\tikzfeynmanset

compat=1.1.0

Cold Darkogenesis: Dark Matter and Baryon Asymmetry in Light of the PTA Signal

Kohei Fujikura1,111 E-mail address: kfujikura@g.ecc.u-tokyo.ac.jp Sudhakantha Girmohanta2,3,222 E-mail address: Yuichiro Nakai2,3333 E-mail address: ynakai@sjtu.edu.cn and Zhihao Zhang2,3444 E-mail address:
1Graduate School of Arts and Sciences, University of Tokyo, Komaba,
Meguro-ku, Tokyo 153-8902, Japan

2Tsung-Dao Lee Institute, Shanghai Jiao Tong University,
No. 1 Lisuo Road, Pudong New Area, Shanghai 201210, China

3School of Physics and Astronomy, Shanghai Jiao Tong University,
800 Dongchuan Road, Shanghai 200240, China

Abstract

We build upon the intriguing possibility that the recently reported nano-Hz gravitational wave signal by Pulsar Timing Array (PTA) experiments is sourced by a strong first-order phase transition from a nearly conformal dark sector. The phase transition has to be strongly supercooled to explain the signal amplitude, while the critical temperature has to be in the π’ͺπ’ͺ\cal{O}caligraphic_O(GeV) range, as dictated by the peak frequency of the gravitational wave spectrum. However, the resulting strong supercooling exponentially dilutes away any pre-existing baryon asymmetry and dark matter, calling for a new paradigm of their productions. We then develop a mechanism of cold darkogenesis that generates a dark asymmetry during the phase transition from the textured dark S⁒U⁒(2)Dπ‘†π‘ˆsubscript2DSU(2)_{\rm D}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT Higgs field. This dark asymmetry is transferred to the visible sector via neutron portal interactions, resulting in the observed baryon asymmetry. Furthermore, the mechanism naturally leads to the correct abundance of asymmetric dark matter, with self-interaction of the scale that is of the right order to solve the diversity problem in galactic rotation curves. Collider searches for mono-jets and dark matter direct detection experiments can dictate the viability of the model.

Introduction.β€” The observed baryon asymmetry of the Universe and the presence of cold dark matter (DM) are two primary motivations for considering extensions of the otherwise remarkably successful Standard Model (SM). A possible clue to the nature of this new physics may come from the nano-Hz gravitational waves (GWs) that have been recently detected by the pulsar timing array (PTA) collaborations [1, 2, 3, 4, 5]. One of the potential sources of those GWs is the merger of supermassive binary black holes (SMBHB), but this scenario faces the challenge of the so-called β€œfinal parsec problem”, which is the stalling of the SMBHB evolution at about a parsec separation due to the lack of efficient dynamical friction [6]. Several attempts have been made toward its resolution, however, no consensus has been achieved [7, 8, 9, 10]. Alternatively, the PTA signal may originate from other new physics phenomena, such as a first-order phase transition [11, 12, 13] (for different new physics scenarios, consult Refs. [2, 14]). It has been recently argued that a phase transition scenario may fit the observed spectral shape and amplitude better than the canonical SMBHB merger [14, 2].

Ref. [15] has explained the PTA signal in terms of a supercooled phase transition in a nearly conformal dark sector (see also Ref. [16]). It showed that a strong supercooling is essential to realize the amplitude of the PTA signal. However, the nano-Hz peak frequency suggests a phase transition temperature of ∼π’ͺsimilar-toabsentπ’ͺ\sim{\mathcal{O}}∼ caligraphic_O(1) GeV. Therefore, any previously generated baryon asymmetry is exponentially diluted away during the phase transition. A similar problem may occur for the DM energy density. Therefore, it is natural to ask if baryon asymmetry can be produced during the phase transition. In the present work, we will consider this possibility, where a dark number asymmetry is generated first and then shared with the visible sector via a portal interaction. During the phase transition epoch, the SM sphaleron processes have frozen out, hence, the portal interaction needs to violate the baryon number, and not just the lepton number that could be reprocessed in the leptogenesis scenario [17]. As we will demonstrate, the strong supercooling in the dark sector provides a natural setup for β€œcold darkogenesis” to take place, which is an amalgamation of the notions of cold baryogenesis [18, 19, 20, 21, 22] and darkogenesis [23].

The central idea of the current paper is as follows. The dark sector is governed by a conformal dynamics in the deep ultraviolet with a large number of colors N𝑁Nitalic_N. In addition to that, the conformal sector is coupled to dark S⁒U⁒(NH)π‘†π‘ˆsubscript𝑁HSU(N_{\rm H})italic_S italic_U ( italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ) and S⁒U⁒(2)Dπ‘†π‘ˆsubscript2DSU(2)_{\rm D}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT fields. The latter couples to chiral dark fermions LΟ‡,Ο‡subscriptπΏπœ’πœ’L_{\chi},\chiitalic_L start_POSTSUBSCRIPT italic_Ο‡ end_POSTSUBSCRIPT , italic_Ο‡ with an anomalous global number symmetry U⁒(1)Dπ‘ˆsubscript1DU(1)_{\rm D}italic_U ( 1 ) start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT. The field content is shown in Tab. 1. As the dark sector evolves to the low-energy scale, S⁒U⁒(NH)π‘†π‘ˆsubscript𝑁HSU(N_{\rm H})italic_S italic_U ( italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ) undergoes confinement, which generates a mass gap and breaks the conformal invariance spontaneously. Thereafter, an S⁒U⁒(2)Dπ‘†π‘ˆsubscript2DSU(2)_{\rm D}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT doublet Higgs HDsubscript𝐻DH_{\rm D}italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT, which couples considerably to the dilaton, develops a vacuum expectation value (VEV) together with the dilaton, breaking S⁒U⁒(2)Dπ‘†π‘ˆsubscript2DSU(2)_{\rm D}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT spontaneously and generating massive dark fermions. As the conformal phase transition is associated with strong supercooling, HDsubscript𝐻DH_{\rm D}italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT experiences a rapid change of mass in a cold empty Universe, which results in a rapid amplification of long-wavelength modes of HDsubscript𝐻DH_{\rm D}italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT. This process is far from thermal equilibrium and generates numerous HDsubscript𝐻DH_{\rm D}italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT configurations with non-vanishing winding numbers. These configurations then relax to the vacuum state in the presence of S⁒U⁒(2)Dπ‘†π‘ˆsubscript2DSU(2)_{\rm D}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT gauge fields, either by altering the HDsubscript𝐻DH_{\rm D}italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT winding number or the Chern-Simons (CS) number of S⁒U⁒(2)Dπ‘†π‘ˆsubscript2DSU(2)_{\rm D}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT gauge fields. When the CS number changes, dark fermions are anomalously produced. If the dark sector has CP violations, a net dark number emerges. This dark number is transferred to the visible sector via a neutron portal effective operator that violates the dark number and SM baryon number. As the Universe cools down, this operator becomes ineffective, and the asymmetry is separately conserved in the dark and visible sectors.

As S⁒U⁒(NH)π‘†π‘ˆsubscript𝑁HSU(N_{\rm H})italic_S italic_U ( italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ) confines, vector-like dark quarks f,f¯𝑓¯𝑓f,\bar{f}italic_f , overΒ― start_ARG italic_f end_ARG in Tab. 1 form massive dark baryons pDsubscript𝑝Dp_{\rm D}italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT and dark pions Ο€Dsubscriptπœ‹D\pi_{\rm D}italic_Ο€ start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT. It is conceivable that this dark baryon sector inherits the dark number asymmetry generated through interactions with LΟ‡subscriptπΏπœ’L_{\chi}italic_L start_POSTSUBSCRIPT italic_Ο‡ end_POSTSUBSCRIPT and Ο‡πœ’\chiitalic_Ο‡. Hence, this scenario yields an asymmetric S⁒U⁒(NH)π‘†π‘ˆsubscript𝑁HSU(N_{\rm H})italic_S italic_U ( italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ) composite DM state (pDsubscript𝑝Dp_{\rm D}italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT). As a byproduct of the DM being part of the confined sector with a ∼similar-to\sim∼ GeV confinement scale, it is strongly self-interacting, via Ο€Dsubscriptπœ‹D\pi_{\rm D}italic_Ο€ start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT mediation, and coincidentally has the order of self-interaction cross-section that can be desirable for the diversity of galactic rotation curves together with the small-scale structure problems [24, 25, 26, 27, 28].

