ⟨ italic_n start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ⟩ should not be equated with a particle number density in real space since its spectrum is still composed of field modes with different q𝑞qitalic_q, both in magnitude around 1/τi1subscript𝜏𝑖1/\tau_{i}1 / italic_τ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and in direction, due to the incoherent superposition of contribution from individual horizon scale patches, i.e. the wave analogue of a phase space distribution.

Refer to caption
Figure 8: Effective number density power spectrum (see Eq. 28) for the simulation case of Fig. 5. Since number density is conserved during the transition of each momentum mode from relativistic to nonrelativistic, the effective number density weights the momentum modes according to the final dark matter density, and its fractional power spectrum remains constant and white at late times despite the free streaming of the underlying modes themselves.

IV Incoherent Superposition

We have seen in the previous section that the effective number density fluctuations in a free scalar field ϕitalic-ϕ\phiitalic_ϕ, with an initial white noise spectrum from causal production, do not damp by free streaming. On the other hand, the initial field fluctuations themselves strongly evolve due to free streaming on scales smaller than the free streaming length λfssubscript𝜆fs\lambda_{\rm fs}italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT in Eq. (3).

As alluded to through visualizations of simulations in the previous section, the resolution of this apparent paradox is that the effective number density fluctuations constructed from ϕ2(𝐱)superscriptitalic-ϕ2𝐱\phi^{2}({\bf x})italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_x ) with different field momenta should instead be considered as a phase space number density fluctuation, just as it would be for particle dark matter.

For the case considered in the previous section where the field fluctuations at some qammuch-greater-than𝑞𝑎𝑚q\gg amitalic_q ≫ italic_a italic_m are relativistic, the correspondence to relativistic particles or classical waves is direct. In the classical limit of high photon occupancy, the radiation associated with the photons would be characterized by its electric field 𝐄(𝐱)𝐄𝐱{\bf E}({\bf x})bold_E ( bold_x ) and the power in radiation by |𝐄|2(𝐱)superscript𝐄2𝐱|{\bf E}|^{2}({\bf x})| bold_E | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_x ), analogously to ϕ2(𝐱)superscriptitalic-ϕ2𝐱\phi^{2}({\bf x})italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_x ). Despite the fact that the electric field contributed by electromagnetic waves of different momenta q𝑞qitalic_q always superimpose, observational quantities like the specific intensity do not carry the cross terms of different q𝑞qitalic_q. The reason is that the cross terms average away over many cycles of their respective oscillations. Moreover, the two-point correlation of the specific intensity |𝐄|2(𝐱)|𝐄|2(𝐱)delimited-⟨⟩superscript𝐄2𝐱delimited-⟨⟩superscript𝐄2superscript𝐱\langle|{\bf E}|^{2}({\bf x})\rangle\langle|{\bf E}|^{2}({\bf x}^{\prime})\rangle⟨ | bold_E | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_x ) ⟩ ⟨ | bold_E | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ⟩ does not carry either the time averaged power of the individual q𝑞qitalic_q modes that |𝐄|2(𝐱)|𝐄|2(𝐱)delimited-⟨⟩superscript𝐄2𝐱superscript𝐄2superscript𝐱\langle|{\bf E}|^{2}({\bf x})|{\bf E}|^{2}({\bf x}^{\prime})\rangle⟨ | bold_E | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_x ) | bold_E | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ⟩ would: the power spectrum of the time average is not the time average of the instantaneous power. Phrased in terms of the highly occupied particle states, the rapidly varying fluctuations in the field that are characterized by the q𝑞qitalic_q-spectrum represent fluctuation in the fine grained phase space or photon occupancy of momentum states.

While the analogy to photons is direct when the q𝑞qitalic_q-modes of ϕitalic-ϕ\phiitalic_ϕ are relativistic, this absence of a time averaged effect on ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is also manifest after the q𝑞qitalic_q-modes of ϕitalic-ϕ\phiitalic_ϕ have become non-relativistic but before equality. Consider the temporal frequency of two non-relativistic modes with q1q2=|𝐤𝐪1|subscript𝑞1subscript𝑞2𝐤subscript𝐪1q_{1}\neq q_{2}=|{\bf k}-{\bf q}_{1}|italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≠ italic_q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = | bold_k - bold_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT |

ω1,2ma+12q1,22am.subscript𝜔12𝑚𝑎12superscriptsubscript𝑞122𝑎𝑚\omega_{1,2}\approx ma+\frac{1}{2}\frac{q_{1,2}^{2}}{am}.italic_ω start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT ≈ italic_m italic_a + divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG italic_q start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a italic_m end_ARG . (29)

The cross term contribution to ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT between the two modes evolves as

ei𝑑τ(ω1ω2)ei𝑑τ𝐤𝐪1am,superscript𝑒𝑖differential-d𝜏subscript𝜔1subscript𝜔2superscript𝑒𝑖differential-d𝜏𝐤subscript𝐪1𝑎𝑚e^{i\int d\tau(\omega_{1}-\omega_{2})}\approx e^{i\int d\tau\frac{{\bf k}\cdot% {\bf q}_{1}}{am}},italic_e start_POSTSUPERSCRIPT italic_i ∫ italic_d italic_τ ( italic_ω start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ≈ italic_e start_POSTSUPERSCRIPT italic_i ∫ italic_d italic_τ divide start_ARG bold_k ⋅ bold_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_a italic_m end_ARG end_POSTSUPERSCRIPT , (30)

where the approximation assumes kq1,q2much-less-than𝑘subscript𝑞1subscript𝑞2k\ll q_{1},q_{2}italic_k ≪ italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. As with λfssubscript𝜆fs\lambda_{\rm fs}italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT, this integral grows logarithmically until equality. In fact, unless the wavelength exceeds the free streaming length kλfs(q1;τ)1much-less-than𝑘subscript𝜆fssubscript𝑞1𝜏1k\lambda_{\rm fs}(q_{1};\tau)\ll 1italic_k italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ; italic_τ ) ≪ 1, the contribution to ϕ2superscriptitalic-ϕ2\phi^{2}italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT of the interference between this pair oscillates in time and would prevent the interference from enabling the growth of dark matter density perturbations below the free streaming scale.

