11institutetext: INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Gobetti 93/3, I-40129 Bologna, Italy 22institutetext: Department of Astronomy & Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802, USA 33institutetext: Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA 44institutetext: Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA 55institutetext: European Southern Observatory (ESO), Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany 66institutetext: School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin D02 XF86, Ireland 77institutetext: Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK 88institutetext: ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) 99institutetext: Department of Physics, University of Arkansas, 226 Physics Building, 825 West Dickson Street, Fayetteville, AR 72701, USA 1010institutetext: Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, via Gobetti 93/2, 40129 Bologna, Italy 1111institutetext: INAF – Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Florence, Italy

Fast SMBH growth in the SPT2349–56 protocluster at z=4.3𝑧4.3z=4.3italic_z = 4.3

F. Vito fabio.vito@inaf.it11    W. N. Brandt 223344    A. Comastri 11    R. Gilli 11    R. J. Ivison 55667788    G. Lanzuisi 11    B.D. Lehmer 99    I.E. Lopez 111010    P. Tozzi 1111    C. Vignali 111010
Abstract

Context. Environment is one of the main physical drivers of galaxy evolution. The densest regions at high-redshift, i.e. z>2𝑧2z>2italic_z > 2 protoclusters, are gas-rich regions characterized by high star-formation activity. The same physical properties that enhance star formation in protoclusters are also thought to boost the growth of supermassive black holes (SMBHs), likely in heavily obscured conditions.

Aims. We aim to test this scenario by probing the active galactic nucleus (AGN) content of SPT2349–56, a massive, gas-rich, and highly star-forming protocluster core at z=4.3𝑧4.3z=4.3italic_z = 4.3 discovered as an overdensity of dusty star-forming galaxies (DSFGs), and comparing the results with the field environment and other protoclusters,

Methods. We observed SPT2349–56 with Chandra (200 ks), and search for X-ray emission from the known galaxy members. We also perform a spectral energy distribution fitting procedure to derive the physical properties of the discovered AGN.

Results. We detected in the X-ray band two protocluster members, namely C1 and C6, corresponding to an AGN fraction among DSFGs in the structure of 10%absentpercent10\approx 10\%≈ 10 %. This value is consistent with other protoclusters at z=24𝑧24z=2-4italic_z = 2 - 4, but higher than the AGN incidence among DSFGs in the field environment. Both AGN are heavily obscured sources, hosted in star-forming galaxies with 3×1010Mabsent3superscript1010subscriptMdirect-product\approx 3\times 10^{10}\,\mathrm{M_{\odot}}≈ 3 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT stellar masses. We estimate that the intergalactic medium in the host galaxies contributes to a significant fraction, or even totally, to the nuclear obscuration. C1, in particular, is a highly luminous (LX=2×1045ergs1subscript𝐿𝑋2superscript1045ergsuperscripts1L_{X}=2\times 10^{45}\,\mathrm{erg\,s^{-1}}italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT = 2 × 10 start_POSTSUPERSCRIPT 45 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT) and Compton-thick (NH=2×1024cm2subscript𝑁𝐻2superscript1024superscriptcm2N_{H}=2\times 10^{24}\,\mathrm{cm^{-2}}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 2 × 10 start_POSTSUPERSCRIPT 24 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT) AGN, likely powered by a MBH>6×108Msubscript𝑀BH6superscript108subscriptMdirect-productM_{\mathrm{BH}}>6\times 10^{8}\,\mathrm{M_{\odot}}italic_M start_POSTSUBSCRIPT roman_BH end_POSTSUBSCRIPT > 6 × 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT SMBH, assuming Eddington-limited accretion. Its high accretion rate suggests that it is in the phase of efficient growth required to explain the presence of extremely massive SMBHs in the centers of local galaxy clusters. Considering SPT2349–56 and DRC, a similar protocuster at z=4𝑧4z=4italic_z = 4, and under different assumptions on their volumes, we find that gas-rich protocluster cores at z4𝑧4z\approx 4italic_z ≈ 4 enhance the triggering of luminous (logLXergs1=4546subscript𝐿𝑋ergsuperscripts14546\frac{L_{X}}{\mathrm{erg\,s^{-1}}}=45-46divide start_ARG italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG start_ARG roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG = 45 - 46) AGN by 3–5 orders of magnitude with respect to the predictions from the AGN X-ray luminosity function at similar redshift in the field environment. This result is not merely driven by the overdensity of the galaxy population in the structures.

Conclusions. Our results indicate that gas-rich protoclusters at high redshift boost the growth of SMBHs, which will likely impact the subsequent evolution of the structures, and thus represent key science targets to obtain a complete understanding of the relation between environment and galaxy evolution. Dedicated investigations of similar protoclusters are required to definitively confirm this conclusion with higher statistical significance.

Key Words.:
galaxies: active – galaxies: high-redshift – quasars: general – quasars: supermassive black holes – galaxies: starburst – X-rays: galaxies

1 Introduction

According to the hierarchical growth of cosmic structures, dense regions at high redshift collapse and merge into the most-massive gravitationally bound objects in the local universe, i.e., galaxy clusters, which are characterized by more evolved galaxy populations than the field environment (e.g. Alberts et al., 2014). Therefore, galaxy evolution must have been accelerated in their ancestors, i.e., protoclusters (e.g. Overzier, 2016; Chiang et al., 2017). In these regions, star formation is efficiently fueled by large amounts of gas infalling from the forming cosmic web (e.g. Umehata et al., 2019), and is likely boosted by the high rates of galaxy interactions and mergers in these dense and unvirialized systems (e.g. Liu et al., 2023).

Radiative and mechanical feedback produced by gas accretion onto supermassive black holes (SMBHs) observed as active galactic nuclei (AGN) plays a fundamental role in regulating, and eventually hindering, further galaxy and SMBH growth in cluster members (e.g. Fabian, 2012; Gilli et al., 2019; Gaspari et al., 2020). However, the effect of a dense environment on the triggering of nuclear activity at high redshift is still not well understood. X-ray observations are the best tools to investigate the incidence and physical properties of the AGN population in protoclusters, as bright X-ray emission is a reliable and nearly complete tracer of nuclear activity, even in the presence of heavy obscuration (e.g., Brandt & Alexander, 2015; Ivison et al., 2019). Dedicated X-ray programs with Chandra generally find enhanced AGN activity in protoclusters with respect to the field environment at similar redshift and local galaxy clusters (e.g., Lehmer et al., 2009b, 2013; Digby-North et al., 2010; Tozzi et al., 2022b, but see also Yang et al. 2018a; Macuga et al. 2019). These results support a scenario in which the large reservoirs of gas and the high rate of galaxy interactions promote the growth of SMBHs in the protocluster galaxy members, in addition to boosting the star-formation activity. Theoretical models (e.g. Hopkins et al., 2006) predict that these conditions favor fast, efficient, and possibly heavily obscured nuclear accretion. Most protocluster AGN are indeed characterized as being heavily obscured (e.g. Vito et al., 2020; Monson et al., 2023).These properties are typical of the peak phases of SMBH mass building, after which AGN feedback hampers additional galaxy and SMBH growth, eventually impacting the entire cluster’s evolution. In addition, the AGN enhancement may also be an effect of galaxies in protoclusters being typically more massive than in the field environment (e.g., Monson et al., 2021), as luminous AGN are typically found in galaxy with large stellar masses (e.g. Yang et al., 2017, 2018b).

Protocluster candidates are identified via detections of overdensities of galaxies, selected in many different ways (see Overzier 2016 and references therein). The identification of protocluster candidates as overdensities of dusty star-forming galaxies (DSFGs), Lyα𝛼\alphaitalic_α emitters (LAEs),or Lyman- break galaxies (LBGs) are among the most efficient techniques up to z8𝑧8z\approx 8italic_z ≈ 8 (e.g. Laporte et al., 2022; Morishita et al., 2023). Recently, the high angular resolution and sensitivity of ALMA allowed the identification of two extremely massive and star-forming overdensities of DSFGs,the Distant Red Core (DRC) at z=4.0𝑧4.0z=4.0italic_z = 4.0 (e.g. Oteo et al., 2018; Ivison et al., 2020), and SPT 2349–56 at z=4.3𝑧4.3z=4.3italic_z = 4.3 (e.g. Miller et al., 2018; Hill et al., 2020, 2022), discovered originally by Herschel and the South Pole Telescope, respectively (Vieira et al., 2010; Ivison et al., 2016) . The cores of these structures extend to a few hundred kpc in projection, and are unique in terms of overdensity, total gas mass, and SFR density. Based on cluster evolutionary models and simulations, Oteo et al. (2018) and Hill et al. (2020) argued that DRC and SPT 2349--56 are the likely progenitors of 1015Mabsentsuperscript1015subscriptMdirect-product\approx 10^{15}\,\mathrm{M_{\odot}}≈ 10 start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT Coma-like clusters in the local universe. DRC consists of at least 13 spectroscopically identified z4.0𝑧4.0z\approx 4.0italic_z ≈ 4.0 DSFGs with individual SFRs in the range of 503000Myr1503000subscriptMdirect-productsuperscriptyr150-3000\,\mathrm{M_{\odot}\,yr^{-1}}50 - 3000 roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, for a total SFR6500Myr1SFR6500subscriptMdirect-productsuperscriptyr1\mathrm{SFR}\approx 6500\,\mathrm{M_{\odot}\,yr^{-1}}roman_SFR ≈ 6500 roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. A total molecular gas mass MH2>1012Msubscript𝑀subscript𝐻2superscript1012subscriptMdirect-productM_{H_{2}}>10^{12}\,\mathrm{M_{\odot}}italic_M start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT > 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT was estimated from the [C I](1–0) emission lines detected from the protocluster members.

SPT 2349–56 was identified with ALMA observations as an overdensity of 30 galaxies spectroscopically confirmed at z4.3𝑧4.3z\approx 4.3italic_z ≈ 4.3 via the detection of [C II] and CO(4–3) emission lines (Miller et al., 2018; Hill et al., 2020; Rotermund et al., 2021). Among them, 21 objects are detected in sub-mm/mm continuum emission (850 μm𝜇𝑚\mu mitalic_μ italic_m, 1.1 mm, or 3.2 mm; Hill et al. 2020), and in this paper we refer to them as DSFGs. The protocluster members are located in a massive core with radius R20less-than-or-similar-to𝑅20R\lesssim 20italic_R ≲ 20 arcsec (100less-than-or-similar-toabsent100\lesssim 100≲ 100 kpc), and two smaller components at 0.9absent0.9\approx 0.9≈ 0.9 arcmin (0.75absent0.75\approx 0.75≈ 0.75 Mpc) and 3.8absent3.8\approx 3.8≈ 3.8 arcmin (1.5absent1.5\approx 1.5≈ 1.5 Mpc) from the center of the main overdensity. Numerical simulations predict that the galaxies in the central core of SPT2349–56 will eventually merge into the brightest cluster galaxy of the descendant structure (Rennehan et al., 2020). Similar arguments as those used for DRC return total values of SFR8000Myr1𝑆𝐹𝑅8000subscriptMdirect-productsuperscriptyr1SFR\approx 8000\,\mathrm{M_{\odot}\,yr^{-1}}italic_S italic_F italic_R ≈ 8000 roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and Mvir1013Msubscript𝑀𝑣𝑖𝑟superscript1013subscriptMdirect-productM_{vir}\approx 10^{13}\,\mathrm{M_{\odot}}italic_M start_POSTSUBSCRIPT italic_v italic_i italic_r end_POSTSUBSCRIPT ≈ 10 start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT. Notably, the derived SFR density is a factor of ten larger than the most extreme values found in simulations at the same redshift (Hill et al. 2020). A total gas mass of Mgas3×1011Mgreater-than-or-equivalent-tosubscript𝑀𝑔𝑎𝑠3superscript1011subscriptMdirect-productM_{gas}\gtrsim 3\times 10^{11}\,\mathrm{M_{\odot}}italic_M start_POSTSUBSCRIPT italic_g italic_a italic_s end_POSTSUBSCRIPT ≳ 3 × 10 start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT is estimated from the luminosity of the carbon monoxide emission lines (Hill et al., 2020).

Using deep optical/near-IR observations, Apostolovski et al. (2023) and Rotermund et al. (2021) identified additional members of the SPT2349–56 core as LAEs (9 spectroscopically confirmed galaxies, although 6 of them are marked as “tentative” in that work) and LBGs (4 galaxies),111We note that Rotermund et al. (2021) selected tens of LBG candidates over a large area (i.e., up to a radius of 2absent2\approx 2≈ 2 arcmin) centered on SPT2349–56. Following Rotermund et al. (2021), we considered only the four galaxies found in the core region as potential members of the protocluster. respectively. One of the tentative LAE is the counterpart of a sub-mm continuum detected galaxy with neither [C II] nor CO(4–3) emission in Hill et al. (2020), increasing the number of spectroscopically identified DSFGs in the structure to 22. Among the four LBGs in the protocluster core, two are likely counterparts of the DSFGs, named C2 and C17 (Hill et al., 2022), one has been found by Rotermund et al. (2021) to be a weak [C II] emitter not included in the Hill et al. (2020) sample, and one is the counterpart of a LAE. Thus, accounting for the few galaxies selected with multiple methods, the total number of individual and spectroscopically confirmed protocluster members is 38.

Chapman et al. (2023) detected bright radio emission (L1.4GHz,rest=(2.2±0.2)×1026WHz1subscript𝐿1.4GHzrestplus-or-minus2.20.2superscript1026WsuperscriptHz1L_{\mathrm{1.4GHz,rest}}=(2.2\pm 0.2)\times 10^{26}\,\mathrm{W\,Hz^{-1}}italic_L start_POSTSUBSCRIPT 1.4 roman_GHz , roman_rest end_POSTSUBSCRIPT = ( 2.2 ± 0.2 ) × 10 start_POSTSUPERSCRIPT 26 end_POSTSUPERSCRIPT roman_W roman_Hz start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT) with spectral index α=1.45±0.16𝛼plus-or-minus1.450.16\alpha=-1.45\pm 0.16italic_α = - 1.45 ± 0.16, where Fνναproportional-tosubscript𝐹𝜈superscript𝜈𝛼F_{\nu}\propto\nu^{\alpha}italic_F start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ∝ italic_ν start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT, from the inner region of the SPT2349–56 core, likely of AGN origin. The spatial resolution of the radio observations prevented the secure identification of the optical/IR couterpart, as a few protocluster members are consistent with being the host of the radio source, and none of them shows clear AGN features at other wavelengths. Still, mainly based on its large mass, Chapman et al. (2023) proposed that one such galaxies, referred to as C6 in our work following the Hill et al. (2020) naming convention, is the AGN host.

Due to their extreme properties, these two protoclusters, at similar redshift and identified via similar selection techniques, are unique testbeds to study the link between the availability of huge reservoirs of gas in high-redshift overdense environments, and SMBH growth in the galaxy members. Vito et al. (2020) used Chandra observations (140 ks) to investigate the AGN content of DRC, and identified two obscured AGN among 13 DSFGs. These are the two brightest, gas-rich, most strongly star-forming members of the protocluster, and are possibly in a merger phase, as derived from a high angular-resolution ALMA observation of one of them. In particular, the X-ray brightest AGN (L210keV=2.71.8+8.9×1045ergs1subscript𝐿210keVsuperscriptsubscript2.71.88.9superscript1045ergsuperscripts1L_{2-10\,\mathrm{keV}}=2.7_{-1.8}^{+8.9}\times 10^{45}\,\mathrm{erg\,s^{-1}}italic_L start_POSTSUBSCRIPT 2 - 10 roman_keV end_POSTSUBSCRIPT = 2.7 start_POSTSUBSCRIPT - 1.8 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 8.9 end_POSTSUPERSCRIPT × 10 start_POSTSUPERSCRIPT 45 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT), namely DRC-2, has remarkable properties. It is as X-ray luminous as optically selected QSOs at all redshifts, but, in contrast to those, obscured by Compton-thick gas column densities, similar to, but even more extreme than, other populations of luminous obscured QSOs such as hot dust-obscured galaxies (e.g., Vito et al., 2018a).

In this work, we present new Chandra observations (200 ks) of SPT2349–56. Our goals are to probe the population of AGN and their physical properties in the extremely gas-rich and dense environment of SPT 2349–-56, and to study more generally the effect of an overdense environment on SMBH growth in the early universe by comparing the AGN content in z4𝑧4z\approx 4italic_z ≈ 4 gas-rich protoclusters with lower redshift structures and blank fields. Errors are reported at 68% confidence levels, while limits are given at 90% confidence levels. We refer to the 0.520.520.5-20.5 - 2 keV, 27272-72 - 7 keV, and 0.570.570.5-70.5 - 7 keV energy ranges as the soft band, hard band, and full band, respectively. We assume solar metallicities and abundances (Anders & Grevesse, 1989), and adopt a flat cosmology with H0=67.7kms1subscript𝐻067.7kmsuperscripts1H_{0}=67.7\,\mathrm{km\,s^{-1}}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 67.7 roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and Ωm=0.307subscriptΩ𝑚0.307\Omega_{m}=0.307roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = 0.307 (Planck Collaboration et al., 2016).