As the symmetric component of the DM annihilates to the dark pions, it is crucial that Ο€Dsubscriptπœ‹D\pi_{\rm D}italic_Ο€ start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT decays to the visible sector before the onset of the Big Bang Nucleosynthesis (BBN). This necessitates the introduction of a portal operator connecting the dark and visible sectors. The same portal operator is constrained however by the direct detection experiments searching for π’ͺ⁒(1βˆ’10)π’ͺ110{\cal O}(1-10)caligraphic_O ( 1 - 10 ) GeV DM. This scenario of asymmetry sharing at the dark phase transition scale is highly restrictive and can be probed by mono-jet searches at the Large Hadron Collider (LHC) and DM direct detection experiments.

Fields S⁒U⁒(NH)π‘†π‘ˆsubscript𝑁H\,SU(N_{\rm H})\,italic_S italic_U ( italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ) S⁒U⁒(2)Dπ‘†π‘ˆsubscript2D\,SU(2)_{\rm D}\,italic_S italic_U ( 2 ) start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT U⁒(1)Dπ‘ˆsubscript1D\,U(1)_{\rm D}\,italic_U ( 1 ) start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT
HDsubscript𝐻DH_{\rm D}italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT 1 𝟐2\bf 2bold_2 0
LΟ‡,i≑(ψ1,iψ2,i)subscriptπΏπœ’π‘–matrixsubscriptπœ“1𝑖subscriptπœ“2𝑖L_{\chi,i}\equiv\begin{pmatrix}\psi_{1,i}\\ \psi_{2,i}\end{pmatrix}italic_L start_POSTSUBSCRIPT italic_Ο‡ , italic_i end_POSTSUBSCRIPT ≑ ( start_ARG start_ROW start_CELL italic_ψ start_POSTSUBSCRIPT 1 , italic_i end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_ψ start_POSTSUBSCRIPT 2 , italic_i end_POSTSUBSCRIPT end_CELL end_ROW end_ARG ) 1 𝟐2\bf 2bold_2 1
Ο‡1,i,subscriptπœ’1𝑖\chi_{1,i}\,,italic_Ο‡ start_POSTSUBSCRIPT 1 , italic_i end_POSTSUBSCRIPT , Ο‡2,isubscriptπœ’2𝑖\chi_{2,i}italic_Ο‡ start_POSTSUBSCRIPT 2 , italic_i end_POSTSUBSCRIPT 1 1 βˆ’11-1- 1
fjsubscript𝑓𝑗f_{j}italic_f start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT 𝐍Hsubscript𝐍H\bf N_{\rm H}bold_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT 1 1/NH1subscript𝑁H1/N_{\rm H}1 / italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT
fΒ―jsubscript¯𝑓𝑗\bar{f}_{j}overΒ― start_ARG italic_f end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT 𝐍¯Hsubscript¯𝐍H\bf\overline{N}_{\rm H}overΒ― start_ARG bold_N end_ARG start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT 1 βˆ’1/NH1subscript𝑁H-1/N_{\rm H}- 1 / italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT
Table 1: The dark sector particles and their representations. Here, i=1,2,β‹―,NDL𝑖12β‹―subscript𝑁subscript𝐷Li=1,2,\cdots,N_{D_{\rm L}}italic_i = 1 , 2 , β‹― , italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT end_POSTSUBSCRIPT, j=1,2,β‹―,NDB𝑗12β‹―subscript𝑁subscript𝐷Bj=1,2,\cdots,N_{D_{\rm B}}italic_j = 1 , 2 , β‹― , italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT end_POSTSUBSCRIPT denote the generational indices. The total dark number is D=DL+DB𝐷subscript𝐷Lsubscript𝐷BD=D_{\rm L}+D_{\rm B}italic_D = italic_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT + italic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT, where LΟ‡,Ο‡subscriptπΏπœ’πœ’L_{\chi},\chiitalic_L start_POSTSUBSCRIPT italic_Ο‡ end_POSTSUBSCRIPT , italic_Ο‡ carry DLsubscript𝐷LD_{\rm L}italic_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT number, while f,f¯𝑓¯𝑓f,\bar{f}italic_f , overΒ― start_ARG italic_f end_ARG carry DBsubscript𝐷BD_{\rm B}italic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT.

PTA signal from dark phase transition.β€” Let us begin by describing the first-order confining phase transition in a nearly conformal dark sector generating GWs detected by the PTAs. The low-energy effective description can be expressed in terms of the effective potential of the dilaton Ο†πœ‘\varphiitalic_Ο†, which is the pseudo-Nambu-Goldstone boson of the broken scale invariance. In the UV, we start with a conformal theory with a large number of colors N𝑁Nitalic_N coupled together with S⁒U⁒(NH)π‘†π‘ˆsubscript𝑁HSU(N_{\rm H})italic_S italic_U ( italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ) gauge fields. Owing to the asymptotic freedom, the effect of the latter is negligible in the UV, while the S⁒U⁒(NH)π‘†π‘ˆsubscript𝑁HSU(N_{\rm H})italic_S italic_U ( italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ) fields confine at a certain energy scale as we evolve towards the IR. This confinement scale depends on the dilaton as the running of the effective coupling of S⁒U⁒(NH)π‘†π‘ˆsubscript𝑁HSU(N_{\rm H})italic_S italic_U ( italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ), denoted as gHsubscript𝑔Hg_{\rm H}italic_g start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT, from a UV scale kπ‘˜kitalic_k to a lower scale Q≲φless-than-or-similar-toπ‘„πœ‘Q\lesssim\varphiitalic_Q ≲ italic_Ο† gets a contribution from the CFT which confines at Ο†πœ‘\varphiitalic_Ο† and does not contribute to the running below it [29],

1gH2⁒(Q,Ο†)1superscriptsubscript𝑔H2π‘„πœ‘\displaystyle\frac{1}{g_{\rm H}^{2}(Q,\varphi)}divide start_ARG 1 end_ARG start_ARG italic_g start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_Q , italic_Ο† ) end_ARG =βˆ’bCFT8⁒π2⁒ln⁑(kΟ†)βˆ’bH8⁒π2⁒ln⁑(kQ).absentsubscript𝑏CFT8superscriptπœ‹2π‘˜πœ‘subscript𝑏H8superscriptπœ‹2π‘˜π‘„\displaystyle=-\frac{b_{\rm CFT}}{8\pi^{2}}\ln\left(\frac{k}{\varphi}\right)-% \frac{b_{\rm H}}{8\pi^{2}}\ln\left(\frac{k}{Q}\right)\ .= - divide start_ARG italic_b start_POSTSUBSCRIPT roman_CFT end_POSTSUBSCRIPT end_ARG start_ARG 8 italic_Ο€ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_ln ( divide start_ARG italic_k end_ARG start_ARG italic_Ο† end_ARG ) - divide start_ARG italic_b start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT end_ARG start_ARG 8 italic_Ο€ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_ln ( divide start_ARG italic_k end_ARG start_ARG italic_Q end_ARG ) . (1)

Here, the β𝛽\betaitalic_Ξ²-function coefficients are bCFT=βˆ’ΞΎβ’Nsubscript𝑏CFTπœ‰π‘b_{\rm CFT}=-\xi Nitalic_b start_POSTSUBSCRIPT roman_CFT end_POSTSUBSCRIPT = - italic_ΞΎ italic_N, with ΞΎπœ‰\xiitalic_ΞΎ being a positive constant, bH≑bYM+bfsubscript𝑏Hsubscript𝑏YMsubscript𝑏𝑓b_{\rm H}\equiv b_{\rm YM}+b_{f}italic_b start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ≑ italic_b start_POSTSUBSCRIPT roman_YM end_POSTSUBSCRIPT + italic_b start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT, bYM=11⁒NH/3subscript𝑏YM11subscript𝑁H3b_{\rm YM}=11N_{\rm H}/3italic_b start_POSTSUBSCRIPT roman_YM end_POSTSUBSCRIPT = 11 italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT / 3, and bf=βˆ’2⁒NDB/3subscript𝑏𝑓2subscript𝑁subscript𝐷B3b_{f}=-2N_{D_{\rm B}}/3italic_b start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT = - 2 italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT end_POSTSUBSCRIPT / 3. The confinement scale of S⁒U⁒(NH)π‘†π‘ˆsubscript𝑁HSU(N_{\rm H})italic_S italic_U ( italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ) is then given by

