Roman FFP Revolution: Two, Three, Many Plutos

Andrew Gould1,2 Jennifer C. Yee3, Subo Dong4,5 1Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210, USA 2Max-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 3 Center for Astrophysics |||| Harvard & Smithsonian, 60 Garden St., Cambridge, MA 02138, USA 4Department of Astronomy, School of Physics, Peking University, Yiheyuan Rd. 5, Haidian District, Beijing, China, 100871 5Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Road 5, Hai Dian District, Beijing 100871, China
Abstract

Roman microlensing stands at a crossroads between its originally charted path of cataloging a population of cool planets that has subsequently become well-measured down to the super-Earth regime, and the path of free-floating planets (FFPs), which did not even exist when Roman was chosen in 2010, but by now promises revolutionary insights into planet formation and evolution via their possible connection to a spectrum of objects spanning 18 orders of magnitude in mass. Until this work, it was not even realized that the two paths are in conflict: Roman strategy was optimized for bound-planet detections, and FFPs were considered only in the context of what could be learned about them given this strategy. We derive a simple equation that mathematically expresses this conflict and explains why the current approach severely depresses detection of 2 of the 5 decades of potential FFP masses, i.e., exactly the two decades, MPluto<M<2MMarssubscript𝑀Pluto𝑀2subscript𝑀MarsM_{\rm Pluto}<M<2\,M_{\rm Mars}italic_M start_POSTSUBSCRIPT roman_Pluto end_POSTSUBSCRIPT < italic_M < 2 italic_M start_POSTSUBSCRIPT roman_Mars end_POSTSUBSCRIPT, that would tie terrestrial planets to the proto-planetary material out of which they formed. FFPs can be either genuinely free floating, or they can be bound in “Wide”, “Kuiper”, and “Oort” orbits, whose separate identification will allow further insight into planet formation. In the (low-mass) limit that the source radius is much bigger than the Einstein radius, θθEmuch-greater-thansubscript𝜃subscript𝜃E\theta_{*}\gg\theta_{\rm E}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≫ italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, the number of significantly magnified points on the FFP light curve is

Nexp=2Γθ1z2μrel=3.0(Γ4/hr)(θ0.3μas)(μrel6mas/yr)1(1z20.86),subscript𝑁exp2Γsubscript𝜃1superscript𝑧2subscript𝜇rel3.0Γ4hrsubscript𝜃0.3𝜇assuperscriptsubscript𝜇rel6masyr11superscript𝑧20.86N_{\rm exp}=2{\Gamma\theta_{*}\sqrt{1-z^{2}}\over\mu_{\rm rel}}=3.0\biggl{(}{% \Gamma\over 4/\rm hr}\biggr{)}\biggl{(}{\theta_{*}\over 0.3\,\mu\rm as}\biggr{% )}\biggl{(}{\mu_{\rm rel}\over 6\,{\rm mas}/\rm yr}\biggr{)}^{-1}\biggl{(}{% \sqrt{1-z^{2}}\over 0.86}\biggr{)},italic_N start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT = 2 divide start_ARG roman_Γ italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT square-root start_ARG 1 - italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG = 3.0 ( divide start_ARG roman_Γ end_ARG start_ARG 4 / roman_hr end_ARG ) ( divide start_ARG italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG 0.3 italic_μ roman_as end_ARG ) ( divide start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG 6 roman_mas / roman_yr end_ARG ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( divide start_ARG square-root start_ARG 1 - italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG start_ARG 0.86 end_ARG ) ,

where the lens-source proper motion μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT, the source impact parameter z𝑧zitalic_z, and θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT are scaled to their typical values, and the cadence ΓΓ\Gammaroman_Γ is normalized to the value chosen to optimize the original Roman microlensing goals. Hence, the typical number of significantly magnified points on an FFP light curves is Nexp=3.0subscript𝑁exp3.0N_{\rm exp}=3.0italic_N start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT = 3.0, whereas N=6𝑁6N=6italic_N = 6 are needed for an FFP detection. Thus, unless ΓΓ\Gammaroman_Γ is doubled, FFP detection will be driven into the (large-θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, small-μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT) corner of parameter space, reducing the detections by a net factor of 2 and cutting off the lowest-mass FFPs.

gravitational lensing: micro

1 Introduction

1.1 The Waning Potential of Bound Planets

At the time that a “Wide Field Imager in Space for Dark Energy and Planets” was proposed (Gould, 2009) to the 2010 Decadal Committee and was later adopted by the National Research Council111Astro2010: The Astronomy and Astrophysics Decadal Survey; New Worlds, New Horizons in Astronomy and Astrophysics; https://science.nasa.gov/astrophysics/resources/decadal-survey/astro2010-astronomy-and-astrophysics-decadal-survey as the Wide-Field Infrared Space Telescope (WFIRST), microlensing planets were being discovered at the rate of a few per year. In that context, the resulting homogeneous sample of 𝒪𝒪\cal{O}caligraphic_O(1000) microlensing planets, over the full range of masses, in the otherwise unreachable cold, outer regions of solar systems, would indeed be a “revolution” by completing the systematic census of exo-planets, which had been pioneered in the warm and hot regions by radial-velocity (RV) and transit studies, respectively. Moreover, in contrast to the ground-based detections, which delivered only planet-host mass-ratio (q𝑞qitalic_q) measurements, a substantial fraction of WFIRST planets would yield host-mass (Mhostsubscript𝑀hostM_{\rm host}italic_M start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT) measurements, and thereby also planet-mass (Mplanet=qMhostsubscript𝑀planet𝑞subscript𝑀hostM_{\rm planet}=qM_{\rm host}italic_M start_POSTSUBSCRIPT roman_planet end_POSTSUBSCRIPT = italic_q italic_M start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT) measurements.

Fast forward 15 years, and these formerly “revolutionary” prospects have begun substantially merging into the mainstream. Based on a systematic analysis (Zang et al., 2024) of the first four years (2016-2019) of KMTNet (Kim et al., 2016) microlensing, there are already about 200 KMTNet planets in a homogeneous sample (2016-2024), and this will likely increase to about 300 by the time that WFIRST (now renamed Roman) is launched. As soon as adaptive optics (AO) are available on extremely large telescopes (ELTs), it will be possible to make mass measurements of the majority of hosts (and therefore planets) in the 2016-2019 KMTNet sample, and the planets detected in later years will also gradually become amenable to measurement as the source-lens separations continue to increase (Gould, 2022).

Certainly, Roman will detect several times more planets than KMT. Moreover, late-time AO observations will enable mass measurements for an even larger fraction of Roman planets than KMT planets, simply because its sources are systematically fainter222For example, according to Figure 9 of Gould (2022), about 20% of KMT planetary-microlensing sources are giants, which probably require source-lens separations of 10 FWHM (140mas140mas140\,{\rm mas}140 roman_mas for a 39m telescope) to allow for the 10 magnitude (factor 10000) contrast ratios that are needed to probe down most of the main sequence. The wait time for typical lens-source relative proper motions μrel6masyr1similar-tosubscript𝜇rel6massuperscriptyr1\mu_{\rm rel}\sim 6\,{\rm mas}\,{\rm yr}^{-1}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ∼ 6 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT would be about 25 years. By contrast, only a tiny fraction of Roman planetary-microlensing sources will be giants.. However, in most respects, this will be an evolutionary, not revolutionary, development. The one remaining revolutionary element of the original WFIRST/Roman plan is its potential to probe the planet mass-ratio function well below what has been achieved from the ground.

1.2 A Spectrum Haunts Microlensing: the FFP Mass Spectrum

On the other hand, the fading revolutionary potential of the original WFIRST/Roman program has been more than matched by the surging potential of its application to free-floating planets (FFPs) and wide-orbit planets (Yee & Gould, 2023).

Observationally, FFPs are short single-lens single-source (1L1S) microlensing events. These could indeed be unbound to any host, but may also be due to wide-orbit planets whose hosts are too far away to leave any trace on the event. As discussed by Gould (2016), FFP events can be resolved into moderately wide (hereafter: Wide), Kuiper, Oort, and Unbound objects using late-time high-resolution observations. As we will show, for the great majority of space-based FFP discoveries, these four categories can be distinguished within 10 years after the microlensing event, but at the time of discovery, there will be at most hints as to whether they are actually unbound (“free”) or they are bound. And most often, there will not even be hints. Hence, in the present work, we keep the nomenclature “FFP” as an observational classification of objects whose physical nature must still be determined on an event-by-event basis.

Sumi et al. (2011) were the first to propose a large FFP population, a year too late to be considered by the Astro2010 report as part of the WFIRST mission. While Mróz et al. (2017) did not confirm the Sumi et al. (2011) Jupiter-mass FFP population, they did find evidence for a large FFP population of much lower mass based on the detection of six 1L1S events with short Einstein timescales, tE<(1/3)subscript𝑡E13t_{\rm E}<(1/3)\,italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT < ( 1 / 3 )d. These were all point-source point-lens (PSPL) events. Subsequently, several studies led to the detection of nine additional FFPs, all finite-source point-lens (FSPL) events, which therefore yielded measurements of their Einstein radius, θEMproportional-tosubscript𝜃E𝑀\theta_{\rm E}\propto\sqrt{M}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ∝ square-root start_ARG italic_M end_ARG (Mróz et al., 2018, 2019, 2020a, 2020b; Ryu et al., 2021; Kim et al., 2021; Koshimoto et al., 2023; Jung et al., 2024), all with θE9μless-than-or-similar-tosubscript𝜃E9𝜇\theta_{\rm E}\lesssim 9\,\muitalic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ≲ 9 italic_μas.

While both Sumi et al. (2011) and Mróz et al. (2017) expressed the ensemble of their detections of short-tEsubscript𝑡Et_{\rm E}italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT PSPL events in terms of simplified δ𝛿\deltaitalic_δ-function FFP mass functions, Gould et al. (2022) used the four θE<9μsubscript𝜃E9𝜇\theta_{\rm E}<9\muitalic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT < 9 italic_μas FSPL detections from their own study, combined with their study’s absence of FSPL events in the “Einstein Desert” (9μasθE25μasless-than-or-similar-to9𝜇assubscript𝜃Eless-than-or-similar-to25𝜇as9\,\mu{\rm as}\lesssim\theta_{\rm E}\lesssim 25\,\mu{\rm as}9 italic_μ roman_as ≲ italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ≲ 25 italic_μ roman_as), to derive a power-law FFP mass function. They showed that this mass function was consistent with the six PSPL events reported by Mróz et al. (2017). They also showed that if this, albeit crudely measured, power law were extended by 18 orders of magnitude, it was consistent with the previous detections of interstellar asteroids and comets.

Thus, Gould et al. (2022) both confirmed the earlier suggestions of Sumi et al. (2011) and Mróz et al. (2017) that there were substantially more FFPs than stars, but also tied these objects to the potentially vast population of very small planets, dwarf planets, and sub-planetary objects, either analogs of Kuiper-Belt and Oort-Cloud objects or potentially ejected from their solar systems.

Indeed, there is already important, if still suggestive, evidence for a very large population of sub-Earth-mass objects. Compared to most of the rest of the current sample of FFPs, OGLE-2016-BLG-1928 (Mróz et al., 2020b) has an unusually small θE=0.84μsubscript𝜃E0.84𝜇\theta_{\rm E}=0.84\,\muitalic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = 0.84 italic_μas. Considering that,

θEκMπrel=0.84(MM)1/2(πrel29μas)1/2;κ4Gc2au8144μasM,formulae-sequencesubscript𝜃E𝜅𝑀subscript𝜋rel0.84superscript𝑀subscript𝑀direct-sum12superscriptsubscript𝜋rel29𝜇as12𝜅4𝐺superscript𝑐2ausimilar-to-or-equals8144𝜇assubscript𝑀direct-product\theta_{\rm E}\equiv\sqrt{\kappa M\pi_{\rm rel}}=0.84\biggl{(}{M\over M_{% \oplus}}\biggr{)}^{1/2}\biggl{(}{\pi_{\rm rel}\over 29\,\mu\rm as}\biggr{)}^{1% /2};\qquad\kappa\equiv{4G\over c^{2}{\rm au}}\simeq 8144\,{\mu{\rm as}\over M_% {\odot}},italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ≡ square-root start_ARG italic_κ italic_M italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG = 0.84 ( divide start_ARG italic_M end_ARG start_ARG italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG 29 italic_μ roman_as end_ARG ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ; italic_κ ≡ divide start_ARG 4 italic_G end_ARG start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_au end_ARG ≃ 8144 divide start_ARG italic_μ roman_as end_ARG start_ARG italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG , (1)

this could in principle be a few-Earth-mass FFP in the Galactic bulge, for which the lens-source relative parallax is usually in the range πrel30μless-than-or-similar-tosubscript𝜋rel30𝜇\pi_{\rm rel}\lesssim 30\,\muitalic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ≲ 30 italic_μas. However, by chance, this scenario can be virtually ruled out by the event’s high observed relative proper motion μrel=10.6masyr1subscript𝜇rel10.6massuperscriptyr1\mu_{\rm rel}=10.6\,{\rm mas}\,{\rm yr}^{-1}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = 10.6 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, and the measured vector proper motion of the source, which together are strongly inconsistent with bulge kinematics for the lens. See their Figure 3. For a typical disk πrel60μsimilar-tosubscript𝜋rel60𝜇\pi_{\rm rel}\sim 60\,\muitalic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ∼ 60 italic_μas, this object would have mass M0.5Msimilar-to𝑀0.5subscript𝑀direct-sumM\sim 0.5\,M_{\oplus}italic_M ∼ 0.5 italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT.