2 Data analysis

In this section, we describe the reduction of the Chandra observations (§ 2.1) and the source detection procedure (§ 2.2).

2.1 Data reduction

We observed the SPT2349–56 protocluster with Chandra for a total of 200 ks, split among 9 pointings (see Tab. 1). The protocluster core was placed at the aimpoint of the ACIS-S detector, where the Chandra sensitivity is maximum, and all of the confirmed or candidate protocluster members are covered by the back-illuminated S3 chip. We reprocessed the Chandra   observations with the chandra_repro script in CIAO 4.15 (Fruscione et al., 2006),222http://cxc.harvard.edu/ciao/ using CALDB v4.10.4,333http://cxc.harvard.edu/caldb/ and setting check_vf_pha=yes, since observations were taken in Very Faint mode.

In order to correct the astrometry of the Chandra observations, we performed source detection on each pointing with the wavdetect script with a significance threshold of 106superscript10610^{-6}10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT, and then used the wcs_match and wcs_update tools to compute and apply the astrometric offsets with respect to a reference catalog. First, we applied a relative astrometric correction to each pointing using OBSID 25267 (i.e., the pointing with the longest exposure, see Tab. 1) as reference. Only point-sources with PSF size 3absent3\leq 3≤ 3 arcsec and with 5absent5\geq 5≥ 5 detected counts are considered. Then, we mapped the individual observations onto OBSID 25267 and merged all of the observations with the reproject_obs tool. We repeated the source-detection procedure on the merged dataset, but this time we matched the detected point sources to the GAIA DR3 catalog (Gaia Collaboration et al., 2023)444https://www.cosmos.esa.int/web/gaia/dr3 , in order to derive and apply the absolute astrometric correction factors. Only two X-ray point sources could be matched with GAIA objects on the ACIS-S3 chip, and the average spatial offset is 0.15 arcsec. This value can be considered the systematic spatial uncertainty of the X-ray dataset.

We obtained images and exposure maps with the reproject_obs tool, while we extracted spectra, response matrices, and ancillary files of the detected sources (see § 2.2) from individual pointings using the specextract tool and added them using the mathpha, addrmf, and addarf HEASOFT tools555https://heasarc.gsfc.nasa.gov/docs/software/heasoft/, respectively, weighting by the individual exposure times. Ancillary files, which are used to derive fluxes and luminosities, were aperture corrected by setting via the correctpsf parameter in specextract.

Table 1: Summary of the Chandra   observations of SPT2349–56.
OBSID Start date Texpsubscript𝑇𝑒𝑥𝑝T_{exp}italic_T start_POSTSUBSCRIPT italic_e italic_x italic_p end_POSTSUBSCRIPT [ks]
25267 2023-06-13 36
25704 2023-09-21 30
25705 2023-08-25 30
25706 2023-02-13 14
25707 2023-08-07 32
25708 2023-04-20 14
27712 2023-04-14 16
27804 2023-04-23 14
27904 2023-06-18 13

Refer to caption


Figure 1: From left to right, soft-band, hard-band, and full-band Chandra images (10′′×10′′superscript10′′superscript10′′10^{\prime\prime}\times 10^{\prime\prime}10 start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT × 10 start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT) of C1. In the right panel, we also plot the ALMA Band 7 continuum contours (in grey) and mark the positions (purple circles) of spectroscopically identified protocluster members. The contours have been derived from the reduced ALMA data of Hill et al. (2020) with beam size of 0.35′′×0.29′′superscript0.35′′superscript0.29′′0.35^{\prime\prime}\times 0.29^{\prime\prime}0.35 start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT × 0.29 start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT, and start at 5σ5𝜎5\sigma5 italic_σ with steps of 7σ7𝜎7\sigma7 italic_σ .

Refer to caption


Figure 2: Same as Fig 1, but for source C6. We added in cyan the ATCA 2.2 GHz contours (beam size of 7.7′′×4.2′′superscript7.7′′superscript4.2′′7.7^{\prime\prime}\times 4.2^{\prime\prime}7.7 start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT × 4.2 start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT), starting at 3σ3𝜎3\sigma3 italic_σ with steps of 3σ3𝜎3\sigma3 italic_σ, obtained from the data reduced and presented by Chapman et al. (2023).

2.2 Source detection and X-ray photometry

We assessed the detection of the SPT2349–56 protoclusters member candidates (Hill et al., 2020, 2022; Rotermund et al., 2021) in the soft, hard, and full bands using the binomial no-source probability (Weisskopf et al., 2007; Broos et al., 2007)

PB(XS)=X=SNN!X!(NX)!pX(1p)NX,subscript𝑃𝐵𝑋𝑆superscriptsubscript𝑋𝑆𝑁𝑁𝑋𝑁𝑋superscript𝑝𝑋superscript1𝑝𝑁𝑋P_{B}(X\geq S)=\sum_{X=S}^{N}\frac{N!}{X!(N-X)!}p^{X}(1-p)^{N-X},italic_P start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_X ≥ italic_S ) = ∑ start_POSTSUBSCRIPT italic_X = italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT divide start_ARG italic_N ! end_ARG start_ARG italic_X ! ( italic_N - italic_X ) ! end_ARG italic_p start_POSTSUPERSCRIPT italic_X end_POSTSUPERSCRIPT ( 1 - italic_p ) start_POSTSUPERSCRIPT italic_N - italic_X end_POSTSUPERSCRIPT , (1)

where S𝑆Sitalic_S is the total number of counts in the source region in the considered energy band, B𝐵Bitalic_B is the total number of counts in the background region, N=S+B𝑁𝑆𝐵N=S+Bitalic_N = italic_S + italic_B, and p=1/(1+BACKSCAL)𝑝11𝐵𝐴𝐶𝐾𝑆𝐶𝐴𝐿p=1/(1+BACKSCAL)italic_p = 1 / ( 1 + italic_B italic_A italic_C italic_K italic_S italic_C italic_A italic_L ), with BACKSCAL𝐵𝐴𝐶𝐾𝑆𝐶𝐴𝐿BACKSCALitalic_B italic_A italic_C italic_K italic_S italic_C italic_A italic_L being the ratio of the background and source region areas. The source counts are extracted from circular regions with R=1′′𝑅superscript1′′R=1^{\prime\prime}italic_R = 1 start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT, whereas the background counts are measured from nearby regions free of evident X-ray sources. We checked that reasonably different choices of extraction regions returned consistent results. We defined (1PB)>0.991subscript𝑃𝐵0.99(1-P_{B})>0.99( 1 - italic_P start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ) > 0.99 as the detection threshold, a value often used to assess the X-ray detections of objects with pre-determined positions (Vito et al., 2019, 2020). Due to the small projected distances between the protocluster members, especially in the core of the structure, the extraction regions may overlap. In such cases, we assign each detected photon to the nearest galaxy, to avoid double counting.

Table 2: Positions and X-ray photometric properties of the two members of the protocluster detected with Chandra (see § 2.2).
ID RA DEC Csb Chb Cfb HR ΓeffsubscriptΓ𝑒𝑓𝑓\Gamma_{eff}roman_Γ start_POSTSUBSCRIPT italic_e italic_f italic_f end_POSTSUBSCRIPT NHsubscript𝑁𝐻N_{H}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT F0.57keVsubscript𝐹0.57keVF_{0.5-7\,\mathrm{keV}}italic_F start_POSTSUBSCRIPT 0.5 - 7 roman_keV end_POSTSUBSCRIPT L210keVsubscript𝐿210keVL_{2-10\,\mathrm{keV}}italic_L start_POSTSUBSCRIPT 2 - 10 roman_keV end_POSTSUBSCRIPT
J2000 J2000 1024cm2superscript1024superscriptcm210^{24}\,\mathrm{cm^{-2}}10 start_POSTSUPERSCRIPT 24 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT 1015ergcm2s1superscript1015ergsuperscriptcm2superscripts110^{-15}\,\mathrm{erg\,cm^{-2}s^{-1}}10 start_POSTSUPERSCRIPT - 15 end_POSTSUPERSCRIPT roman_erg roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT 1045ergs1superscript1045ergsuperscripts110^{45}\,\mathrm{erg\,s^{-1}}10 start_POSTSUPERSCRIPT 45 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
C1 23:49:42.65 -56:38:19.4 <4.8absent4.8<4.8< 4.8 19.14.1+4.8subscriptsuperscript19.14.84.119.1^{+4.8}_{-4.1}19.1 start_POSTSUPERSCRIPT + 4.8 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 4.1 end_POSTSUBSCRIPT 20.54.4+5.0subscriptsuperscript20.55.04.420.5^{+5.0}_{-4.4}20.5 start_POSTSUPERSCRIPT + 5.0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 4.4 end_POSTSUBSCRIPT >0.58absent0.58>0.58> 0.58 <0.13absent0.13<0.13< 0.13 2.41.2+2.3superscriptsubscript2.41.22.32.4_{-1.2}^{+2.3}2.4 start_POSTSUBSCRIPT - 1.2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 2.3 end_POSTSUPERSCRIPT 2.41.5+4.9superscriptsubscript2.41.54.92.4_{-1.5}^{+4.9}2.4 start_POSTSUBSCRIPT - 1.5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 4.9 end_POSTSUPERSCRIPT 2.21.4+4.5superscriptsubscript2.21.44.52.2_{-1.4}^{+4.5}2.2 start_POSTSUBSCRIPT - 1.4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 4.5 end_POSTSUPERSCRIPT
C6 23:49:42.84 -56:38:25.1 <2.3absent2.3<2.3< 2.3 3.61.7+2.4subscriptsuperscript3.62.41.73.6^{+2.4}_{-1.7}3.6 start_POSTSUPERSCRIPT + 2.4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 1.7 end_POSTSUBSCRIPT 3.31.7+2.4subscriptsuperscript3.32.41.73.3^{+2.4}_{-1.7}3.3 start_POSTSUPERSCRIPT + 2.4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 1.7 end_POSTSUBSCRIPT >0.18absent0.18>0.18> 0.18 <1.22absent1.22<1.22< 1.22 >0.4absent0.4>0.4> 0.4 0.30.1+0.2superscriptsubscript0.30.10.20.3_{-0.1}^{+0.2}0.3 start_POSTSUBSCRIPT - 0.1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.2 end_POSTSUPERSCRIPT >0.02absent0.02>0.02> 0.02
666(1) ID, (2) RA, and (3) Dec from Hill et al. (2020) of the detected X-ray sources; (4) soft-band, (5) hard-band, and (6) full-band net counts; (7) hardness ratio and (8) corresponding effective photon index; (9) column density; (10) full-band flux; (11) intrinsic luminosity. The column density, flux, and luminosity of C1 are derived via a spectral analysis (Sec. 3.1), while these quantities are based on the hardness ratio for C6 (Sec. 3.2).

Two protocluster members are detected significantly in X-rays: sources C1 (1PB>0.9991subscript𝑃𝐵0.9991-P_{B}>0.9991 - italic_P start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT > 0.999 in both the hard and full bands) and C6 (1PB=0.9991subscript𝑃𝐵0.9991-P_{B}=0.9991 - italic_P start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT = 0.999 and 0.994 in the hard and full band, respectively), which are among the spectroscopically identified DSFGs in the core region of SPT2349–56 (Hill et al., 2020). Fig. 1 and 2 present X-ray cutouts of these two sources.

Net counts, which are reported in Tab. 2, were computed in the same R=1′′𝑅superscript1′′R=1^{\prime\prime}italic_R = 1 start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT region used for the detection for C6, whereas we used a larger region with R=1.5′′𝑅superscript1.5′′R=1.5^{\prime\prime}italic_R = 1.5 start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT for C1, given its relatively bright emission. We also derived the hardness ratios HR=(HS)H+S𝐻𝑅𝐻𝑆𝐻𝑆HR=\frac{(H-S)}{H+S}italic_H italic_R = divide start_ARG ( italic_H - italic_S ) end_ARG start_ARG italic_H + italic_S end_ARG, where S𝑆Sitalic_S and H𝐻Hitalic_H are the net counts in the soft and hard band, respectively, and the corresponding effective power-law photon indices, following the procedure of Vito et al. (2019), which are also reported in Tab. 2.

We visually inspected all of the remaining secure protocluster members or member candidates presented by Hill et al. (2020, 2022); Rotermund et al. (2021); Apostolovski et al. (2023). Three X-ray photons clustered on three contiguous pixels on top of the galaxy named LBG2 in Rotermund et al. (2021) are detected in the full band, suggesting that this object might be a sub-threshold X-ray source.

3 Results

In this section, we report the results obtained from the X-ray observations of SPT2349–56. In § 3.1 and § 3.2 we present the results of a spectral analysis of the two detected X-ray sources, C1 and C6, respectively. In § 3.3, we used the X-ray emission of these two galaxies together with the available optical-to-mm photometry to estimate the physical parameters of the AGN host galaxies via a spectral energy distribution (SED) fitting procedure. In § 3.4 we investigate possible evidence of low-rate SMBh accretion in the individually undetected galaxies of the structure via an X-ray stacking analysis.

3.1 X-ray spectral analysis of C1

The relatively bright hard-band detection of C1 with no associated soft-band emission and the resulting flat effective photon index (Tab. 2) are strongly indicative of the presence of a large column density of gas (NHsubscript𝑁𝐻N_{H}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT) obscuring this high-redshift galaxy. We performed a basic spectral analysis with XSPEC v.12.13 (Arnaud, 1996)777We used the W𝑊Witalic_W-statistic, which is suitable in case of background-subtracted spectra with low number of counts. See https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSappendixStatistics.html and Cash (1979). to measure physical quantities, such as the NHsubscript𝑁𝐻N_{H}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT, the observed fluxes, and the intrinsic luminosity. Following the analysis of DRC-2 (Vito et al., 2020), we used the MYTorus model (Murphy & Yaqoob, 2009), accounting for the Galactic absorption (Kalberla et al., 2005), and fixing Γ=1.9Γ1.9\Gamma=1.9roman_Γ = 1.9, the normalizations of the scattered and line components to that of the transmitted component, and the inclination angle Θ=90Θ90\Theta=90roman_Θ = 90 degrees. Therefore, the only two parameters left free to vary were NHsubscript𝑁𝐻N_{H}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT and the intrinsic powerlaw normalization. Fig. 3 reports the observed and response-corrected spectrum and best-fitting model, highlighting the hardness of the source, as typically found for heavily obscured AGN.

Our best-fitting model returns NH=2.41.2+2.3×1024cm2subscript𝑁𝐻superscriptsubscript2.41.22.3superscript1024superscriptcm2N_{H}=2.4_{-1.2}^{+2.3}\times 10^{24}\,\mathrm{cm^{-2}}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 2.4 start_POSTSUBSCRIPT - 1.2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 2.3 end_POSTSUPERSCRIPT × 10 start_POSTSUPERSCRIPT 24 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT, implying that C1 is a Compton-thick AGN. The observed flux F0.57keV=2.41.5+4.9×1015ergcm2s1subscript𝐹0.57keVsuperscriptsubscript2.41.54.9superscript1015ergsuperscriptcm2superscripts1F_{0.5-7\,\mathrm{keV}}=2.4_{-1.5}^{+4.9}\,\times 10^{-15}\mathrm{erg\,cm^{-2}% s^{-1}}italic_F start_POSTSUBSCRIPT 0.5 - 7 roman_keV end_POSTSUBSCRIPT = 2.4 start_POSTSUBSCRIPT - 1.5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 4.9 end_POSTSUPERSCRIPT × 10 start_POSTSUPERSCRIPT - 15 end_POSTSUPERSCRIPT roman_erg roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT corresponds to an absorption-corrected, rest-frame luminosity L210keV=2.21.4+4.5×1045ergs1subscript𝐿210keVsuperscriptsubscript2.21.44.5superscript1045ergsuperscripts1L_{2-10\,\mathrm{keV}}=2.2_{-1.4}^{+4.5}\times{10^{45}}\,\mathrm{erg\,s^{-1}}italic_L start_POSTSUBSCRIPT 2 - 10 roman_keV end_POSTSUBSCRIPT = 2.2 start_POSTSUBSCRIPT - 1.4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 4.5 end_POSTSUPERSCRIPT × 10 start_POSTSUPERSCRIPT 45 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, that is, 1absent1\approx 1≈ 1 dex larger than the break luminosity of the X-ray luminosity function at that redshift (e.g., Ueda et al., 2014; Aird et al., 2015; Vito et al., 2018b). In Fig. 4, we compare the column density and luminosity of C1 from the best-fitting model with other populations of AGN over wide redshift ranges. C1 has an X-ray luminosity typical of bright optically selected blue and red QSOs, which, however, are typically unobscured or, at most, obscured by Compton-thin column densities of gas (e.g. Just et al., 2007; Martocchia et al., 2017; Lansbury et al., 2020). C1 is even more obscured than hot dust-obscured galaxies (Hot DOGs; e.g., Stern et al. 2014; Vito et al. 2018a), which are often considered as representative of an extreme phase of galaxy and SMBH growth, while X-ray selected Compton-thick AGN and DSFGs have significantly lower luminosities. Intriguingly, C1 and DRC-2, both selected as luminous and obscured AGN in z4𝑧4z\approx 4italic_z ≈ 4 gas-rich protoclusters, share the same position in Fig. 4. Only two other AGN with similar X-ray luminosities have been discovered in other protoclusters (Ivison et al., 2019; Tozzi et al., 2022b), but they are unobscured or, at most, mildly obscured, sources. In particular, Ivison et al. (2019) detected broad Hα𝛼\alphaitalic_α emission from the luminous AGN hosted in HATLAS J084933.4+021443, a DSFG in a z=2.41𝑧2.41z=2.41italic_z = 2.41 protocluster, which is surprising considering the expected high extinction in such a dust-rich galaxy.