Ξ›H⁒(Ο†)=k⁒(Ο†k)βˆ’bCFT/bH=Ξ›H,0⁒(φφmin)n,subscriptΞ›Hπœ‘π‘˜superscriptπœ‘π‘˜subscript𝑏CFTsubscript𝑏HsubscriptΞ›H0superscriptπœ‘subscriptπœ‘min𝑛\displaystyle\Lambda_{\rm H}(\varphi)=k\left(\frac{\varphi}{k}\right)^{-{b_{% \rm CFT}}/{b_{\rm H}}}=\Lambda_{\rm H,0}\left(\frac{\varphi}{\varphi_{\rm min}% }\right)^{n}\ ,roman_Ξ› start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ( italic_Ο† ) = italic_k ( divide start_ARG italic_Ο† end_ARG start_ARG italic_k end_ARG ) start_POSTSUPERSCRIPT - italic_b start_POSTSUBSCRIPT roman_CFT end_POSTSUBSCRIPT / italic_b start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = roman_Ξ› start_POSTSUBSCRIPT roman_H , 0 end_POSTSUBSCRIPT ( divide start_ARG italic_Ο† end_ARG start_ARG italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , (2)

where nβ‰‘βˆ’bCFT/bH𝑛subscript𝑏CFTsubscript𝑏Hn\equiv-b_{\rm CFT}/b_{\rm H}italic_n ≑ - italic_b start_POSTSUBSCRIPT roman_CFT end_POSTSUBSCRIPT / italic_b start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT, and Ξ›H,0subscriptΞ›H0\Lambda_{\rm H,0}roman_Ξ› start_POSTSUBSCRIPT roman_H , 0 end_POSTSUBSCRIPT denotes the S⁒U⁒(NH)π‘†π‘ˆsubscript𝑁HSU(N_{\rm H})italic_S italic_U ( italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ) confinement scale at present. The S⁒U⁒(NH)π‘†π‘ˆsubscript𝑁HSU(N_{\rm H})italic_S italic_U ( italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ) condensate provides the dilaton with the following effective potential [29, 30]:

Veff⁒(Ο†)={V0+λφ4⁒φ4βˆ’bHη⁒ΛH,04⁒(φφmin)4⁒n;Ο†β‰₯Ο†c,V0+λφ4⁒φ4βˆ’bHη⁒γc4⁒φc4;Ο†<Ο†c.V_{\rm eff}(\varphi)=\left\{\begin{array}[]{ll}V_{0}+\frac{\lambda_{\varphi}}{% 4}\varphi^{4}-\frac{b_{\rm H}}{\eta}\Lambda^{4}_{\rm H,0}\left(\frac{\varphi}{% \varphi_{\rm min}}\right)^{4n}&;\leavevmode\nobreak\ \varphi\geq\varphi_{c}\ ,% \\[8.61108pt] V_{0}+\frac{\lambda_{\varphi}}{4}\varphi^{4}-\frac{b_{\rm H}}{\eta}\gamma_{c}^% {4}\varphi_{c}^{4}&;\leavevmode\nobreak\ \varphi<\varphi_{c}\ .\end{array}\right.italic_V start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_Ο† ) = { start_ARRAY start_ROW start_CELL italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + divide start_ARG italic_Ξ» start_POSTSUBSCRIPT italic_Ο† end_POSTSUBSCRIPT end_ARG start_ARG 4 end_ARG italic_Ο† start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - divide start_ARG italic_b start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT end_ARG start_ARG italic_Ξ· end_ARG roman_Ξ› start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_H , 0 end_POSTSUBSCRIPT ( divide start_ARG italic_Ο† end_ARG start_ARG italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 4 italic_n end_POSTSUPERSCRIPT end_CELL start_CELL ; italic_Ο† β‰₯ italic_Ο† start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , end_CELL end_ROW start_ROW start_CELL italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + divide start_ARG italic_Ξ» start_POSTSUBSCRIPT italic_Ο† end_POSTSUBSCRIPT end_ARG start_ARG 4 end_ARG italic_Ο† start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - divide start_ARG italic_b start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT end_ARG start_ARG italic_Ξ· end_ARG italic_Ξ³ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_Ο† start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_CELL start_CELL ; italic_Ο† < italic_Ο† start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT . end_CELL end_ROW end_ARRAY (3)

Here, V0subscript𝑉0V_{0}italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is chosen to make the minimum of the potential vanishing, the quartic term is scale-invariant and is present in general, Ξ³c≃πsimilar-to-or-equalssubscriptπ›Ύπ‘πœ‹\gamma_{c}\simeq\piitalic_Ξ³ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ≃ italic_Ο€, Ξ·πœ‚\etaitalic_Ξ· is determined from the numerical value of the S⁒U⁒(NH)π‘†π‘ˆsubscript𝑁HSU(N_{\rm H})italic_S italic_U ( italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ) condensate, Ο†csubscriptπœ‘π‘\varphi_{c}italic_Ο† start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT encodes the threshold between the confining and deconfining phases that can be determined from the continuity of Eq. (3), and Ο†minsubscriptπœ‘min\varphi_{\rm min}italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT denotes the dilaton VEV.555 For further details, we refer the reader to Ref. [30]. Here we have taken Dirac f𝑓fitalic_f to be at the cut-off and ignored the contribution of its condensate. If it is included, even more parameter space opens up [29]. The confinement scale Ξ›H,0subscriptΞ›H0\Lambda_{\rm H,0}roman_Ξ› start_POSTSUBSCRIPT roman_H , 0 end_POSTSUBSCRIPT in Eq. (3) essentially sets the scale of the dilaton VEV,

Ο†min=(4⁒n⁒bHη⁒λφ)1/4⁒ΛH,0.subscriptπœ‘minsuperscript4𝑛subscript𝑏Hπœ‚subscriptπœ†πœ‘14subscriptΞ›H0\displaystyle\varphi_{\rm min}=\left(\frac{4nb_{\rm H}}{\eta\lambda_{\varphi}}% \right)^{1/4}\Lambda_{\rm H,0}\ .italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT = ( divide start_ARG 4 italic_n italic_b start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT end_ARG start_ARG italic_Ξ· italic_Ξ» start_POSTSUBSCRIPT italic_Ο† end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT roman_Ξ› start_POSTSUBSCRIPT roman_H , 0 end_POSTSUBSCRIPT . (4)

The dilaton acquires a mass due to the stabilizing potential,666 A possible doubly composite dynamics may simultaneously address the gauge hierarchy problem and result in a double-peaked GW spectrum [31].

mΟ†2superscriptsubscriptπ‘šπœ‘2\displaystyle m_{\varphi}^{2}italic_m start_POSTSUBSCRIPT italic_Ο† end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT β‰‘βˆ‚2Veff⁒(Ο†)βˆ‚Ο†2|Ο†min=8⁒π23⁒N2⁒(1βˆ’n)⁒λφ⁒φmin2.absentevaluated-atsuperscript2subscript𝑉effπœ‘superscriptπœ‘2subscriptπœ‘min8superscriptπœ‹23superscript𝑁21𝑛subscriptπœ†πœ‘superscriptsubscriptπœ‘min2\displaystyle\equiv\frac{\partial^{2}V_{\rm eff}(\varphi)}{\partial\varphi^{2}% }\bigg{|}_{\varphi_{\rm min}}=\frac{8\pi^{2}}{3N^{2}}(1-n)\lambda_{\varphi}% \varphi_{\rm min}^{2}\ .≑ divide start_ARG βˆ‚ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_Ο† ) end_ARG start_ARG βˆ‚ italic_Ο† start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG | start_POSTSUBSCRIPT italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT end_POSTSUBSCRIPT = divide start_ARG 8 italic_Ο€ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 3 italic_N start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( 1 - italic_n ) italic_Ξ» start_POSTSUBSCRIPT italic_Ο† end_POSTSUBSCRIPT italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (5)

When the ambient temperature is higher than Ξ›H,0subscriptΞ›H0\Lambda_{\rm H,0}roman_Ξ› start_POSTSUBSCRIPT roman_H , 0 end_POSTSUBSCRIPT, the system is in the hot thermal deconfined phase. As the temperature drops, the S⁒U⁒(NH)π‘†π‘ˆsubscript𝑁HSU(N_{\rm H})italic_S italic_U ( italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ) gauge field confines, driving a first-order confinement-deconfinement phase transition in the dark sector. The phase transition dynamics with the dilaton potential (3) has been analyzed in Ref. [15] which utilized the weakly coupled dual description due to AdS/CFT [32, 33, 34]. The collision of bubbles of the true vacuum and subsequent fluid flows produce shear stresses that source the GWs. Here, we sketch the description of the key quantities that determine the GW spectra, while we refer the reader to Ref. [15] for more details. The critical temperature Tcsubscript𝑇𝑐T_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT is defined as the temperature when the two phases have equal free energy, while the nucleation temperature Tnsubscript𝑇𝑛T_{n}italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT marks the moment when the bubble nucleation rate of the true vacuum becomes equal to the Hubble expansion rate of the Universe. The latter can be evaluated from the bounce action SBsubscript𝑆BS_{\rm B}italic_S start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT. After the completion of the phase transition, the dark sector decays into the SM leaving behind only the DM, as we will see later, and the Universe is reheated to the temperature,

TRHsubscript𝑇RH\displaystyle T_{\rm RH}italic_T start_POSTSUBSCRIPT roman_RH end_POSTSUBSCRIPT ≃(90Ο€2⁒gβˆ—β’(TRH)⁒|Veff⁒(0)βˆ’Veff⁒(Ο†min)|)1/4,similar-to-or-equalsabsentsuperscript90superscriptπœ‹2subscript𝑔subscript𝑇RHsubscript𝑉eff0subscript𝑉effsubscriptπœ‘min14\displaystyle\simeq\left(\frac{90}{\pi^{2}g_{*}(T_{\rm RH})}\left|V_{\rm eff}(% 0)-V_{\rm eff}(\varphi_{\rm min})\right|\right)^{1/4}\ ,≃ ( divide start_ARG 90 end_ARG start_ARG italic_Ο€ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT βˆ— end_POSTSUBSCRIPT ( italic_T start_POSTSUBSCRIPT roman_RH end_POSTSUBSCRIPT ) end_ARG | italic_V start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( 0 ) - italic_V start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ) | ) start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT , (6)

where gβˆ—subscript𝑔g_{*}italic_g start_POSTSUBSCRIPT βˆ— end_POSTSUBSCRIPT is the effective number of degrees of freedom.