Refer to caption
Figure 9: Density evolution and interference of two field momentum modes q1/am=22,25subscript𝑞1subscript𝑎𝑚2225q_{1}/a_{*}m=22,25italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_m = 22 , 25 that were relativistic at τsubscript𝜏\tau_{*}italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT but nonrelativistic at τ100τsimilar-to𝜏100subscript𝜏\tau\sim 100\tau_{*}italic_τ ∼ 100 italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. The beating of these high frequency modes produces density fluctuations on longer scales and larger wavelengths, but the Hubble time averaged density reflects the incoherent sum of the density contributions of the individual modes ρ1+ρ2subscript𝜌1subscript𝜌2\rho_{1}+\rho_{2}italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Normalization is arbitrary.

To see this explicitly, in Fig. 9 we plot the time evolution of the total density as constructed from just two q𝑞qitalic_q-modes, ϕ=ϕ1+ϕ2italic-ϕsubscriptitalic-ϕ1subscriptitalic-ϕ2\phi=\phi_{1}+\phi_{2}italic_ϕ = italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_ϕ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with q1/am=22subscript𝑞1subscript𝑎𝑚22q_{1}/a_{*}m=22italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_m = 22 and q2/am=25subscript𝑞2subscript𝑎𝑚25q_{2}/a_{*}m=25italic_q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT / italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_m = 25 using the full growth function (19) for their time evolution from initially equal amplitudes. The total density,

ρ=12(dϕdt)2+12a2(ϕ)2+m22ϕ2,𝜌12superscript𝑑italic-ϕ𝑑𝑡212superscript𝑎2superscriptitalic-ϕ2superscript𝑚22superscriptitalic-ϕ2\rho=\frac{1}{2}\left(\frac{d\phi}{dt}\right)^{2}+\frac{1}{2a^{2}}(\nabla\phi)% ^{2}+\frac{m^{2}}{2}\phi^{2},italic_ρ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( divide start_ARG italic_d italic_ϕ end_ARG start_ARG italic_d italic_t end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( ∇ italic_ϕ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (31)

contains both quadratic combinations from the same q𝑞qitalic_q and the cross combination or impact of the superposition of the two. Here ϕitalic-ϕ\nabla\phi∇ italic_ϕ is the spatial field gradient in comoving coordinates, though its impact on ρ𝜌\rhoitalic_ρ is subdominant for these non-relativistic modes where (dϕ/dt)2m2ϕ2similar-todelimited-⟨⟩superscript𝑑italic-ϕ𝑑𝑡2superscript𝑚2delimited-⟨⟩superscriptitalic-ϕ2\langle(d\phi/dt)^{2}\rangle\sim m^{2}\langle\phi^{2}\rangle⟨ ( italic_d italic_ϕ / italic_d italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ ∼ italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟨ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟩ on time average. We compare this to the quadrature sum of the individual modes ρ1+ρ2subscript𝜌1subscript𝜌2\rho_{1}+\rho_{2}italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT that omits the superposition term. Even though each individual field mode oscillates with time according to Eq. (29), with phase evolution given by ωτmaτ=(τ/τ)2104similar-to𝜔𝜏𝑚𝑎𝜏superscript𝜏subscript𝜏2similar-tosuperscript104\omega\tau\sim ma\tau=(\tau/\tau_{*})^{2}\sim 10^{4}italic_ω italic_τ ∼ italic_m italic_a italic_τ = ( italic_τ / italic_τ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∼ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT, ρ1+ρ2subscript𝜌1subscript𝜌2\rho_{1}+\rho_{2}italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT only evolves on the Hubble time scale since energy is covariantly conserved between the kinetic and potential terms of each term. On the other hand, the superposition causes a beat contribution that oscillates faster than the Hubble time scale and much slower than the mass scale, but time averages to ρτ=ρ1+ρ2subscriptdelimited-⟨⟩𝜌𝜏subscript𝜌1subscript𝜌2\langle\rho\rangle_{\tau}=\rho_{1}+\rho_{2}⟨ italic_ρ ⟩ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT = italic_ρ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_ρ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Moreover, fluctuations for a given beat frequency 𝐤𝐤{\bf k}bold_k are composed of all possible pairs of high frequency momenta that satisfy 𝐤=𝐪1+𝐪2𝐤subscript𝐪1subscript𝐪2{\bf k}={\bf q}_{1}+{\bf q}_{2}bold_k = bold_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + bold_q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and each pair contributes with a random temporal phase.

After equality aaeqmuch-greater-than𝑎subscript𝑎eqa\gg a_{\rm eq}italic_a ≫ italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT and for aamuch-greater-than𝑎subscript𝑎a\gg a_{*}italic_a ≫ italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, we can remove the fast but q𝑞qitalic_q independent mass scale oscillations in Eq. (29) by recasting the scalar field with the Schrödinger wavefunction ψ𝜓\psiitalic_ψ

ϕ=12(ψeimt+ψeimt)italic-ϕ12𝜓superscript𝑒𝑖𝑚𝑡superscript𝜓superscript𝑒𝑖𝑚𝑡\phi=\frac{1}{\sqrt{2}}(\psi e^{-imt}+\psi^{*}e^{imt})italic_ϕ = divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ( italic_ψ italic_e start_POSTSUPERSCRIPT - italic_i italic_m italic_t end_POSTSUPERSCRIPT + italic_ψ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_m italic_t end_POSTSUPERSCRIPT ) (32)

as done with simulations of ultralight dark matter [119]. In this case, the temporal oscillations between q1q2subscript𝑞1subscript𝑞2q_{1}\neq q_{2}italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≠ italic_q start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT components of ψ𝜓\psiitalic_ψ are slow but the spatial phases embedded in ψ𝜓\psiitalic_ψ are still incoherent.