Moreover, one of the two FFPs found by Koshimoto et al. (2023) has θE=0.90μsubscript𝜃E0.90𝜇\theta_{\rm E}=0.90\,\muitalic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = 0.90 italic_μas. While, in contrast to OGLE-2016-BLG-1928, there are no constraints for this object on whether it resides in the disk or the bulge, the high-frequency (i.e., two!) of FFPs with θE1μless-than-or-similar-tosubscript𝜃E1𝜇\theta_{\rm E}\lesssim 1\,\muitalic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ≲ 1 italic_μas, despite the severe difficulty of detecting them, suggests an intrinsically high frequency of low-mass FFPs.

The physical origins of FFPs, whether each is ultimately identified as being bound or unbound, and whether it is of low or high mass, are likely tied together by a single history of planet formation and early dynamical evolution. Thus, detailed statistical studies of these objects, ultimately broken down into relatively Wide, Kuiper, Oort, and Unbound, will shed immense light on the process of planet formation and evolution. In particular, for the bound subsample, it will be possible to measure the masses and physical host-planet projected separations on an object-by-object basis, as was already discussed by Gould (2016), and which we will further discuss below. Hence, it will also be possible to study the differences in the mass functions of these different sub-populations, which will be critical input for theories of planet formation. Individual masses for genuinely free-floating objects will be more challenging, and we will also discuss these challenges.

However, the main point from the perspective of this introduction is that in the 15 years since the 2010 Decadal process, the issue of the FFP mass function (or mass functions at different levels of host separation) has emerged from absolutely nothing, to weak sister of the more recognized question of a bound-planet census, to intriguing question of the day, to a unique probe of planet formation and evolution that links planets with protoplanetary objects. Yet, as in most proto-revolutionary situations, understanding of the spectacular emergence of this new field and new questions has lagged dangerously behind actual developments.

In particular, at the moment, the final observation strategy is being formulated for Roman based primarily on bound-planet yield, and the only role of FFPs in this process is to verify that a relatively weak Level 1 requirement on FFPs can be met given whatever strategy is adopted in pursuit of bound planets.

By prioritizing revolutionary FFP science, this paper truly turns the entire process on its head.

1.3 Two Approaches to the FFP Revolution

One approach is to consider what Roman can achieve for FFPs according to its adopted strategy. There have been two major studies of the detection and characterization of FFPs by Roman, which individually and collectively provide valuable insights on the measurement process. Johnson et al. (2020) studied Roman detections of FFPs at a range of masses. For example, they considered an FFP mass function that is flat at 2dex12superscriptdex12\,{\rm dex}^{-1}2 roman_dex start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (per star) for M<5.2M𝑀5.2subscript𝑀direct-sumM<5.2M_{\oplus}italic_M < 5.2 italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT and falls with a p=0.73𝑝0.73p=-0.73italic_p = - 0.73 power law above that value. This was necessarily arbitrary because there were no published estimates of the FFP mass spectrum at that time. From the present standpoint, the fact that the mass function is flat at low masses will simplify the interpretation of their results.

Their Figure 5 and Table 2 show that there are 5.0 times more detections at M=1M𝑀1subscript𝑀direct-sumM=1\,M_{\oplus}italic_M = 1 italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT (“Earth”) than at M=0.1M𝑀0.1subscript𝑀direct-sumM=0.1\,M_{\oplus}italic_M = 0.1 italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT (“Mars”) despite the fact that their adopted mass function assigns equal frequency to each class. At first sight, this seems natural because smaller masses generate shorter and/or weaker perturbations, which are harder to detect. And their Figure 11 seems to confirm this by showing that the source stars for detected events are systematically brighter by about 2 magnitudes for the Mars-class than Earth-class objects, seemingly because (according to one’s first instinct) brighter source flux is required for the former. Table 2 similarly shows that M=0.01M𝑀0.01subscript𝑀direct-sumM=0.01\,M_{\oplus}italic_M = 0.01 italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT (“Moon”) class objects are nearly impossible to detect unless they are extraordinarily numerous.

Johnson et al. (2022) investigate the seemingly intractable degeneracies in the basic microlensing parameters (t0,u0,tE,ρ,fs)subscript𝑡0subscript𝑢0subscript𝑡E𝜌subscript𝑓𝑠(t_{0},u_{0},t_{\rm E},\rho,f_{s})( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT , italic_ρ , italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) in the large-ρ𝜌\rhoitalic_ρ limit, which generally applies to the lowest-mass FFPs. Here (t0,u0,tE)subscript𝑡0subscript𝑢0subscript𝑡E(t_{0},u_{0},t_{\rm E})( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ) are the basic Paczyński (1986) parameters: the time of maximum, the impact parameter (scaled to θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT), and the Einstein timescale tE=θE/μrelsubscript𝑡Esubscript𝜃Esubscript𝜇relt_{\rm E}=\theta_{\rm E}/\mu_{\rm rel}italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT / italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT, while ρθ/θE𝜌subscript𝜃subscript𝜃E\rho\equiv\theta_{*}/\theta_{\rm E}italic_ρ ≡ italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT is the ratio of the angular source radius to the Einstein radius, and fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is the source flux. For example, in this limit, there is an almost perfect degeneracy between fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and ρ𝜌\rhoitalic_ρ because the observed excess flux is ΔF=2fs/ρ2Δ𝐹2subscript𝑓𝑠superscript𝜌2\Delta F=2f_{s}/\rho^{2}roman_Δ italic_F = 2 italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. There are several other degeneracies as well.

Here we build on these studies by taking the opposite approach: we ask what can be done to resolve the problems they identify, notably the poor sensitivity to low-mass FFPs, by altering the Roman strategy.

In this quest, we begin by ignoring any constraints arising from the “official goal” of Roman to “complete the census of planets”. Subsequently, recognizing that even the most successful revolutions must eventually come to terms with the “old order”, we ask what compromises can be made to reconcile these two somewhat conflicting goals.

For a primer on microlensing as it specifically relates to FFP microlensing events and mass measurements, see Appendix A.

In Section 2, we show analytically that two decades of low-mass FFP detections are being “killed off” by Roman’s low adopted survey cadence of Γ=4hr1Γ4superscripthr1\Gamma=4\,{\rm hr}^{-1}roman_Γ = 4 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. In Section 3, we show how the critical Einstein-radius parameter, θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, can be measured for large-ρ𝜌\rhoitalic_ρ (low-mass) FFPs, despite the fact that very few will have source color measurements, which is usually considered a sine qua non for such measurements. In Section 4, we discuss two issues that are specifically related to bound FFPs, including that all FFP detections must be subjected to late-time, high-resolution imaging to determine whether the FFP is bound or Unbound. In Section 5, we show that measuring the microlens parallax, 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, is extremely challenging for large-ρ𝜌\rhoitalic_ρ FFPs, although this only presents fundamental difficulties for the Unbound among them. In Section 6, we sketch the science that can be extracted from measuring the FFP mass functions for each of the four categories (Wide, Kuiper, Oort, Unbound). We show how these can be extracted from the Roman observations, augmented by late-time (e.g., 5–10 years later) high-resolution observations, and possibly microlens-parallax observations. In Section 7, we show that our proposed changes to the Roman observing strategy are beneficial to the remaining revolutionary aspects of the original Roman program, namely low-mass bound planets and wide-orbit planets. We describe various other benefits of the change. We also present strategy options that represent more of a compromise with the “old order”, although we do not advocate these.

2 What Is Killing the Roman Low-mass FFPs?

The origin of the drastic decline in detections from Earth-class to Mars-class to Moon-class FFPs that is tabulated in Table 2 from Johnson et al. (2020) is not what it may naively appear. To understand this analytically, we adopt their assumption of uniform surface brightness (no limb darkening). We work in the limit ρ1much-greater-than𝜌1\rho\gg 1italic_ρ ≫ 1, (or θEθmuch-less-thansubscript𝜃Esubscript𝜃\theta_{\rm E}\ll\theta_{*}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ≪ italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT), i.e., the regime of the lowest-mass detectable FFPs where the current observing strategy is losing sensitivity, and we assume that the blended light is negligible. The last assumption will be reviewed more closely for various cases (see Sections 2.3 and 3.2) but in general, is mostly relevant to MMMarsless-than-or-similar-to𝑀subscript𝑀MarsM\lesssim M_{\rm Mars}italic_M ≲ italic_M start_POSTSUBSCRIPT roman_Mars end_POSTSUBSCRIPT FFPs.

Under these assumptions and limits, the magnification is given by

A(u,ρ)1=2ρ2Θ(ρu);u=u02+(tt0tE)2.formulae-sequence𝐴𝑢𝜌12superscript𝜌2Θ𝜌𝑢𝑢superscriptsubscript𝑢02superscript𝑡subscript𝑡0subscript𝑡E2A(u,\rho)-1={2\over\rho^{2}}\Theta(\rho-u);\qquad u=\sqrt{u_{0}^{2}+\biggl{(}{% t-t_{0}\over t_{\rm E}}\biggr{)}^{2}}.italic_A ( italic_u , italic_ρ ) - 1 = divide start_ARG 2 end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_Θ ( italic_ρ - italic_u ) ; italic_u = square-root start_ARG italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( divide start_ARG italic_t - italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (2)

Hence, the signal-to-noise ratio for a single exposure, assuming photon-statistics, is

SN=[A(u,ρ)1]fsAfs2ρ2fsΘ(ρu)=2θE2fsθ2Θ(ρu),SNdelimited-[]𝐴𝑢𝜌1subscript𝑓𝑠𝐴subscript𝑓𝑠similar-to-or-equals2superscript𝜌2subscript𝑓𝑠Θ𝜌𝑢2superscriptsubscript𝜃E2subscript𝑓𝑠superscriptsubscript𝜃2Θ𝜌𝑢{\rm S\over N}={[A(u,\rho)-1]f_{s}\over\sqrt{Af_{s}}}\simeq{2\over\rho^{2}}% \sqrt{f_{s}}\Theta(\rho-u)=2\theta_{\rm E}^{2}{\sqrt{f_{s}}\over\theta_{*}^{2}% }\Theta(\rho-u),divide start_ARG roman_S end_ARG start_ARG roman_N end_ARG = divide start_ARG [ italic_A ( italic_u , italic_ρ ) - 1 ] italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG italic_A italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG end_ARG ≃ divide start_ARG 2 end_ARG start_ARG italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG square-root start_ARG italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG roman_Θ ( italic_ρ - italic_u ) = 2 italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG square-root start_ARG italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG end_ARG start_ARG italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_Θ ( italic_ρ - italic_u ) , (3)

where fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is expressed in instrumental photon counts. The expected number of magnified images is

Nexp=2Γθμrel=3.0(Γ4hr1)(θ0.3μas)(μrel6masyr1)1(β0.86);β1z2,formulae-sequencesubscript𝑁exp2Γsubscript𝜃subscript𝜇rel3.0Γ4superscripthr1subscript𝜃0.3𝜇assuperscriptsubscript𝜇rel6massuperscriptyr11𝛽0.86𝛽1superscript𝑧2N_{\rm exp}={2\Gamma\theta_{*}\over\mu_{\rm rel}}=3.0\biggl{(}{\Gamma\over 4\,% \rm hr^{-1}}\biggr{)}\biggl{(}{\theta_{*}\over 0.3\,\mu\rm as}\biggr{)}\biggl{% (}{\mu_{\rm rel}\over 6\,{\rm mas}\,{\rm yr}^{-1}}\biggr{)}^{-1}\biggl{(}{% \beta\over 0.86}\biggr{)};\qquad\beta\equiv\sqrt{1-z^{2}},italic_N start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT = divide start_ARG 2 roman_Γ italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG = 3.0 ( divide start_ARG roman_Γ end_ARG start_ARG 4 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG ) ( divide start_ARG italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG 0.3 italic_μ roman_as end_ARG ) ( divide start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG 6 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( divide start_ARG italic_β end_ARG start_ARG 0.86 end_ARG ) ; italic_β ≡ square-root start_ARG 1 - italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , (4)

where z=u0/ρ𝑧subscript𝑢0𝜌z=u_{0}/\rhoitalic_z = italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_ρ and ΓΓ\Gammaroman_Γ is the survey cadence. And therefore, the expected Δχ2Δsuperscript𝜒2\Delta\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is given by

Δχexp2=Nexp(SN)2=8θE4ΓμrelVH,fluxβ,Δsubscriptsuperscript𝜒2expsubscript𝑁expsuperscriptSN28superscriptsubscript𝜃E4Γsubscript𝜇relsubscript𝑉𝐻flux𝛽\Delta\chi^{2}_{\rm exp}=N_{\rm exp}\biggl{(}{\rm S\over N}\biggr{)}^{2}=8% \theta_{\rm E}^{4}{\Gamma\over\mu_{\rm rel}}V_{H,\rm flux}\beta,roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT ( divide start_ARG roman_S end_ARG start_ARG roman_N end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 8 italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT divide start_ARG roman_Γ end_ARG start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG italic_V start_POSTSUBSCRIPT italic_H , roman_flux end_POSTSUBSCRIPT italic_β , (5)

where VH,fluxfs/θ3subscript𝑉𝐻fluxsubscript𝑓𝑠superscriptsubscript𝜃3V_{H,\rm flux}\equiv f_{s}/\theta_{*}^{3}italic_V start_POSTSUBSCRIPT italic_H , roman_flux end_POSTSUBSCRIPT ≡ italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Equation (5) can then be evaluated,

