Astrophysics > Earth and Planetary Astrophysics
[Submitted on 20 Jun 2024]
Title:OH mid-infrared emission as a diagnostic of H$_2$O UV photodissociation. III. Application to planet-forming disks
View PDF HTML (experimental)Abstract:JWST gives a unique access to the physical and chemical structure of inner disks ($<10$~au), where the majority of the planets are forming. However, the interpretation of mid-infrared (mid-IR) spectra requires detailed thermo-chemical models able to provide synthetic spectra readily comparable to spectroscopic observations. Our goal is to explore the potential of mid-IR emission of OH to probe H$_2$O photodissociation. We include in the DALI disk model prompt emission of OH following photodissociation of H$_2$O in its $\tilde{B}$ electronic state ($\lambda < 144$~nm). This model allows to compute in a self-consistent manner the thermo-chemical structure of the disk and the resulting mid-IR line intensities of OH and H$_2$O. The OH line intensities in the $9-13~\mu$m range are proportional to the total amount of water photodissociated. As such, these lines are a tracer of the amount of water exposed to the FUV field, which depends on the temperature, density, and strength of the FUV field reaching the upper molecular layers. In particular, the OH line fluxes primarily scale with the FUV field emitted by the star in contrast with H$_2$O lines in the 10-20$~\mu$m range which scale with the bolometric luminosity. OH is therefore a key diagnostic to probe the effect of Ly$\alpha$ and constrain the dust FUV opacity in the upper molecular layers. A strong asymmetry between the A' and A'' components of each rotational quadruplet is also predicted. OH mid-IR emission is a powerful tool to probe H$_2$O photodissociation and infer the physical conditions in disk atmospheres. As such, the inclusion of OH mid-IR lines in the analysis of JWST-MIRI spectra will be key for robustly inferring the composition of planet-forming disks. The interpretation of less excited OH lines requires additional quantum calculations of the formation pumping of OH levels by O+H$_2$ and the collisional rate coefficients.
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.