Well above the de-Broglie scale where kqmuch-less-than𝑘𝑞k\ll qitalic_k ≪ italic_q, the field ψ(𝐱)𝜓𝐱\psi({\bf x})italic_ψ ( bold_x ) encodes the full phase space of the collisionless dark matter through the Husimi representation. This effectively assigns the spatial variation induced by q𝑞qitalic_q on scales that are smaller than some spatial smoothing scale η𝜂\etaitalic_η to the momentum distribution at 𝐩=𝐪𝐩𝐪{\bf p}={\bf q}bold_p = bold_q:

Ψ(𝐱,𝐩)Ψ𝐱𝐩\displaystyle\Psi({\bf x},{\bf p})roman_Ψ ( bold_x , bold_p ) =\displaystyle== (12π)3/2(1πη2)3/4d3rψ(𝐫)superscript12𝜋32superscript1𝜋superscript𝜂234superscript𝑑3𝑟𝜓𝐫\displaystyle\left(\frac{1}{2\pi}\right)^{3/2}\left(\frac{1}{\pi\eta^{2}}% \right)^{3/4}\int d^{3}r\psi({\bf r})( divide start_ARG 1 end_ARG start_ARG 2 italic_π end_ARG ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT ( divide start_ARG 1 end_ARG start_ARG italic_π italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 / 4 end_POSTSUPERSCRIPT ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_r italic_ψ ( bold_r )
×exp((𝐱𝐫)22η2i[𝐩(𝐫𝐱/2)]).absentsuperscript𝐱𝐫22superscript𝜂2𝑖delimited-[]𝐩𝐫𝐱2\displaystyle\times\exp\left(-\frac{({\bf x}-{\bf r})^{2}}{2\eta^{2}}-i[{\bf p% }\cdot({\bf r}-{\bf x}/2)]\right).× roman_exp ( - divide start_ARG ( bold_x - bold_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - italic_i [ bold_p ⋅ ( bold_r - bold_x / 2 ) ] ) .

The analog of the phase space distribution function

f(𝐱,𝐩)|Ψ(𝐱,𝐩)|2𝑓𝐱𝐩superscriptΨ𝐱𝐩2f({\bf x},{\bf p})\equiv|\Psi({\bf x},{\bf p})|^{2}italic_f ( bold_x , bold_p ) ≡ | roman_Ψ ( bold_x , bold_p ) | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (34)

obeys the collisionless Boltzmann equation. In particular, the directional variation of contributions from incoherent sources visualized in the previous section becomes an anisotropy in the phase space distribution f(𝐱,𝐩)=f(𝐩)𝑓𝐱𝐩𝑓𝐩f({\bf x},{\bf p})=f({\bf p})italic_f ( bold_x , bold_p ) = italic_f ( bold_p ) rather than an inhomogeneity in the spatial distribution f(𝐱,𝐩)=f(𝐱)𝑓𝐱𝐩𝑓𝐱f({\bf x},{\bf p})=f({\bf x})italic_f ( bold_x , bold_p ) = italic_f ( bold_x ). This construction is similar to the WKB approximation used in Ref. [104] to derive the transfer function (15) in that the small scale variations in ψ𝜓\psiitalic_ψ are assigned to a spatially varying phase, which carries the phase space momentum, whereas the large scale variations in amplitude carry the positional phase space information.

We can see this explicitly by reversing the construction and embedding a particle phase space distribution fpsubscript𝑓𝑝f_{p}italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT into the wave ψ𝜓\psiitalic_ψ in the same way as the random field simulations on a pixelized grid of the previous section. In general, given the discrete Fourier transform momenta indexed by i𝑖iitalic_i, one assigns ψ𝜓\psiitalic_ψ at grid points indexed by ι𝜄\iotaitalic_ι as [119]

ψ(𝐱ι)=ifp(𝐱ι,𝐩i)ei𝐱ι𝐩ieiαi,𝜓subscript𝐱𝜄subscript𝑖subscript𝑓𝑝subscript𝐱𝜄subscript𝐩𝑖superscript𝑒𝑖subscript𝐱𝜄subscript𝐩𝑖superscript𝑒𝑖subscript𝛼𝑖\psi({\bf x}_{\iota})=\sum_{i}\sqrt{f_{p}({\bf x}_{\iota},{\bf p}_{i})}e^{i{% \bf x}_{\iota}\cdot{\bf p}_{i}}e^{i\alpha_{i}},italic_ψ ( bold_x start_POSTSUBSCRIPT italic_ι end_POSTSUBSCRIPT ) = ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT square-root start_ARG italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( bold_x start_POSTSUBSCRIPT italic_ι end_POSTSUBSCRIPT , bold_p start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG italic_e start_POSTSUPERSCRIPT italic_i bold_x start_POSTSUBSCRIPT italic_ι end_POSTSUBSCRIPT ⋅ bold_p start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , (35)

where αisubscript𝛼𝑖\alpha_{i}italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a random spatial phase for each momentum. By explicit substitution we can verify that the Husimi construction (IV) returns the phase space distribution ffp𝑓subscript𝑓𝑝f\approx f_{p}italic_f ≈ italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT since the cross terms between momenta ij𝑖𝑗i\neq jitalic_i ≠ italic_j average away due to spatial phase incoherence. Notice that the effective averaging in Eq. (IV) occurs before the squaring in Eq. (34) and is analogous to the temporal averaging considered in Fig. 9 for incoherent temporal phases. These cross terms are negligible so long as the spatial scale of interest is much longer than the smoothing scale η𝜂\etaitalic_η and fpsubscript𝑓𝑝f_{p}italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT is smooth or averaged over momenta scales 1/η1𝜂1/\eta1 / italic_η.

More specifically in our case where the real space number density fluctuation of interest is on a scale kqmuch-less-than𝑘𝑞k\ll qitalic_k ≪ italic_q, we can take f(𝐱,𝐩)=f(𝐩)𝑓𝐱𝐩𝑓𝐩f({\bf x},{\bf p})=f({\bf p})italic_f ( bold_x , bold_p ) = italic_f ( bold_p ) and carry the field fluctuations on small scales that enter into the effective number density as momentum space fluctuations only. As with particle dark matter, the free streaming of waves produces a random distribution of momentum streams at each spatial point rather than just spatial fluctuations of a cold distribution. Since CDM isocurvature fluctuations grow in the matter dominated epoch, this would cause the relative transfer function to evolve even if the phase space density fluctuations are conserved. For Schrödinger-Poisson simulation based tests of this construction, see Ref. [120].

V Discussion

We have elucidated the relationship between the free streaming of particle dark matter and wave dark matter and shown how to map the properties of the former onto the latter.

For axion wave dark matter where Peccei-Quinn symmetry breaking occurs after inflation, axion field fluctuations behave like a warm component of particle dark matter in the sense of possessing a mildly relativistic wave spectrum originated from misalignment and axion string emission. Correspondingly, the free streaming length and its impact on curvature fluctuations is only larger than that of cold axions from the pre-inflationary scenario by a logarithmic factor.