Refer to caption
Figure 1: Spectra of a stochastic GW background produced by the dark conformal phase transition. The solid (dashed) curve represents the bubble collision (sound wave) only case. The gray-shaded region refers to the NANOGrav 15-yr signal region [1]. We have chosen λφ=1subscriptπœ†πœ‘1\lambda_{\varphi}=1italic_Ξ» start_POSTSUBSCRIPT italic_Ο† end_POSTSUBSCRIPT = 1, Ξ·=8πœ‚8\eta=8italic_Ξ· = 8, N=10𝑁10N=10italic_N = 10, NH=5subscript𝑁H5N_{\rm H}=5italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT = 5, NDB=10subscript𝑁subscript𝐷B10N_{D_{\rm B}}=10italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 10, n=0.15𝑛0.15n=0.15italic_n = 0.15, Ξ›H,0=0.8subscriptΞ›H00.8\Lambda_{\rm H,0}=0.8roman_Ξ› start_POSTSUBSCRIPT roman_H , 0 end_POSTSUBSCRIPT = 0.8 GeV, and λφ=1subscriptπœ†πœ‘1\lambda_{\varphi}=1italic_Ξ» start_POSTSUBSCRIPT italic_Ο† end_POSTSUBSCRIPT = 1, Ξ·=8πœ‚8\eta=8italic_Ξ· = 8, N=13𝑁13N=13italic_N = 13, NH=6subscript𝑁H6N_{\rm H}=6italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT = 6, NDB=10subscript𝑁subscript𝐷B10N_{D_{\rm B}}=10italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 10, n=0.28𝑛0.28n=0.28italic_n = 0.28, Ξ›H,0=0.4subscriptΞ›H00.4\Lambda_{\rm H,0}=0.4roman_Ξ› start_POSTSUBSCRIPT roman_H , 0 end_POSTSUBSCRIPT = 0.4 GeV for the bubble collision and sound wave only cases, respectively.

Two key quantities acting as proxies for the phase transition dynamics are the latent heat released (α𝛼\alphaitalic_Ξ±) and the inverse duration of the phase transition (β𝛽\betaitalic_Ξ²),

α≑Veff⁒(Ο†t)βˆ’Veff⁒(Ο†min)ρrad⁒(Tn);Ξ²=H⁒(Tn)⁒d⁒SBd⁒T|Tn,formulae-sequence𝛼subscript𝑉effsubscriptπœ‘π‘‘subscript𝑉effsubscriptπœ‘minsubscript𝜌radsubscript𝑇𝑛𝛽evaluated-at𝐻subscript𝑇𝑛𝑑subscript𝑆B𝑑𝑇subscript𝑇𝑛\alpha\equiv\frac{V_{\rm eff}(\varphi_{t})-V_{\rm eff}(\varphi_{\rm min})}{% \rho_{\rm rad}(T_{n})}\ ;\quad\beta=H(T_{n})\frac{dS_{\rm B}}{dT}\bigg{|}_{T_{% n}}\ ,italic_Ξ± ≑ divide start_ARG italic_V start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_Ο† start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) - italic_V start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ) end_ARG start_ARG italic_ρ start_POSTSUBSCRIPT roman_rad end_POSTSUBSCRIPT ( italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_ARG ; italic_Ξ² = italic_H ( italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) divide start_ARG italic_d italic_S start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_T end_ARG | start_POSTSUBSCRIPT italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT , (7)

where Ο†tsubscriptπœ‘π‘‘\varphi_{t}italic_Ο† start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is the tunneling point obtained from βˆ‚SB/βˆ‚Ο†t=0subscript𝑆Bsubscriptπœ‘π‘‘0\partial S_{\rm B}/\partial\varphi_{t}=0βˆ‚ italic_S start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT / βˆ‚ italic_Ο† start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = 0, and ρradsubscript𝜌rad\rho_{\rm rad}italic_ρ start_POSTSUBSCRIPT roman_rad end_POSTSUBSCRIPT symbolizes the energy density of the SM radiation bath. Due to strong supercooling, α≫1much-greater-than𝛼1\alpha\gg 1italic_Ξ± ≫ 1. The GW spectra Ξ©GWsubscriptΞ©GW\Omega_{\rm GW}roman_Ξ© start_POSTSUBSCRIPT roman_GW end_POSTSUBSCRIPT are calculated by using the well-known approximate analytical estimates summarized in the supplemental material. In Fig. 1, we show two representative fits to the GW spectra for the case when the dominant contribution results from bubble collisions or the sound wave in plasma. The contribution due to the induced turbulence in plasma is negligible in comparison. For both the bubble collision only and the sound wave only cases, our parameter choices yield Ξ²/H⁒(TRH)≃4similar-to-or-equals𝛽𝐻subscript𝑇RH4\beta/H(T_{\rm RH})\simeq 4italic_Ξ² / italic_H ( italic_T start_POSTSUBSCRIPT roman_RH end_POSTSUBSCRIPT ) ≃ 4, which is safe from possible overproduction of primordial black holes [14]. We can see that both cases well fit the NANOGrav 15-yr data [1].

A crucial feature in explaining the PTA signal from a dark first-order phase transition is a considerable amount of supercooling, as exemplified by the ratio of the nucleation and critical temperatures Tn/Tc∼5Γ—10βˆ’3similar-tosubscript𝑇𝑛subscript𝑇𝑐5superscript103T_{n}/T_{c}\sim 5\times 10^{-3}italic_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT / italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ∼ 5 Γ— 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT in Fig. 1. Therefore, any pre-existing baryon asymmetry or DM energy density is diluted by a factor ∼10βˆ’7similar-toabsentsuperscript107\sim 10^{-7}∼ 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT. We will provide a solution to this conundrum, where the baryon asymmetry and DM are created after the phase transition. Due to this strong supercooling, it is expected that the bubble wall would not receive a considerable friction from the diluted plasma, and hence the bubble collision is expected to be the dominant source, and we will take the parameters used for this as a benchmark in calculating the baryon asymmetry and DM production. Notice that with this parameter choice, using Eqs. (4)-(6), we get Ο†min=0.75subscriptπœ‘min0.75\varphi_{\rm min}=0.75italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT = 0.75 GeV, mΟ†=0.35subscriptπ‘šπœ‘0.35m_{\varphi}=0.35italic_m start_POSTSUBSCRIPT italic_Ο† end_POSTSUBSCRIPT = 0.35 GeV, and TRH=0.37subscript𝑇RH0.37T_{\rm RH}=0.37italic_T start_POSTSUBSCRIPT roman_RH end_POSTSUBSCRIPT = 0.37 GeV.