Δχexp2=740(θE0.1μas)4(μrel6masyr1)1(Γ4hr1)(VH,flux1.85×105/μas3)β0.86.Δsubscriptsuperscript𝜒2exp740superscriptsubscript𝜃E0.1𝜇as4superscriptsubscript𝜇rel6massuperscriptyr11Γ4superscripthr1subscript𝑉𝐻flux1.85superscript105𝜇superscriptas3𝛽0.86\Delta\chi^{2}_{\rm exp}=740\biggl{(}{\theta_{\rm E}\over 0.1\,\mu\rm as}% \biggr{)}^{4}\biggl{(}{\mu_{\rm rel}\over 6\,{\rm mas}\,{\rm yr}^{-1}}\biggr{)% }^{-1}\biggl{(}{\Gamma\over 4\,\rm hr^{-1}}\biggr{)}\biggl{(}{V_{H,\rm flux}% \over 1.85\,\times 10^{5}/\mu\rm as^{3}}\biggr{)}{\beta\over 0.86}.roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT = 740 ( divide start_ARG italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG start_ARG 0.1 italic_μ roman_as end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ( divide start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG 6 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( divide start_ARG roman_Γ end_ARG start_ARG 4 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG ) ( divide start_ARG italic_V start_POSTSUBSCRIPT italic_H , roman_flux end_POSTSUBSCRIPT end_ARG start_ARG 1.85 × 10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT / italic_μ roman_as start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ) divide start_ARG italic_β end_ARG start_ARG 0.86 end_ARG . (6)

We have expressed this evaluation in terms of the “volume brightness”

VH,fluxfsθ3=100.4AHLH/4πDs2(Rs/Ds)3=100.4AHDsVH,lum;VH,lumLH4πRs3,formulae-sequencesubscript𝑉𝐻fluxsubscript𝑓𝑠superscriptsubscript𝜃3superscript100.4subscript𝐴𝐻subscript𝐿𝐻4𝜋superscriptsubscript𝐷𝑠2superscriptsubscript𝑅𝑠subscript𝐷𝑠3superscript100.4subscript𝐴𝐻subscript𝐷𝑠subscript𝑉𝐻lumsubscript𝑉𝐻lumsubscript𝐿𝐻4𝜋superscriptsubscript𝑅𝑠3V_{H,\rm flux}\equiv{f_{s}\over\theta_{*}^{3}}=10^{-0.4\,A_{H}}{L_{H}/4\pi D_{% s}^{2}\over(R_{s}/D_{s})^{3}}=10^{-0.4A_{H}}D_{s}V_{H,\rm lum};\qquad V_{H,\rm lum% }\equiv{L_{H}\over 4\pi R_{s}^{3}},italic_V start_POSTSUBSCRIPT italic_H , roman_flux end_POSTSUBSCRIPT ≡ divide start_ARG italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG = 10 start_POSTSUPERSCRIPT - 0.4 italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_POSTSUPERSCRIPT divide start_ARG italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT / 4 italic_π italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_R start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG = 10 start_POSTSUPERSCRIPT - 0.4 italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_H , roman_lum end_POSTSUBSCRIPT ; italic_V start_POSTSUBSCRIPT italic_H , roman_lum end_POSTSUBSCRIPT ≡ divide start_ARG italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG start_ARG 4 italic_π italic_R start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG , (7)

because along the main sequence, 0.2MM0.9Mless-than-or-similar-to0.2subscript𝑀direct-product𝑀less-than-or-similar-to0.9subscript𝑀direct-product0.2\,M_{\odot}\lesssim M\lesssim 0.9\,M_{\odot}0.2 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ≲ italic_M ≲ 0.9 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, VH,lumsubscript𝑉𝐻lumV_{H,\rm lum}italic_V start_POSTSUBSCRIPT italic_H , roman_lum end_POSTSUBSCRIPT is approximately constant. We have written out the dependence of the relation between VH,fluxsubscript𝑉𝐻fluxV_{H,\rm flux}italic_V start_POSTSUBSCRIPT italic_H , roman_flux end_POSTSUBSCRIPT and VH,lumsubscript𝑉𝐻lumV_{H,\rm lum}italic_V start_POSTSUBSCRIPT italic_H , roman_lum end_POSTSUBSCRIPT on the extinction and distance for clarity. However, in what follows, we will fix Ds=8kpcsubscript𝐷𝑠8kpcD_{s}=8\,{\rm kpc}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 8 roman_kpc and the extinction AH=0.5subscript𝐴𝐻0.5A_{H}=0.5italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = 0.5. And we will treat VH,lumsubscript𝑉𝐻lumV_{H,\rm lum}italic_V start_POSTSUBSCRIPT italic_H , roman_lum end_POSTSUBSCRIPT as exactly constant, so that VH,fluxsubscript𝑉𝐻fluxV_{H,\rm flux}italic_V start_POSTSUBSCRIPT italic_H , roman_flux end_POSTSUBSCRIPT is also exactly constant. Alternatively, because θE2=κMπrelsuperscriptsubscript𝜃E2𝜅𝑀subscript𝜋rel\theta_{\rm E}^{2}=\kappa M\pi_{\rm rel}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_κ italic_M italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT, Equation (6) can also be written as

Δχexp2=1100(M0.01M)2(πrel50μas)2(μrel6masyr1)1(Γ4hr1)(VH,flux1.85×105/μas3)β0.86.Δsubscriptsuperscript𝜒2exp1100superscript𝑀0.01subscript𝑀direct-sum2superscriptsubscript𝜋rel50𝜇as2superscriptsubscript𝜇rel6massuperscriptyr11Γ4superscripthr1subscript𝑉𝐻flux1.85superscript105𝜇superscriptas3𝛽0.86\Delta\chi^{2}_{\rm exp}=1100\biggl{(}{M\over 0.01\,M_{\oplus}}\biggr{)}^{2}% \biggl{(}{\pi_{\rm rel}\over 50\,\mu\rm as}\biggr{)}^{2}\biggl{(}{\mu_{\rm rel% }\over 6\,{\rm mas}\,{\rm yr}^{-1}}\biggr{)}^{-1}\biggl{(}{\Gamma\over 4\,\rm hr% ^{-1}}\biggr{)}\biggl{(}{V_{H,\rm flux}\over 1.85\,\times 10^{5}/\mu{\rm as}^{% 3}}\biggr{)}{\beta\over 0.86}.roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT = 1100 ( divide start_ARG italic_M end_ARG start_ARG 0.01 italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG 50 italic_μ roman_as end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG 6 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( divide start_ARG roman_Γ end_ARG start_ARG 4 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG ) ( divide start_ARG italic_V start_POSTSUBSCRIPT italic_H , roman_flux end_POSTSUBSCRIPT end_ARG start_ARG 1.85 × 10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT / italic_μ roman_as start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ) divide start_ARG italic_β end_ARG start_ARG 0.86 end_ARG . (8)

We can now answer the question of why Roman has virtually no sensitivity to M=0.01M𝑀0.01subscript𝑀direct-productM=0.01\,M_{\odot}italic_M = 0.01 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT objects according to the Johnson et al. (2020) simulations, as tabulated in their Table 2. Clearly the answer is not a lack of S/N: one just has to compare their Δχ2>300Δsuperscript𝜒2300\Delta\chi^{2}>300roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT > 300 criterion to the normalization of Equation (8) at its fiducial parameters. Based on Δχ2Δsuperscript𝜒2\Delta\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT alone, such sub-Moons would be detectable for all main-sequence sources Ms>0.2Msubscript𝑀𝑠0.2subscript𝑀direct-productM_{s}>0.2\,M_{\odot}italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT > 0.2 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, all proper motions μrel<6masyr1subscript𝜇rel6massuperscriptyr1\mu_{\rm rel}<6\,{\rm mas}\,{\rm yr}^{-1}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT < 6 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, and all relative parallaxes πrel25μgreater-than-or-equivalent-tosubscript𝜋rel25𝜇\pi_{\rm rel}\gtrsim 25\,\muitalic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ≳ 25 italic_μas.

The problem is rather located in Equation (4): at the fiducial parameters, there will be only three non-zero measurements, whereas Johnson et al. (2020) require at least six 3-σ𝜎\sigmaitalic_σ measurements. This requirement is reasonable. While we do not presently know the exact number that will be required, it would certainly be impossible to interpret a detection with only 3 measurements, and quite difficult with 4. Until the actual data quality can be assessed, a minimum of 6 points appears prudent. So the limiting factor for detecting FFPs is the number of magnified points rather than their individual (or combined) S/N.

In order to determine from Equation (4) which FFP will be detected and which will not, one must first investigate the roles of each of the four scaling parameters: (Γ,θ,μrel,z)Γsubscript𝜃subscript𝜇rel𝑧(\Gamma,\theta_{*},\mu_{\rm rel},z)( roman_Γ , italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT , italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT , italic_z ). We examine these sequentially in reverse order. There is almost no room for improvement in the z𝑧zitalic_z scaling, which in any case is a random and purely geometric factor.

2.1 Role of μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT

Regarding μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT, Equation (4) is scaled to a typical value for microlensing fields, the prospective Roman fields in particular. One can, in principle consider only the slower events, e.g., μrel=3masyr1subscript𝜇rel3massuperscriptyr1\mu_{\rm rel}=3\,{\rm mas}\,{\rm yr}^{-1}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = 3 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, at which the events will have 6 points (keeping the other parameters the same).

To gain analytic understanding, we consider the ideal case of bulge-bulge lensing with the distributions of the sources and lenses each characterized by a 2-dimensional isotropic Gaussian with σ=3masyr1𝜎3massuperscriptyr1\sigma=3\,{\rm mas}\,{\rm yr}^{-1}italic_σ = 3 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Keeping in mind that the event rate is proportional to μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT, the distribution of event proper motions is f(μ)dμμ2dμexp(μ2/4σ2)proportional-to𝑓𝜇𝑑𝜇superscript𝜇2𝑑𝜇superscript𝜇24superscript𝜎2f(\mu)d\mu\propto\mu^{2}d\mu\exp(-\mu^{2}/4\sigma^{2})italic_f ( italic_μ ) italic_d italic_μ ∝ italic_μ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_μ roman_exp ( - italic_μ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 4 italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ), or to simplify the algebra,

g(x)dx=2πx1/2exdx;x(μ2σ)2.formulae-sequence𝑔𝑥𝑑𝑥2𝜋superscript𝑥12superscript𝑒𝑥𝑑𝑥𝑥superscript𝜇2𝜎2g(x)dx={2\over\sqrt{\pi}}x^{1/2}e^{-x}dx;\qquad x\equiv\biggl{(}{\mu\over 2% \sigma}\biggr{)}^{2}.italic_g ( italic_x ) italic_d italic_x = divide start_ARG 2 end_ARG start_ARG square-root start_ARG italic_π end_ARG end_ARG italic_x start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT italic_d italic_x ; italic_x ≡ ( divide start_ARG italic_μ end_ARG start_ARG 2 italic_σ end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (9)

It is immediately clear from this formula that only a fraction

p=01/4𝑑xg(x)232π(14)3/20.09𝑝superscriptsubscript014differential-d𝑥𝑔𝑥less-than-or-similar-to232𝜋superscript1432similar-to0.09p=\int_{0}^{1/4}dx\,g(x)\lesssim{2\over 3}\,{2\over\sqrt{\pi}}\biggl{(}{1\over 4% }\biggr{)}^{3/2}\sim 0.09italic_p = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT italic_d italic_x italic_g ( italic_x ) ≲ divide start_ARG 2 end_ARG start_ARG 3 end_ARG divide start_ARG 2 end_ARG start_ARG square-root start_ARG italic_π end_ARG end_ARG ( divide start_ARG 1 end_ARG start_ARG 4 end_ARG ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT ∼ 0.09 (10)

of the distribution will have μrel<σ=3masyr1subscript𝜇rel𝜎3massuperscriptyr1\mu_{\rm rel}<\sigma=3\,{\rm mas}\,{\rm yr}^{-1}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT < italic_σ = 3 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Figure 1 shows the full cumulative distribution in the upper panel.

We also consider the case of disk lenses (and bulge sources). For this purpose, we adopt Dl=6kpcsubscript𝐷𝑙6kpcD_{l}=6\,{\rm kpc}italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = 6 roman_kpc, Ds=8.2kpcsubscript𝐷𝑠8.2kpcD_{s}=8.2\,{\rm kpc}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 8.2 roman_kpc, a disk rotation speed of vrot=240kms1subscript𝑣rot240kmsuperscripts1v_{\rm rot}=240\,{\rm km}\,{\rm s}^{-1}italic_v start_POSTSUBSCRIPT roman_rot end_POSTSUBSCRIPT = 240 roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, an asymmetric drift of vasym=25kms1subscript𝑣asym25kmsuperscripts1v_{\rm asym}=25\,{\rm km}\,{\rm s}^{-1}italic_v start_POSTSUBSCRIPT roman_asym end_POSTSUBSCRIPT = 25 roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, bulge proper motion dispersions (3.2,2.8)masyr13.22.8massuperscriptyr1(3.2,2.8)\,{\rm mas}\,{\rm yr}^{-1}( 3.2 , 2.8 ) roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT in the (l,b)𝑙𝑏(l,b)( italic_l , italic_b ) directions, disk velocity dispersions of (64,41)kms16441kmsuperscripts1(64,41){\rm km}\,{\rm s}^{-1}( 64 , 41 ) roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, and solar motion (+12,+7)kms1127kmsuperscripts1(+12,+7){\rm km}\,{\rm s}^{-1}( + 12 , + 7 ) roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. The lower panel of Figure 1 shows the resulting cumulative distribution for the disk.