We quantify these scaling in terms of the free streaming scale as a function of the characteristic momentum, λfs(q=am)subscript𝜆fssubscript𝑞subscript𝑎𝑚\lambda_{\rm fs}(q_{*}=a_{*}m)italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT italic_m ), that corresponds to the horizon wavenumber when axions begin their oscillations H(a)=m𝐻subscript𝑎𝑚H(a_{*})=mitalic_H ( italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) = italic_m, and compare this to the cold axion Jeans scale where the free streaming of wave fluctuations from curvature perturbations overtake their own wavelength. For axions, free streaming bounds on cold axions or fuzzy dark matter can be roughly translated to the warm case with these scaling relations. However, for warm axions from the post-inflationary scenario, isocurvature fluctuations from the random misalignment on the Hubble scale at asubscript𝑎a_{*}italic_a start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT provide the stronger bound.

If wave dark matter is born ultrarelativistic, then free streaming can have a larger effect as with “hot” dark matter. We provide closed form expressions for the free streaming length λfs(q)subscript𝜆fs𝑞\lambda_{\rm fs}(q)italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_q ) for an arbitrary momentum in Appendix A that can be used to assess its impact in any given model with its specific momentum distribution. Generally in such scenarios, the isocurvature fluctuations from causal generation in horizon scale patches at birth can also be affected by free streaming. We illustrate the effect on phase coherent patches and show that they also rapidly damp via free streaming, leaving only phase incoherent transient fluctuations from the superposition of waves of different patches in the effective number density. Despite the free streaming damping of these waves, these incoherent effective number density fluctuations are constant and white at late times when all modes are non-relativistic.

However, these effective number density fluctuations are not spatial number density fluctuations in the wave dark matter, but rather the wave analogue of phase space density fluctuations. At a given spatial position, these fluctuations are composed of multiple field momentum streams from the incoherent sources and the impact of free streaming is similar to the directional damping of collisionless particles. While relativistic, the process is the same as the creation of CMB anisotropy out of plasma inhomogeneities before recombination. As the wave momenta become non-relativistic, the process is analogous to the free streaming damping of fluctuations in massive neutrinos.

More specifically, we show that these free streamed effective number density fluctuations do not behave like real space number density fluctuations over a Hubble or dynamical time in the background or spatially averaged on scales much larger than the de Broglie wavelength of the momentum components.444This should be contrasted with structure closer to the de Broglie scale, where wave effects and interactions can lead to the formation of solitons in axion miniclusters [121, 122, 123]. Observables that evolve over a dynamical time respond to the time average of these fluctuations. During radiation domination, these fluctuations oscillate at the beat frequency of the combination of field momenta that compose them; during matter domination, the effective or Husimi phase space representation of the wave dark matter explicitly maps them into multiple momentum streams of the phase space, much like warm or hot dark matter.

Therefore, the astrophysical effects of warm or hot fuzzy dark matter isocurvature fluctuations may also differ from those of cold dark matter isocurvature fluctuations below their free streaming length in a manner that depends on the initial momentum distribution and observable in question. Beyond the axion case, where the free streaming scale is relatively small, we leave the evaluation of specific models and observables to future simulation work.

Appendix A Free Streaming Scalings

In Eq. (4), we defined the free streaming length λfssubscript𝜆fs\lambda_{\rm fs}italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT in units of the comoving Hubble length at matter radiation equality F(q/aeqm,a/aeq)=aeqHeqλfs/2𝐹𝑞subscript𝑎eq𝑚𝑎subscript𝑎eqsubscript𝑎eqsubscript𝐻eqsubscript𝜆fs2F(q/a_{\rm eq}m,a/a_{\rm eq})=a_{\rm eq}H_{\rm eq}\lambda_{\rm fs}/\sqrt{2}italic_F ( italic_q / italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT italic_m , italic_a / italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT ) = italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT / square-root start_ARG 2 end_ARG of a momentum component q𝑞qitalic_q through the free streaming integral in Eq. (3). In ΛΛ\Lambdaroman_ΛCDM before dark energy domination, we can explicitly evaluate this integral to obtain

F(q^,y)=q^[(φ(q^,y),μ(q^))(φ(q^,0),μ(q^))](1+q^2)14,𝐹^𝑞𝑦^𝑞delimited-[]𝜑^𝑞𝑦𝜇^𝑞𝜑^𝑞0𝜇^𝑞superscript1superscript^𝑞214F(\hat{q},y)=\frac{\hat{q}\left[\mathcal{F}(\varphi(\hat{q},y),\mu(\hat{q}))-% \mathcal{F}(\varphi(\hat{q},0),\mu(\hat{q}))\right]}{\left(1+\hat{q}^{2}\right% )^{\frac{1}{4}}},italic_F ( over^ start_ARG italic_q end_ARG , italic_y ) = divide start_ARG over^ start_ARG italic_q end_ARG [ caligraphic_F ( italic_φ ( over^ start_ARG italic_q end_ARG , italic_y ) , italic_μ ( over^ start_ARG italic_q end_ARG ) ) - caligraphic_F ( italic_φ ( over^ start_ARG italic_q end_ARG , 0 ) , italic_μ ( over^ start_ARG italic_q end_ARG ) ) ] end_ARG start_ARG ( 1 + over^ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 4 end_ARG end_POSTSUPERSCRIPT end_ARG , (36)

where (φ,m)𝜑𝑚\mathcal{F}(\varphi,m)caligraphic_F ( italic_φ , italic_m ) is the incomplete elliptical integral of the first kind with arguments

φ(q^,y)𝜑^𝑞𝑦\displaystyle\varphi(\hat{q},y)italic_φ ( over^ start_ARG italic_q end_ARG , italic_y ) =\displaystyle== arccos(1+q^21y1+q^2+1+y),1superscript^𝑞21𝑦1superscript^𝑞21𝑦\displaystyle\arccos\left(\frac{\sqrt{1+\hat{q}^{2}}-1-y}{\sqrt{1+\hat{q}^{2}}% +1+y}\right),roman_arccos ( divide start_ARG square-root start_ARG 1 + over^ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - 1 - italic_y end_ARG start_ARG square-root start_ARG 1 + over^ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + 1 + italic_y end_ARG ) ,
μ(q^)𝜇^𝑞\displaystyle\mu(\hat{q})italic_μ ( over^ start_ARG italic_q end_ARG ) =\displaystyle== 12(1+11+q^2).12111superscript^𝑞2\displaystyle\frac{1}{2}\left(1+\sqrt{\frac{1}{1+\hat{q}^{2}}}\right).divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( 1 + square-root start_ARG divide start_ARG 1 end_ARG start_ARG 1 + over^ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG ) . (37)

Although the exact free streaming integral is used in all numerical computations in this work, it is useful to examine the approximate scaling behavior of this solution in various regimes of interest and provide a global approximation that is simple to evaluate.