Production of dark asymmetry.β€” The field content of the present model is summarized in Tab. 1, where we consider S⁒U⁒(2)Dπ‘†π‘ˆsubscript2DSU(2)_{\rm D}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT gauge fields and chiral matter representations coupled to the CFT. The dark Higgs field HDsubscript𝐻DH_{\rm D}italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT has the following coupling with the dilaton [35, 22]:

V⁒(Ο†,HD)=Veff⁒(Ο†)+Ξ»4⁒[HD†⁒HDβˆ’vD22⁒(φφmin)2]2.π‘‰πœ‘subscript𝐻Dsubscript𝑉effπœ‘πœ†4superscriptdelimited-[]superscriptsubscript𝐻D†subscript𝐻Dsuperscriptsubscript𝑣D22superscriptπœ‘subscriptπœ‘min22V(\varphi,H_{\rm D})=V_{\rm eff}(\varphi)+\frac{\lambda}{4}\bigg{[}H_{\rm D}^{% \dagger}H_{\rm D}-\frac{v_{\rm D}^{2}}{2}\left(\frac{\varphi}{\varphi_{\rm min% }}\right)^{2}\bigg{]}^{2}\ .italic_V ( italic_Ο† , italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT ) = italic_V start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_Ο† ) + divide start_ARG italic_Ξ» end_ARG start_ARG 4 end_ARG [ italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT - divide start_ARG italic_v start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ( divide start_ARG italic_Ο† end_ARG start_ARG italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (8)

Note that, when Ο†πœ‘\varphiitalic_Ο† is stuck at the false vacuum Ο†=0πœ‘0\varphi=0italic_Ο† = 0, HDsubscript𝐻DH_{\rm D}italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT does not develop a VEV. Typically, this happens for a considerable amount of time, where the false vacuum energy stored in Ο†πœ‘\varphiitalic_Ο† essentially dominates the Universe, until Ο†πœ‘\varphiitalic_Ο† can tunnel to the true vacuum. We will assume a little hierarchy vD≲φminless-than-or-similar-tosubscript𝑣Dsubscriptπœ‘minv_{\rm D}\lesssim\varphi_{\rm min}italic_v start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT ≲ italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT such that one can neglect HDsubscript𝐻DH_{\rm D}italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT contribution to the dilaton-driven phase transition. We now describe how a dark number asymmetry is generated during the phase transition.

Once Ο†πœ‘\varphiitalic_Ο† tunnels to the true minimum, suddenly, HDsubscript𝐻DH_{\rm D}italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT experiences a spinodal instability, and the dilaton energy is dumped into long wavelength modes of HDsubscript𝐻DH_{\rm D}italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT that can carry a non-vanishing winding number [21]. Non-perturbative analysis reveals that the produced low momenta modes of Higgs and gauge bosons soon reach an effective thermal equilibrium by rescattering process with the effective temperature TDsubscript𝑇DT_{\rm D}italic_T start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT, which is higher than the reheating temperature [36, 37]. We can roughly estimate TDsubscript𝑇DT_{\rm D}italic_T start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT through the energy density released by spinodal instability of the Higgs field as [20]

TDΟ†min∼0.05Γ—(Ο†minλ⁒vD)1/2.similar-tosubscript𝑇Dsubscriptπœ‘min0.05superscriptsubscriptπœ‘minπœ†subscript𝑣D12\displaystyle\frac{T_{\rm D}}{\varphi_{\rm min}}\sim 0.05\times\left(\frac{% \varphi_{\rm min}}{\lambda v_{\rm D}}\right)^{1/2}.divide start_ARG italic_T start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT end_ARG start_ARG italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT end_ARG ∼ 0.05 Γ— ( divide start_ARG italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT end_ARG start_ARG italic_Ξ» italic_v start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT . (9)

Although a more precise estimate of the temperature TDsubscript𝑇DT_{\rm D}italic_T start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT requires numerical simulation of the Higgs field, it will turn out that the numerical factor is less sensitive to the produced baryon asymmetry. Once HDsubscript𝐻DH_{\rm D}italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT gets a VEV, due to the following Yukawa couplings, the dark leptons ψ,Ο‡πœ“πœ’\psi,\chiitalic_ψ , italic_Ο‡ form massive Dirac states,

βˆ’β„’Yuksubscriptβ„’Yuk\displaystyle-{\cal L}_{\rm Yuk}- caligraphic_L start_POSTSUBSCRIPT roman_Yuk end_POSTSUBSCRIPT =yi⁒j1⁒HD⁒LΟ‡,i⁒χ1,j+yi⁒j2⁒HD†⁒LΟ‡,i⁒χ2,j+h.c..formulae-sequenceabsentsuperscriptsubscript𝑦𝑖𝑗1subscript𝐻DsubscriptπΏπœ’π‘–subscriptπœ’1𝑗superscriptsubscript𝑦𝑖𝑗2superscriptsubscript𝐻D†subscriptπΏπœ’π‘–subscriptπœ’2𝑗hc\displaystyle=y_{ij}^{1}{H}_{\rm D}L_{\chi,i}\chi_{1,j}+y_{ij}^{2}{H}_{\rm D}^% {\dagger}L_{\chi,i}\chi_{2,j}+{\rm h.c.}\ .= italic_y start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_Ο‡ , italic_i end_POSTSUBSCRIPT italic_Ο‡ start_POSTSUBSCRIPT 1 , italic_j end_POSTSUBSCRIPT + italic_y start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_L start_POSTSUBSCRIPT italic_Ο‡ , italic_i end_POSTSUBSCRIPT italic_Ο‡ start_POSTSUBSCRIPT 2 , italic_j end_POSTSUBSCRIPT + roman_h . roman_c . . (10)

The global U⁒(1)DLπ‘ˆsubscript1subscriptDLU(1)_{\rm D_{L}}italic_U ( 1 ) start_POSTSUBSCRIPT roman_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT end_POSTSUBSCRIPT for these leptons as noted in Tab. 1 results into a chiral anomaly for the corresponding global current jDLsubscript𝑗subscriptDLj_{\rm D_{L}}italic_j start_POSTSUBSCRIPT roman_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT end_POSTSUBSCRIPT as follows,

βˆ‚ΞΌjDLΞΌ=NDL⁒gD232⁒π2⁒Tr⁒(WDμ⁒ν⁒W~D,μ⁒ν).subscriptπœ‡subscriptsuperscriptπ‘—πœ‡subscriptDLsubscript𝑁subscriptDLsuperscriptsubscript𝑔D232superscriptπœ‹2Trsuperscriptsubscriptπ‘ŠDπœ‡πœˆsubscript~π‘ŠDπœ‡πœˆ\partial_{\mu}j^{\mu}_{\rm D_{L}}=N_{\rm D_{L}}\frac{g_{\rm D}^{2}}{32\pi^{2}}% \text{Tr}\left(W_{\rm D}^{\mu\nu}\widetilde{W}_{\rm D,\mu\nu}\right)\ .βˆ‚ start_POSTSUBSCRIPT italic_ΞΌ end_POSTSUBSCRIPT italic_j start_POSTSUPERSCRIPT italic_ΞΌ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT roman_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT end_POSTSUBSCRIPT divide start_ARG italic_g start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 32 italic_Ο€ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG Tr ( italic_W start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΌ italic_Ξ½ end_POSTSUPERSCRIPT over~ start_ARG italic_W end_ARG start_POSTSUBSCRIPT roman_D , italic_ΞΌ italic_Ξ½ end_POSTSUBSCRIPT ) . (11)

Here, gDsubscript𝑔Dg_{\rm D}italic_g start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT, WDμ⁒νsuperscriptsubscriptπ‘ŠDπœ‡πœˆW_{\rm D}^{\mu\nu}italic_W start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΌ italic_Ξ½ end_POSTSUPERSCRIPT (W~Dμ⁒νsuperscriptsubscript~π‘ŠDπœ‡πœˆ\widetilde{W}_{\rm D}^{\mu\nu}over~ start_ARG italic_W end_ARG start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΌ italic_Ξ½ end_POSTSUPERSCRIPT) denote the S⁒U⁒(2)Dπ‘†π‘ˆsubscript2DSU(2)_{\rm D}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT gauge coupling, and (dual) field strength tensors respectively, while the number of generations for the dark leptons NDLsubscript𝑁subscriptDLN_{\rm D_{L}}italic_N start_POSTSUBSCRIPT roman_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT end_POSTSUBSCRIPT is even to avoid a global S⁒U⁒(2)Dπ‘†π‘ˆsubscript2DSU(2)_{\rm D}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT anomaly. Eq. (11) is the source of the anomalous production of the dark leptons in the presence of dynamics changing the gauge-Higgs winding number.