The X-ray luminosity of C1 translates into a bolometric luminosity Lbol8×1046ergs1subscript𝐿bol8superscript1046ergsuperscripts1L_{\mathrm{bol}}\approx 8\times 10^{46}\,\mathrm{erg\,s^{-1}}italic_L start_POSTSUBSCRIPT roman_bol end_POSTSUBSCRIPT ≈ 8 × 10 start_POSTSUPERSCRIPT 46 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT according to the bolometric correction of Duras et al. (2020). Assuming that the SMBH powering C1 is accreting at the Eddington limit, we can place a lower limit on its mass of MSMBH6.5×108Msubscript𝑀SMBH6.5superscript108subscriptMdirect-productM_{\mathrm{SMBH}}\approx 6.5\times 10^{8}\,\mathrm{M_{\odot}}italic_M start_POSTSUBSCRIPT roman_SMBH end_POSTSUBSCRIPT ≈ 6.5 × 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT (but see the caveats raised by King 2024 about this approach). Therefore, either C1 is accreting at super-Eddington rate, or it has already accumulated a significant fraction of the SMBH mass characterizing AGN in the centers of local galaxy clusters. Similar conclusions were also drawn for DRC-2 by Vito et al. (2020).

We note that the spectrum of C1 can be fitted equally well with a pure reflection model by multiplying the intrinsic powerlaw continuum by a constant equal to zero. In this case, we obtain a similar value of NHsubscript𝑁𝐻N_{H}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT and a factor of 2absent2\approx 2≈ 2 higher luminosity. We also tried leaving ΓΓ\Gammaroman_Γ free to vary, but the fit cannot constrain its value.

3.1.1 A note on the possible foreground nature of the X-ray emission

Rotermund et al. (2021) reported the spectroscopic identification of a foreground galaxy at z=2.54𝑧2.54z=2.54italic_z = 2.54 along the line of sight of C1. Based on considerations on the blue optical colors, magnitudes, and [O III] 5007ÅÅ\mathrm{\AA}roman_Å emission-line width, they provide an upper limit on its stellar mass of 1.6×109M1.6superscript109subscriptMdirect-product1.6\times 10^{9}\,\mathrm{M_{\odot}}1.6 × 10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT. If this were the host galaxy, the spectral analysis would return NH=1.10.5+0.6×1024cm2subscript𝑁𝐻superscriptsubscript1.10.50.6superscript1024superscriptcm2N_{H}=1.1_{-0.5}^{+0.6}\times 10^{24}\,\mathrm{cm^{-2}}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 1.1 start_POSTSUBSCRIPT - 0.5 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.6 end_POSTSUPERSCRIPT × 10 start_POSTSUPERSCRIPT 24 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT and L210keV=4.12.2+5.4×1044ergs1subscript𝐿210keVsuperscriptsubscript4.12.25.4superscript1044ergsuperscripts1L_{2-10\,\mathrm{keV}}=4.1_{-2.2}^{+5.4}\times{10^{44}}\,\mathrm{erg\,s^{-1}}italic_L start_POSTSUBSCRIPT 2 - 10 roman_keV end_POSTSUBSCRIPT = 4.1 start_POSTSUBSCRIPT - 2.2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 5.4 end_POSTSUPERSCRIPT × 10 start_POSTSUPERSCRIPT 44 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Given the well-known relation between AGN actvity and stellar mass of the host galaxies (Xue et al., 2010; Lusso et al., 2011; Wang et al., 2017; Yang et al., 2017, 2018b, e.g.), it is highly unlikely that such a small object host a moderately luminous AGN. Moreover, its rest-frame UV spectrum present no indications of AGN activity (Rotermund et al., 2021). Therefore, in this paper we assume that the X-ray source is hosted by the DSFG at z=4.3𝑧4.3z=4.3italic_z = 4.3.

Refer to caption
Refer to caption
Figure 3: Top panel: observed spectrum (red circles) and best-fitting MYTorus model (black line) of C1 (see § 3.1). Bottom panel: response-corrected spectrum and best-fitting model. We also show the individual additive components of the model with grey lines, as reported in the legend. In both panels, the spectrum is binned at 1σ1𝜎1\sigma1 italic_σ for display purposes.
Refer to caption
Figure 4: X-ray luminosity versus column density for different populations of AGN: optically selected Type-1 QSOs at z=1.44.5𝑧1.44.5z=1.4-4.5italic_z = 1.4 - 4.5 (blue symbols; from Just et al. 2007; Martocchia et al. 2017), dust-reddened QSOs at z=0.43.2𝑧0.43.2z=0.4-3.2italic_z = 0.4 - 3.2 (green symbols; from Urrutia et al. 2005; Banerji et al. 2014; Mountrichas et al. 2017; Goulding et al. 2018; Lansbury et al. 2020), DSFGs at z=0.35.2𝑧0.35.2z=0.3-5.2italic_z = 0.3 - 5.2 (yellow symbols; from Wang et al. 2013; Corral et al. 2016; Zou et al. 2020), Hot DOGs at at z=1.04.6𝑧1.04.6z=1.0-4.6italic_z = 1.0 - 4.6 (violet symbols; from Stern et al. 2014; Assef et al. 2016; Ricci et al. 2017; Vito et al. 2018a; Zappacosta et al. 2018), X-ray selected AGN in the Spiderweb and SSA protoclusters (z=2.23.2𝑧2.23.2z=2.2-3.2italic_z = 2.2 - 3.2, orange symbols, Ivison et al., 2019; Tozzi et al., 2022b; Monson et al., 2023),and X-ray selected AGN in the the Chandra deep field-south at all redshifts (gray symbols, with median error bar showed in the bottom-right corner of the plot; from Li et al. 2019). The X-ray selected AGN in SPT2349–56 and DRC are plotted as red stars and squares, respectively. C1 and DRC-2 (Vito et al., 2020) have remarkably similar physical properties. Their X-ray luminosities are similar to those of luminous optically selected QSOs, but are obscured by gas column densities even thicker than Hot DOGs.

3.2 X-ray spectral properties of C6

Due to the low number of detected X-ray counts, we did not attempt to perform a spectral fit of C6. Instead, we assumed a simple Γ=1.9Γ1.9\Gamma=1.9roman_Γ = 1.9 power-law as intrinsic spectrum, and estimated NH>4.0×1023cm2subscript𝑁𝐻4.0superscript1023superscriptcm2N_{H}>4.0\times 10^{23}\,\mathrm{cm^{-2}}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT > 4.0 × 10 start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT in order to reproduce the observed value of hardness ratio, accounting for the proper instrumental response and PSF correction by using the ancillary and response file extracted at the position of C6 (see Sec. 2.1). We used this model to estimate the observed flux and the intrinsic luminosity of C6 (Tab. 2). Based on these loose constraints, we conclude that C6 confidently is a heavily obscured AGN, although possibly not as extreme as C1.

The X-ray detection of C6 strongly supports that this galaxy is the host of the radio AGN discovered by Chapman et al. (2023) with . The ATCA 2.2 GHz contours presented by Chapman et al. (2023) are reported in Fig. 2 in cyan. The limit on the X-ray luminosity of C6 is consistent with the relation between radio and X-ray emission from radio-loud AGN (e.g., Fan & Bai, 2016; D’Amato et al., 2020; Mazzolari et al., 2024).

Refer to caption
Refer to caption
Figure 5: Best-fitting models for C1 and C6 returned by the CIGALE fitting code. The optical-to-mm photometric points have been collected from Hill et al. (2020, 2022), while for C6 we added the radio measurements of Chapman et al. (2023). The absorption-corrected X-ray fluxes correspond to the X-ray models discussed in Sec. 3.1 and 3.2. The sub-mm/mm photometry of C1 is dominated by the AGN reprocessed emission. The AGN in C6 contributes more modestly at such wavelengths, but dominates the radio emission.

3.3 SED fitting

We used CIGALE v2022.1 (e.g. Boquien et al., 2019; Yang et al., 2022) to fit the SEDs of the two X-ray selected AGN in SPT2349–56. Fig. 5 presents the best-fitting SED models, and the resulting physical parameters are reported in Tab. 3. CIGALE produces a SED model for every combination of the input parameters, convolves it with the filters corresponding to the utilized photometric points, and computes the likelihood exp(χ2/2)superscript𝜒22(-\chi^{2}/2)( - italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 2 ) of every model in a Bayesian framework. Then, it computes the marginalized probability distribution function of each physical parameter based on the likelihood of all models, and returns the mean and the standard deviation, which can be considered as the estimated value and associated uncertainty.

We used the optical-to-mm photometric points from Gemini-GMOS, FLAMINGOS-2, HST-WFC3, Spitzer-IRAC, and ALMA presented by Hill et al. (2020, 2022); Chapman et al. (2023). Upper limits at 3σ3𝜎3\sigma3 italic_σ are adopted here for filters in which the sources are not detected. We fitted the SEDs using simple stellar populations from Bruzual & Charlot (2003) and a delayed star-formation history with optional late burst and a Chabrier (2003) initial mass function. We also accounted for nebular emission, dust attenuation with a modified Calzetti et al. (2000) law, and dust thermal emission using the Draine et al. (2014) templates. In particular, CIGALE treats consistently dust attenuation and re-emission, thus conserving the total energy. A summary of the grid values used for SED fitting is reported in Appendix A.

Since we are fitting X-ray selected AGN SEDs, we also included the CIGALE AGN module based on Stalevski et al. (2016) and the X-ray module of Yang et al. (2020, 2022). The X-ray module is especially useful to constrain the AGN component in the SEDs. In fact, bright X-ray emission is largely dominated by the AGN flux, and CIGALE uses the well-known correlation between the AGN intrinsic luminosities at rest-frame UV and X-ray wavelengths (e.g., Just et al., 2007) as a prior to constrain the AGN intrinsic optical/UV luminosity. This procedure is particularly valuable in the presence of obscuration, as in this case the AGN optical/UV emission is strongly suppressed. The X-ray module includes the X-ray emission from binaries and hot gas that depends on the SFR and stellar mass, although it does not include shocks that a starburst can have. These contributions are expected to be negligible at the observed X-ray luminosities (e.g. Lehmer et al., 2016, 2019). The fitted X-ray fluxes used in the fitting procedure correspond to the X-ray models discussed in Sec. 3.1 and 3.2, and have been corrected for absorption, as required by CIGALE.

The optical photometry of C1 is contaminated by a spectroscopically identified foreground galaxy at z=2.54𝑧2.54z=2.54italic_z = 2.54 (Rotermund et al., 2021). Following Hill et al. (2022), we thus consider the optical fluxes as upper limits for source C1. The SED-fitting procedure for this object returns an AGN bolometric luminosity Lbol=(1.9±0.7)×1047ergs1subscript𝐿𝑏𝑜𝑙plus-or-minus1.90.7superscript1047ergsuperscripts1L_{bol}=(1.9\pm 0.7)\times 10^{47}\,\mathrm{erg\,s^{-1}}italic_L start_POSTSUBSCRIPT italic_b italic_o italic_l end_POSTSUBSCRIPT = ( 1.9 ± 0.7 ) × 10 start_POSTSUPERSCRIPT 47 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, which is slightly higher than the value estimated in Sec. 3.1. The large uncertainties are probably due the fact that only the X-ray point provides an anchor for the AGN component, as only upper limits are used for the optical photometry and the rest-frame mid-IR emission is not sampled by the available datasets. CIGALE returns a star-formation rate averaged over the last 100 Myr of SFR100Myr=228±140Myr1subscriptSFR100Myrplus-or-minus228140subscriptMdirect-productsuperscriptyr1\mathrm{SFR_{100Myr}}=228\pm 140\,\mathrm{M_{\odot}\,yr^{-1}}roman_SFR start_POSTSUBSCRIPT 100 roman_M roman_y roman_r end_POSTSUBSCRIPT = 228 ± 140 roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. This value is significantly lower than the SFR reported by Hill et al. (2020), who estimated it from the FIR luminosity and thus on similar timescales, but did not account for the AGN component, which can contribute significantly to the total IR luminosity (e.g. Di Mascia et al., 2021; McKinney et al., 2021). The stellar mass M=(3.5±2.8)×1010Myr1subscriptMplus-or-minus3.52.8superscript1010subscriptMdirect-productsuperscriptyr1\mathrm{M_{*}}=(3.5\pm 2.8)\times 10^{10}\,\mathrm{M_{\odot}\,yr^{-1}}roman_M start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = ( 3.5 ± 2.8 ) × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT is nominally lower than the estimate of Hill et al. (2022) , but consistent within the large uncertainties.

Considering C6, we corrected the observed X-ray flux assuming the lower limit we could place on NHsubscript𝑁𝐻N_{H}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT in Sec. 3.2. Thus, the contribution of the AGN component to the best-fitting model for this source might have been underestimated, as higher intrinsic X-ray fluxes would correspond to the observed ones for higher values of NHsubscript𝑁𝐻N_{H}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT. We further assumed that the radio emission detected by Chapman et al. (2023) in the core region of SPT2349–56 is entirely associated with the X-ray AGN hosted in C6, and thus when fitting this source we considered also the radio fluxes and upper limits from ASKAP, MeerKAT, and ATCA observations presented in that work. This addition required us to employ the CIGALE radio module, that models non-thermal radio emission from star formation and AGN. The CIGALE fit requires a moderately luminous AGN (Lbol=(3.3±0.2)×1045ergs1subscript𝐿𝑏𝑜𝑙plus-or-minus3.30.2superscript1045ergsuperscripts1L_{bol}=(3.3\pm 0.2)\times 10^{45}\,\mathrm{erg\,s^{-1}}italic_L start_POSTSUBSCRIPT italic_b italic_o italic_l end_POSTSUBSCRIPT = ( 3.3 ± 0.2 ) × 10 start_POSTSUPERSCRIPT 45 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT), which is sub-dominant at all frequencies, except for the X-ray and radio bands. In particular, C6 is a radio-loud888The radio-loudness parameter is defined in CIGALE as R=fν,5GHz/fν,2500Å𝑅subscript𝑓𝜈5GHzsubscript𝑓𝜈2500ÅR=f_{\nu,\mathrm{5GHz}}/f_{\nu,\mathrm{2500\AA}}italic_R = italic_f start_POSTSUBSCRIPT italic_ν , 5 roman_G roman_H roman_z end_POSTSUBSCRIPT / italic_f start_POSTSUBSCRIPT italic_ν , 2500 roman_Å end_POSTSUBSCRIPT, i.e. the ratio of the flux densities at rest-frame 5 GHz and 2500 ÅÅ\mathrm{\AA}roman_Å (Kellermann et al., 1989; Yang et al., 2022). AGN, as also discussed by Chapman et al. (2023), with R=98±9𝑅plus-or-minus989R=98\pm 9italic_R = 98 ± 9. We obtain SFR100Myr=263±77Myr1subscriptSFR100Myrplus-or-minus26377subscriptMdirect-productsuperscriptyr1\mathrm{SFR_{100Myr}}=263\pm 77\,\mathrm{M_{\odot}\,yr^{-1}}roman_SFR start_POSTSUBSCRIPT 100 roman_M roman_y roman_r end_POSTSUBSCRIPT = 263 ± 77 roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and M=(3.6±1.3)×1010Myr1subscriptMplus-or-minus3.61.3superscript1010subscriptMdirect-productsuperscriptyr1\mathrm{M_{*}}=(3.6\pm 1.3)\times 10^{10}\,\mathrm{M_{\odot}\,yr^{-1}}roman_M start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = ( 3.6 ± 1.3 ) × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Both of these values are significantly lower than those reported by Hill et al. (2020) and Hill et al. (2022). In particular, we note that the stellar-mass value that we find is more consistent with the dynamical mass of (25)×1010Mabsent25superscript1010subscriptMdirect-product\approx(2-5)\times 10^{10}\,\mathrm{M_{\odot}}≈ ( 2 - 5 ) × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT estimated by Chapman et al. (2023).