For y=a/aeq1𝑦𝑎subscript𝑎eqmuch-less-than1y=a/a_{\rm eq}\ll 1italic_y = italic_a / italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT ≪ 1 the integral is manifestly simple to evaluate and becomes

F(q^,y)q^sinh1(y/q^),y1.formulae-sequence𝐹^𝑞𝑦^𝑞superscript1𝑦^𝑞much-less-than𝑦1F(\hat{q},y)\approx\hat{q}\sinh^{-1}(y/\hat{q}),\qquad y\ll 1.italic_F ( over^ start_ARG italic_q end_ARG , italic_y ) ≈ over^ start_ARG italic_q end_ARG roman_sinh start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y / over^ start_ARG italic_q end_ARG ) , italic_y ≪ 1 . (38)

Notice that for q^ymuch-greater-than^𝑞𝑦\hat{q}\gg yover^ start_ARG italic_q end_ARG ≫ italic_y, the wave is ultrarelativistic q/am1much-greater-than𝑞𝑎𝑚1q/am\gg 1italic_q / italic_a italic_m ≫ 1, Fy𝐹𝑦F\rightarrow yitalic_F → italic_y, and the free streaming length is the horizon length λfs=τsubscript𝜆fs𝜏\lambda_{\rm fs}=\tauitalic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT = italic_τ as expected. This growth continues until aq/msimilar-to𝑎𝑞𝑚a\sim q/mitalic_a ∼ italic_q / italic_m and thereafter λfssubscript𝜆fs\lambda_{\rm fs}italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT grows logarithmically from its value at τ|a=q/mevaluated-at𝜏𝑎𝑞𝑚\tau|_{a=q/m}italic_τ | start_POSTSUBSCRIPT italic_a = italic_q / italic_m end_POSTSUBSCRIPT,

F(q^,y)q^ln(2y/q^),q^y1.formulae-sequence𝐹^𝑞𝑦^𝑞2𝑦^𝑞much-less-than^𝑞𝑦much-less-than1F(\hat{q},y)\approx\hat{q}\ln\left(2y/\hat{q}\right),\quad\hat{q}\ll y\ll 1.italic_F ( over^ start_ARG italic_q end_ARG , italic_y ) ≈ over^ start_ARG italic_q end_ARG roman_ln ( 2 italic_y / over^ start_ARG italic_q end_ARG ) , over^ start_ARG italic_q end_ARG ≪ italic_y ≪ 1 . (39)

This logarithmic growth halts at matter-radiation equality and brings the free streaming scale for modes that are non-relativistic at equality to

F(q^,y)q^(ln8q^2y),q^1y,formulae-sequence𝐹^𝑞𝑦^𝑞8^𝑞2𝑦much-less-than^𝑞1much-less-than𝑦F(\hat{q},y)\approx\hat{q}\left(\ln\frac{8}{\hat{q}}-\frac{2}{\sqrt{y}}\right)% ,\quad\hat{q}\ll 1\ll y,italic_F ( over^ start_ARG italic_q end_ARG , italic_y ) ≈ over^ start_ARG italic_q end_ARG ( roman_ln divide start_ARG 8 end_ARG start_ARG over^ start_ARG italic_q end_ARG end_ARG - divide start_ARG 2 end_ARG start_ARG square-root start_ARG italic_y end_ARG end_ARG ) , over^ start_ARG italic_q end_ARG ≪ 1 ≪ italic_y , (40)

which we provided in Eq. (II) in its leading order (y1much-greater-than𝑦1y\gg 1italic_y ≫ 1) form. For axions this limit (40) applies to essentially the entirety of the number density spectrum as we have explicitly verified by comparing its use to the full expression (36) to calculate the transfer function as in Fig. 1.

For evaluating the small contribution from axion momenta that are still relativistic at equality q^>1^𝑞1\hat{q}>1over^ start_ARG italic_q end_ARG > 1 or in more general models, it is useful to examine late time contributions to the free streaming integral. Here the free streaming length continues to grow as λfsτa1/2subscript𝜆fs𝜏proportional-tosuperscript𝑎12\lambda_{\rm fs}\approx\tau\propto a^{1/2}italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ≈ italic_τ ∝ italic_a start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT during matter domination until a=q/m𝑎𝑞𝑚a=q/mitalic_a = italic_q / italic_m. Taking the matter only scaling for H(a)=H0Ωm1/2a3/2𝐻𝑎subscript𝐻0superscriptsubscriptΩ𝑚12superscript𝑎32H(a)=H_{0}\Omega_{m}^{1/2}a^{-3/2}italic_H ( italic_a ) = italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT - 3 / 2 end_POSTSUPERSCRIPT in the integral (3), we find