We return to a discussion of this figure in Section 2.3.

2.2 Role of θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT

From the form of Equation (4), it is clear that by doubling θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT one can also double Nexpsubscript𝑁expN_{\rm exp}italic_N start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT, which would bring it to the required six 3-σ𝜎\sigmaitalic_σ points for the fiducial parameters of this equation. Of course, the cost of relying on such bigger (solar-type) source stars is that they are much rarer than the early M-dwarfs that are used to scale the relation. Indeed, the main point of conducting microlensing from space and in the infrared is to access these much more numerous stars.

We can understand the role of θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT as a continuous variable as follows. Because we are treating Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT as constant, and because RR(M/M)similar-to-or-equals𝑅subscript𝑅direct-product𝑀subscript𝑀direct-productR\simeq R_{\odot}(M/M_{\odot})italic_R ≃ italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ( italic_M / italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ) on the main sequence (below the turnoff), we have θMsproportional-tosubscript𝜃subscript𝑀𝑠\theta_{*}\propto M_{s}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ∝ italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT. The cross section for events in the ρ1much-greater-than𝜌1\rho\gg 1italic_ρ ≫ 1 regime that we are investigating scales as dΓevents/dlogMsθ(Ms)(MsdN/dMs)Ms2dN/dMsproportional-to𝑑subscriptΓevents𝑑subscript𝑀𝑠subscript𝜃subscript𝑀𝑠subscript𝑀𝑠𝑑𝑁𝑑subscript𝑀𝑠proportional-tosuperscriptsubscript𝑀𝑠2𝑑𝑁𝑑subscript𝑀𝑠d\Gamma_{\rm events}/d\log M_{s}\propto\theta_{*}(M_{s})(M_{s}dN/dM_{s})% \propto M_{s}^{2}dN/dM_{s}italic_d roman_Γ start_POSTSUBSCRIPT roman_events end_POSTSUBSCRIPT / italic_d roman_log italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∝ italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ( italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) ( italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_d italic_N / italic_d italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) ∝ italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_N / italic_d italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT. That is, dΓevents/dlogMs(Ms/M)α+2proportional-to𝑑subscriptΓevents𝑑subscript𝑀𝑠superscriptsubscript𝑀𝑠subscript𝑀direct-product𝛼2d\Gamma_{\rm events}/d\log M_{s}\propto(M_{s}/M_{\odot})^{\alpha+2}italic_d roman_Γ start_POSTSUBSCRIPT roman_events end_POSTSUBSCRIPT / italic_d roman_log italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∝ ( italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_α + 2 end_POSTSUPERSCRIPT for the case that the mass function (of sources) is described by a power law, α𝛼\alphaitalic_α.

Based on Hubble Space Telescope (HST) optical counts of bulge stars by Calamida et al. (2015), we adopt a broken power law, with break point Mbr=0.56Msubscript𝑀br0.56subscript𝑀direct-productM_{\rm br}=0.56\,M_{\odot}italic_M start_POSTSUBSCRIPT roman_br end_POSTSUBSCRIPT = 0.56 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, and powers αhigh=2.41subscript𝛼high2.41\alpha_{\rm high}=-2.41italic_α start_POSTSUBSCRIPT roman_high end_POSTSUBSCRIPT = - 2.41 and αlow=1.25subscript𝛼low1.25\alpha_{\rm low}=-1.25italic_α start_POSTSUBSCRIPT roman_low end_POSTSUBSCRIPT = - 1.25, respectively above and below the break. Thus, (α+2)𝛼2(\alpha+2)( italic_α + 2 ) changes sign (0.410.41-0.41- 0.41 to +0.750.75+0.75+ 0.75) at the break, implying that on a log-M𝑀Mitalic_M plot, there is a peak at early M-dwarfs. In Figure 2, we express this rate in terms of θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, by first employing the above approximations, i.e., θ=Rs/Ds=R/Ds(Ms/M)=0.58μas(Ms/M)subscript𝜃subscript𝑅𝑠subscript𝐷𝑠subscript𝑅direct-productsubscript𝐷𝑠subscript𝑀𝑠subscript𝑀direct-product0.58𝜇assubscript𝑀𝑠subscript𝑀direct-product\theta_{*}=R_{s}/D_{s}=R_{\odot}/D_{s}(M_{s}/M_{\odot})=0.58\,\mu{\rm as}(M_{s% }/M_{\odot})italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT / italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ) = 0.58 italic_μ roman_as ( italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ). We express this relation in terms of θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT (rather than logθsubscript𝜃\log\theta_{*}roman_log italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT) because it is more familiar.

We have extended the plot to the full main sequence (1M/M0.1greater-than-or-equivalent-to1𝑀subscript𝑀direct-productgreater-than-or-equivalent-to0.11\gtrsim M/M_{\odot}\gtrsim 0.11 ≳ italic_M / italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ≳ 0.1) for clarity, noting that while the above S/N relation only applies in a more limited range (0.9M/M0.2greater-than-or-equivalent-to0.9𝑀subscript𝑀direct-productgreater-than-or-equivalent-to0.20.9\gtrsim M/M_{\odot}\gtrsim 0.20.9 ≳ italic_M / italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ≳ 0.2), this relation does not play a direct role in the current discussion. Figure 2 singles out the cumulative distribution up to fiducial value of θ=0.3μsubscript𝜃0.3𝜇\theta_{*}=0.3\,\muitalic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0.3 italic_μas, as well as for two other values, whose significance will be made clear in Section 2.3.

2.3 Role of ΓΓ\Gammaroman_Γ

The only other scaling variable that can be changed in Equation (4) is the observing cadence, which is currently being set for Roman at the indicated scaling value, Γ=4hr1Γ4superscripthr1\Gamma=4\,{\rm hr}^{-1}roman_Γ = 4 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT.

Of course, it requires no special insight to realize that by doubling ΓΓ\Gammaroman_Γ, one also doubles Nexpsubscript𝑁expN_{\rm exp}italic_N start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT, albeit at the cost of halving the number of fields (and so, the total area) that can be observed. However, making use of the results in Sections 2.1 and 2.2, we are now in a position to understand the impact of such doubling on the rate of FFP detection in the large-ρ𝜌\rhoitalic_ρ (i.e., low-M𝑀Mitalic_M) limit.

From Equation (4), we see that one can, in principle, reach the same adopted threshold for FFP detections, N=6𝑁6N=6italic_N = 6, by either halving μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT or doubling ΓΓ\Gammaroman_Γ. However, from Figure 1, we see that by doing the first, we cut the fraction of the cumulative μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT distribution for bulge lenses from 43% (red) to 8% (blue), i.e., by a factor of 5.3. While doubling ΓΓ\Gammaroman_Γ comes at the cost of halving the number fields, there is still an overall net increase in large-ρ𝜌\rhoitalic_ρ FFP detections of a factor 2.6. The corresponding numbers for the disk cumulative distribution are 47% (red), 14% (blue), and factors 3.3 and 1.7.

Motivated by this insight, one might consider increasing ΓΓ\Gammaroman_Γ by a further factor of 1.5 to Γ=12hr1Γ12superscripthr1\Gamma=12\,{\rm hr}^{-1}roman_Γ = 12 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, which would allow one to capture 79% (green) of the bulge-lens μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT distribution, i.e., a further increase by a factor 1.8. Again, this would come at a price of reducing the number of fields by a factor 2/3, implying a net improvement of a factor 1.2. This factor is quite minor, and such a change would come at significant cost to other aspects of the experiment. A virtually identical argument applies to the disk-lens proper-motion distribution.

Figure 2 allows us to make a similar evaluation for the trade offs between changes in ΓΓ\Gammaroman_Γ and θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. Comparing the red and blue lines, one sees that restricting the mass (or luminosity, or θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT) function to stars with θ>0.5μsubscript𝜃0.5𝜇\theta_{*}>0.5\,\muitalic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT > 0.5 italic_μas (which would by itself not quite achieve the required doubling of Nexpsubscript𝑁expN_{\rm exp}italic_N start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT), would reduce the available cumulative θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT distribution function by almost a factor of 5. This is similar to the case for the bulge-lens μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT distribution that was just discussed.

As in that case, we can also ask about the impact of a further increase of ΓΓ\Gammaroman_Γ by a factor of 1.5, which would drive the minimum source radius down to θ=0.2μsubscript𝜃0.2𝜇\theta_{*}=0.2\,\muitalic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0.2 italic_μas. This is shown in green. The nominal improvement is a factor of 1.56, which would be almost exactly canceled by the loss of area due to higher ΓΓ\Gammaroman_Γ. In fact the range of “improvement” 0.3<θ/μas<0.20.3subscript𝜃𝜇as0.20.3<\theta_{*}/\mu{\rm as}<0.20.3 < italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / italic_μ roman_as < 0.2, is actually pushing the FFP detections into a regime in which the assumptions underlying the S/N calculation start to break down, mainly because blending becomes a much more serious issue. Hence, there would actually be a net loss of FFP detections, even ignoring the negative impact on other aspects of the experiment of such a further increase in ΓΓ\Gammaroman_Γ.

If the Roman cadence remains at Γ=4hr1Γ4superscripthr1\Gamma=4\,{\rm hr}^{-1}roman_Γ = 4 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, as derived by optimizing the bound-planet detections, then every large-ρ𝜌\rhoitalic_ρ event that is selected according to the criterion of six 3-σ𝜎\sigmaitalic_σ points will have a product βθ/μrel𝛽subscript𝜃subscript𝜇rel\beta\theta_{*}/\mu_{\rm rel}italic_β italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT that is at least twice as big as that given by the fiducial parameters given in Equation (4). That is, the prefactor in this equation is 3.0, so the product of the remaining factors must be 2absent2\geq 2≥ 2 to achieve 6 points. Ignoring the narrow range available from the final term (β)𝛽(\beta)( italic_β ), this implies some combination higher θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT and lower μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT. To properly account for this, we should allow μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT and θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT to vary simultaneously, rather than holding the other fixed as in Figures 1 and 2. We therefore find the cumulative distribution of the product of the μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT and θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT factors from Equation (4).

ζμ,θ=(μrel6masyr1)1(θ0.3μas)subscript𝜁𝜇subscript𝜃superscriptsubscript𝜇rel6massuperscriptyr11subscript𝜃0.3𝜇as\zeta_{\mu,\theta_{*}}=\biggl{(}{\mu_{\rm rel}\over 6\,{\rm mas}\,{\rm yr}^{-1% }}\biggr{)}^{-1}\biggl{(}{\theta_{*}\over 0.3\,\mu\rm as}\biggr{)}italic_ζ start_POSTSUBSCRIPT italic_μ , italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_POSTSUBSCRIPT = ( divide start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG 6 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( divide start_ARG italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG 0.3 italic_μ roman_as end_ARG ) (11)

Because the prefactor in Equation (4) is 3.0, while the detection criterion is N=6𝑁6N=6italic_N = 6, ζ>2𝜁2\zeta>2italic_ζ > 2 is required under the present Roman strategy, but ζ>1𝜁1\zeta>1italic_ζ > 1 would suffice for Γ=8hr1Γ8superscripthr1\Gamma=8\,{\rm hr}^{-1}roman_Γ = 8 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. To evaluate the cumulative distributions for the bulge (black) and disk (magenta) cases, we draw from the range 0.58μas>θ>0.25μas0.58𝜇assubscript𝜃0.25𝜇as0.58\,\mu{\rm as}>\theta_{*}>0.25\,\mu{\rm as}0.58 italic_μ roman_as > italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT > 0.25 italic_μ roman_as, as well as from the full proper-motion distribution.

The blue and red lines in Figure 3 highlight the cumulative distributions for the cases of Γ=4hr1Γ4superscripthr1\Gamma=4\,{\rm hr}^{-1}roman_Γ = 4 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (ζ=2𝜁2\zeta=2italic_ζ = 2) and Γ=8hr1Γ8superscripthr1\Gamma=8\,{\rm hr}^{-1}roman_Γ = 8 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (ζ=1𝜁1\zeta=1italic_ζ = 1), respectively. The ratios of the two are 3.63 and 2.74 for the bulge and disk respectively. For FSPL events, bulge lenses are 2.5 times more frequent than disk lenses (Figure 9 of Gould et al. 2022). Weighting the two ratios by this factor, we obtain a net improvement of a factor 3.38.

As mentioned above, this improvement must be divided by 2 because there will be half as many fields.