The stellar masses of these two galaxies correspond roughly to the break mass of the galaxy stellar mass function at z4𝑧4z\approx 4italic_z ≈ 4 (e.g. Song et al., 2016; Weaver et al., 2023). Comparing to the SED fitting results of Monson et al. (2023) on X-ray selected AGN in the SSA22 protocluster at z=3.09𝑧3.09z=3.09italic_z = 3.09, the AGN in SPT2349–56 on average are hosted in slightly less massive, but significantly more star-forming galaxies. In fact, Monson et al. (2023) found that most of the AGN in SSA22 are located below the main sequence, while few of them are consistent with it within the uncertainties on mass and SFR. Instead, according to our findings, both C1 and C6 are consistent with being main-sequence or even starbursting galaxies (e.g. Khusanova et al., 2021; Popesso et al., 2023). The AGN in SPT2349–56 might be in an earlier stage of galaxy evolution than those in SSA22, and are probably still in the peak phase of stellar and BH mass assembly. We also note that the SFRs of C1 and C6 averaged on a shorter timescale, i.e. 10 Myr, and the instantaneous SFRs returned by CIGALE are even higher than the values reported above (see Tab. 3). This is due to the SFHs of these galaxies favoring a recent and short burst of star formation.

Table 3: Best-fitting physical parameters of C1 and C6 obtain via SED fitting.
C1 C6
SFR100Myr [Myr1subscriptMdirect-productsuperscriptyr1\mathrm{M_{\odot}\,yr^{-1}}roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ] 228±141plus-or-minus228141228\pm 141228 ± 141 263±77plus-or-minus26377263\pm 77263 ± 77
SFR10Myr [Myr1subscriptMdirect-productsuperscriptyr1\mathrm{M_{\odot}\,yr^{-1}}roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ] 1447±677plus-or-minus14476771447\pm 6771447 ± 677 1105±198plus-or-minus11051981105\pm 1981105 ± 198
SFR0Myr [Myr1subscriptMdirect-productsuperscriptyr1\mathrm{M_{\odot}\,yr^{-1}}roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ] 2127±1292plus-or-minus212712922127\pm 12922127 ± 1292 1232±242plus-or-minus12322421232\pm 2421232 ± 242
M [ 1010superscript101010^{10}10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT M] 3.5±2.8plus-or-minus3.52.83.5\pm 2.83.5 ± 2.8 3.5±1.4plus-or-minus3.51.43.5\pm 1.43.5 ± 1.4
Lbol,AGN [ergs1ergsuperscripts1\mathrm{erg\,s^{-1}}roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT] (1.9±0.7)×1047plus-or-minus1.90.7superscript1047(1.9\pm 0.7)\times 10^{47}( 1.9 ± 0.7 ) × 10 start_POSTSUPERSCRIPT 47 end_POSTSUPERSCRIPT (3.3±0.2)×1045plus-or-minus3.30.2superscript1045(3.3\pm 0.2)\times 10^{45}( 3.3 ± 0.2 ) × 10 start_POSTSUPERSCRIPT 45 end_POSTSUPERSCRIPT
Radio Loudness 98±9plus-or-minus98998\pm 998 ± 9
999The rows report the best-fitting SFRs averaged over 100 Myr and 10 Myr, the instantaneous SFRs, the stellar masses, and the AGN bolometric luminosities.

3.4 X-ray stacking analysis

We performed an X-ray stacking analysis on the protocluster members to check for sub-threshold X-ray emission and constrain the average X-ray luminosity. We used the CIAO wavdetect and dmfilth tools to identify detected X-ray sources, and replace them with Poisson noise sampled from nearby regions. We then used the dmcopy tool to cut thumbnails of the X-ray images and exposure maps centered at the positions of the protocluster galaxies, excluding C1 and C6 that are detected individually. We summed them separately in the soft, hard, and full bands. We note that all of the protocluster members are within 3absent3\approx 3≈ 3 arcmin from the average aim point of the observations, such that we do not expect a strong variation of the PSF at their positions. The sum of the counts in a R=2𝑅2R=2italic_R = 2 pixel (i.e., 1absent1\approx 1≈ 1 arcsec) region around the centers of the stacked images divided by the average values of the stacked exposure maps in the same regions returns the stacked count rates in the three bands. We estimated the background level from nearby regions in the stacked images. We assessed detection significance and net-count numbers following the procedure in § 2.2.

We did not detect significant stacked X-ray emission from the protocluster members in any energy band. We repeated the procedure considering first all of the possible members (i.e., 97 objects), then only those identified spectroscopically (i.e., 36 objects), and finally only the DSFGs (i.e., 20 objects). Assuming obscured powerlaw emission with Γ=1.9Γ1.9\Gamma=1.9roman_Γ = 1.9 and NH=1024cm2subscript𝑁𝐻superscript1024superscriptcm2N_{H}=10^{24}\,\mathrm{cm^{-2}}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT 24 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT, the lack of significant stacked signal for the sample of DSFGs corresponds to an average intrinsic X-ray luminosity <2×1043ergs1absent2superscript1043ergsuperscripts1<2\times 10^{43}\,\mathrm{erg\,s^{-1}}< 2 × 10 start_POSTSUPERSCRIPT 43 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. We estimate similar values for the other samples of stacked galaxies. We stress that the stacked exposure times are in the range 5×1065superscript1065\times 10^{6}5 × 10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT s to 1.9×1071.9superscript1071.9\times 10^{7}1.9 × 10 start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT s, depending on the stacked sample. Based on these results, we did not find evidence for widespread low-rate SMBH accretion in the structure, although we cannot exclude that some of the protocluster members host faint AGN.

Table 4: Fractions of X-ray selected AGN among different galaxy populations in protoclusters, as described in Appendix B.
Protocluster z𝑧zitalic_z fAGNDSFGf\mathrm{{}_{AGN}^{DSFG}}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_DSFG end_POSTSUPERSCRIPT fAGNSEDf\mathrm{{}_{AGN}^{SED}}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_SED end_POSTSUPERSCRIPT fAGNLAEf\mathrm{{}_{AGN}^{LAE}}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_LAE end_POSTSUPERSCRIPT fAGNHAEf\mathrm{{}_{AGN}^{HAE}}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_HAE end_POSTSUPERSCRIPT
spec. spec. all spec. all spec. all
CL 0218.3–0510 1.62 0.170.05+0.06subscriptsuperscript0.170.060.050.17^{+0.06}_{-0.05}0.17 start_POSTSUPERSCRIPT + 0.06 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.05 end_POSTSUBSCRIPT 0.030.02+0.05subscriptsuperscript0.030.050.020.03^{+0.05}_{-0.02}0.03 start_POSTSUPERSCRIPT + 0.05 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.02 end_POSTSUBSCRIPT
Spiderweb 2.156 0.140.08+0.17subscriptsuperscript0.140.170.080.14^{+0.17}_{-0.08}0.14 start_POSTSUPERSCRIPT + 0.17 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.08 end_POSTSUBSCRIPT 0.500.13+0.13subscriptsuperscript0.500.130.130.50^{+0.13}_{-0.13}0.50 start_POSTSUPERSCRIPT + 0.13 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.13 end_POSTSUBSCRIPT 0.140.04+0.05subscriptsuperscript0.140.050.040.14^{+0.05}_{-0.04}0.14 start_POSTSUPERSCRIPT + 0.05 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.04 end_POSTSUBSCRIPT 0.190.06+0.09subscriptsuperscript0.190.090.060.19^{+0.09}_{-0.06}0.19 start_POSTSUPERSCRIPT + 0.09 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.06 end_POSTSUBSCRIPT 0.090.03+0.05subscriptsuperscript0.090.050.030.09^{+0.05}_{-0.03}0.09 start_POSTSUPERSCRIPT + 0.05 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.03 end_POSTSUBSCRIPT 0.170.04+0.05subscriptsuperscript0.170.050.040.17^{+0.05}_{-0.04}0.17 start_POSTSUPERSCRIPT + 0.05 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.04 end_POSTSUBSCRIPT 0.130.03+0.04subscriptsuperscript0.130.040.030.13^{+0.04}_{-0.03}0.13 start_POSTSUPERSCRIPT + 0.04 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.03 end_POSTSUBSCRIPT
PHz G237.01+42.50 2.16 0.500.22+0.22subscriptsuperscript0.500.220.220.50^{+0.22}_{-0.22}0.50 start_POSTSUPERSCRIPT + 0.22 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.22 end_POSTSUBSCRIPT. 0.100.04+0.07subscriptsuperscript0.100.070.040.10^{+0.07}_{-0.04}0.10 start_POSTSUPERSCRIPT + 0.07 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.04 end_POSTSUBSCRIPT 0.170.10+0.20subscriptsuperscript0.170.200.100.17^{+0.20}_{-0.10}0.17 start_POSTSUPERSCRIPT + 0.20 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.10 end_POSTSUBSCRIPT
2QZ Cluster 2.23 0.320.09+0.10subscriptsuperscript0.320.100.090.32^{+0.10}_{-0.09}0.32 start_POSTSUPERSCRIPT + 0.10 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.09 end_POSTSUBSCRIPT
HS 1700+643 2.30 <0.36absent0.36<0.36< 0.36 0.050.02+0.05subscriptsuperscript0.050.050.020.05^{+0.05}_{-0.02}0.05 start_POSTSUPERSCRIPT + 0.05 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.02 end_POSTSUBSCRIPT 0.070.03+0.06subscriptsuperscript0.070.060.030.07^{+0.06}_{-0.03}0.07 start_POSTSUPERSCRIPT + 0.06 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.03 end_POSTSUBSCRIPT 0.080.05+0.11subscriptsuperscript0.080.110.050.08^{+0.11}_{-0.05}0.08 start_POSTSUPERSCRIPT + 0.11 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.05 end_POSTSUBSCRIPT
USS 1558–003 2.53 <0.19absent0.19<0.19< 0.19 0.040.02+0.03subscriptsuperscript0.040.030.020.04^{+0.03}_{-0.02}0.04 start_POSTSUPERSCRIPT + 0.03 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.02 end_POSTSUBSCRIPT 0.020.01+0.02subscriptsuperscript0.020.020.010.02^{+0.02}_{-0.01}0.02 start_POSTSUPERSCRIPT + 0.02 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.01 end_POSTSUBSCRIPT
SSA22 3.09 0.500.14+0.14subscriptsuperscript0.500.140.140.50^{+0.14}_{-0.14}0.50 start_POSTSUPERSCRIPT + 0.14 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.14 end_POSTSUBSCRIPT 0.220.07+0.09subscriptsuperscript0.220.090.070.22^{+0.09}_{-0.07}0.22 start_POSTSUPERSCRIPT + 0.09 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.07 end_POSTSUBSCRIPT 0.030.01+0.02subscriptsuperscript0.030.020.010.03^{+0.02}_{-0.01}0.03 start_POSTSUPERSCRIPT + 0.02 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.01 end_POSTSUBSCRIPT
DRC 4.002 0.150.07+0.12subscriptsuperscript0.150.120.070.15^{+0.12}_{-0.07}0.15 start_POSTSUPERSCRIPT + 0.12 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.07 end_POSTSUBSCRIPT
SPT2349–56 4.3 0.090.08+0.04subscriptsuperscript0.090.040.080.09^{+0.04}_{-0.08}0.09 start_POSTSUPERSCRIPT + 0.04 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.08 end_POSTSUBSCRIPT <0.36absent0.36<0.36< 0.36 <0.21absent0.21<0.21< 0.21
101010Uncertainties (upper limits) are at the 68% (90%) confidence level, and have been computed as the Jeffrey Bayesian Intervals for binomial proportions (e.g. Brown et al., 2001).

4 Discussion

In this section we discuss some implications of the results presented in § 3. In particular, in § 4.1 we estimate the contribution of the diffuse gas in the AGN host galaxies, i.e., the interstellar medium, to the nuclear obscuration. In § 4.2 we estimate the incidence of AGN among the protocluster member galaxies, and we compare it with other protoclusters and expectations in the field environment. In § 4.3 we quantify the enhancement of luminous AGN discovered in z4𝑧4z\approx 4italic_z ≈ 4 gas-rich protocluster cores.

4.1 ISM obscuration

In the past decades, several works based on X-ray surveys established observationally that the fraction of obscured AGN increases significantly from the local universe up to at least z45𝑧45z\approx 4-5italic_z ≈ 4 - 5 (e.g. La Franca et al., 2005; Treister & Urry, 2006; Buchner et al., 2015; Lanzuisi et al., 2018; Vito et al., 2018b; Iwasawa et al., 2020; Peca et al., 2023). A possible explanation for that behaviour is that the contribution of the diffuse gas in the host galaxies (i.e., the interstellar medium; ISM) to the nuclear obscuration of AGN increases strongly from the local to the high-redshift universe, due to the larger gas content and smaller sizes characterizing galaxies at early cosmic epochs that almost automatically produce larger gas column densities. This scenario has been tested both observationally and via numerical simulations (e.g. Gilli et al., 2014; Circosta et al., 2019; Trebitsch et al., 2019; D’Amato et al., 2020; Ni et al., 2020; Lupi et al., 2022; Vito et al., 2022). In particular, Gilli et al. (2022) developed an analytical model for the ISM obscuration that accounts for the ISM clumpiness with a distribution of cloud sizes, masses, and densities, and showed that it predicts well the measured evolution of the obscured AGN fraction up to z4𝑧4z\approx 4italic_z ≈ 4.

We tested whether the ISM in the two AGN discovered in SPT2349–56 can contribute significantly to their heavy nuclear obscuration, under simple geometrical assumptions. Following Sec. 4.1 of Gilli et al. (2022), we assumed a smooth distribution of the ISM and that the [C II] surface brightness traces the ISM density, which is distributed in a disk with an exponential profile. This is consistent with the ALMA high-resolution imaging of C1 presented by Hill et al. (2022), in which the galaxy appears as a nearly edge-on disk, and the [C II] light profile is best fitted with a Sersic model with index n=1.07±0.02𝑛plus-or-minus1.070.02n=1.07\pm 0.02italic_n = 1.07 ± 0.02, that is, close to an exponential profile. Gilli et al. (2022) showed that, in that case, the gas column density for a line-of-sight inclined by an angle θ𝜃\thetaitalic_θ is

NH(θ)=r0ρ0sinθ(1ehr0tanθ)subscript𝑁𝐻𝜃subscript𝑟0subscript𝜌0sin𝜃1superscript𝑒subscript𝑟0tan𝜃N_{H}(\theta)=\frac{r_{0}\rho_{0}}{\textit{sin}\theta}(1-e^{-\frac{h}{r_{0}}% \textit{tan}\theta})italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ( italic_θ ) = divide start_ARG italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG sin italic_θ end_ARG ( 1 - italic_e start_POSTSUPERSCRIPT - divide start_ARG italic_h end_ARG start_ARG italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG tan italic_θ end_POSTSUPERSCRIPT ) (2)

where r0subscript𝑟0r_{0}italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the scale radius, which for a pure exponential disk can be expressed in terms of the half-light radius rhl=1.678r0subscript𝑟𝑙1.678subscript𝑟0r_{hl}=1.678r_{0}italic_r start_POSTSUBSCRIPT italic_h italic_l end_POSTSUBSCRIPT = 1.678 italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, ρ0=2.8Mgas4hπrhl2subscript𝜌02.8subscript𝑀gas4𝜋superscriptsubscript𝑟𝑙2\rho_{0}=\frac{2.8M_{\textit{gas}}}{4h\pi r_{hl}^{2}}italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG 2.8 italic_M start_POSTSUBSCRIPT gas end_POSTSUBSCRIPT end_ARG start_ARG 4 italic_h italic_π italic_r start_POSTSUBSCRIPT italic_h italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG is the central gas density, and 2h22h2 italic_h is the disk thickness. It is further assumed a typical thickness h=0.15rhl0.15subscript𝑟𝑙h=0.15r_{hl}italic_h = 0.15 italic_r start_POSTSUBSCRIPT italic_h italic_l end_POSTSUBSCRIPT (Gilli et al., 2022, and references therein) and no vertical gradient for the gas density.