λfs=2a1/2H0Ωm1/2G(q/am),q^1formulae-sequencesubscript𝜆fs2superscript𝑎12subscript𝐻0superscriptsubscriptΩ𝑚12𝐺𝑞𝑎𝑚much-greater-than^𝑞1\lambda_{\rm fs}=\frac{2a^{1/2}}{H_{0}\Omega_{m}^{1/2}}G(q/am),\quad\hat{q}\gg 1italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT = divide start_ARG 2 italic_a start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT end_ARG italic_G ( italic_q / italic_a italic_m ) , over^ start_ARG italic_q end_ARG ≫ 1 (41)

where

G(f)𝐺𝑓\displaystyle G(f)italic_G ( italic_f ) =\displaystyle== F12[1/4,1/2,5/4,f2]subscriptsubscript𝐹12141254superscript𝑓2\displaystyle{}_{2}F_{1}[1/4,1/2,5/4,-f^{-2}]start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT [ 1 / 4 , 1 / 2 , 5 / 4 , - italic_f start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ]
\displaystyle\approx K1/2f1/2[1+10f1/2/3+K1/24f2]1/4,subscript𝐾12superscript𝑓12superscriptdelimited-[]110superscript𝑓123superscriptsubscript𝐾124superscript𝑓214\displaystyle\frac{K_{1/2}f^{1/2}}{[1+10f^{1/2}/3+K_{1/2}^{4}f^{2}]^{1/4}},divide start_ARG italic_K start_POSTSUBSCRIPT 1 / 2 end_POSTSUBSCRIPT italic_f start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT end_ARG start_ARG [ 1 + 10 italic_f start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT / 3 + italic_K start_POSTSUBSCRIPT 1 / 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT end_ARG ,

where F12subscriptsubscript𝐹12{}_{2}F_{1}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is a hypergeometric function, with K1/21.854subscript𝐾121.854K_{1/2}\approx 1.854italic_K start_POSTSUBSCRIPT 1 / 2 end_POSTSUBSCRIPT ≈ 1.854 for the complete elliptic integral of the first kind Kmsubscript𝐾𝑚K_{m}italic_K start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT and the approximation is good to a few percent for all f𝑓fitalic_f. Notice that the qammuch-greater-than𝑞𝑎𝑚q\gg amitalic_q ≫ italic_a italic_m limit again returns λfs=2a1/2/H0Ωm1/2=τsubscript𝜆fs2superscript𝑎12subscript𝐻0superscriptsubscriptΩ𝑚12𝜏\lambda_{\rm fs}=2a^{1/2}/H_{0}\Omega_{m}^{1/2}=\tauitalic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT = 2 italic_a start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT = italic_τ as expected. On the other hand for modes that have become non-relativistic between aeqsubscript𝑎eqa_{\rm eq}italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT and a𝑎aitalic_a, the free-streaming length approaches a constant value

λfssubscript𝜆fs\displaystyle\lambda_{\rm fs}italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT \displaystyle\approx 2K1/2q/mH0Ωm1/2,aeqq/ma,much-less-than2subscript𝐾12𝑞𝑚subscript𝐻0superscriptsubscriptΩ𝑚12subscript𝑎eq𝑞𝑚much-less-than𝑎\displaystyle 2K_{1/2}\frac{\sqrt{q/m}}{H_{0}\Omega_{m}^{1/2}},\quad a_{\rm eq% }\ll q/m\ll a,2 italic_K start_POSTSUBSCRIPT 1 / 2 end_POSTSUBSCRIPT divide start_ARG square-root start_ARG italic_q / italic_m end_ARG end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT end_ARG , italic_a start_POSTSUBSCRIPT roman_eq end_POSTSUBSCRIPT ≪ italic_q / italic_m ≪ italic_a , (43)

associated with the horizon length at the epoch the momentum becomes non-relativistic.

In summary, to a few percent accuracy we can approximate the whole solution Eq. (36) in the y1much-greater-than𝑦1y\gg 1italic_y ≫ 1 regime by joining these approximations

F(q^,y)={q^ln(8q^),q^<12y1/2[G(q^y)G(1y)]+ln8,q^1𝐹^𝑞𝑦cases^𝑞8^𝑞^𝑞12superscript𝑦12delimited-[]𝐺^𝑞𝑦𝐺1𝑦8^𝑞1\displaystyle F(\hat{q},y)=\begin{cases}\hat{q}\ln(\frac{8}{\hat{q}}),&\hat{q}% <1\\ 2y^{1/2}[G(\frac{\hat{q}}{y})-G(\frac{1}{y})]+\ln 8,&\hat{q}\geq 1\end{cases}italic_F ( over^ start_ARG italic_q end_ARG , italic_y ) = { start_ROW start_CELL over^ start_ARG italic_q end_ARG roman_ln ( divide start_ARG 8 end_ARG start_ARG over^ start_ARG italic_q end_ARG end_ARG ) , end_CELL start_CELL over^ start_ARG italic_q end_ARG < 1 end_CELL end_ROW start_ROW start_CELL 2 italic_y start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT [ italic_G ( divide start_ARG over^ start_ARG italic_q end_ARG end_ARG start_ARG italic_y end_ARG ) - italic_G ( divide start_ARG 1 end_ARG start_ARG italic_y end_ARG ) ] + roman_ln 8 , end_CELL start_CELL over^ start_ARG italic_q end_ARG ≥ 1 end_CELL end_ROW (44)

and using the simple approximation for G𝐺Gitalic_G in Eq. (A) such that all of the various scaling regimes are manifest.

Refer to caption
Figure 10: Approximations for the relative transfer function (15) [Trelsubscript𝑇relT_{\rm rel}italic_T start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT warm], using kfs=λfs1(q)subscript𝑘fssuperscriptsubscript𝜆fs1subscript𝑞k_{\rm fs}=\lambda_{\rm fs}^{-1}(q_{*})italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT = italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) in Eq. (45) [Trelkfssuperscriptsubscript𝑇relsubscript𝑘fsT_{\rm rel}^{k_{\rm fs}}italic_T start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT end_POSTSUPERSCRIPT], and an approximation from Ref. [104] v2 using kAMsubscript𝑘AMk_{\rm AM}italic_k start_POSTSUBSCRIPT roman_AM end_POSTSUBSCRIPT [TrelkAMsuperscriptsubscript𝑇relsubscript𝑘AMT_{\rm rel}^{k_{\rm AM}}italic_T start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT roman_AM end_POSTSUBSCRIPT end_POSTSUPERSCRIPT] of Eq. (47) instead. The former captures the scale at which free streaming occurs whereas the latter changes this scale to be orders of magnitude smaller in k𝑘kitalic_k and would cause this mass m=1014𝑚superscript1014m=10^{-14}italic_m = 10 start_POSTSUPERSCRIPT - 14 end_POSTSUPERSCRIPTeV to be inappropriately ruled out.