Finally, there will be some additional detections because Δχ2Δsuperscript𝜒2\Delta\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT will double, which will push some very-low-mass FFPs above the threshold, e.g., Δχ2>300Δsuperscript𝜒2300\Delta\chi^{2}>300roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT > 300, as adopted by Johnson et al. (2020). For example, Equation (6) in its current form predicts Δχ2=150Δsuperscript𝜒2150\Delta\chi^{2}=150roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 150, for θE=0.067μsubscript𝜃E0.067𝜇\theta_{\rm E}=0.067\,\muitalic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = 0.067 italic_μas. If ΓΓ\Gammaroman_Γ were doubled, then Δχ2=300Δsuperscript𝜒2300\Delta\chi^{2}=300roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 300, and it would cross the threshold of detection. A lens of mass M=MPluto𝑀subscript𝑀PlutoM=M_{\rm Pluto}italic_M = italic_M start_POSTSUBSCRIPT roman_Pluto end_POSTSUBSCRIPT could then be detected provided that πrel>θE2/κMPluto=84μsubscript𝜋relsuperscriptsubscript𝜃E2𝜅subscript𝑀Pluto84𝜇\pi_{\rm rel}>\theta_{\rm E}^{2}/\kappa M_{\rm Pluto}=84\,\muitalic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT > italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_κ italic_M start_POSTSUBSCRIPT roman_Pluto end_POSTSUBSCRIPT = 84 italic_μas, which corresponds to Dl4.8kpcless-than-or-similar-tosubscript𝐷𝑙4.8kpcD_{l}\lesssim 4.8\,{\rm kpc}italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ≲ 4.8 roman_kpc. Hence, depending on whether Plutos are common (about which we presently have only the barest indication from our own Solar System), there could be many additional detections of FFPs from this class.

We adopt a net improvement of a factor 2 in low-mass FFP detections.

One might also consider other cadences than the two shown in Figure 3. To avoid cluttering this figure, we present these results in tabular form in Table 1. The final column in this table is a figure of merit, which takes account of both the added FFP detections due to higher ΓΓ\Gammaroman_Γ and the reduced area. However, it does not take account of the extra (or reduced) FFP detections due to higher (or lower) ΓΓ\Gammaroman_Γ.

3 Can θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT Be Measured for Large-ρ𝜌\rhoitalic_ρ FFPs?

The Einstein radius, θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, is a crucial parameter for understanding the FFP mass distribution. In particular, if the microlens parallax πEsubscript𝜋E\pi_{\rm E}italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT is also measured, then the mass is directly given by M=θE/κπE𝑀subscript𝜃E𝜅subscript𝜋EM=\theta_{\rm E}/\kappa\pi_{\rm E}italic_M = italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT / italic_κ italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT. But even if πEsubscript𝜋E\pi_{\rm E}italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT is not measured, so that θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT remains a degenerate combination of two unknowns (θE=κMπrelsubscript𝜃E𝜅𝑀subscript𝜋rel\theta_{\rm E}=\sqrt{\kappa M\pi_{\rm rel}}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = square-root start_ARG italic_κ italic_M italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG), it is still one step closer to the mass than the routinely measured tEsubscript𝑡Et_{\rm E}italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, which is a combination of three unknowns (tE=κMπrel/μrelsubscript𝑡E𝜅𝑀subscript𝜋relsubscript𝜇relt_{\rm E}=\sqrt{\kappa M\pi_{\rm rel}}/\mu_{\rm rel}italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = square-root start_ARG italic_κ italic_M italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG / italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT).

On the surface, it would appear that there are serious challenges for the measurement of θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT for large-ρ𝜌\rhoitalic_ρ FFPs. We argue in this section that, on the contrary, for the great majority large-ρ𝜌\rhoitalic_ρ FFPs, θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT will be measured with sufficient accuracy to achieve the main scientific goals. We first outline the apparent challenges and then describe how they can be addressed.

3.1 Challenges

The usual method to measure θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT is to measure ρ𝜌\rhoitalic_ρ and then to determine θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT using the method of Yoo et al. (2004). In this method, one measures source flux and color from fitting the light curve, measures its offset from the clump in these variables, and then uses tabulated color/surface-brightness relations to determine θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. Finally, one calculates θE=θ/ρsubscript𝜃Esubscript𝜃𝜌\theta_{\rm E}=\theta_{*}/\rhoitalic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / italic_ρ.

The challenges arise because each of these steps is, individually, either difficult or impossible for Roman large-ρ𝜌\rhoitalic_ρ FFPs. Hence, carrying out all of them would appear hopeless.

The first problem is that very few, if any, Roman large-ρ𝜌\rhoitalic_ρ FFPs will have a color measurement. These events have a total duration Δtevent2t=2θ/μrel=0.9hr(θ/0.3μas)/(μrel/6masyr1)Δsubscript𝑡event2subscript𝑡2subscript𝜃subscript𝜇rel0.9hrsubscript𝜃0.3𝜇assubscript𝜇rel6massuperscriptyr1\Delta t_{\rm event}\leq 2t_{*}=2\theta_{*}/\mu_{\rm rel}=0.9\,{\rm hr}(\theta% _{*}/0.3\,\mu{\rm as})/(\mu_{\rm rel}/6\,{\rm mas}\,{\rm yr}^{-1})roman_Δ italic_t start_POSTSUBSCRIPT roman_event end_POSTSUBSCRIPT ≤ 2 italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 2 italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = 0.9 roman_hr ( italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / 0.3 italic_μ roman_as ) / ( italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT / 6 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ). So, first, because the alternate-band observations are taken only twice per day, the chance is small that these will occur during the time that the source is magnified. This issue is well recognized.

However, what seems to be less recognized is that if the second-band observations are taken during the event, they will, in the overwhelming majority of cases, prevent the light curve from being properly monitored in the primary band. This is because the secondary-band exposures are much longer, so that to cycle through all the targeted fields requires about 50 min. Hence, the main impact of secondary-band observations on FFPs will not be to measure their colors but to prevent the detection of about 8% of otherwise detectable events.

Second, as mentioned in Section 1.3, Johnson et al. (2022) show that these events display a strong degeneracy between fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and ρ𝜌\rhoitalic_ρ, meaning that in most cases, neither can be measured separately. Rather, what is measured is the parameter combination fs/ρ2subscript𝑓𝑠superscript𝜌2f_{s}/\rho^{2}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. In particular, in the approximation of no limb darkening, the excess flux as the lens is transiting the source is just Δf=2fs/ρ2Δ𝑓2subscript𝑓𝑠superscript𝜌2\Delta f=2f_{s}/\rho^{2}roman_Δ italic_f = 2 italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT / italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. In discussing this, Johnson et al. (2022) point back to the fact that Mróz et al. (2020a) had already shown that this degeneracy is actually the key to measuring θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, provided that the source color (hence surface brightness, SHsubscript𝑆𝐻S_{H}italic_S start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT) is known. Then we can write Δf=(2/ρ2)×(πθ2SH)=2πθE2SHΔ𝑓2superscript𝜌2𝜋superscriptsubscript𝜃2subscript𝑆𝐻2𝜋superscriptsubscript𝜃E2subscript𝑆𝐻\Delta f=(2/\rho^{2})\times(\pi\theta_{*}^{2}S_{H})=2\pi\theta_{\rm E}^{2}S_{H}roman_Δ italic_f = ( 2 / italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) × ( italic_π italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ) = 2 italic_π italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT. That is, θE2=Δf/2πSHsuperscriptsubscript𝜃𝐸2Δ𝑓2𝜋subscript𝑆𝐻\theta_{E}^{2}=\Delta f/2\pi S_{H}italic_θ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = roman_Δ italic_f / 2 italic_π italic_S start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT. Because ΔfΔ𝑓\Delta froman_Δ italic_f and SHsubscript𝑆𝐻S_{H}italic_S start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT are empirically determined quantities, θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT can be robustly measured even if fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and ρ𝜌\rhoitalic_ρ are not separately measured.

The problem is that, as noted by Johnson et al. (2022), Roman will yield very few color measurements for large-ρ𝜌\rhoitalic_ρ FFPs. Indeed, we should say “essentially zero”.

3.2 Solution

The solution to this seemingly intractable problem of measuring θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT (as opposed to either of the above two problems, considered individually) comes in three parts. First, θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurements will span two decades, i.e., 0.1μasθE10μasless-than-or-similar-to0.1𝜇assubscript𝜃Eless-than-or-similar-to10𝜇as0.1\,\mu{\rm as}\lesssim\theta_{\rm E}\lesssim 10\,\mu{\rm as}0.1 italic_μ roman_as ≲ italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ≲ 10 italic_μ roman_as. Hence, we can easily tolerate 10% (0.04 dex) errors in typical individual θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurements and even several tens of percent in some subset of cases. Second, one can estimate the surface brightness of the source to within 20% if its H𝐻Hitalic_H-band luminosity is known exactly. Third, errors in the inferred θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT scale only as the sixth-root of errors in the luminosity. In brief, adequate estimates of surface brightness can be made without the customary source-color measurement.

For stars on or near the zero-age main sequence (ZAMS), their mass-radius and mass-LHsubscript𝐿𝐻L_{H}italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT relations are determined by their chemical composition. Together, these algebraically predict the surface brightness, SHsubscript𝑆𝐻S_{H}italic_S start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT, as a function of LHsubscript𝐿𝐻L_{H}italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT. From isochrone models, we know that in the H𝐻Hitalic_H-band, the rms scatter in this relation is less than 20% over the range of bulge metallicities333 At fixed luminosity on the main-sequence, surface brightness SHsubscript𝑆𝐻S_{H}italic_S start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT only varies by 10%less-than-or-similar-toabsentpercent10\lesssim 10\%≲ 10 % for metallicities [Fe/H]0absent0\geq 0≥ 0. It is higher by 15%similar-toabsentpercent15\sim 15\%∼ 15 % for [Fe/H]=0.5absent0.5=-0.5= - 0.5, and somewhat higher than that at yet lower [Fe/H]. Thus, considering the distribution of metallicities of microlensed bulge stars as measured by Bensby et al. (2017), we find that the rms error made by adopting the [Fe/H]=0absent0=0= 0 surface brightness, would be σ(lnSH)=10.3%𝜎subscript𝑆𝐻percent10.3\sigma(\ln S_{H})=10.3\%italic_σ ( roman_ln italic_S start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ) = 10.3 %. However, a more precise evaluation, which would account for α/\alpha/italic_α /Fe variation, should be undertaken before applying this method.. Because θE=Δf/2πSHsubscript𝜃EΔ𝑓2𝜋subscript𝑆𝐻\theta_{\rm E}=\sqrt{\Delta f/2\pi S_{H}}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = square-root start_ARG roman_Δ italic_f / 2 italic_π italic_S start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG, such 20% errors in SHsubscript𝑆𝐻S_{H}italic_S start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT lead to only 10% errors in θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT.

This reasoning does break down for source stars Ms0.9Mgreater-than-or-equivalent-tosubscript𝑀𝑠0.9subscript𝑀direct-productM_{s}\gtrsim 0.9\,M_{\odot}italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ≳ 0.9 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, corresponding to θ0.53μgreater-than-or-equivalent-tosubscript𝜃0.53𝜇\theta_{*}\gtrsim 0.53\,\muitalic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≳ 0.53 italic_μas in Figure 2, because these stars have moved off the ZAMS by different amounts depending on their age. However, first, we can see from Figure 2 that these stars account for a small fraction of large-ρ𝜌\rhoitalic_ρ FFP events. Second, the stars themselves are both bright and sparse (in Roman data), so they will be only weakly blended in the great majority of cases (unless the FFP has a bright host, which can be determined from late-time high-resolution data). Therefore, their color (hence, surface brightness) can be well estimated from their well-measured color at baseline.

Finally, the luminosity LHsubscript𝐿𝐻L_{H}italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT can be estimated using the relation LH=fs×4πDs2×100.4AHsubscript𝐿𝐻subscript𝑓𝑠4𝜋superscriptsubscript𝐷𝑠2superscript100.4subscript𝐴𝐻L_{H}=f_{s}\times 4\pi D_{s}^{2}\times 10^{0.4A_{H}}italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT × 4 italic_π italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT × 10 start_POSTSUPERSCRIPT 0.4 italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, where fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is estimated from the baseline flux, Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is estimated from the mean distance of bulge sources in the direction of the event, and AHsubscript𝐴𝐻A_{H}italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT is measured in the standard way from field-star photometry. Clearly, then, this estimate of LHsubscript𝐿𝐻L_{H}italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT can only be in error due to some combination of errors in fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, and AHsubscript𝐴𝐻A_{H}italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT.