For C1, Hill et al. (2020) estimated a molecular gas mass of MH2=7.5×1010Msubscript𝑀subscript𝐻27.5superscript1010subscriptMdirect-productM_{H_{2}}=7.5\times 10^{10}\,\mathrm{M_{\odot}}italic_M start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 7.5 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT from the CO(4–3) emission line, and Hill et al. (2022) measured a [C II] half-light radius111111Since the [C II] emission traces the total gas, including the diffuse component, and is thus an upper limit on the extension of the molecular gas. In this sense, our estimate of NHsubscript𝑁𝐻N_{H}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT is conservative. rhl=2.91subscript𝑟𝑙2.91r_{hl}=2.91italic_r start_POSTSUBSCRIPT italic_h italic_l end_POSTSUBSCRIPT = 2.91 kpc. Following D’Amato et al. (2020), we consider Mgas=65MH2subscript𝑀gas65subscript𝑀subscript𝐻2M_{\textit{gas}}=\frac{6}{5}M_{H_{2}}italic_M start_POSTSUBSCRIPT gas end_POSTSUBSCRIPT = divide start_ARG 6 end_ARG start_ARG 5 end_ARG italic_M start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT to account for the mass of atomic gas in the galaxy. Therefore, assuming an edge-on configuration for C1, we obtain NHθ=901.2×1024cm2superscriptsubscript𝑁𝐻𝜃superscript901.2superscript1024superscriptcm2N_{H}^{\theta=90^{\circ}}\approx 1.2\times 10^{24}\,\mathrm{cm^{-2}}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_θ = 90 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ≈ 1.2 × 10 start_POSTSUPERSCRIPT 24 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT, while assuming the average viewing angle for random inclinations we get NHθ=57.34×1023cm2superscriptsubscript𝑁𝐻𝜃superscript57.34superscript1023superscriptcm2N_{H}^{\theta=57.3^{\circ}}\approx 4\times 10^{23}\,\mathrm{cm^{-2}}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_θ = 57.3 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ≈ 4 × 10 start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT. Smaller inclinations would not be consistent with the nearly edge-on [C II] image of this galaxy, under the assumption of a disk geometry, which is consistent with recent ALMA observations of 4<z<54𝑧54<z<54 < italic_z < 5 DSFGs (e.g. Rizzo et al., 2021). These order-of-magnitude values are close to the column density measured for C1 from our X-ray spectral analysis (Tab. 2), confirming that the gas distributed in the host galaxy can contribute significantly to the nuclear obscuration. We note that the use of the [C II] profile as a proxy of the molecular gas extension is conservative, as that transition traces also atomic gas, which is typically more extended than the dense molecular phase.

The molecular gas mass and [C II] half-light radius of C6 are MH2=3.7×1010Msubscript𝑀subscript𝐻23.7superscript1010subscriptMdirect-productM_{H_{2}}=3.7\times 10^{10}\,\mathrm{M_{\odot}}italic_M start_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 3.7 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT and rhl=1.30subscript𝑟𝑙1.30r_{hl}=1.30italic_r start_POSTSUBSCRIPT italic_h italic_l end_POSTSUBSCRIPT = 1.30 kpc (Hill et al., 2020, 2022). Although the [C II] morphology is best fitted with a Sèrsic profile n=0.78𝑛0.78n=0.78italic_n = 0.78 (Hill et al., 2022), we considered an exponential profile for simplicity. C6 appears close to face-on in the [C II] imaging (Hill et al., 2022), and thus we use θ=57.3𝜃57.3\theta=57.3italic_θ = 57.3 and θ=0𝜃0\theta=0italic_θ = 0 as boundary values of its inclination, finding NHθ=57.31.1×1024cm2superscriptsubscript𝑁𝐻𝜃superscript57.31.1superscript1024superscriptcm2N_{H}^{\theta=57.3^{\circ}}\approx 1.1\times 10^{24}\,\mathrm{cm^{-2}}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_θ = 57.3 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ≈ 1.1 × 10 start_POSTSUPERSCRIPT 24 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT and NHθ=07×1023cm2superscriptsubscript𝑁𝐻𝜃superscript07superscript1023superscriptcm2N_{H}^{\theta=0^{\circ}}\approx 7\times 10^{23}\,\mathrm{cm^{-2}}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_θ = 0 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ≈ 7 × 10 start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT. Therefore, also for C6 the nuclear obscuration observed in the X-ray band can be due partly or totally to the gas in the host galaxy. In particular, we note that the ISM in C6 can reach higher column densities than C1 at a given inclination angle because of its compactness, that only high-resolution ALMA imaging could probe.

We stress that in this section we do not aim to measure the ISM contribution to the nuclear obscuration estimated via the X-ray observations, but rather to check whether such contribution can in principle be significant. One key assumption of the computations above is that the ISM is distributed smoothly in the galaxies, while it is known to be clumpy. Thus, depending on the geometry and physical properties (e.g., size and mass distribution) of the individual clouds, the ISM column density can be significantly different from, and possibly much lower than, the values estimated in this section. However, due to the large total gas masses estimated for C1 and C6 and depending on the assumed sizes and masses of molecular gas clouds (e.g., Miville-Deschênes et al., 2017; Dessauges-Zavadsky et al., 2019), the cloud filling factors in these galaxies can be as large as 100%. Therefore, the assumption of a smooth ISM is reasonable for the order-of-magnitude computations of this section.

Refer to caption
Figure 6: Fraction of X-ray selected AGN in a sample of protoclusters as a function of redshift. The different symbol shapes and colors correspond to different structures and selection methods of the parent galaxy population, as marked in the figure. Different symbols for the same structure are slightly shifted in redshift for clarity. We consider the parent samples of spectroscopically confirmed protocluster members when available (filled symbols), otherwise we consider all member candidates (empty symbols). We refer to Sec. 4.2 and Appendix B for the computation of these values and the relevant citations. For comparison with low-redshift, virialized systems, the filled and hashed yellow stripes represent the X-ray AGN fractions in galaxy clusters presented by Martini et al. (2009) and Bufanda et al. (2017), respectively.

4.2 Incidence of AGN activity in SPT2349–56

We detected two X-ray AGN out of 38 known members, implying an overall AGN fraction of 0.050.03+0.05superscriptsubscript0.050.030.050.05_{-0.03}^{+0.05}0.05 start_POSTSUBSCRIPT - 0.03 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.05 end_POSTSUPERSCRIPT, where uncertainties are based on the Jeffrey Bayesian credible interval for binomial proportions (e.g. Brown et al., 2001). However, different populations of galaxies are intrinsically characterized by different AGN incidences, such that any comparison with other protoclusters or blank fields should take the specific galaxy selection into account (e.g. Vito et al., 2023). Therefore, in the following we consider separately galaxies selected as DSFGs, LAEs, and LBGs.

Two out of the 22 galaxies selected as DSFGs in SPT2349–56 are X-ray selected AGN, corresponding to an X-ray AGN fraction in such a galaxy population of 0.090.04+0.08superscriptsubscript0.090.040.080.09_{-0.04}^{+0.08}0.09 start_POSTSUBSCRIPT - 0.04 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.08 end_POSTSUPERSCRIPT. This value is remarkably close to the AGN fraction in DRC (Vito et al., 2020) down to similar FIR luminosity limits, adding the AGN content to other physical properties in common between the two protoclusters, thus suggesting that they have been caught during a similar phase of their galaxy and SMBH evolution. Since SPT2349–56 and DRC share a similar selection and are located at similar redshifts, we use both of them jointly to improve the number statistics and estimate the fraction of AGN among DSFGs in z4𝑧4z\approx 4italic_z ≈ 4 gas-rich protoclusters by considering all of their DSFG members together (35, four of which are X-ray AGN), finding an X-ray AGN fraction of 0.110.04+0.06superscriptsubscript0.110.040.060.11_{-0.04}^{+0.06}0.11 start_POSTSUBSCRIPT - 0.04 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.06 end_POSTSUPERSCRIPT.

These results are consistent with the typical ranges found for DSFGs (e.g. Alexander et al., 2005; Georgantopoulos et al., 2011; Wang et al., 2013; Shanks et al., 2021). However, such samples have typically lower redshift (i.e., z=23𝑧23z=2-3italic_z = 2 - 3, where the cosmic AGN activity peaks; e.g., Aird et al. 2015) than SPT2349–56, such that a direct comparison may be misleading. This is due to the quite strong evolution of the cosmic AGN and DSFG populations, which is also dependent on the considered luminosity regimes (e.g. Ueda et al., 2014; Aird et al., 2015; Traina et al., 2024). For example, if the space density of the X-ray AGN selected AGN decreases from z=2𝑧2z=2italic_z = 2 to z=4𝑧4z=4italic_z = 4 more strongly than the density of DSFGs, as it appears from observational works, it will cause generally a decreasing AGN fraction at increasing redshift. In this case, observing similar AGN fractions at z=4𝑧4z=4italic_z = 4 as at z=2𝑧2z=2italic_z = 2 would suggest stronger positive environmental effects at high redshift, but this is currently quite speculative.

In order to factor out the cosmic evolution of the AGN population, the comparison should be made with a sample of DSFGs at similar redshift as SPT2349–56. We collected a total of 54 sub-mm-selected galaxies in the E-CDFS, COSMOS, and UDS fields from da Cunha et al. (2015), Scoville et al. (2016), and Dudzevičiūtė et al. (2020), respectively, with photometric redshift 3.5<z<4.53.5𝑧4.53.5<z<4.53.5 < italic_z < 4.5 and overlapping with the available X-ray coverage in those fields (Civano et al., 2016; Xue et al., 2016; Kocevski et al., 2018), with sensitivities similar to, or deeper than, the Chandra observations covering SPT2349–56 and DRC. We found no match with the X-ray catalogs, corresponding to an observed AGN fraction among field DSFGs <0.04absent0.04<0.04< 0.04. To test quantitatively if the AGN fraction in z4𝑧4z\approx 4italic_z ≈ 4 gas-rich protoclusters is consistent with the field value, we ran the Boschloo’s exact test for a 2x2 contingency table. The null hypothesis is that the intrinsic AGN fractions in protoclusters and in the field are equal, with the observed difference due only to statistical fluctuations. Considering SPT2349–56 only, the test returns a probability of 5%absentpercent5\approx 5\%≈ 5 % to obtain only by chance a case at least as extreme as the observed ones (i.e., no AGN out 54 DSFGs in the field, and 2absent2\geq 2≥ 2 AGN out of 22 DSFGs in SPT2349–56). Considering SPT2349–56 and DRC together (i.e., 4absent4\geq 4≥ 4 AGN out of a total of 35 DSFGs), such probability decreases to 1%absentpercent1\approx 1\%≈ 1 %. This comparison points toward a higher AGN incidence among DSFGs in z4𝑧4z\approx 4italic_z ≈ 4 protoclusters than in the field at similar redshift, although the AGN content of additional and similar structures should be investigated to obtain a definitive proof. Moreover, we caution that the reference samples have been selected differently from observations performed at different sub-mm/mm frequencies and with different depths, and thus might have different flux, luminosity, and mass distributions from the DSFGs population in protoclusters.

Considering the entire sample of 30 protocluster members spectroscopically identified with ALMA via detection of the [C II] and CO(4–3) emission lines, thus including both DSFGs and sources undetected in sub-mm/mm continuum, the AGN fraction decreases slightly to 0.070.03+0.06superscriptsubscript0.070.030.060.07_{-0.03}^{+0.06}0.07 start_POSTSUBSCRIPT - 0.03 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.06 end_POSTSUPERSCRIPT. None of the 8 spectroscopically confirmed Lyα𝛼\alphaitalic_α emitter galaxies (LAEs) discovered by Apostolovski et al. (2023) in the SPT2349–56 structure is significantly detected in the X-rays, resulting in an upper limit on AGN fraction among that galaxy population of <0.21absent0.21<0.21< 0.21, consistent with results from blank fields (e.g. Lehmer et al., 2009b; Digby-North et al., 2010; Zheng et al., 2010). We obtain no X-ray detection also of the 4 LBGs in the SPT2349–56 core (Rotermund et al., 2021), implying an AGN fraction of <0.36absent0.36<0.36< 0.36.

In Fig. 6, we compare the X-ray AGN fractions of SPT2349–56 with those of a collection of other protoclusters covered with sensitive X-ray observations, as computed in Appendix B and reported in Tab. 4. The AGN incidence among DSFGs in SPT2349–56 is consistent with the results for other z>2𝑧2z>2italic_z > 2 protoclusters, although a couple of structures have significantly higher AGN fractions. Instead, the AGN fraction drops dramatically in virialized clusters at lower redshift. This behavior might be connected to the virialization of the structures or strong AGN feedback hindering the infall of large amounts of cold gas into galaxies, and thus the triggering of luminous nuclear activity. We note that the points in Fig. 6 are observed fractions, and we refer to Appendix B for a discussion of the caveats. A more in-depth investigation of the possible cosmic evolution of the AGN incidence in protoclusters would require taking several effects into account, among which are the different sensitivities of the multi-wavelength observations, the dependence of SMBH accretion on the host-galaxy stellar mass, and the intrinsic cosmic evolution of the AGN population (e.g., Aird et al., 2015, 2018; Yang et al., 2017, 2018b; Zou et al., 2024), which can be controlled for by comparing with the field AGN incidence. Such analysis require, among other things, a proper assessment of the multi-band observation sensitivities across multiple extragalactic fields and of the different specific selections applied on such fields, as well as a consistent SED fitting analysis of the resulting large samples of SMGs. These tasks are beyond the scope of this paper, and we reserve it for a dedicated future work.

4.3 Enhancement of fast SMBH growth in z4𝑧4z\approx 4italic_z ≈ 4 overdensities of DSFGs

The obscuration level and luminosity of C1 are remarkably similar to those of DRC-2 (Fig. 4). To our knowledge, AGN with similar X-ray luminosities in protocluster environments have been detected only in two structures at z=2.162.41𝑧2.162.41z=2.16-2.41italic_z = 2.16 - 2.41 by (Ivison et al., 2019; Tozzi et al., 2022a, see Fig. 4), and those are unobscured or at most mildly obscured objects. The detection of a luminous, Compton-thick AGN in the core regions of the only two z4𝑧4z\approx 4italic_z ≈ 4 protoclusters selected as overdensities of dusty star-forming galaxies and covered by sensitive X-ray observations suggests that gas-rich and dense regions of the Universe at those epochs may promote the triggering of extremely fast SMBH growth in heavily obscured conditions.

To estimate the level of enhancement of luminous AGN in SPT2349–56 and DRC, we compare their space density with that of AGN in the field environment with similar luminosity and redshift. We assume that the two protoclusters are enclosed in spherical volumes with radii equal to the projected distances between the observed centers of the structures and the farthest spectroscopically confirmed members, which are 8.8absent8.8\leavevmode\nobreak\ \approx 8.8≈ 8.8 comoving Mpc (cMpccMpc\,\mathrm{cMpc}roman_cMpc) and 3.8cMpcabsent3.8cMpc\leavevmode\nobreak\ \approx 3.8\,\mathrm{cMpc}≈ 3.8 roman_cMpc, respectively (Ivison et al., 2020; Hill et al., 2022). Accounting for the uncertainties on their estimated luminosities, we consider the two luminous AGN in SPT2349–56 and DRC as representative of the AGN population in the range logLXergs1=4546subscript𝐿𝑋ergsuperscripts14546\frac{L_{X}}{\mathrm{erg\,s^{-1}}}=45-46divide start_ARG italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG start_ARG roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG = 45 - 46 in z4𝑧4z\approx 4italic_z ≈ 4 gas-rich protoclusters. The space density of such a population is then two divided by the sum of the volumes computed above; i.e., ΦAGNprot=6.44.2+8.5×104cMpc3dex1superscriptsubscriptΦAGNprotsuperscriptsubscript6.44.28.5superscript104superscriptcMpc3superscriptdex1\Phi_{\mathrm{AGN}}^{\mathrm{prot}}=6.4_{-4.2}^{+8.5}\times 10^{-4}\,\mathrm{% cMpc^{-3}\,dex^{-1}}roman_Φ start_POSTSUBSCRIPT roman_AGN end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_prot end_POSTSUPERSCRIPT = 6.4 start_POSTSUBSCRIPT - 4.2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 8.5 end_POSTSUPERSCRIPT × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT roman_cMpc start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT roman_dex start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, where the uncertainties account for the statistical errors on the number of objects (Gehrels, 1986). The space density of logLXergs1=4546subscript𝐿𝑋ergsuperscripts14546\frac{L_{X}}{\mathrm{erg\,s^{-1}}}=45-46divide start_ARG italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG start_ARG roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG = 45 - 46 at z=4.15𝑧4.15z=4.15italic_z = 4.15 in the field environment is ΦAGNfield5×108cMpc3dex1superscriptsubscriptΦAGNfield5superscript108superscriptcMpc3superscriptdex1\Phi_{\mathrm{AGN}}^{\mathrm{field}}\approx 5\times 10^{-8}\,\mathrm{cMpc^{-3}% \,dex^{-1}}roman_Φ start_POSTSUBSCRIPT roman_AGN end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_field end_POSTSUPERSCRIPT ≈ 5 × 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT roman_cMpc start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT roman_dex start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (Fig. 7; e.g., Gilli et al., 2007; Ueda et al., 2014; Aird et al., 2015; Vito et al., 2018b), corresponding to an expected number of 1.5×1041.5superscript1041.5\times 10^{-4}1.5 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT luminous AGN in the considered volume. The Poisson probability of instead finding two AGN with such luminosity by chance only is negligible. This simple computation suggests that the triggering of luminous AGN in gas-rich protocluster environments at z4𝑧4z\approx 4italic_z ≈ 4 is enhanced by about four orders of magnitude with respect to the field environment at similar redshift with high significance.