We introduce a CP-violating coupling with the gauge field which is of the form,

π’ͺCPV=Ξ΄CP⁒HD†⁒HDΞ›CP2⁒gD232⁒π2⁒Tr⁒(WDμ⁒ν⁒W~D,μ⁒ν),subscriptπ’ͺCPVsubscript𝛿CPsuperscriptsubscript𝐻D†subscript𝐻DsuperscriptsubscriptΞ›CP2superscriptsubscript𝑔D232superscriptπœ‹2Trsuperscriptsubscriptπ‘ŠDπœ‡πœˆsubscript~π‘ŠDπœ‡πœˆ\displaystyle\mathcal{O}_{\rm CPV}=\delta_{\rm CP}\dfrac{H_{\rm D}^{\dagger}H_% {\rm D}}{\Lambda_{\rm CP}^{2}}\dfrac{g_{\rm D}^{2}}{32\pi^{2}}\text{Tr}\left(W% _{\rm D}^{\mu\nu}\widetilde{W}_{\rm D,\mu\nu}\right),caligraphic_O start_POSTSUBSCRIPT roman_CPV end_POSTSUBSCRIPT = italic_Ξ΄ start_POSTSUBSCRIPT roman_CP end_POSTSUBSCRIPT divide start_ARG italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT end_ARG start_ARG roman_Ξ› start_POSTSUBSCRIPT roman_CP end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG italic_g start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 32 italic_Ο€ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG Tr ( italic_W start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΌ italic_Ξ½ end_POSTSUPERSCRIPT over~ start_ARG italic_W end_ARG start_POSTSUBSCRIPT roman_D , italic_ΞΌ italic_Ξ½ end_POSTSUBSCRIPT ) , (12)

where Ξ΄CP,Ξ›CPsubscript𝛿CPsubscriptΞ›CP\delta_{\rm CP},\leavevmode\nobreak\ \Lambda_{\rm CP}italic_Ξ΄ start_POSTSUBSCRIPT roman_CP end_POSTSUBSCRIPT , roman_Ξ› start_POSTSUBSCRIPT roman_CP end_POSTSUBSCRIPT respectively denote a dimensionless CP-violating phase and a new physics mass scale which leads to the operator (12) in the low-energy limit. In the presence of this operator, the time-dependent Higgs condensation can be regarded as the chemical potential of the CS number of the gauge field, which results in the generation of a net non-zero dark lepton asymmetry through its chiral anomaly in Eq. (11). By solving the Boltzmann-like equation of the dark lepton number, one can approximately estimate the produced dark lepton asymmetry in LΟ‡subscriptπΏπœ’L_{\chi}italic_L start_POSTSUBSCRIPT italic_Ο‡ end_POSTSUBSCRIPT, Ο‡πœ’\chiitalic_Ο‡ as [20] (see Ref. [38] for the non-perturbative numerical result)

π’ŸL,in≃NDL⁒45⁒αD4⁒δCPΟ€2⁒gβˆ—β’βŸ¨HD†⁒HDβŸ©Ξ›CP2⁒(TDTRH)3.similar-to-or-equalssubscriptπ’ŸLinsubscript𝑁subscript𝐷L45superscriptsubscript𝛼D4subscript𝛿CPsuperscriptπœ‹2subscript𝑔delimited-⟨⟩superscriptsubscript𝐻D†subscript𝐻DsuperscriptsubscriptΞ›CP2superscriptsubscript𝑇Dsubscript𝑇RH3\displaystyle{\cal D}_{\rm L,in}\simeq N_{D_{\rm L}}\dfrac{45\alpha_{\rm D}^{4% }\delta_{\rm CP}}{\pi^{2}g_{*}}\dfrac{\langle H_{\rm D}^{\dagger}H_{\rm D}% \rangle}{\Lambda_{\rm CP}^{2}}\left(\dfrac{T_{\rm D}}{T_{\rm RH}}\right)^{3}.caligraphic_D start_POSTSUBSCRIPT roman_L , roman_in end_POSTSUBSCRIPT ≃ italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT end_POSTSUBSCRIPT divide start_ARG 45 italic_Ξ± start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_Ξ΄ start_POSTSUBSCRIPT roman_CP end_POSTSUBSCRIPT end_ARG start_ARG italic_Ο€ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT βˆ— end_POSTSUBSCRIPT end_ARG divide start_ARG ⟨ italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT ⟩ end_ARG start_ARG roman_Ξ› start_POSTSUBSCRIPT roman_CP end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG italic_T start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT end_ARG start_ARG italic_T start_POSTSUBSCRIPT roman_RH end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT . (13)

Here, Ξ±D≑gD2/(4⁒π)subscript𝛼Dsuperscriptsubscript𝑔D24πœ‹\alpha_{\rm D}\equiv g_{\rm D}^{2}/(4\pi)italic_Ξ± start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT ≑ italic_g start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( 4 italic_Ο€ ), while ⟨HD†⁒HD⟩=vD2/2delimited-⟨⟩superscriptsubscript𝐻D†subscript𝐻Dsuperscriptsubscript𝑣D22\langle H_{\rm D}^{\dagger}H_{\rm D}\rangle=v_{\rm D}^{2}/2⟨ italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT ⟩ = italic_v start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 2. Note that Ξ±D4superscriptsubscript𝛼𝐷4\alpha_{D}^{4}italic_Ξ± start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT factor comes from the dark S⁒U⁒(2)Dπ‘†π‘ˆsubscript2DSU(2)_{\rm D}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT sphaleron transition rate.

The equivalent of three of the Sakharov conditions [39] are satisfied as follows. C𝐢Citalic_C, P𝑃Pitalic_P, and the dark lepton number violation are due to the chiral representation of the dark sector and the chiral anomaly as embodied in Eq. (11). C⁒P𝐢𝑃CPitalic_C italic_P violation originates from the operator (12), while the spinodal instability of HDsubscript𝐻DH_{\rm D}italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT and the dynamics of gauge-Higgs winding configurations provide the out-of-thermal equilibrium condition. Combining the above equations, we have the following estimate:

π’ŸL,in≃ 10βˆ’10⁒(NDL2)⁒(Ξ΄CP10βˆ’4⁒φmin2Ξ›CP2)⁒(Ξ±D1.5Γ—10βˆ’2)4Γ—(Ξ»10βˆ’4)βˆ’3/2⁒(5⁒vDΟ†min)1/2⁒(Ο†min2⁒TRH)3,similar-to-or-equalssubscriptπ’ŸLinsuperscript1010subscript𝑁subscript𝐷L2subscript𝛿CPsuperscript104superscriptsubscriptπœ‘min2superscriptsubscriptΞ›CP2superscriptsubscript𝛼D1.5superscript1024superscriptπœ†superscript10432superscript5subscript𝑣Dsubscriptπœ‘min12superscriptsubscriptπœ‘min2subscript𝑇RH3{\cal D}_{\rm L,in}\simeq\ 10^{-10}\left(\frac{N_{D_{\rm L}}}{2}\right)\left(% \frac{\delta_{\rm CP}}{10^{-4}}\frac{\varphi_{\rm min}^{2}}{\Lambda_{\rm CP}^{% 2}}\right)\left(\frac{\alpha_{\rm D}}{1.5\times 10^{-2}}\right)^{4}\\ \times\left(\frac{\lambda}{10^{-4}}\right)^{-3/2}\left(\frac{5v_{\rm D}}{% \varphi_{\rm min}}\right)^{1/2}\left(\frac{\varphi_{\rm min}}{2T_{\rm RH}}% \right)^{3},start_ROW start_CELL caligraphic_D start_POSTSUBSCRIPT roman_L , roman_in end_POSTSUBSCRIPT ≃ 10 start_POSTSUPERSCRIPT - 10 end_POSTSUPERSCRIPT ( divide start_ARG italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG ) ( divide start_ARG italic_Ξ΄ start_POSTSUBSCRIPT roman_CP end_POSTSUBSCRIPT end_ARG start_ARG 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT end_ARG divide start_ARG italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG roman_Ξ› start_POSTSUBSCRIPT roman_CP end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ( divide start_ARG italic_Ξ± start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT end_ARG start_ARG 1.5 Γ— 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL Γ— ( divide start_ARG italic_Ξ» end_ARG start_ARG 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 3 / 2 end_POSTSUPERSCRIPT ( divide start_ARG 5 italic_v start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT end_ARG start_ARG italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_T start_POSTSUBSCRIPT roman_RH end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , end_CELL end_ROW (14)

where we have used gβˆ—=80subscript𝑔80g_{*}=80italic_g start_POSTSUBSCRIPT βˆ— end_POSTSUBSCRIPT = 80. This asymmetry produced in the dark sector will be shared with the visible sector via portal operators.