Before assessing these three error sources, we note that because VH,lum=LH/4πRs3subscript𝑉𝐻lumsubscript𝐿𝐻4𝜋superscriptsubscript𝑅𝑠3V_{H,\rm lum}=L_{H}/4\pi R_{s}^{3}italic_V start_POSTSUBSCRIPT italic_H , roman_lum end_POSTSUBSCRIPT = italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT / 4 italic_π italic_R start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT is approximately invariant over the relevant range, 0.9M>Ms>0.2M0.9subscript𝑀direct-productsubscript𝑀𝑠0.2subscript𝑀direct-product0.9\,M_{\odot}>M_{s}>0.2\,M_{\odot}0.9 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT > italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT > 0.2 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, we have RsLH1/3proportional-tosubscript𝑅𝑠superscriptsubscript𝐿𝐻13R_{s}\propto L_{H}^{1/3}italic_R start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∝ italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT and so, SHLH/Rs2LH1/3proportional-tosubscript𝑆𝐻subscript𝐿𝐻superscriptsubscript𝑅𝑠2proportional-tosuperscriptsubscript𝐿𝐻13S_{H}\propto L_{H}/R_{s}^{2}\propto L_{H}^{1/3}italic_S start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ∝ italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT / italic_R start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT. Hence, θE2100.4AHΔf/SH100.4AHLH1/3proportional-tosuperscriptsubscript𝜃E2superscript100.4subscript𝐴𝐻Δ𝑓subscript𝑆𝐻proportional-tosuperscript100.4subscript𝐴𝐻superscriptsubscript𝐿𝐻13\theta_{\rm E}^{2}\propto 10^{0.4\,A_{H}}\Delta f/S_{H}\propto 10^{0.4\,A_{H}}% L_{H}^{-1/3}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ 10 start_POSTSUPERSCRIPT 0.4 italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_POSTSUPERSCRIPT roman_Δ italic_f / italic_S start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ∝ 10 start_POSTSUPERSCRIPT 0.4 italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 / 3 end_POSTSUPERSCRIPT, i.e., θE100.2AHLH1/6proportional-tosubscript𝜃Esuperscript100.2subscript𝐴𝐻superscriptsubscript𝐿𝐻16\theta_{\rm E}\propto 10^{0.2\,A_{H}}L_{H}^{-1/6}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ∝ 10 start_POSTSUPERSCRIPT 0.2 italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 / 6 end_POSTSUPERSCRIPT. Assuming for the moment (as is almost always the case) that AHsubscript𝐴𝐻A_{H}italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT is well measured, this implies that errors in the luminosity estimate propagate to the θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurement only as the sixth-root.

Now, let us consider the three sources of error in LHsubscript𝐿𝐻L_{H}italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT. First, if there is no parallax estimate for the source, then the rms error in the source distance Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT (due to the depth of the bulge) is about 10%, leading to a 20% error in LHsubscript𝐿𝐻L_{H}italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT and therefore a 3% error in θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, which is negligible in the current context.

Second, if the estimated AHsubscript𝐴𝐻A_{H}italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT is higher than the true one by ΔHΔ𝐻\Delta Hroman_Δ italic_H, then LHsubscript𝐿𝐻L_{H}italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT will have been overestimated by a factor 100.4ΔHsuperscript100.4Δ𝐻10^{0.4\,\Delta H}10 start_POSTSUPERSCRIPT 0.4 roman_Δ italic_H end_POSTSUPERSCRIPT, and therefore θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT will be overestimated by a factor 100.2ΔAH×(100.4ΔAH)1/6=10ΔAH/7.51+0.12ΔAHsuperscript100.2Δsubscript𝐴𝐻superscriptsuperscript100.4Δsubscript𝐴𝐻16superscript10Δsubscript𝐴𝐻7.5similar-to10.12Δsubscript𝐴𝐻10^{0.2\,\Delta A_{H}}\times(10^{0.4\,\Delta A_{H}})^{-1/6}=10^{\Delta A_{H}/7% .5}\sim 1+0.12\Delta A_{H}10 start_POSTSUPERSCRIPT 0.2 roman_Δ italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_POSTSUPERSCRIPT × ( 10 start_POSTSUPERSCRIPT 0.4 roman_Δ italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT - 1 / 6 end_POSTSUPERSCRIPT = 10 start_POSTSUPERSCRIPT roman_Δ italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT / 7.5 end_POSTSUPERSCRIPT ∼ 1 + 0.12 roman_Δ italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT. Given that typical errors in AHsubscript𝐴𝐻A_{H}italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT are σ(AH)0.1less-than-or-similar-to𝜎subscript𝐴𝐻0.1\sigma(A_{H})\lesssim 0.1italic_σ ( italic_A start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ) ≲ 0.1, this factor is also negligible.

Hence, the main issue is potential errors in fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT due to blending with some other star. If the FFP is Unbound, then the only possibilities are a companion to the source or an unrelated ambient star. If it is bound, then there are two additional possibilities: the host and/or a stellar companion to the host.

With the exception of the companion to the source, all of these potential blends will be moving at a few masyr1massuperscriptyr1{\rm mas}\,{\rm yr}^{-1}roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT relative to the source. Hence, they all can be resolved and identified by taking late-time high-resolution images using extremely large telescopes (ELTs). In particular, the European Extremely Large Telescope (EELT) will achieve 4 times better resolution than Keck, i.e., 14 mas, just a few years after Roman launch. Such late-time high-resolution images will be necessary in any case in order to identify or rule out possible hosts of the FFP. See Section 4.1.

The main danger would therefore be companions to the source. With Keck resolution, these could be resolved out for projected separations a400augreater-than-or-equivalent-tosubscript𝑎perpendicular-to400aua_{\perp}\gtrsim 400\,{\rm au}italic_a start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ≳ 400 roman_au, while EELT could resolve them down to a100augreater-than-or-equivalent-tosubscript𝑎perpendicular-to100aua_{\perp}\gtrsim 100\,{\rm au}italic_a start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ≳ 100 roman_au. Thus, about half of all binary-source companions would escape detection regardless of effort. Perhaps, half of M-dwarfs have a companion, so about 1/4 of all Unbound detections would have unresolved blended light from a source companion.

However, given the weak, θELH1/6proportional-tosubscript𝜃Esuperscriptsubscript𝐿𝐻16\theta_{\rm E}\propto L_{H}^{-1/6}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ∝ italic_L start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 / 6 end_POSTSUPERSCRIPT scaling relation, this would make very little difference if the companion were fainter than the source, which is a substantial majority of cases. For example, adopting the upper limit of this regime, i.e., an equal brightness companion, θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT would be underestimated by a factor 21/6=0.89superscript2160.892^{-1/6}=0.892 start_POSTSUPERSCRIPT - 1 / 6 end_POSTSUPERSCRIPT = 0.89, i.e., a 10% error. Of course, there would be cases for which the binary companion was a few times brighter than the source itself (and assuming that there were no clues to this in the light curve), these might escape detection. However, these would be rare and, to take the relatively extreme example that the companion was 1 mag brighter than the true source (yet still no clues to its presence), the error would still only be a factor 3.51/6=0.81superscript3.5160.813.5^{-1/6}=0.813.5 start_POSTSUPERSCRIPT - 1 / 6 end_POSTSUPERSCRIPT = 0.81, which is tolerable for an occasional error, given the 2-decade range over which θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT is being probed.

4 Two Issues Related to FFPs in Bound Orbits

4.1 All FFP Candidates Require High-Resolution Imaging

Even if there is no indication that the FFP has a host (such as a disagreement between the positions of the event and the apparent baseline object; or excess light superposed on the source in Roman images for cases that fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is well measured), it is still necessary to search for possible hosts. That is, even if the baseline object appears to be consistent with what is derived from the event about the source flux, there still could be a several times fainter object that is superposed, which is either the host or the true source (with the baseline object being dominated by the host).

The choice of the earliest time for making these observations would be greatly facilitated by a measurement of μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT. These will usually, but not always (see Section 4.1.1), be available for FSPL events, but they will never be available for PSPL events444In some cases, however, there will be useful lower limits on μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT from upper limits on ρ𝜌\rhoitalic_ρ. While these should be derived by fitting the actual light curve to a 5-parameter (t0,u0,tE,ρ,fs)subscript𝑡0subscript𝑢0subscript𝑡E𝜌subscript𝑓𝑠(t_{0},u_{0},t_{\rm E},\rho,f_{s})( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT , italic_ρ , italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) model, a useful rule of thumb is: ρmax=u0u02+4subscript𝜌maxsubscript𝑢0superscriptsubscript𝑢024\rho_{\rm max}=u_{0}\sqrt{u_{0}^{2}+4}italic_ρ start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT = italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT square-root start_ARG italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 end_ARG, which can be derived by equating the peak PSPL magnification, Amax,PSPL=(u02+2)/u0u02+4subscript𝐴maxPSPLsuperscriptsubscript𝑢022subscript𝑢0superscriptsubscript𝑢024A_{{\rm max},\rm PSPL}=(u_{0}^{2}+2)/u_{0}\sqrt{u_{0}^{2}+4}italic_A start_POSTSUBSCRIPT roman_max , roman_PSPL end_POSTSUBSCRIPT = ( italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 ) / italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT square-root start_ARG italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 end_ARG, with the peak FSPL magnification (under the assumption that the lens transits the center of the source): Amax,FSPL=1+4/ρ2subscript𝐴maxFSPL14superscript𝜌2A_{{\rm max},\rm FSPL}=\sqrt{1+4/\rho^{2}}italic_A start_POSTSUBSCRIPT roman_max , roman_FSPL end_POSTSUBSCRIPT = square-root start_ARG 1 + 4 / italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG. Then, μrel>(θ/ρmax)/tsubscript𝜇relsubscript𝜃subscript𝜌maxsubscript𝑡\mu_{\rm rel}>(\theta_{*}/\rho_{\rm max})/t_{*}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT > ( italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / italic_ρ start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT ) / italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT.. Thus, the PSPL events will require some conservative guess for when to take the first high-resolution followup observation. In principle, one might choose to forego PSPL events, or give them lower priority. However, PSPL events may provide the main window for studying the higher-mass portion of the FFP mass function. See Sections 6.3.1 and 6.3.3. An intermediate approach would be to focus first on the FSPL FFPs ordered by highest proper motion, and then start the PSPL FFPs.

4.1.1 Event-based μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT Measurement Can Be Difficult in the Large-ρ𝜌\rhoitalic_ρ Limit

For the large-ρ𝜌\rhoitalic_ρ FFPs, which are of particular interest because they probe the lowest masses, accurate proper-motion measurements can be challenging. As discussed by Johnson et al. (2022), in addition to the degeneracy between ρ𝜌\rhoitalic_ρ and fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, there is also a degeneracy between z𝑧zitalic_z and tρtEsubscript𝑡𝜌subscript𝑡Et_{*}\equiv\rho t_{\rm E}italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≡ italic_ρ italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT. The quantity that is robustly measured from the light curve is the time that source is significantly magnified, which in the limit of ρ𝜌\rho\rightarrow\inftyitalic_ρ → ∞, is just Δtchord=2βtΔsubscript𝑡chord2𝛽subscript𝑡\Delta t_{\rm chord}=2\beta t_{*}roman_Δ italic_t start_POSTSUBSCRIPT roman_chord end_POSTSUBSCRIPT = 2 italic_β italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. Hence, expressed in terms of robustly measured empirical quantities, μrel=θ/t=2βθ/Δtchordsubscript𝜇relsubscript𝜃subscript𝑡2𝛽subscript𝜃Δsubscript𝑡chord\mu_{\rm rel}=\theta_{*}/t_{*}=2\beta\theta_{*}/\Delta t_{\rm chord}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 2 italic_β italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / roman_Δ italic_t start_POSTSUBSCRIPT roman_chord end_POSTSUBSCRIPT. Even assuming that θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT has been accurately estimated from the source flux (and possibly color), the estimate of μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT is still directly proportional to β𝛽\betaitalic_β. The information on β𝛽\betaitalic_β comes from the amount of time required for the Einstein diameter to cross the limb of the source (Δtlimb=2tE/βΔsubscript𝑡limb2subscript𝑡E𝛽\Delta t_{\rm limb}=2\,t_{\rm E}/\betaroman_Δ italic_t start_POSTSUBSCRIPT roman_limb end_POSTSUBSCRIPT = 2 italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT / italic_β to a good approximation for β0much-greater-than𝛽0\beta\gg 0italic_β ≫ 0) compared to the time it spends transiting the source (Δtchord=2βtΔsubscript𝑡chord2𝛽subscript𝑡\Delta t_{\rm chord}=2\beta t_{*}roman_Δ italic_t start_POSTSUBSCRIPT roman_chord end_POSTSUBSCRIPT = 2 italic_β italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT). That is555 There is a tight analogy between this equation (and indeed the whole FSPL ρ1much-greater-than𝜌1\rho\gg 1italic_ρ ≫ 1 microlensing formalism), and the formalism of transiting planets. However, there are three differences. First, of course, microlensing generates flux bumps while transits generate flux dips. Second, the size of these bumps/dips differs by a factor two, i.e., ΔF=+2πθE2SΔ𝐹2𝜋superscriptsubscript𝜃E2𝑆\Delta F=+2\pi\theta_{\rm E}^{2}Sroman_Δ italic_F = + 2 italic_π italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_S for microlensing and ΔF=1πθplanet2SΔ𝐹1𝜋superscriptsubscript𝜃planet2𝑆\Delta F=-1\pi\theta_{\rm planet}^{2}Sroman_Δ italic_F = - 1 italic_π italic_θ start_POSTSUBSCRIPT roman_planet end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_S for transits, where S𝑆Sitalic_S is the source surface brightness and θplanetrplanet/Dplanetsubscript𝜃planetsubscript𝑟planetsubscript𝐷planet\theta_{\rm planet}\equiv r_{\rm planet}/D_{\rm planet}italic_θ start_POSTSUBSCRIPT roman_planet end_POSTSUBSCRIPT ≡ italic_r start_POSTSUBSCRIPT roman_planet end_POSTSUBSCRIPT / italic_D start_POSTSUBSCRIPT roman_planet end_POSTSUBSCRIPT. And third, more subtly, while the transit deficit arises from an opaque body, effectively an integral over a 2-dimensional ΘΘ\Thetaroman_Θ function of radius θplanetsubscript𝜃planet\theta_{\rm planet}italic_θ start_POSTSUBSCRIPT roman_planet end_POSTSUBSCRIPT, the microlensing excess arises from a smooth, though relatively compact excess magnification function, ΔAμLens=[(u2+2)/uu2+4]1Δsubscript𝐴𝜇Lensdelimited-[]superscript𝑢22𝑢superscript𝑢241\Delta A_{\mu\rm Lens}=[(u^{2}+2)/u\sqrt{u^{2}+4}]-1roman_Δ italic_A start_POSTSUBSCRIPT italic_μ roman_Lens end_POSTSUBSCRIPT = [ ( italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 ) / italic_u square-root start_ARG italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 end_ARG ] - 1, with effective radius 2θE2subscript𝜃E\sqrt{2}\theta_{\rm E}square-root start_ARG 2 end_ARG italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, where uθ/θE𝑢𝜃subscript𝜃Eu\equiv\theta/\theta_{\rm E}italic_u ≡ italic_θ / italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT. The difference in compactness of these two examples can be quantified in terms of a dimensionless concentration parameter Cπθ2/h0𝐶𝜋superscriptdelimited-⟨⟩𝜃2subscript0C\equiv\pi\langle\theta\rangle^{2}/h_{0}italic_C ≡ italic_π ⟨ italic_θ ⟩ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT where θh1/h0delimited-⟨⟩𝜃subscript1subscript0\langle\theta\rangle\equiv h_{1}/h_{0}⟨ italic_θ ⟩ ≡ italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and hn𝑑ΩΔAθnsubscript𝑛differential-dΩΔ𝐴superscript𝜃𝑛h_{n}\equiv\int d\Omega\,\Delta A\theta^{n}italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ≡ ∫ italic_d roman_Ω roman_Δ italic_A italic_θ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. For microlensing CμLens=8/9subscript𝐶𝜇Lens89C_{\mu\rm Lens}=8/9italic_C start_POSTSUBSCRIPT italic_μ roman_Lens end_POSTSUBSCRIPT = 8 / 9. For transits, with ΔA=Θ(θplanetθ)Δ𝐴Θsubscript𝜃planet𝜃\Delta A=-\Theta(\theta_{\rm planet}-\theta)roman_Δ italic_A = - roman_Θ ( italic_θ start_POSTSUBSCRIPT roman_planet end_POSTSUBSCRIPT - italic_θ ), one finds Ctransit=4/9subscript𝐶transit49C_{\rm transit}=-4/9italic_C start_POSTSUBSCRIPT roman_transit end_POSTSUBSCRIPT = - 4 / 9. Hence, microlensing produces somewhat less distinct features than transits as the planet transits the limb of the source. , β=Δtchord/Δtlimb/ρ𝛽Δsubscript𝑡chordΔsubscript𝑡limb𝜌\beta=\sqrt{\Delta t_{\rm chord}/\Delta t_{\rm limb}}/\rhoitalic_β = square-root start_ARG roman_Δ italic_t start_POSTSUBSCRIPT roman_chord end_POSTSUBSCRIPT / roman_Δ italic_t start_POSTSUBSCRIPT roman_limb end_POSTSUBSCRIPT end_ARG / italic_ρ, or