The most uncertain quantities that enter in the estimate are the volumes of the two protoclusters. As a second and more conservative estimate, we assumed that these structures extend up to R=28cMpc𝑅28cMpcR=28\,\mathrm{cMpc}italic_R = 28 roman_cMpc. According to Muldrew et al. (2015), this is the average radius that encloses 90% of the stellar mass of protoclusters at z=4𝑧4z=4italic_z = 4 that form massive galaxy clusters at z=0𝑧0z=0italic_z = 0. In this case, we estimate ΦAGNprot=1.00.6+1.4×105cMpc3dex1superscriptsubscriptΦAGNprotsuperscriptsubscript1.00.61.4superscript105superscriptcMpc3superscriptdex1\Phi_{\mathrm{AGN}}^{\mathrm{prot}}=1.0_{-0.6}^{+1.4}\times 10^{-5}\,\mathrm{% cMpc^{-3}\,dex^{-1}}roman_Φ start_POSTSUBSCRIPT roman_AGN end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_prot end_POSTSUPERSCRIPT = 1.0 start_POSTSUBSCRIPT - 0.6 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 1.4 end_POSTSUPERSCRIPT × 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT roman_cMpc start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT roman_dex start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, which is still >2absent2>2> 2 dex higher than the field value. The Poisson probability of finding two luminous AGN while expecting the number predicted by the field environment is negligible also in this case.

As a comparison, Tozzi et al. (2022b) found for the Spiderweb protocluster at z2𝑧2z\approx 2italic_z ≈ 2 an AGN enhancement of a factor of tens, depending on the AGN luminosity. This lower value might be due to the fact that z2𝑧2z\approx 2italic_z ≈ 2 protoclusters have often already consumed most of their gas, as suggested by the large fraction of passively evolving galaxies in the Spiderweb structure (Shimakawa et al., 2024), and to the overall cosmic evolution of the AGN space density, that peaks close to that epoch.

The much higher space density of luminous AGN in SPT2349–56 and DRC than in the field at similar redshift can in principle be driven by the space density of the underlying galaxy population, which in protoclusters is enhanced with respect to the field by definition. For instance, Miller et al. (2018) estimated a SMG overdensity in SPT2349–56 of a factor >1000absent1000>1000> 1000. However, they considered only the central R=130𝑅130R=130italic_R = 130 kpc region, where their selection is complete at S1.1mm>0.5μJysubscript𝑆1.1mm0.5𝜇JyS_{1.1\,\mathrm{mm}}>0.5\,\mathrm{\mu Jy}italic_S start_POSTSUBSCRIPT 1.1 roman_mm end_POSTSUBSCRIPT > 0.5 italic_μ roman_Jy. In that same region we detected C1, i.e., 1.00.8+2.3superscriptsubscript1.00.82.31.0_{-0.8}^{+2.3}1.0 start_POSTSUBSCRIPT - 0.8 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 2.3 end_POSTSUPERSCRIPT X-ray luminous AGN, which is at least several million times larger than the expected number of 4×1084superscript1084\times 10^{-8}4 × 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT similar objects in the field, assuming a spherical volume with that radius. This enhancement largely exceeds and thus is hardly driven by the overdensity level of the underlying galaxy population in the considered protoclusters. We stress that C1 is not an extreme galaxy in terms of stellar mass (see § 3.3), and thus the comparison with the overdensity estimated by Miller et al. (2018) for the entire population of DSFGs in the structure is fair. This result is only in apparent contrast with the lower significance found for the enhanced AGN fraction in protoclusters with respect to the field environment discussed in § 4.2, since in this section we focused on the high-luminosity regime only, and compared space densities rather than AGN fractions. Given the shape of the X-ray luminosity function (Fig. 7), such luminous AGN are extremely rare in the field, and finding two of them in small volumes corresponds to a large enhancement factor. In fact, the small enhancement of the overall AGN fraction coupled with the large enhancement of the space density of high-luminosity AGN suggests that the AGN X-ray luminosity function in these protoclusters is flatter than in the field, as also found by Tozzi et al. (2022b) for the Spiderweb protocluster. These computations suggest that gas-rich overdensities of DSFGs at z4𝑧4z\approx 4italic_z ≈ 4 promote extremely luminous and obscured AGN activity. A larger sample of similar protoclusters is needed to confirm it with better statistics.

We note that Yang et al. (2018a) investigated the possible dependence of the average SMBH accretion rate density in samples of galaxies in the COSMOS field as a function of their environments up to 10 Mpc, finding no significant difference in the SMBH accretion power between overdense and field regions at a fixed stellar mass. However, they analysis is limited to z<3𝑧3z<3italic_z < 3 and the environments that they probed are not as dense as SPT2349–56.

The luminous AGN in the z4𝑧4z\approx 4italic_z ≈ 4 protocluster cores represent the phase of fast SMBH growth required to explain the masses of SMBHs in the centers of low-redshift galaxy clusters. Such AGN are likely caught just before the ”blow-out” phase, when AGN feedback clears the line of sight of most of the obscuring material (e.g. Ivison et al., 2019), and eventually hinders star formation and further SMBH growth. X-ray observations of a larger sample of similar environments are required to investigate the AGN population in such structures and prove this scenario securely. The specific selection that led to the identification of SPT2349–56 and DRC appears to be key to identifying high-redshift structures hosting such luminous AGN. In fact, other protoclusters selected as overdensities of Lyman-break galaxies via optical observations do not present strong evidence for the presence of such an AGN population, although they host an unusual large number of rest-frame UV bright galaxies (Toshikawa et al., 2024).

Refer to caption
Figure 7: Space density of luminous (logLXergs1=4546subscript𝐿𝑋ergsuperscripts14546\frac{L_{X}}{\mathrm{erg\,s^{-1}}}=45-46divide start_ARG italic_L start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG start_ARG roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG = 45 - 46) and obscured AGN in gas-rich protocluster cores at z=4.04.3𝑧4.04.3z=4.0-4.3italic_z = 4.0 - 4.3 (red circles) computed under two assumptions for the volumes of the structures (see Sec. 4.3), compared with the predictions of AGN X-ray luminosity functions at z=4.15𝑧4.15z=4.15italic_z = 4.15 in blank fields (Ueda et al., 2014; Georgakakis et al., 2015; Vito et al., 2018b). Gas-rich overdense environments at high redshift enhance the triggering of luminous AGN by 3–5 orders of magnitude. This is likely a physical effect, as it appears not to be simply driven by the large number of galaxies in the structures (see § 4.3).

5 Summary and conclusions

We presented new Chandra observations of the z=4.3𝑧4.3z=4.3italic_z = 4.3 SPT2349–56 protocluster, which was identified as an extreme overdensity of DSFGs (Miller et al., 2018; Hill et al., 2020; Rotermund et al., 2021; Hill et al., 2022; Chapman et al., 2023). We summarize here our main results.

  • We identified two X-ray detected AGN among the SPT2349–56 member galaxies, namely C1 and C6, which are among the most gas-rich galaxies in the system (Hill et al., 2020). We did not detect significant emission by stacking the X-ray data of the individually undetected galaxies, implying an average X-ray luminosity <2×1043ergs1absent2superscript1043ergsuperscripts1<2\times 10^{43}\,\mathrm{erg\,s^{-1}}< 2 × 10 start_POSTSUPERSCRIPT 43 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. See § 2 and § 3.4.

  • C1 is an extremely luminous (L210keV=2×1045ergs1subscript𝐿210keV2superscript1045ergsuperscripts1L_{2-10\,\mathrm{keV}}=2\times{10^{45}}\,\mathrm{erg\,s^{-1}}italic_L start_POSTSUBSCRIPT 2 - 10 roman_keV end_POSTSUBSCRIPT = 2 × 10 start_POSTSUPERSCRIPT 45 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT), Compton-thick (NH=2×1024cm2subscript𝑁𝐻2superscript1024superscriptcm2N_{H}=2\times 10^{24}\,\mathrm{cm^{-2}}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 2 × 10 start_POSTSUPERSCRIPT 24 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT) AGN. The X-ray luminosity translates into a bolometric power 1047ergs1absentsuperscript1047ergsuperscripts1\approx 10^{47}\,\mathrm{erg\,s^{-1}}≈ 10 start_POSTSUPERSCRIPT 47 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, which is also confirmed via SED fitting. Assuming that the SMBH accretion is capped at the Eddington limit, we place a lower limit on its mass of 7×108Mabsent7superscript108subscriptMdirect-product\approx 7\times 10^{8}\,\mathrm{M_{\odot}}≈ 7 × 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT. Both its luminosity and obscuration level are similar to those of another AGN previously detected in the central region of DRC, a similar protocluster at z=4𝑧4z=4italic_z = 4 (Vito et al., 2020). Both of these AGN might have already accreted a significant fraction of the typical mass of SMBHs in the centers of local clusters at much later (>10absent10>10> 10 Gyr) cosmic times. See § 3.1.

  • Due to the low number of detected X-ray photons, we can only place lower limits on the luminosity (L210keV>2×1043ergs1subscript𝐿210keV2superscript1043ergsuperscripts1L_{2-10\,\mathrm{keV}}>2\times{10^{43}}\,\mathrm{erg\,s^{-1}}italic_L start_POSTSUBSCRIPT 2 - 10 roman_keV end_POSTSUBSCRIPT > 2 × 10 start_POSTSUPERSCRIPT 43 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT) and column density (NH=4×1023cm2subscript𝑁𝐻4superscript1023superscriptcm2N_{H}=4\times 10^{23}\,\mathrm{cm^{-2}}italic_N start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 4 × 10 start_POSTSUPERSCRIPT 23 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT) of C6, which is also a radio-loud AGN. See § 3.2.

  • Both C1 and C6 are hosted in galaxies with stellar masses 3×1010Mabsent3superscript1010subscriptMdirect-product\approx 3\times 10^{10}\,\mathrm{M_{\odot}}≈ 3 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, which is close the break value of the galaxy stellar mass function at z=4.3𝑧4.3z=4.3italic_z = 4.3, and have star formation rates consistent with, or in excess of, the expectation of the main sequence of star-forming galaxies at that redshift. See § 3.3.

  • Under simple, but reasonable, assumptions on the geometries of the host galaxies, we conclude that the ISM can in principle contribute significantly to the observed nuclear obscuration of both AGN, in agreement with previous works on high-redshift AGN, although that contribution can be lower in the case of highly clumpy medium. See § 4.1.

  • The X-ray AGN fraction among DSFGs in SPT2349–56 is about 10%, consistent with other z>2𝑧2z>2italic_z > 2 protoclusters, and in particular with DRC. The fraction is higher than the X-ray AGN incidence in DSFGs in the field environment at z4𝑧4z\approx 4italic_z ≈ 4. We could place only loose upper limits on the AGN incidence in LBGs and LAEs in SPT2349–56, due to their small number. See § 4.2.

  • Both SPT2349–56 and DRC, which share similar selection and physical properties, host highly luminous Compton-thick AGN, indicating the existence of a tight link between vigorous phases of star formation, fed by the availability of huge gas reservoirs, and high SMBH accretion rates in the densest environments at high redshift. Such luminous AGN probably represent the period of fast SMBH growth required to explain the presence of 1091010Msuperscript109superscript1010subscriptMdirect-product10^{9}-10^{10}\,\mathrm{M_{\odot}}10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT SMBHs in the central galaxies of local clusters. Under different assumptions about the volumes of these structures and comparing with the predictions of the X-ray luminosity function z=4𝑧4z=4italic_z = 4, we suggest that gas-rich and dense protoclusters at z4𝑧4z\approx 4italic_z ≈ 4 enhance the triggering of extremely fast SMBH accretion by a factor of 3–5 dex with respect to the field environment. This factor exceeds the galaxy overdensity level of the protoclusters, and thus is probably not merely driven by the large number of galaxies in the structures. Further X-ray observations of similar structures are needed to confirm this result. See § 4.3.

Our results demonstrate that sensitive X-ray observations with high angular resolution are crucial to identify AGN in high-redshift protoclusters, which are characterized by large amounts of dust and gas, and thus heavy nuclear obscuration. In the next years, Chandra will play a leading role in this respect, by increasing the samples of high-redshift gas-rich protoclusters with the deep X-ray coverage required to investigate their AGN content. Future X-ray missions will then be crucial to obtain a complete view of the relation between overdense environments and SMBH growth at high redshift (e.g., Vito et al., 2023).

Acknowledgements.
We thank the anonymous referee for their useful comments and suggestions. FV thanks R. Hill and S. Chapman for kindly providing the ALMA and ATCA data and for useful discussion. FV acknowledges support from the ”INAF Ricerca Fondamentale 2023 – Large GO” grant. WNB acknowledges support from CXC grant GO2–23074X. This research has made use of data obtained from the Chandra Data Archive (Proposal ID 23700087), and software provided by the Chandra X-ray Center (CXC) in the application packages CIAO. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al., 2013, 2018), and the Statsmodels package (Seabold & Perktold, 2010).

Appendix A Grid of parameters value used for the SED fitting

Tab. LABEL:Tab_CIGALE lists the parameters and values used for the SED fitting procedure with CIGALE, as described in Sec. 3.3.

Table 5: Parameters and values for the modules used with CIGALE. Parameters not listed here are fixed to their default values.
Parameter Model/values
Star formation history: delayed model and recent burst
Age of the main population 250, 500 Myr
e-folding time 100, 250, 500 Myr
Age of the burst 5, 10, 25, 50 Myr
e-folding time of the bursta 10000 Myr
Burst stellar mass fraction 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
Simple Stellar population: Bruzual & Charlot (2003)
Initial Mass Function Chabrier (2003)
Metallicity 0.008, 0.02 (Solar)
Nebular emission
Gas metallicity 0.008, 0.014
fdust 0, 0.25, 0.5, 0.75, 1.0
Galactic dust extinction
Dust attenuation modified Calzetti et al. (2000)
E(B-V)lines 0.1, 0.3, 0.5, 1, 1.5, 2.0
Scale factor to E(B-V)stars 1
Power-law slope 11-1- 1, 0.750.75-0.75- 0.75, 0.50.5-0.5- 0.5, 0.250.25-0.25- 0.25, 0
Extinction law SMC
Galactic dust emission: Draine et al. (2014)
uminsubscript𝑢minu_{\mathrm{min}}italic_u start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT 2.0, 5, 10, 30, 50
gamma 0.02, 0.1, 0.25, 0.5, 0.75
AGN module: SKIRTOR
Angle between the equatorial plan and edge of the torus 60superscript6060^{\circ}60 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT
Viewing angle 90superscript9090^{\circ}90 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT
AGN fraction 0.0, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99
E(BV)𝐸𝐵𝑉E(B-V)italic_E ( italic_B - italic_V ) of polar dust 0.1
X-ray module
AGN photon index ΓΓ\Gammaroman_Γ 1.9
αoxsubscript𝛼𝑜𝑥\alpha_{ox}italic_α start_POSTSUBSCRIPT italic_o italic_x end_POSTSUBSCRIPT -2.0, -1.9, -1.8, -1.7, -1.6, -1.5
Radio module:b
RAGN 10, 25, 50, 75, 100, 125
αAGNsubscript𝛼AGN\alpha_{\mathrm{AGN}}italic_α start_POSTSUBSCRIPT roman_AGN end_POSTSUBSCRIPT 1.45
121212a Using an e-folding time of the star-formation burst much higher than its age effectively reproduces a constant burst of star formation over a period equal to the burst age. b The Radio module is used only for C6 (see Sec. 3.3).

Appendix B AGN fraction in protoclusters

We report here the computations used to estimate the X-ray selected AGN fractions fAGNsubscript𝑓AGNf_{\mathrm{AGN}}italic_f start_POSTSUBSCRIPT roman_AGN end_POSTSUBSCRIPT among members of a few protoclusters for which dedicated X-ray observations have been obtained and published (Fig. 6). We consider different galaxy populations, based on their selections: sub-mm selected dusty star-forming galaxies (DSFGs), objects selected on the basis of their optical/IR SED (e.g., Lymam-break or BX/MD galaxies), Lyα𝛼\alphaitalic_α emitters (LAEs), and Hα𝛼\alphaitalic_α emitters (HAEs). We also consider separately the secure members of a protocluster (i.e., those identified spectroscopically) and all possible members, including candidate members, except for the DSFG population, for which only spectroscopically identified galaxies are considered. The resulting AGN fractions are summarized in Tab. 4.