Asymmetry sharing.β€” The generated asymmetry π’ŸL,insubscriptπ’ŸLin{\cal D}_{\rm L,in}caligraphic_D start_POSTSUBSCRIPT roman_L , roman_in end_POSTSUBSCRIPT in the dark lepton sector LΟ‡subscriptπΏπœ’L_{\chi}italic_L start_POSTSUBSCRIPT italic_Ο‡ end_POSTSUBSCRIPT, Ο‡πœ’\chiitalic_Ο‡ in Eq. (13) is shared with the dark baryon sector via the effective operator,

π’ͺD∼1Ξ›D2⁒pD⁒pD⁒χ⁒χ,similar-tosubscriptπ’ͺD1superscriptsubscriptΞ›D2subscript𝑝Dsubscript𝑝Dπœ’πœ’{\cal O}_{\rm D}\sim\frac{1}{\Lambda_{\rm D}^{2}}p_{\rm D}p_{\rm D}\chi\chi\ ,caligraphic_O start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT ∼ divide start_ARG 1 end_ARG start_ARG roman_Ξ› start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT italic_Ο‡ italic_Ο‡ , (15)

where the effective scale Ξ›DsubscriptΞ›D\Lambda_{\rm D}roman_Ξ› start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT is expected to be at the GeV scale. This is not contradictory from a UV completion perspective, as all fields are dark. Further, the dark lepton asymmetry is shared with the visible sector via the neutron portal operator,

π’ͺn∼1Ξ›n2⁒χ⁒uR⁒dR⁒dR.similar-tosubscriptπ’ͺ𝑛1superscriptsubscriptΛ𝑛2πœ’subscript𝑒Rsubscript𝑑Rsubscript𝑑R{\cal O}_{n}\sim\frac{1}{\Lambda_{n}^{2}}\chi u_{\rm R}d_{\rm R}d_{\rm R}\ .caligraphic_O start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∼ divide start_ARG 1 end_ARG start_ARG roman_Ξ› start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_Ο‡ italic_u start_POSTSUBSCRIPT roman_R end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT roman_R end_POSTSUBSCRIPT italic_d start_POSTSUBSCRIPT roman_R end_POSTSUBSCRIPT . (16)

To forbid bound neutron decays, we conservatively demand that Ο‡πœ’\chiitalic_Ο‡ is more massive than a neutron.777 If higher generation SM quarks are used for the asymmetry sharing, this constraint on mass of Ο‡πœ’\chiitalic_Ο‡ can be relaxed. For related applications to the neutron lifetime anomaly and strange baryons, see Ref. [40]. Ξ›n≲15less-than-or-similar-tosubscriptΛ𝑛15\Lambda_{n}\lesssim 15roman_Ξ› start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≲ 15 TeV is adequate to keep the operator in Eq. (16) in thermal equilibrium at the GeV temperature scale, while also allowing ψ,Ο‡πœ“πœ’\psi,\chiitalic_ψ , italic_Ο‡ to decay before the onset of the BBN.

The operator π’ͺnsubscriptπ’ͺ𝑛{\cal O}_{n}caligraphic_O start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT violates the baryon number B𝐡Bitalic_B and the total dark number D=DL+DB𝐷subscript𝐷Lsubscript𝐷BD=D_{\rm L}+D_{\rm B}italic_D = italic_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT + italic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT separately, but conserves the lepton number L𝐿Litalic_L, and the generalized baryon number B+D𝐡𝐷B+Ditalic_B + italic_D. The global symmetry U⁒(1)B+Dπ‘ˆsubscript1BDU(1)_{\rm B+D}italic_U ( 1 ) start_POSTSUBSCRIPT roman_B + roman_D end_POSTSUBSCRIPT has to be preserved with high-quality to prevent a Majorana mass term Ο‡β’Ο‡πœ’πœ’\chi\chiitalic_Ο‡ italic_Ο‡ that could cause the washout of the asymmetry. In terms of the dual description, this is realized as a 5D bulk gauge symmetry U⁒(1)B+Dπ‘ˆsubscript1BDU(1)_{\rm B+D}italic_U ( 1 ) start_POSTSUBSCRIPT roman_B + roman_D end_POSTSUBSCRIPT broken on the UV brane. Further, a discrete symmetry β„€2Dsuperscriptsubscriptβ„€2D\mathbb{Z}_{2}^{\rm D}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_D end_POSTSUPERSCRIPT, under which only pDsubscript𝑝Dp_{\rm D}italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT is odd, is sufficient to forbid terms such as pD⁒χnsubscript𝑝Dsuperscriptπœ’π‘›p_{\rm D}\chi^{n}italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT italic_Ο‡ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT, where n=1,3𝑛13n=1,3italic_n = 1 , 3, etc., which could cause the DM to decay.

We can utilize the fact that the operators π’ͺDsubscriptπ’ͺD{\cal O}_{\rm D}caligraphic_O start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT and π’ͺnsubscriptπ’ͺ𝑛{\cal O}_{n}caligraphic_O start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT were in thermal equilibrium at one point of the evolution together with the condition of the conservation of B+D𝐡𝐷B+Ditalic_B + italic_D, modulo the S⁒U⁒(2)Dπ‘†π‘ˆsubscript2DSU(2)_{\rm D}italic_S italic_U ( 2 ) start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT anomaly that generates the dark lepton asymmetry π’ŸL,insubscriptπ’ŸLin{\cal D}_{\rm L,in}caligraphic_D start_POSTSUBSCRIPT roman_L , roman_in end_POSTSUBSCRIPT, and electromagnetic charge neutrality to estimate the shared asymmetry in the visible sector (ℬfsubscriptℬ𝑓{\cal B}_{f}caligraphic_B start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT) and the dark baryon sector (π’ŸBsubscriptπ’ŸB{\cal D}_{\rm B}caligraphic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT) as

ℬfsubscriptℬ𝑓\displaystyle{\cal B}_{f}caligraphic_B start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT =[2+4⁒NDL4⁒NDL+NDB+2]β’π’ŸL,in,absentdelimited-[]24subscript𝑁subscript𝐷L4subscript𝑁subscript𝐷Lsubscript𝑁subscript𝐷B2subscriptπ’ŸLin\displaystyle=\left[\frac{2+4N_{D_{\rm L}}}{4N_{D_{\rm L}}+N_{D_{\rm B}}+2}% \right]{\cal D}_{\rm L,in}\ ,= [ divide start_ARG 2 + 4 italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG 4 italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT end_POSTSUBSCRIPT + italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT end_POSTSUBSCRIPT + 2 end_ARG ] caligraphic_D start_POSTSUBSCRIPT roman_L , roman_in end_POSTSUBSCRIPT ,
π’ŸBsubscriptπ’ŸB\displaystyle{\cal D}_{\rm B}caligraphic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT =[NDB4⁒NDL+NDB+2]β’π’ŸL,in.absentdelimited-[]subscript𝑁subscript𝐷B4subscript𝑁subscript𝐷Lsubscript𝑁subscript𝐷B2subscriptπ’ŸLin\displaystyle=\left[\frac{N_{D_{\rm B}}}{4N_{D_{\rm L}}+N_{D_{\rm B}}+2}\right% ]{\cal D}_{\rm L,in}\ .= [ divide start_ARG italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG 4 italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT end_POSTSUBSCRIPT + italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT end_POSTSUBSCRIPT + 2 end_ARG ] caligraphic_D start_POSTSUBSCRIPT roman_L , roman_in end_POSTSUBSCRIPT . (17)

The details of this derivation are presented in the supplemental material. Notice that for the asymmetric DM to make up the observed energy density of DM, we should have

mpD≃5⁒|ℬfπ’ŸB|⁒GeV=5⁒(2+4⁒NDLNDB)⁒GeV.similar-to-or-equalssubscriptπ‘šsubscript𝑝D5subscriptℬ𝑓subscriptπ’ŸBGeV524subscript𝑁subscript𝐷Lsubscript𝑁subscript𝐷BGeV\displaystyle m_{p_{\rm D}}\simeq 5\bigg{|}\frac{{\cal B}_{f}}{{\cal D}_{\rm B% }}\bigg{|}{\rm GeV}=5\left(\frac{2+4N_{D_{\rm L}}}{N_{D_{\rm B}}}\right){\rm GeV% }\ .italic_m start_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≃ 5 | divide start_ARG caligraphic_B start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT end_ARG start_ARG caligraphic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT end_ARG | roman_GeV = 5 ( divide start_ARG 2 + 4 italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG ) roman_GeV . (18)
Refer to caption
Figure 2: DM direct detection constraint (gray) and BBN constraint (red) on the Higgs portal coupling in Eq. (20) as a function of the DM mass. Here, NH=5subscript𝑁H5N_{\rm H}=5italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT = 5, Ο†min=0.75subscriptπœ‘min0.75\varphi_{\rm min}=0.75italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT = 0.75 GeV and mΟ†=0.35subscriptπ‘šπœ‘0.35m_{\varphi}=0.35italic_m start_POSTSUBSCRIPT italic_Ο† end_POSTSUBSCRIPT = 0.35 GeV are input from the bubble collision only case in Fig. 1, while we take vD=0.2⁒φminsubscript𝑣D0.2subscriptπœ‘minv_{\rm D}=0.2\varphi_{\rm min}italic_v start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT = 0.2 italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT and Ξ»=10βˆ’4πœ†superscript104\lambda=10^{-4}italic_Ξ» = 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT that result in TD=8subscript𝑇D8T_{\rm D}=8italic_T start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT = 8 GeV. The magenta dashed and red dot-dashed curves correspond to the projected reach from SuperCDMS [41] and PandaX-xT [42].