Appendix B Averaging over Momenta

In the main text Eq. (15), we averaged the effect of free streaming over the momentum distribution of the axions q3Pϕ(q)superscript𝑞3subscript𝑃italic-ϕ𝑞q^{3}P_{\phi}(q)italic_q start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( italic_q ) to approximate the net impact on the transfer function. For the spectrum of Eq. (10) which has a sharp peak at qsubscript𝑞q_{*}italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, the impact is similar to evaluating an effective kfs=λfs1(q)subscript𝑘fssuperscriptsubscript𝜆fs1subscript𝑞k_{\rm fs}=\lambda_{\rm fs}^{-1}(q_{*})italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT = italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) and taking

Trelkfs(k)=sin(k/kfs)k/kfssuperscriptsubscript𝑇relsubscript𝑘fs𝑘𝑘subscript𝑘fs𝑘subscript𝑘fsT_{\rm rel}^{k_{\rm fs}}(k)=\frac{\sin(k/k_{\rm fs})}{k/k_{\rm fs}}italic_T start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_k ) = divide start_ARG roman_sin ( italic_k / italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ) end_ARG start_ARG italic_k / italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT end_ARG (45)

in the region kkfssimilar-to𝑘subscript𝑘fsk\sim k_{\rm fs}italic_k ∼ italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT where the damping starts to have its effect. In Fig. 10, we compare this approximation to Eq. (15). Notice that this approximation does provide the correct scaling for the wavenumbers where free streaming starts to become important but underestimates the effect at higher k𝑘kitalic_k. Mathematically, this comes about because Eq. (15) is an integration over an oscillating quantity. Even in this case where the spectrum is peaked near qsubscript𝑞q_{*}italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, the phase kλfs(q)𝑘subscript𝜆fs𝑞k\lambda_{\rm fs}(q)italic_k italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_q ) varies over an increasingly large range as k𝑘kitalic_k increases. Note however that the derivation of Eq. (15) itself in Ref. [104] is not ensured to be physically valid for kλfs1much-greater-than𝑘subscript𝜆fs1k\lambda_{\rm fs}\gg 1italic_k italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ≫ 1 and should be considered as an estimate for the half power point.

In Ref. [104] v2, this effective kfssubscript𝑘fsk_{\rm fs}italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT approach was adopted but instead of weighting the impact of free streaming by the number density spectrum, they equated the Taylor expansion of Eq. (15)

limk0Trel(k)116k2kAM2subscript𝑘0subscript𝑇rel𝑘116superscript𝑘2superscriptsubscript𝑘AM2\lim_{k\rightarrow 0}T_{\rm rel}(k)\approx 1-\frac{1}{{6}}\frac{k^{2}}{k_{\rm AM% }^{2}}roman_lim start_POSTSUBSCRIPT italic_k → 0 end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ( italic_k ) ≈ 1 - divide start_ARG 1 end_ARG start_ARG 6 end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT roman_AM end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG (46)

where

1kAM2=0amdlnqq32π2Pϕ(q)λfs2(q)dlnqq32π2Pφ(q),1superscriptsubscript𝑘AM2superscriptsubscript0𝑎𝑚𝑑𝑞superscript𝑞32superscript𝜋2subscript𝑃italic-ϕ𝑞superscriptsubscript𝜆fs2𝑞𝑑𝑞superscript𝑞32superscript𝜋2subscript𝑃𝜑𝑞\frac{1}{k_{\rm AM}^{2}}=\frac{\int_{0}^{am}d\ln q\frac{q^{3}}{2\pi^{2}}P_{% \phi}(q)\lambda_{\rm fs}^{2}(q)}{\int d\ln q\frac{q^{3}}{2\pi^{2}}P_{\varphi}(% q)},divide start_ARG 1 end_ARG start_ARG italic_k start_POSTSUBSCRIPT roman_AM end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = divide start_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_a italic_m end_POSTSUPERSCRIPT italic_d roman_ln italic_q divide start_ARG italic_q start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( italic_q ) italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_q ) end_ARG start_ARG ∫ italic_d roman_ln italic_q divide start_ARG italic_q start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_P start_POSTSUBSCRIPT italic_φ end_POSTSUBSCRIPT ( italic_q ) end_ARG , (47)

to that of Eq. (45)

limk0Trelkfs(k)116k2kfs2subscript𝑘0superscriptsubscript𝑇relsubscript𝑘fs𝑘116superscript𝑘2superscriptsubscript𝑘fs2\lim_{k\rightarrow 0}T_{\rm rel}^{k_{\rm fs}}(k)\approx 1-\frac{1}{{6}}\frac{k% ^{2}}{k_{\rm fs}^{2}}roman_lim start_POSTSUBSCRIPT italic_k → 0 end_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_k ) ≈ 1 - divide start_ARG 1 end_ARG start_ARG 6 end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG (48)

to imply that kfskAMsubscript𝑘fssubscript𝑘AMk_{\rm fs}\rightarrow k_{\rm AM}italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT → italic_k start_POSTSUBSCRIPT roman_AM end_POSTSUBSCRIPT in Eq. (45) and TrelkfsTrelkAMsuperscriptsubscript𝑇relsubscript𝑘fssuperscriptsubscript𝑇relsubscript𝑘AMT_{\rm rel}^{k_{\rm fs}}\rightarrow T_{\rm rel}^{k_{\rm AM}}italic_T start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT end_POSTSUPERSCRIPT → italic_T start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k start_POSTSUBSCRIPT roman_AM end_POSTSUBSCRIPT end_POSTSUPERSCRIPT (their Eq. 5 v2). In Fig. 10, we compare this transfer function to Eq. (15) and Eq. (45). Notice that this weighting scheme overestimates the effect of free streaming by three orders of magnitude, with kfs3.2×103subscript𝑘fs3.2superscript103k_{\rm fs}\approx 3.2\times 10^{3}italic_k start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ≈ 3.2 × 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT Mpc-1 while kAM3.1subscript𝑘AM3.1k_{\rm AM}\approx 3.1italic_k start_POSTSUBSCRIPT roman_AM end_POSTSUBSCRIPT ≈ 3.1 Mpc-1. The overestimate is so large that this m=1014𝑚superscript1014m=10^{-14}italic_m = 10 start_POSTSUPERSCRIPT - 14 end_POSTSUPERSCRIPTeV example would be inappropriately ruled out. In Ref. [104] v2, this approximation was used to place a bound of m>2×1012𝑚2superscript1012m>2\times 10^{-12}italic_m > 2 × 10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPTeV for the spectrum considered here and m>1012𝑚superscript1012m>10^{-12}italic_m > 10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPTeV for their axion parameterization with mildly relativistic modes from string decay.