μrel=2θEΔtchordθΔtlimb.subscript𝜇rel2subscript𝜃EΔsubscript𝑡chordsubscript𝜃Δsubscript𝑡limb\mu_{\rm rel}=2\sqrt{{\theta_{\rm E}\over\Delta t_{\rm chord}}\,{\theta_{*}% \over\Delta t_{\rm limb}}}.italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = 2 square-root start_ARG divide start_ARG italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG start_ARG roman_Δ italic_t start_POSTSUBSCRIPT roman_chord end_POSTSUBSCRIPT end_ARG divide start_ARG italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG roman_Δ italic_t start_POSTSUBSCRIPT roman_limb end_POSTSUBSCRIPT end_ARG end_ARG . (12)

Both quantities in the first ratio in Equation (12) can be robustly measured. In many cases, the numerator of the second ratio (θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT) can be well determined. However, measurement of the denominator (ΔtlimbΔsubscript𝑡limb\Delta t_{\rm limb}roman_Δ italic_t start_POSTSUBSCRIPT roman_limb end_POSTSUBSCRIPT) depends on good measurements during the brief intervals of the limb crossings, which may be difficult, particularly for ρ1much-greater-than𝜌1\rho\gg 1italic_ρ ≫ 1. Hence μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT measurements are likely to be much more robust for events in the regime ρ2less-than-or-similar-to𝜌2\rho\lesssim 2italic_ρ ≲ 2 than in the large-ρ𝜌\rhoitalic_ρ limit.

However, if θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT can be measured, then even if μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT cannot be measured, one still obtains an upper limit μrel=2βθ/Δtchord2θ/Δtchordsubscript𝜇rel2𝛽subscript𝜃Δsubscript𝑡chord2subscript𝜃Δsubscript𝑡chord\mu_{\rm rel}=2\beta\theta_{*}/\Delta t_{\rm chord}\leq 2\theta_{*}/\Delta t_{% \rm chord}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = 2 italic_β italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / roman_Δ italic_t start_POSTSUBSCRIPT roman_chord end_POSTSUBSCRIPT ≤ 2 italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / roman_Δ italic_t start_POSTSUBSCRIPT roman_chord end_POSTSUBSCRIPT because β1𝛽1\beta\leq 1italic_β ≤ 1. Moreover, in a substantial majority of cases, μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT will actually be near this limit because for 60% of random trajectories, β>0.8𝛽0.8\beta>0.8italic_β > 0.8, while for large-ρ𝜌\rhoitalic_ρ events, the 13%similar-toabsentpercent13\sim 13\%∼ 13 % of trajectories with β<0.5𝛽0.5\beta<0.5italic_β < 0.5 are unlikely to yield viable events due to the paucity of magnified points. While this soft limit is likely to play little role in the scientific analysis of these events, it can play a practical role in deciding when to take late-time AO observations.

4.2 Possible Reduction of the Δχ2Δsuperscript𝜒2\Delta\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT Threshold for Kuiper FFPs

We have adopted a threshold Δχ2>300Δsuperscript𝜒2300\Delta\chi^{2}>300roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT > 300 for FFP detection following Johnson et al. (2020), which is substantially larger than the Δχ2>60Δsuperscript𝜒260\Delta\chi^{2}>60roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT > 60 threshold for short planetary perturbations on otherwise 1L1S events, which thereby transform them into double-lens single source (2L1S) events. While both numbers may change in the face of real data, it is certainly correct that the first should be much larger than the second.

There are two reasons for this. The main one is that the effective number of trials is vastly greater for the FFP search, which probes 2×108similar-toabsent2superscript108\sim 2\times 10^{8}∼ 2 × 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT sources over six distinct seasons, compared to the 2L1S search, which probes 105similar-toabsentsuperscript105\sim 10^{5}∼ 10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT microlensing events, each basically contained in one season. This is a ratio of 104similar-toabsentsuperscript104\sim 10^{4}∼ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT. Secondarily, the FFPs are described by 5 parameters, whereas the 2L1S perturbations require only 4 additional parameters because the source flux fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is already known from the main event.

However, a specific search for Kuiper FFPs would be triggered by the presence of a star that is brighter than the apparent microlensed source by at least 1 mag and lying within 1 Roman pixel of it (but clearly offset from it). Of all possible field stars that are the apparent location of a microlensing event that must be considered for such a search, 1%less-than-or-similar-toabsentpercent1\lesssim 1\%≲ 1 % will have a neighboring star that will generate a false positive by meeting these conditions. This is due to the low surface density of such field stars, and the small fraction of binary companions in this parameter range. Hence, rather than facing a factor 104superscript10410^{4}10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT more trials, there would only be a factor 102less-than-or-similar-toabsentsuperscript102\lesssim 10^{2}≲ 10 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Therefore, the Δχ2Δsuperscript𝜒2\Delta\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT threshold could perhaps be reduced by a factor 2/3 for such Kuiper candidates without burdening the search with too many false positives, thereby increasing the sensitivity to very low-mass Kuiper FFPs.

5 Microlens Parallax Measurements for FFPs

As we discuss in Section 6, the microlens parallax, 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT,

𝝅EπE𝝁relμrel;πEπrelθE=πrelκM,formulae-sequencesubscript𝝅Esubscript𝜋Esubscript𝝁relsubscript𝜇relsubscript𝜋Esubscript𝜋relsubscript𝜃Esubscript𝜋rel𝜅𝑀{\mbox{\boldmath$\pi$}}_{\rm E}\equiv\pi_{\rm E}{{\mbox{\boldmath$\mu$}}_{\rm rel% }\over\mu_{\rm rel}};\qquad\pi_{\rm E}\equiv{\pi_{\rm rel}\over\theta_{\rm E}}% =\sqrt{\pi_{\rm rel}\over\kappa M},bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ≡ italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT divide start_ARG bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG ; italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ≡ divide start_ARG italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG = square-root start_ARG divide start_ARG italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG italic_κ italic_M end_ARG end_ARG , (13)

has a wide variety of applications for FFPs, assuming that it can be measured. These go far beyond the most widely recognized applications that, when combined with a measurement of θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, the microlens parallax immediately yields the lens mass M=θE/κπE𝑀subscript𝜃E𝜅subscript𝜋EM=\theta_{\rm E}/\kappa\pi_{\rm E}italic_M = italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT / italic_κ italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT and the lens-source relative parallax πrel=θEπEsubscript𝜋relsubscript𝜃Esubscript𝜋E\pi_{\rm rel}=\theta_{\rm E}\pi_{\rm E}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT (Gould, 1992), which then yields the lens distance Dl=au/(πs+πrel)subscript𝐷𝑙ausubscript𝜋𝑠subscript𝜋relD_{l}={\rm au}/(\pi_{s}+\pi_{\rm rel})italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = roman_au / ( italic_π start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ) provided that πssubscript𝜋𝑠\pi_{s}italic_π start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is at least approximately known.

In this section, we focus on determining the lens characteristics for which 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT is measurable.

Refsdal (1966) originally advocated Earth-satellite parallaxes based on a principle that is well-illustrated by Figure 1 of Gould (1994). This concept was extended to Earth-L2 parallaxes by Gould et al. (2003) specifically as a method to obtain microlens parallaxes for terrestrial-mass objects. The choice of the Earth-satellite projected baseline Dsubscript𝐷perpendicular-toD_{\perp}italic_D start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT is relevant because if the satellite lies too far inside the Einstein ring projected on the observer plane, r~Eau/πEsubscript~𝑟Eausubscript𝜋E{\tilde{r}}_{\rm E}\equiv{\rm au}/\pi_{\rm E}over~ start_ARG italic_r end_ARG start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ≡ roman_au / italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, i.e., Dr~Emuch-less-thansubscript𝐷perpendicular-tosubscript~𝑟ED_{\perp}\ll{\tilde{r}}_{\rm E}italic_D start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ≪ over~ start_ARG italic_r end_ARG start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, then the Earth and satellite light curves will be too similar to measure the parallax effect, while if it lies too far outside, Dr~Emuch-greater-thansubscript𝐷perpendicular-tosubscript~𝑟ED_{\perp}\gg{\tilde{r}}_{\rm E}italic_D start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ≫ over~ start_ARG italic_r end_ARG start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, there will be no microlensing signal at one of the two observatories. Hence, for a given targeted πEsubscript𝜋E\pi_{\rm E}italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, one should strive for

0.05<πEDau<2;(RefsdalLimit).formulae-sequence0.05subscript𝜋Esubscript𝐷perpendicular-toau2RefsdalLimit0.05<\pi_{\rm E}{D_{\perp}\over{\rm au}}<2;\qquad({\rm Refsdal\ Limit}).0.05 < italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT divide start_ARG italic_D start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG start_ARG roman_au end_ARG < 2 ; ( roman_Refsdal roman_Limit ) . (14)

For Earth-mass lenses, and adopting D=0.01ausubscript𝐷perpendicular-to0.01auD_{\perp}=0.01\,{\rm au}italic_D start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT = 0.01 roman_au for L2 at quadrature (the mid point of Roman observations), this implies an accessible range of πrel=πE2κMsubscript𝜋relsuperscriptsubscript𝜋E2𝜅subscript𝑀direct-sum\pi_{\rm rel}=\pi_{\rm E}^{2}\kappa M_{\oplus}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_κ italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT of 0.6μasπrel1000μasless-than-or-similar-to0.6𝜇assubscript𝜋relless-than-or-similar-to1000𝜇as0.6\,\mu{\rm as}\lesssim\pi_{\rm rel}\lesssim 1000\,\mu{\rm as}0.6 italic_μ roman_as ≲ italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ≲ 1000 italic_μ roman_as, which encompasses nearly the full range of relevant lens distances. This is the reason that L2 parallaxes are ideal for terrestrial planets. More generally, the two red lines in Figure 4 show these boundaries on the (logM,logπrel)𝑀subscript𝜋rel(\log M,\log\pi_{\rm rel})( roman_log italic_M , roman_log italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ) plane.