Phenomenology.β€” As the DM is a composite state in an S⁒U⁒(NH)π‘†π‘ˆsubscript𝑁HSU(N_{\rm H})italic_S italic_U ( italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT ) gauge theory, it can interact with itself via the mediation of dark pions. Let us denote the effective scattering length as aDsubscriptπ‘ŽDa_{\rm D}italic_a start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT. The self-interaction cross-section can therefore be estimated as [24, 26]

ΟƒpD⁒pDmpD∼1⁒cm2/g⁒(Ξ›H,0mpD)⁒(Ξ›H,0aDβˆ’1)2⁒(150⁒MeVΞ›H,0)3,similar-tosubscript𝜎subscript𝑝Dsubscript𝑝Dsubscriptπ‘šsubscript𝑝D1superscriptcm2gsubscriptΞ›H0subscriptπ‘šsubscript𝑝DsuperscriptsubscriptΞ›H0superscriptsubscriptπ‘ŽD12superscript150MeVsubscriptΞ›H03\displaystyle\frac{\sigma_{p_{\rm D}p_{\rm D}}}{m_{p_{\rm D}}}\sim 1\ {\rm cm}% ^{2}/{\rm g}\left(\frac{\Lambda_{\rm H,0}}{m_{p_{\rm D}}}\right)\left(\frac{% \Lambda_{\rm H,0}}{a_{\rm D}^{-1}}\right)^{2}\left(\frac{150\ {\rm MeV}}{% \Lambda_{\rm H,0}}\right)^{3}\ ,divide start_ARG italic_Οƒ start_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG ∼ 1 roman_cm start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / roman_g ( divide start_ARG roman_Ξ› start_POSTSUBSCRIPT roman_H , 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG ) ( divide start_ARG roman_Ξ› start_POSTSUBSCRIPT roman_H , 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG 150 roman_MeV end_ARG start_ARG roman_Ξ› start_POSTSUBSCRIPT roman_H , 0 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , (19)

which is in the ballpark value as desired from the small-scale structure issues, such as the observed diversity in the galactic rotation curves. Furthermore, as the constituent dark quark is Dirac, the cross-section should also fall off beyond the inverse momentum scale ΟƒpD⁒pDsubscript𝜎subscript𝑝Dsubscript𝑝D\sqrt{\sigma_{p_{\rm D}p_{\rm D}}}square-root start_ARG italic_Οƒ start_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG as required to be consistent with the observations at the cluster scale. In particular, from Ref. [43], Ξ›H,0<4subscriptΞ›H04\Lambda_{\rm H,0}<4roman_Ξ› start_POSTSUBSCRIPT roman_H , 0 end_POSTSUBSCRIPT < 4 GeV and mpD<15subscriptπ‘šsubscript𝑝D15m_{p_{\rm D}}<15italic_m start_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT end_POSTSUBSCRIPT < 15 GeV is required to have this property, which is satisfied here. Note that these naive scaling arguments may break due to the strongly interacting nature of the constituents, and we leave the detailed analysis of DM self-interactions in the current model as a future study.888See Ref. [43] for a discussion on the self-interaction strength in dark confining theories from lattice gauge studies.

Let us comment on the searches for the portal operators. Note that Ξ›nsubscriptΛ𝑛\Lambda_{n}roman_Ξ› start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT in Eq. (16) can be probed at colliders in the partonic processes u⁒d→χ¯⁒dΒ―β†’π‘’π‘‘Β―πœ’Β―π‘‘ud\to\bar{\chi}\bar{d}italic_u italic_d β†’ overΒ― start_ARG italic_Ο‡ end_ARG overΒ― start_ARG italic_d end_ARG, d⁒dβ†’uΒ―β’Ο‡Β―β†’π‘‘π‘‘Β―π‘’Β―πœ’dd\to\bar{u}\bar{\chi}italic_d italic_d β†’ overΒ― start_ARG italic_u end_ARG overΒ― start_ARG italic_Ο‡ end_ARG and their resulting mono-jet signatures. The existing bound already constrains Ξ›n≳2greater-than-or-equivalent-tosubscriptΛ𝑛2\Lambda_{n}\gtrsim 2roman_Ξ› start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≳ 2 TeV [44, 45] and will be constrained further by the High-Luminosity LHC. As the symmetric DM density ends up annihilating into the dark pions, via the process pD+pΒ―Dβ†’Ο€D⁒πDβ†’subscript𝑝Dsubscript¯𝑝Dsubscriptπœ‹Dsubscriptπœ‹Dp_{\rm D}+\bar{p}_{\rm D}\to\pi_{\rm D}\pi_{\rm D}italic_p start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT + overΒ― start_ARG italic_p end_ARG start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT β†’ italic_Ο€ start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT italic_Ο€ start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT, they should decay to the visible sector before the onset of the BBN. This entails the introduction of a portal operator connecting the dark and visible sectors. We take the Higgs portal operator,

β„’HβŠƒβˆ’Ξ»h⁒(|H|2βˆ’v22)⁒(|HD|2βˆ’vD22⁒φ2Ο†min2).subscriptπœ†β„Žsuperscript𝐻2superscript𝑣22superscriptsubscript𝐻D2superscriptsubscript𝑣D22superscriptπœ‘2superscriptsubscriptπœ‘min2subscriptβ„’H{\cal L}_{\rm H}\supset-\lambda_{h}\left(|H|^{2}-\frac{v^{2}}{2}\right)\left(|% H_{\rm D}|^{2}-\frac{v_{\rm D}^{2}}{2}\frac{\varphi^{2}}{\varphi_{\rm min}^{2}% }\right)\ .caligraphic_L start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT βŠƒ - italic_Ξ» start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT ( | italic_H | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ) ( | italic_H start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG italic_v start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG divide start_ARG italic_Ο† start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) . (20)

To be consistent with the constraint on Higgs invisible decays, Ξ»h≲0.1less-than-or-similar-tosubscriptπœ†β„Ž0.1\lambda_{h}\lesssim 0.1italic_Ξ» start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT ≲ 0.1 [46]. The DM direct detection places a more stringent upper limit on this coupling, while the BBN constraint sets a lower bound. This is depicted in Fig. 2 for an illustrating set of parameters, vD=0.2⁒φminsubscript𝑣D0.2subscriptπœ‘minv_{\rm D}=0.2\varphi_{\rm min}italic_v start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT = 0.2 italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT and Ξ»=10βˆ’4πœ†superscript104\lambda=10^{-4}italic_Ξ» = 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT together with Ο†min=0.75subscriptπœ‘min0.75\varphi_{\rm min}=0.75italic_Ο† start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT = 0.75 GeV, NH=5subscript𝑁H5N_{\rm H}=5italic_N start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT = 5 and mΟ†=0.35subscriptπ‘šπœ‘0.35m_{\varphi}=0.35italic_m start_POSTSUBSCRIPT italic_Ο† end_POSTSUBSCRIPT = 0.35 GeV, as taken from the bubble collision only case in Fig. 1. The gray region is excluded by PandaX-4T [47] and Darkside-50 [48] experiments, and the red region is constrained from the BBN. The kink in the BBN region appears once the dark pion can decay to charm final states. The current parameter choices yield TD≃8similar-to-or-equalssubscript𝑇D8T_{\rm D}\simeq 8italic_T start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT ≃ 8 GeV, allowing for the production of PDsubscript𝑃DP_{\rm D}italic_P start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT for the entirety of the allowed parameter space in Fig. 2. For example, NDL=2subscript𝑁subscript𝐷L2N_{D_{\rm L}}=2italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 2, NDB=10subscript𝑁subscript𝐷B10N_{D_{\rm B}}=10italic_N start_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT roman_B end_POSTSUBSCRIPT end_POSTSUBSCRIPT = 10 yields the observed baryon asymmetry in Eq. (17) with the parameter choices made in Figs. 12 and a 5555 GeV DM candidate. We also depict the projected reach from SuperCDMS [41] and PandaX-xT [42], which will probe the parameter space further. For details of the calculation and parameter dependence, refer to the supplemental material.

In summary, we have presented a concrete scenario of producing baryon asymmetry and DM in a dark supercooled phase transition that can explain the PTA signal. The baryon asymmetry is produced after the phase transition, which also yields an asymmetric self-interacting DM. Our model will be probed by near-future DM direct detection experiments and colliders.

Acknowledgements.β€” We are grateful to Gabriel Cardoso and Jianglai Liu for useful discussions. KF is supported by JSPS Grant-in-Aid for Research Fellows Grant No. 22J00345.

References