The intention of this collection is to provide an easy-to-access list of values of AGN fractions in the literature, for first-order comparisons. Several caveats should be considered when using these values, some of them are discussed here. First, we consider these structures as bona fide protoclusters, based on the definitions provided by the referenced papers. Second, the selection methods (e.g., definitions of colors, thresholds, sampled rest-frame wavelengths, etc.) and sensitivities of the multi-wavelength observations, including the X-ray coverage used to identify AGN, are not homogeneous among these objects. Third, the fractions have been computed simply considering the number of X-ray detected AGN divided by the number of known galaxies belonging to a given class. A more reliable and complete procedure would take into account, for instance, the varying sensitivities of the X-ray and multi-wavelength observations on a field, and control for the stellar mass distribution of the parent populations of galaxies. A few of the works mentioned below did take these precautions into account for individual protoclusters, but extending such procedures homogeneously to the entire protocluster sample considered here is beyond the scope of this paper. Finally, we rely on the published X-ray-to-multiwavelength counterpart matching, unless otherwise noted. The matching procedures generally vary among different works. As a consequence, the following list is far from being complete and homogeneous.

CL 0218.3–0510 (z=1.62𝑧1.62z=1.62italic_z = 1.62): Krishnan et al. (2017) considered 46 massive (i.e., M>1010Msubscript𝑀superscript1010subscriptMdirect-productM_{*}>10^{10}\,\mathrm{M_{\odot}}italic_M start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT > 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT) galaxies identified as robust protocluster member candidates via optical/IR SED fitting by Hatch et al. (2016), and found that 8 of them are detected in the X-ray band, corresponding to an AGN fraction of f=AGNSED0.170.05+0.06f\mathrm{{}_{AGN}^{SED}}=0.17^{+0.06}_{-0.05}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_SED end_POSTSUPERSCRIPT = 0.17 start_POSTSUPERSCRIPT + 0.06 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.05 end_POSTSUBSCRIPT. SMGs have been identified as potential protocluster members (e.g., Smail et al., 2014; Chen et al., 2016), but spectroscopic confirmation is not available to our knwoledge, so we do not consider this population. Tran et al. (2015) reported that 1 out of 33 Hαsubscript𝐻𝛼H_{\alpha}italic_H start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT emitters associated with the protocluster is X-ray detected, corresponding to f=AGNHAE0.030.02+0.05f\mathrm{{}_{AGN}^{HAE}}=0.03^{+0.05}_{-0.02}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_HAE end_POSTSUPERSCRIPT = 0.03 start_POSTSUPERSCRIPT + 0.05 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.02 end_POSTSUBSCRIPT.

Spiderweb protocluster (z=2.156𝑧2.156z=2.156italic_z = 2.156). Tozzi et al. (2022b) studied the X-ray selected AGN in this structure using deep (700 ks) Chandra observations. They reported the detection of 14 protocluster members (13 of which identified spectroscopically), corresponding to an AGN fraction of fAGN=0.25±0.04subscript𝑓𝐴𝐺𝑁plus-or-minus0.250.04f_{AGN}=0.25\pm 0.04italic_f start_POSTSUBSCRIPT italic_A italic_G italic_N end_POSTSUBSCRIPT = 0.25 ± 0.04 (including systematic uncertainties) among spectroscopically identified, massive (logMM>10.5subscript𝑀subscript𝑀direct-product10.5\frac{M_{*}}{M_{\odot}}>10.5divide start_ARG italic_M start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG > 10.5) protocluster members. Here, we instead report the X-ray AGN fractions corresponding to the different galaxy selection methods, considering no threshold in stellar mass. The galaxy parent populations are collected from the same catalogs used by (Tozzi et al., 2022b, see their Tab. 2), to which we added the spectroscopic sample recently presented by Pérez-Martínez et al. (2023a). We obtained AGN fractions of f=AGNDSFG0.140.08+0.17f\mathrm{{}_{AGN}^{DSFG}}=0.14^{+0.17}_{-0.08}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_DSFG end_POSTSUPERSCRIPT = 0.14 start_POSTSUPERSCRIPT + 0.17 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.08 end_POSTSUBSCRIPT, f=AGNLAE0.090.03+0.05f\mathrm{{}_{AGN}^{LAE}}=0.09^{+0.05}_{-0.03}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_LAE end_POSTSUPERSCRIPT = 0.09 start_POSTSUPERSCRIPT + 0.05 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.03 end_POSTSUBSCRIPT , f=AGNHAE0.130.03+0.04f\mathrm{{}_{AGN}^{HAE}}=0.13^{+0.04}_{-0.03}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_HAE end_POSTSUPERSCRIPT = 0.13 start_POSTSUPERSCRIPT + 0.04 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.03 end_POSTSUBSCRIPT, and f=AGNSED0.140.04+0.05f\mathrm{{}_{AGN}^{SED}}=0.14^{+0.05}_{-0.04}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_SED end_POSTSUPERSCRIPT = 0.14 start_POSTSUPERSCRIPT + 0.05 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.04 end_POSTSUBSCRIPT. All DSFGs are spectroscopically identified, while considering only spectroscopically confirmed objects for the other populations we obtained f=AGNLAE0.190.06+0.09f\mathrm{{}_{AGN}^{LAE}}=0.19^{+0.09}_{-0.06}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_LAE end_POSTSUPERSCRIPT = 0.19 start_POSTSUPERSCRIPT + 0.09 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.06 end_POSTSUBSCRIPT, f=AGNHAE0.170.04+0.05f\mathrm{{}_{AGN}^{HAE}}=0.17^{+0.05}_{-0.04}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_HAE end_POSTSUPERSCRIPT = 0.17 start_POSTSUPERSCRIPT + 0.05 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.04 end_POSTSUBSCRIPT, and f=AGNSED0.500.13+0.13f\mathrm{{}_{AGN}^{SED}}=0.50^{+0.13}_{-0.13}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_SED end_POSTSUPERSCRIPT = 0.50 start_POSTSUPERSCRIPT + 0.13 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.13 end_POSTSUBSCRIPT. We note that Jin+21 selected 46 protocluster members as CO-emitters. Among this population we found f=AGNCO0.090.03+0.05f\mathrm{{}^{CO}_{AGN}}=0.09^{+0.05}_{-0.03}italic_f start_FLOATSUPERSCRIPT roman_CO end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT roman_AGN end_POSTSUBSCRIPT = 0.09 start_POSTSUPERSCRIPT + 0.05 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.03 end_POSTSUBSCRIPT.

PHz G237.01+42.50 (z=2.16𝑧2.16z=2.16italic_z = 2.16). Polletta et al. (2021) reported the identification of this protocluster with 31 spectroscopic members detected in optical/IR observations. Among them, three are known X-ray AGN, corresponding to f=AGNSED0.100.04+0.07f\mathrm{{}_{AGN}^{SED}}=0.10^{+0.07}_{-0.04}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_SED end_POSTSUPERSCRIPT = 0.10 start_POSTSUPERSCRIPT + 0.07 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.04 end_POSTSUBSCRIPT. We note that Polletta et al. (2021) included also an X-ray undetected broad emission-line AGN in their computation of the AGN fraction in the structure, while here we limited to X-ray selected AGN. Among the 31 members of the protocluster, 6 were also selected as HAEs, one of which is an X-ray AGN, i.e., f=AGNHAE0.170.10+0.20f\mathrm{{}_{AGN}^{HAE}}=0.17^{+0.20}_{-0.10}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_HAE end_POSTSUPERSCRIPT = 0.17 start_POSTSUPERSCRIPT + 0.20 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.10 end_POSTSUBSCRIPT. Finally, 2 out of the 4 DSFGs selected with Herschel/SPIRE among the members are X-ray AGN, corresponding to f=AGNDSFG0.500.22+0.22f\mathrm{{}_{AGN}^{DSFG}}=0.50^{+0.22}_{-0.22}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_DSFG end_POSTSUPERSCRIPT = 0.50 start_POSTSUPERSCRIPT + 0.22 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.22 end_POSTSUBSCRIPT.

2QZ Cluster (z=2.23𝑧2.23z=2.23italic_z = 2.23). Lehmer et al. (2013) presented the Chandra observations of this structure. Seven out of 22 HAEs are X-ray detected (i.e., f=AGNHAE0.320.09+0.10f\mathrm{{}_{AGN}^{HAE}}=0.32^{+0.10}_{-0.09}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_HAE end_POSTSUPERSCRIPT = 0.32 start_POSTSUPERSCRIPT + 0.10 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.09 end_POSTSUBSCRIPT), including the four optically selected AGN that were used as signposts of the protocluster.

QSO HS 1700+643 (z=2.30𝑧2.30z=2.30italic_z = 2.30). Among the spectroscopically confirmed members of the protocluster which do not reside in regions affected by high X-ray background due to the presence of foreground clusters, Digby-North et al. (2010) reported the X-ray detection of 2 out of 29 LAEs (f=AGNLAE0.070.03+0.06f\mathrm{{}_{AGN}^{LAE}}=0.07^{+0.06}_{-0.03}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_LAE end_POSTSUPERSCRIPT = 0.07 start_POSTSUPERSCRIPT + 0.06 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.03 end_POSTSUBSCRIPT), 1 out of 12 HAEs (f=AGNHAE0.080.05+0.11f\mathrm{{}_{AGN}^{HAE}}=0.08^{+0.11}_{-0.05}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_HAE end_POSTSUPERSCRIPT = 0.08 start_POSTSUPERSCRIPT + 0.11 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.05 end_POSTSUBSCRIPT), and 2 out of 39 BX/MD selected galaxies ( f=AGNSED0.050.02+0.05f\mathrm{{}_{AGN}^{SED}}=0.05^{+0.05}_{-0.02}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_SED end_POSTSUPERSCRIPT = 0.05 start_POSTSUPERSCRIPT + 0.05 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.02 end_POSTSUBSCRIPT). We note that these fraction are different from those reported by Digby-North et al. (2010), because they considered also objects not confirmed spectroscopically and applied corrections for the X-ray sensitivity over the field. Lacaille et al. (2019) identified spectroscopically four DSFGs as members of the protocluster, and none of them are detexcted in the X-rays, corresponding to f<AGNDSFG0.36f\mathrm{{}_{AGN}^{DSFG}}<0.36italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_DSFG end_POSTSUPERSCRIPT < 0.36.

USS 1558–003 (z=2.53𝑧2.53z=2.53italic_z = 2.53). Combining the catalogs of Shimakawa et al. (2018), Aoyama et al. (2022), and Pérez-Martínez et al. (2023b), 57 HAEs are secure members of this structure, either because of spectroscopic identification or matching detection in narrow-band imaging targeting the Lyα𝛼\alphaitalic_α emission line (but we note that the catalog of LAEs has not been published to our knowledge). Two of them are detected in the X-rays (Macuga et al., 2019); i.e., f=AGNHAE0.040.02+0.03f\mathrm{{}_{AGN}^{HAE}}=0.04^{+0.03}_{-0.02}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_HAE end_POSTSUPERSCRIPT = 0.04 start_POSTSUPERSCRIPT + 0.03 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.02 end_POSTSUBSCRIPT. Considering also member candidates, the fraction is f=AGNHAE0.020.01+0.02f\mathrm{{}_{AGN}^{HAE}}=0.02^{+0.02}_{-0.01}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_HAE end_POSTSUPERSCRIPT = 0.02 start_POSTSUPERSCRIPT + 0.02 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.01 end_POSTSUBSCRIPT. Nine DSFGs have been spectroscopically identified in the structure Aoyama et al. (2022), and all of them are also selected as HAEs. Matching their positions with the catalog of Macuga et al. (2019), we found no X-ray detection; i.e., f<AGNDSFG0.19f\mathrm{{}_{AGN}^{DSFG}}<0.19italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_DSFG end_POSTSUPERSCRIPT < 0.19.

SSA22 (z=3.09𝑧3.09z=3.09italic_z = 3.09). We base the computation of the X-ray AGN fraction in this protocluster on the work of (Lehmer et al., 2009b, see also Monson et al. 2023), who reported X-ray detection of six out of 27 member candidates selected as LBGs, i.e., f=AGNSED0.220.07+0.09f\mathrm{{}_{AGN}^{SED}}=0.22^{+0.09}_{-0.07}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_SED end_POSTSUPERSCRIPT = 0.22 start_POSTSUPERSCRIPT + 0.09 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.07 end_POSTSUBSCRIPT, and five out of 144 LAEs candidates, i.e., f=AGNLAE0.030.01+0.02f\mathrm{{}_{AGN}^{LAE}}=0.03^{+0.02}_{-0.01}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_LAE end_POSTSUPERSCRIPT = 0.03 start_POSTSUPERSCRIPT + 0.02 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.01 end_POSTSUBSCRIPT. These fractions are slightly different than those reported in Lehmer et al. (2009b), due to the different way in which they are computed. Umehata et al. (2019) presented deep ALMA observations of the SSA22 fields. Among the 12 DSFGs spectroscopically confirmed as members of the protocluster, 6 are detected in the X-ray catalog of Lehmer et al. (2009a); i.e., f=AGNDSFG0.500.14+0.14f\mathrm{{}_{AGN}^{DSFG}}=0.50^{+0.14}_{-0.14}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_DSFG end_POSTSUPERSCRIPT = 0.50 start_POSTSUPERSCRIPT + 0.14 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.14 end_POSTSUBSCRIPT. We also note that since the publication of those works a few new relevant datasets have been presented (e.g. Yamada et al., 2012; Kubo et al., 2015, 2016; Topping et al., 2016; Radzom et al., 2022), but are not considered here.

DRC (z=4.002). Among the 13 spectroscopically identified SMGs in this structure (Oteo et al., 2018; Ivison et al., 2020), two are X-ray selected AGN, corresponding to f=AGNDSFG0.150.07+0.12f\mathrm{{}_{AGN}^{DSFG}}=0.15^{+0.12}_{-0.07}italic_f start_FLOATSUBSCRIPT roman_AGN end_FLOATSUBSCRIPT start_POSTSUPERSCRIPT roman_DSFG end_POSTSUPERSCRIPT = 0.15 start_POSTSUPERSCRIPT + 0.12 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.07 end_POSTSUBSCRIPT (Vito et al., 2020).