Refer to caption
Figure 11: Relative transfer function for the warm axions at the same m=1014𝑚superscript1014m=10^{-14}italic_m = 10 start_POSTSUPERSCRIPT - 14 end_POSTSUPERSCRIPT eV mass as Fig 10 but with variations to the power spectrum which respectively increase the peak momentum by R=1,2,4𝑅124R=1,2,4italic_R = 1 , 2 , 4 and alter the high momentum slope α=3/4,1,5/4𝛼34154\alpha=3/4,1,5/4italic_α = 3 / 4 , 1 , 5 / 4 using Eq. (49). We see that the variation of R𝑅Ritalic_R shifts the scale of the free streaming damping for the same α=1𝛼1\alpha=1italic_α = 1, whereas altering α𝛼\alphaitalic_α for the same R=1𝑅1R=1italic_R = 1 only makes small changes in the shape of the damping.

This overestimate is tied to the behavior of the high momentum tail with the spectrum in Eq. (10). In Eq. (43) we show that for waves that become nonrelativistic in the matter dominated regime, λfsq1/2proportional-tosubscript𝜆fssuperscript𝑞12\lambda_{\rm fs}\propto q^{1/2}italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ∝ italic_q start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT. Thus for the spectrum q3Pϕq1proportional-tosuperscript𝑞3subscript𝑃italic-ϕsuperscript𝑞1q^{3}P_{\phi}\propto q^{-1}italic_q start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ∝ italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, the integral in Eq. (47) receives nearly constant contributions per dlnq𝑑𝑞d\ln qitalic_d roman_ln italic_q up to the qam𝑞𝑎𝑚q\approx amitalic_q ≈ italic_a italic_m limit where the waves are still relativistic at the evaluation epoch despite the highly suppressed number of axions with such momenta. The result is that the estimate of the effective free streaming wavenumber kAMsubscript𝑘AMk_{\rm AM}italic_k start_POSTSUBSCRIPT roman_AM end_POSTSUBSCRIPT produces a suppression of the transfer function to much smaller wavenumbers or much larger scales than calculated from Eq. (15) or estimated by Eq. (45). Mathematically, the Taylor expansion (46) is not a good approximation at kkAMsimilar-to𝑘subscript𝑘AMk\sim k_{\rm AM}italic_k ∼ italic_k start_POSTSUBSCRIPT roman_AM end_POSTSUBSCRIPT since the dominant momenta near qsubscript𝑞q_{*}italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT have vanishingly small free streaming effect as k0𝑘0k\rightarrow 0italic_k → 0, causing the second derivative of Trelsubscript𝑇relT_{\rm rel}italic_T start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT to run strongly with scale.

The source of this discrepancy is the difference in the weighting scheme. Since λfssubscript𝜆fs\lambda_{\rm fs}italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT grows as τ𝜏\tauitalic_τ for relativistic momenta, the weighting in Eq. (47) allows a very small number density in high momentum waves to dominate the effective free streaming length kAMsubscript𝑘AMk_{\rm AM}italic_k start_POSTSUBSCRIPT roman_AM end_POSTSUBSCRIPT of the whole population, whereas physically free streaming implies that instead this small component is smooth across scales where the dominant component remains clustered, similar to the small admixture of massive neutrinos and cold dark matter in ΛΛ\Lambdaroman_ΛCDM. That both momenta can be represented by the single field ϕ(𝐱)italic-ϕ𝐱\phi({\bf x})italic_ϕ ( bold_x ) is also related to the Husimi phase space construction discussed in §IV. The spatially smooth and clustered components are embedded in the inferred momentum distribution.

Since the key quantity that controls the free streaming effect is the shape of the momentum distribution, we also explore variations from Eq. (10) that adjust the position of the peak in the spectrum and the power law decline from the peak, parameterized by R𝑅Ritalic_R and α𝛼\alphaitalic_α as follows:

q3Pϕ(q)(qRq)3θ(Rqq)+(Rqq)αθ(qRq).proportional-tosuperscript𝑞3subscript𝑃italic-ϕ𝑞superscript𝑞𝑅subscript𝑞3𝜃𝑅subscript𝑞𝑞superscript𝑅subscript𝑞𝑞𝛼𝜃𝑞𝑅subscript𝑞q^{3}P_{\phi}(q)\propto\left(\frac{q}{Rq_{*}}\right)^{3}\theta(Rq_{*}-q)+\left% (\frac{Rq_{*}}{q}\right)^{\alpha}\theta(q-Rq_{*}).italic_q start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( italic_q ) ∝ ( divide start_ARG italic_q end_ARG start_ARG italic_R italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_θ ( italic_R italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT - italic_q ) + ( divide start_ARG italic_R italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_q end_ARG ) start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_θ ( italic_q - italic_R italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) . (49)

Fig. (11) shows the corresponding change in the transfer function. In the top panel, we fix α=1𝛼1\alpha=1italic_α = 1 and increase R𝑅Ritalic_R from 1111 to 2222 and 4444. The damping wavelength increases nearly linearly with R𝑅Ritalic_R in accordance with the expectation that the free streaming length scales as λfs(Rq)subscript𝜆fs𝑅subscript𝑞\lambda_{\rm fs}(Rq_{*})italic_λ start_POSTSUBSCRIPT roman_fs end_POSTSUBSCRIPT ( italic_R italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) discussed in §III. Varying α𝛼\alphaitalic_α in the range where most of the particles still have momenta qsimilar-toabsentsubscript𝑞\sim q_{*}∼ italic_q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT has a much smaller effect since only the small tail of high momenta waves are affected. These variations in α𝛼\alphaitalic_α encompass the full range found in current state of the art axion simulations [109, 110, 111].

Acknowledgements.
We thank Mustafa Amin, Christian Capanelli, Keisuke Harigaya, Austin Joyce, Andrew Long, Marilena LoVerde, Evan McDonough for useful conversations. R.L. & W.H. are supported by U.S. Dept. of Energy contract DE-FG02-13ER41958 and the Simons Foundation. HX is supported by Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the U.S. Department of Energy.

References