References

  • Aird et al. (2018) Aird, J., Coil, A. L., & Georgakakis, A. 2018, MNRAS, 474, 1225
  • Aird et al. (2015) Aird, J., Coil, A. L., Georgakakis, A., et al. 2015, MNRAS, 451, 1892
  • Alberts et al. (2014) Alberts, S., Pope, A., Brodwin, M., et al. 2014, MNRAS, 437, 437
  • Alexander et al. (2005) Alexander, D. M., Bauer, F. E., Chapman, S. C., et al. 2005, ApJ, 632, 736
  • Anders & Grevesse (1989) Anders, E. & Grevesse, N. 1989, Geochim. Cosmochim. Acta., 53, 197
  • Aoyama et al. (2022) Aoyama, K., Kodama, T., Suzuki, T. L., et al. 2022, ApJ, 924, 74
  • Apostolovski et al. (2023) Apostolovski, Y., Aravena, M., Anguita, T., et al. 2023, arXiv e-prints, arXiv:2301.01328
  • Arnaud (1996) Arnaud, K. A. 1996, in Astronomical Society of the Pacific Conference Series, Vol. 101, Astronomical Data Analysis Software and Systems V, ed. G. H. Jacoby & J. Barnes, 17
  • Assef et al. (2016) Assef, R. J., Walton, D. J., Brightman, M., et al. 2016, ApJ, 819, 111
  • Astropy Collaboration et al. (2018) Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ, 156, 123
  • Astropy Collaboration et al. (2013) Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33
  • Banerji et al. (2014) Banerji, M., Fabian, A. C., & McMahon, R. G. 2014, MNRAS, 439, L51
  • Boquien et al. (2019) Boquien, M., Burgarella, D., Roehlly, Y., et al. 2019, A&A, 622, A103
  • Brandt & Alexander (2015) Brandt, W. N. & Alexander, D. M. 2015, A&A Rev., 23, 1
  • Broos et al. (2007) Broos, P. S., Feigelson, E. D., Townsley, L. K., et al. 2007, ApJS, 169, 353
  • Brown et al. (2001) Brown, L. D., Cai, T. T., & DasGupta, A. 2001, Statistical Science, 16, 101
  • Bruzual & Charlot (2003) Bruzual, G. & Charlot, S. 2003, MNRAS, 344, 1000
  • Buchner et al. (2015) Buchner, J., Georgakakis, A., Nandra, K., et al. 2015, ApJ, 802, 89
  • Bufanda et al. (2017) Bufanda, E., Hollowood, D., Jeltema, T. E., et al. 2017, MNRAS, 465, 2531
  • Calzetti et al. (2000) Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682
  • Cash (1979) Cash, W. 1979, ApJ, 228, 939
  • Chabrier (2003) Chabrier, G. 2003, PASP, 115, 763
  • Chapman et al. (2023) Chapman, S. C., Hill, R., Aravena, M., et al. 2023, arXiv e-prints, arXiv:2301.01375
  • Chen et al. (2016) Chen, C.-C., Smail, I., Ivison, R. J., et al. 2016, ApJ, 820, 82
  • Chiang et al. (2017) Chiang, Y.-K., Overzier, R. A., Gebhardt, K., & Henriques, B. 2017, ApJ, 844, L23
  • Circosta et al. (2019) Circosta, C., Vignali, C., Gilli, R., et al. 2019, A&A, 623, A172
  • Civano et al. (2016) Civano, F., Marchesi, S., Comastri, A., et al. 2016, ApJ, 819, 62
  • Corral et al. (2016) Corral, A., Georgantopoulos, I., Comastri, A., et al. 2016, A&A, 592, A109
  • da Cunha et al. (2015) da Cunha, E., Walter, F., Smail, I. R., et al. 2015, ApJ, 806, 110
  • D’Amato et al. (2020) D’Amato, Q., Gilli, R., Vignali, C., et al. 2020, A&A, 636, A37
  • Dessauges-Zavadsky et al. (2019) Dessauges-Zavadsky, M., Richard, J., Combes, F., et al. 2019, Nature Astronomy, 3, 1115
  • Di Mascia et al. (2021) Di Mascia, F., Gallerani, S., Behrens, C., et al. 2021, MNRAS, 503, 2349
  • Digby-North et al. (2010) Digby-North, J. A., Nandra, K., Laird, E. S., et al. 2010, MNRAS, 407, 846
  • Draine et al. (2014) Draine, B. T., Aniano, G., Krause, O., et al. 2014, ApJ, 780, 172
  • Dudzevičiūtė et al. (2020) Dudzevičiūtė, U., Smail, I., Swinbank, A. M., et al. 2020, MNRAS, 494, 3828
  • Duras et al. (2020) Duras, F., Bongiorno, A., Ricci, F., et al. 2020, A&A, 636, A73
  • Fabian (2012) Fabian, A. C. 2012, ARA&A, 50, 455
  • Fan & Bai (2016) Fan, X.-L. & Bai, J.-M. 2016, ApJ, 818, 185
  • Fruscione et al. (2006) Fruscione, A., McDowell, J. C., Allen, G. E., et al. 2006, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 6270, CIAO: Chandra’s data analysis system, 62701V
  • Gaia Collaboration et al. (2023) Gaia Collaboration, Vallenari, A., Brown, A. G. A., et al. 2023, A&A, 674, A1
  • Gaspari et al. (2020) Gaspari, M., Tombesi, F., & Cappi, M. 2020, Nature Astronomy, 4, 10
  • Gehrels (1986) Gehrels, N. 1986, ApJ, 303, 336
  • Georgakakis et al. (2015) Georgakakis, A., Aird, J., Buchner, J., et al. 2015, MNRAS, 453, 1946
  • Georgantopoulos et al. (2011) Georgantopoulos, I., Rovilos, E., & Comastri, A. 2011, A&A, 526, A46
  • Gilli et al. (2007) Gilli, R., Comastri, A., & Hasinger, G. 2007, A&A, 463, 79
  • Gilli et al. (2019) Gilli, R., Mignoli, M., Peca, A., et al. 2019, A&A, 632, A26
  • Gilli et al. (2022) Gilli, R., Norman, C., Calura, F., et al. 2022, A&A, 666, A17
  • Gilli et al. (2014) Gilli, R., Norman, C., Vignali, C., et al. 2014, A&A, 562, A67
  • Goulding et al. (2018) Goulding, A. D., Zakamska, N. L., Alexand roff, R. M., et al. 2018, ApJ, 856, 4
  • Hatch et al. (2016) Hatch, N. A., Muldrew, S. I., Cooke, E. A., et al. 2016, MNRAS, 459, 387
  • Hill et al. (2022) Hill, R., Chapman, S., Phadke, K. A., et al. 2022, MNRAS, 512, 4352
  • Hill et al. (2020) Hill, R., Chapman, S., Scott, D., et al. 2020, MNRAS, 495, 3124
  • Hopkins et al. (2006) Hopkins, P. F., Hernquist, L., Cox, T. J., et al. 2006, ApJS, 163, 1
  • Ivison et al. (2020) Ivison, R. J., Biggs, A. D., Bremer, M., Arumugam, V., & Dunne, L. 2020, MNRAS, 496, 4358
  • Ivison et al. (2016) Ivison, R. J., Lewis, A. J. R., Weiss, A., et al. 2016, ApJ, 832, 78
  • Ivison et al. (2019) Ivison, R. J., Page, M. J., Cirasuolo, M., et al. 2019, MNRAS, 489, 427
  • Iwasawa et al. (2020) Iwasawa, K., Comastri, A., Vignali, C., et al. 2020, A&A, 639, A51
  • Just et al. (2007) Just, D. W., Brandt, W. N., Shemmer, O., et al. 2007, ApJ, 665, 1004
  • Kalberla et al. (2005) Kalberla, P. M. W., Burton, W. B., Hartmann, D., et al. 2005, A&A, 440, 775
  • Kellermann et al. (1989) Kellermann, K. I., Sramek, R., Schmidt, M., Shaffer, D. B., & Green, R. 1989, AJ, 98, 1195
  • Khusanova et al. (2021) Khusanova, Y., Bethermin, M., Le Fèvre, O., et al. 2021, A&A, 649, A152
  • King (2024) King, A. 2024, MNRAS[arXiv:2404.16832]
  • Kocevski et al. (2018) Kocevski, D. D., Hasinger, G., Brightman, M., et al. 2018, ApJS, 236, 48
  • Krishnan et al. (2017) Krishnan, C., Hatch, N. A., Almaini, O., et al. 2017, MNRAS, 470, 2170
  • Kubo et al. (2015) Kubo, M., Yamada, T., Ichikawa, T., et al. 2015, ApJ, 799, 38
  • Kubo et al. (2016) Kubo, M., Yamada, T., Ichikawa, T., et al. 2016, MNRAS, 455, 3333
  • La Franca et al. (2005) La Franca, F., Fiore, F., Comastri, A., et al. 2005, ApJ, 635, 864
  • Lacaille et al. (2019) Lacaille, K. M., Chapman, S. C., Smail, I., et al. 2019, MNRAS, 488, 1790
  • Lansbury et al. (2020) Lansbury, G. B., Banerji, M., Fabian, A. C., & Temple, M. J. 2020, MNRAS, 495, 2652
  • Lanzuisi et al. (2018) Lanzuisi, G., Civano, F., Marchesi, S., et al. 2018, MNRAS, 480, 2578
  • Laporte et al. (2022) Laporte, N., Zitrin, A., Dole, H., et al. 2022, A&A, 667, L3
  • Lehmer et al. (2009a) Lehmer, B. D., Alexander, D. M., Chapman, S. C., et al. 2009a, MNRAS, 400, 299
  • Lehmer et al. (2009b) Lehmer, B. D., Alexander, D. M., Geach, J. E., et al. 2009b, ApJ, 691, 687
  • Lehmer et al. (2016) Lehmer, B. D., Basu-Zych, A. R., Mineo, S., et al. 2016, ApJ, 825, 7
  • Lehmer et al. (2019) Lehmer, B. D., Eufrasio, R. T., Tzanavaris, P., et al. 2019, ApJS, 243, 3
  • Lehmer et al. (2013) Lehmer, B. D., Lucy, A. B., Alexander, D. M., et al. 2013, ApJ, 765, 87
  • Li et al. (2019) Li, J., Xue, Y., Sun, M., et al. 2019, ApJ, 877, 5
  • Liu et al. (2023) Liu, S., Zheng, X. Z., Shi, D. D., et al. 2023, MNRAS, 523, 2422
  • Lupi et al. (2022) Lupi, A., Volonteri, M., Decarli, R., Bovino, S., & Silk, J. 2022, MNRAS, 510, 5760
  • Lusso et al. (2011) Lusso, E., Comastri, A., Vignali, C., et al. 2011, A&A, 534, A110
  • Macuga et al. (2019) Macuga, M., Martini, P., Miller, E. D., et al. 2019, ApJ, 874, 54
  • Martini et al. (2009) Martini, P., Sivakoff, G. R., & Mulchaey, J. S. 2009, ApJ, 701, 66
  • Martocchia et al. (2017) Martocchia, S., Piconcelli, E., Zappacosta, L., et al. 2017, A&A, 608, A51
  • Mazzolari et al. (2024) Mazzolari, G., Gilli, R., Brusa, M., et al. 2024, arXiv e-prints, arXiv:2402.00109
  • McKinney et al. (2021) McKinney, J., Hayward, C. C., Rosenthal, L. J., et al. 2021, ApJ, 921, 55
  • Miller et al. (2018) Miller, T. B., Chapman, S. C., Aravena, M., et al. 2018, Nature, 556, 469
  • Miville-Deschênes et al. (2017) Miville-Deschênes, M.-A., Murray, N., & Lee, E. J. 2017, ApJ, 834, 57
  • Monson et al. (2023) Monson, E. B., Doore, K., Eufrasio, R. T., et al. 2023, ApJ, 951, 15
  • Monson et al. (2021) Monson, E. B., Lehmer, B. D., Doore, K., et al. 2021, ApJ, 919, 51
  • Morishita et al. (2023) Morishita, T., Roberts-Borsani, G., Treu, T., et al. 2023, ApJ, 947, L24
  • Mountrichas et al. (2017) Mountrichas, G., Georgantopoulos, I., Secrest, N. J., et al. 2017, MNRAS, 468, 3042
  • Muldrew et al. (2015) Muldrew, S. I., Hatch, N. A., & Cooke, E. A. 2015, MNRAS, 452, 2528
  • Murphy & Yaqoob (2009) Murphy, K. D. & Yaqoob, T. 2009, MNRAS, 397, 1549
  • Ni et al. (2020) Ni, Y., Di Matteo, T., Gilli, R., et al. 2020, MNRAS, 495, 2135
  • Oteo et al. (2018) Oteo, I., Ivison, R. J., Dunne, L., et al. 2018, ApJ, 856, 72
  • Overzier (2016) Overzier, R. A. 2016, A&A Rev., 24, 14
  • Peca et al. (2023) Peca, A., Cappelluti, N., Urry, C. M., et al. 2023, ApJ, 943, 162
  • Pérez-Martínez et al. (2023a) Pérez-Martínez, J. M., Dannerbauer, H., Kodama, T., et al. 2023a, MNRAS, 518, 1707
  • Pérez-Martínez et al. (2023b) Pérez-Martínez, J. M., Kodama, T., Koyama, Y., et al. 2023b, arXiv e-prints, arXiv:2312.03574
  • Planck Collaboration et al. (2016) Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594
  • Polletta et al. (2021) Polletta, M., Soucail, G., Dole, H., et al. 2021, A&A, 654, A121
  • Popesso et al. (2023) Popesso, P., Concas, A., Cresci, G., et al. 2023, MNRAS, 519, 1526
  • Radzom et al. (2022) Radzom, B. T., Taylor, A. J., Barger, A. J., & Cowie, L. L. 2022, ApJ, 940, 114
  • Rennehan et al. (2020) Rennehan, D., Babul, A., Hayward, C. C., et al. 2020, MNRAS, 493, 4607
  • Ricci et al. (2017) Ricci, C., Assef, R. J., Stern, D., et al. 2017, ApJ, 835, 105
  • Rizzo et al. (2021) Rizzo, F., Vegetti, S., Fraternali, F., Stacey, H. R., & Powell, D. 2021, MNRAS, 507, 3952
  • Rotermund et al. (2021) Rotermund, K. M., Chapman, S. C., Phadke, K. A., et al. 2021, MNRAS, 502, 1797
  • Scoville et al. (2016) Scoville, N., Sheth, K., Aussel, H., et al. 2016, ApJ, 820, 83
  • Seabold & Perktold (2010) Seabold, S. & Perktold, J. 2010, in 9th Python in Science Conference
  • Shanks et al. (2021) Shanks, T., Ansarinejad, B., Bielby, R. M., et al. 2021, MNRAS, 505, 1509
  • Shimakawa et al. (2018) Shimakawa, R., Kodama, T., Hayashi, M., et al. 2018, MNRAS, 473, 1977
  • Shimakawa et al. (2024) Shimakawa, R., Pérez-Martínez, J. M., Koyama, Y., et al. 2024, MNRAS, 528, 3679
  • Smail et al. (2014) Smail, I., Geach, J. E., Swinbank, A. M., et al. 2014, ApJ, 782, 19
  • Song et al. (2016) Song, M., Finkelstein, S. L., Ashby, M. L. N., et al. 2016, ApJ, 825, 5
  • Stalevski et al. (2016) Stalevski, M., Ricci, C., Ueda, Y., et al. 2016, MNRAS, 458, 2288
  • Stern et al. (2014) Stern, D., Lansbury, G. B., Assef, R. J., et al. 2014, ApJ, 794, 102
  • Topping et al. (2016) Topping, M. W., Shapley, A. E., & Steidel, C. C. 2016, ApJ, 824, L11
  • Toshikawa et al. (2024) Toshikawa, J., Wuyts, S., Kashikawa, N., et al. 2024, MNRAS, 527, 6276
  • Tozzi et al. (2022a) Tozzi, P., Gilli, R., Liu, A., et al. 2022a, A&A, 667, A134
  • Tozzi et al. (2022b) Tozzi, P., Pentericci, L., Gilli, R., et al. 2022b, A&A, 662, A54
  • Traina et al. (2024) Traina, A., Gruppioni, C., Delvecchio, I., et al. 2024, A&A, 681, A118
  • Tran et al. (2015) Tran, K.-V. H., Nanayakkara, T., Yuan, T., et al. 2015, ApJ, 811, 28
  • Trebitsch et al. (2019) Trebitsch, M., Volonteri, M., & Dubois, Y. 2019, MNRAS, 487, 819
  • Treister & Urry (2006) Treister, E. & Urry, C. M. 2006, ApJ, 652, L79
  • Ueda et al. (2014) Ueda, Y., Akiyama, M., Hasinger, G., Miyaji, T., & Watson, M. G. 2014, ApJ, 786, 104
  • Umehata et al. (2019) Umehata, H., Fumagalli, M., Smail, I., et al. 2019, Science, 366, 97
  • Urrutia et al. (2005) Urrutia, T., Lacy, M., Gregg, M. D., & Becker, R. H. 2005, ApJ, 627, 75
  • Vieira et al. (2010) Vieira, J. D., Crawford, T. M., Switzer, E. R., et al. 2010, ApJ, 719, 763
  • Vito et al. (2019) Vito, F., Brandt, W. N., Bauer, F. E., et al. 2019, A&A, 630, A118
  • Vito et al. (2020) Vito, F., Brandt, W. N., Lehmer, B. D., et al. 2020, A&A, 642, A149
  • Vito et al. (2018a) Vito, F., Brandt, W. N., Stern, D., et al. 2018a, MNRAS, 474, 4528
  • Vito et al. (2018b) Vito, F., Brandt, W. N., Yang, G., et al. 2018b, MNRAS, 473, 2378
  • Vito et al. (2022) Vito, F., Mignoli, M., Gilli, R., et al. 2022, A&A, 663, A159
  • Vito et al. (2023) Vito, F., Tozzi, P., Gilli, R., et al. 2023, arXiv e-prints, arXiv:2311.08466
  • Wang et al. (2013) Wang, S. X., Brandt, W. N., Luo, B., et al. 2013, ApJ, 778, 179
  • Wang et al. (2017) Wang, T., Elbaz, D., Alexander, D. M., et al. 2017, A&A, 601, A63
  • Weaver et al. (2023) Weaver, J. R., Davidzon, I., Toft, S., et al. 2023, A&A, 677, A184
  • Weisskopf et al. (2007) Weisskopf, M. C., Wu, K., Trimble, V., et al. 2007, ApJ, 657, 1026
  • Xue et al. (2010) Xue, Y. Q., Brandt, W. N., Luo, B., et al. 2010, ApJ, 720, 368
  • Xue et al. (2016) Xue, Y. Q., Luo, B., Brandt, W. N., et al. 2016, ApJS, 224, 15
  • Yamada et al. (2012) Yamada, T., Nakamura, Y., Matsuda, Y., et al. 2012, AJ, 143, 79
  • Yang et al. (2022) Yang, G., Boquien, M., Brandt, W. N., et al. 2022, ApJ, 927, 192
  • Yang et al. (2020) Yang, G., Boquien, M., Buat, V., et al. 2020, MNRAS, 491, 740
  • Yang et al. (2018a) Yang, G., Brandt, W. N., Darvish, B., et al. 2018a, MNRAS, 480, 1022
  • Yang et al. (2018b) Yang, G., Brandt, W. N., Vito, F., et al. 2018b, MNRAS, 475, 1887
  • Yang et al. (2017) Yang, G., Chen, C.-T. J., Vito, F., et al. 2017, ApJ, 842, 72
  • Zappacosta et al. (2018) Zappacosta, L., Piconcelli, E., Duras, F., et al. 2018, A&A, 618, A28
  • Zheng et al. (2010) Zheng, Z. Y., Wang, J. X., Finkelstein, S. L., et al. 2010, ApJ, 718, 52
  • Zou et al. (2020) Zou, F., Brandt, W. N., Vito, F., et al. 2020, MNRAS, 499, 1823
  • Zou et al. (2024) Zou, F., Yu, Z., Brandt, W. N., et al. 2024, ApJ, 964, 183