Figure 4 shows a second relation, the “Paczyński Limit” (magenta), that further bounds the region of “Earth + L2-Satellite” parallax measurements, which is overall outlined in green. This limit is given by the inequality, ρθ/θE<2𝜌subscript𝜃subscript𝜃E2\rho\equiv\theta_{*}/\theta_{\rm E}<2italic_ρ ≡ italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT < 2, i.e.,

θE>θ2;(PaczynskiLimit).subscript𝜃Esubscript𝜃2PaczynskiLimit\theta_{\rm E}>{\theta_{*}\over 2};\qquad({\rm Paczynski\ Limit}).italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT > divide start_ARG italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG ; ( roman_Paczynski roman_Limit ) . (15)

For purposes of illustration, we have adopted θ=0.3μsubscript𝜃0.3𝜇\theta_{*}=0.3\,\muitalic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0.3 italic_μas, which is the most common class of source star that will enter in FFP measurements. We note that both Equations (14) and (15) are somewhat soft and depend on the quality of the data and the geometry of the event. Nevertheless, given that the diagram spans several decades in each directions, this softness is of relatively small importance.

5.1 Parallax Measurements In the Large-ρ𝜌\rhoitalic_ρ Regime Are Difficult

The origin of the Paczyński limit is that the measurement of two of the Paczyński parameters (u0,tEsubscript𝑢0subscript𝑡Eu_{0},t_{\rm E}italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT) are difficult unless Equation (15) is satisfied. These parameters enter into the equation that describes the parallax measurement from two observatories (see Figure 1 of Gould 1994),

𝝅E=(πE,,πE,)=auD(Δt0tE,Δu0);Δt0=t0,2t0,1;Δu0=u0,2u0,1,{\mbox{\boldmath$\pi$}}_{\rm E}=(\pi_{{\rm E},\parallel},\pi_{{\rm E},\perp})=% {{\rm au}\over D_{\perp}}\biggl{(}{{\Delta t_{0}\over t_{\rm E}},\Delta u_{0}}% \biggr{)};\quad\Delta t_{0}=t_{0,2}-t_{0,1};\quad\Delta u_{0}=u_{0,2}-u_{0,1},bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = ( italic_π start_POSTSUBSCRIPT roman_E , ∥ end_POSTSUBSCRIPT , italic_π start_POSTSUBSCRIPT roman_E , ⟂ end_POSTSUBSCRIPT ) = divide start_ARG roman_au end_ARG start_ARG italic_D start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT end_ARG ( divide start_ARG roman_Δ italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG , roman_Δ italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ; roman_Δ italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT 0 , 2 end_POSTSUBSCRIPT - italic_t start_POSTSUBSCRIPT 0 , 1 end_POSTSUBSCRIPT ; roman_Δ italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_u start_POSTSUBSCRIPT 0 , 2 end_POSTSUBSCRIPT - italic_u start_POSTSUBSCRIPT 0 , 1 end_POSTSUBSCRIPT , (16)

where (t0,u0)1,2subscriptsubscript𝑡0subscript𝑢012(t_{0},u_{0})_{1,2}( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT are the parameters measured for each observatory and the two components of 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT are, respectively, parallel and perpendicular to the vector projected separation of the two observatories 𝐃subscript𝐃perpendicular-to{\bf D}_{\perp}bold_D start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT. As already noted by Refsdal (1966), because u0subscript𝑢0u_{0}italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is a signed quantity, but only |u0|subscript𝑢0|u_{0}|| italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT | is usually measured, πE,subscript𝜋Eperpendicular-to\pi_{{\rm E},\perp}italic_π start_POSTSUBSCRIPT roman_E , ⟂ end_POSTSUBSCRIPT is subject to a four-fold degeneracy, including a two-fold degeneracy in |πE,|±=(au/D)||u0,1|±|u0,2||subscriptsubscript𝜋Eperpendicular-toplus-or-minusausubscript𝐷perpendicular-toplus-or-minussubscript𝑢01subscript𝑢02|\pi_{{\rm E},\perp}|_{\pm}=({\rm au}/D_{\perp})||u_{0,1}|\pm|u_{0,2}||| italic_π start_POSTSUBSCRIPT roman_E , ⟂ end_POSTSUBSCRIPT | start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT = ( roman_au / italic_D start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ) | | italic_u start_POSTSUBSCRIPT 0 , 1 end_POSTSUBSCRIPT | ± | italic_u start_POSTSUBSCRIPT 0 , 2 end_POSTSUBSCRIPT | |, which then induces a two-fold degeneracy on the amplitude of 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, i.e.,

πE,±=πE,2+πE,,±2.\pi_{{\rm E},\pm}=\sqrt{\pi_{{\rm E},\parallel}^{2}+\pi_{{\rm E},\perp,\pm}^{2% }}.italic_π start_POSTSUBSCRIPT roman_E , ± end_POSTSUBSCRIPT = square-root start_ARG italic_π start_POSTSUBSCRIPT roman_E , ∥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_π start_POSTSUBSCRIPT roman_E , ⟂ , ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (17)

In the context of large-ρ𝜌\rhoitalic_ρ microlensing, the determinations of the two Paczyński parameters, u0=z/ρsubscript𝑢0𝑧𝜌u_{0}=z/\rhoitalic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_z / italic_ρ and tE=t/ρsubscript𝑡Esubscript𝑡𝜌t_{\rm E}=t_{*}/\rhoitalic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / italic_ρ, depend directly on knowing z𝑧zitalic_z and tsubscript𝑡t_{*}italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, even provided that ρ𝜌\rhoitalic_ρ is well-determined.

However, as demonstrated by Johnson et al. (2022), there can be a strong degeneracy between the source-star impact parameter, z𝑧zitalic_z, and source self-crossing time t=ρtEsubscript𝑡𝜌subscript𝑡Et_{*}=\rho t_{\rm E}italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = italic_ρ italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT. As discussed in Section 4.1.1, the robust observable is Δtchord=2βtΔsubscript𝑡chord2𝛽subscript𝑡\Delta t_{\rm chord}=2\beta t_{*}roman_Δ italic_t start_POSTSUBSCRIPT roman_chord end_POSTSUBSCRIPT = 2 italic_β italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, i.e., the duration of the well-magnified portion of the light curve, where, again, β1z2𝛽1superscript𝑧2\beta\equiv\sqrt{1-z^{2}}italic_β ≡ square-root start_ARG 1 - italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG.

Now, if z𝑧zitalic_z can be measured from either of the two observatories, then it will also be known for the other. This is because by measuring z1subscript𝑧1z_{1}italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, one infers t,1=Δtchord,1/2β1subscript𝑡1Δsubscript𝑡chord12subscript𝛽1t_{*,1}=\Delta t_{\rm chord,1}/2\beta_{1}italic_t start_POSTSUBSCRIPT ∗ , 1 end_POSTSUBSCRIPT = roman_Δ italic_t start_POSTSUBSCRIPT roman_chord , 1 end_POSTSUBSCRIPT / 2 italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, where Δtchord,1Δsubscript𝑡chord1\Delta t_{\rm chord,1}roman_Δ italic_t start_POSTSUBSCRIPT roman_chord , 1 end_POSTSUBSCRIPT is a direct observable and z1subscript𝑧1z_{1}italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is (by hypothesis) measured. But t,2=t,1=tsubscript𝑡2subscript𝑡1subscript𝑡t_{*,2}=t_{*,1}=t_{*}italic_t start_POSTSUBSCRIPT ∗ , 2 end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT ∗ , 1 end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT is the same for both observatories, so that β2=Δtchord,2/2tsubscript𝛽2Δsubscript𝑡chord22subscript𝑡\beta_{2}=\Delta t_{\rm chord,2}/2t_{*}italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = roman_Δ italic_t start_POSTSUBSCRIPT roman_chord , 2 end_POSTSUBSCRIPT / 2 italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT is also a combination of well-determined quantities.

However, if the z𝑧zitalic_z-tsubscript𝑡t_{*}italic_t start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT degeneracies remain severe for both observatories, the parallax measurement will be severely compromised and difficult to exploit. When the event is observed from two observatories, the peak times t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT are not degenerate with any other parameters, so one can robustly infer that the component of 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT along the Earth-satellite axis is given by πE,=(au/D)Δt0/tE=(au/D)(2Δt0/Δtchord,1)(θE/θ)β1\pi_{{\rm E},\parallel}=({\rm au}/D_{\perp})\Delta t_{0}/t_{\rm E}=({\rm au}/D% _{\perp})(2\Delta t_{0}/\Delta t_{\rm chord,1})(\theta_{\rm E}/\theta_{*})% \beta_{1}italic_π start_POSTSUBSCRIPT roman_E , ∥ end_POSTSUBSCRIPT = ( roman_au / italic_D start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ) roman_Δ italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = ( roman_au / italic_D start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ) ( 2 roman_Δ italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / roman_Δ italic_t start_POSTSUBSCRIPT roman_chord , 1 end_POSTSUBSCRIPT ) ( italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT / italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Then, because β11subscript𝛽11\beta_{1}\leq 1italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ 1 and all the other quantities are measured, this places an upper limit on πE,\pi_{{\rm E},\parallel}italic_π start_POSTSUBSCRIPT roman_E , ∥ end_POSTSUBSCRIPT. However, because πE=πE,2+πE,2\pi_{\rm E}=\sqrt{\pi_{{\rm E},\parallel}^{2}+\pi_{{\rm E},\perp}^{2}}italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = square-root start_ARG italic_π start_POSTSUBSCRIPT roman_E , ∥ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_π start_POSTSUBSCRIPT roman_E , ⟂ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG and πE,subscript𝜋Eperpendicular-to\pi_{{\rm E},\perp}italic_π start_POSTSUBSCRIPT roman_E , ⟂ end_POSTSUBSCRIPT is likely to be poorly constrained due to the Refsdal (1966) four-fold degeneracy combined with the poorly determined values of z𝑧zitalic_z (and so u0=zθ/θEsubscript𝑢0𝑧subscript𝜃subscript𝜃Eu_{0}=z\theta_{*}/\theta_{\rm E}italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_z italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT), there will be neither an upper nor a lower limit on πEsubscript𝜋E\pi_{\rm E}italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT in most cases.

We conclude that parallax measurements are unlikely to provide much information for FFPs with ρ1much-greater-than𝜌1\rho\gg 1italic_ρ ≫ 1. Nevertheless, parallax measurements can provide very useful information for FFPs with ρ2less-than-or-similar-to𝜌2\rho\lesssim 2italic_ρ ≲ 2, as discussed by Zhu & Gould (2016), Gould et al. (2021), and Ge et al. (2022) for Earth-L2 parallaxes, by Bachelet & Penny (2019), Ban (2020), Gould et al. (2021) and Bachelet (2022) for Roman-Euclid parallaxes, and by Yan & Zhu (2022) for CSST-Roman parallaxes. Hence, provided any of these programs are executed, they will also automatically provide parallax information on large-ρ𝜌\rhoitalic_ρ events, which could prove useful in some cases.

6 Integrated Approach Toward an FFP Mass Function

In this section, we sketch how an ensemble of FFP detections in eight categories (FSPL,PSPL) ×\times× (Wide,Kuiper,Oort,Unbound) can be combined to measure the FFP mass function as a function of FFP dimensionless binding energy, i.e., vorb2/2superscriptsubscript𝑣orb22v_{\rm orb}^{2}/2italic_v start_POSTSUBSCRIPT roman_orb end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 2, where vorbsubscript𝑣orbv_{\rm orb}italic_v start_POSTSUBSCRIPT roman_orb end_POSTSUBSCRIPT is the orbital velocity of the bound planet. For the four orbit categories just listed, these are roughly vorb=(7,3,1,0)kms1subscript𝑣orb7310kmsuperscripts1v_{\rm orb}=(7,3,1,0)\,{\rm km}\,{\rm s}^{-1}italic_v start_POSTSUBSCRIPT roman_orb end_POSTSUBSCRIPT = ( 7 , 3 , 1 , 0 ) roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT.

In fact, the paths for incorporating members of these eight categories into the mass-function determination differ substantially from one another. Moreover, they differ between the case that microlens parallax measurements are made or not. To help navigate this somewhat complex discussion, we begin with an overview of main issues that affect all cases. Next, we give concrete illustrations of how the FFP mass functions of the four orbit categories can provide insight into planet formation and early evolution. We then carry out separate discussion for the FSPL FFPs and PSPL FFPs.

6.1 Overview of Issues Related to All Eight Categories

The overriding issue is to distinguish between Unbound FFPs and the three categories of bound FFPs by identifying the hosts of the latter group. If the host for a bound FFP cannot be identified, then it is, in fact, unknown whether the FFP is bound or not. And to the degree that this is common, the derived Unbound sample will be contaminated with bound FFPs. While such ambiguities are inevitable at some level, if they are frequent, then the scientific investigations that are sketched in Section 6.2 will become difficult.

In general, it will be far easier to identify the hosts of Wide and Kuiper FFPs (whether FSPL or PSPL) than Oort FFPs because the hosts of the former will be projected very near on the sky to the location of the event. Hence, the chance of a random interloper being projected at such a close separation is low. However, for Oort FFPs, the chance of random-interloper projections can be close to 100%. Hence, the main issue is how to distinguish Oort FFPs from Unbound FFPs, by securely identifying the hosts of the former, in the face of a confusing ensemble of candidate hosts.

We will show that if 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT is measured, then it is possible to identify the host of Oort objects up to a considerable separation, i.e., well into the regime of many random-interloper candidate hosts. This is true for both FSPL and PSPL FFPs but will be more robust for the former.

In brief, with 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurements, it will be possible to systematically identify hosts for all bound classes of FSPL FFPs and to measure the masses, distances and transverse velocities of essentially all of these. The same basically holds for PSPL FFPs, but the identifications will be more difficult. It will also be possible to measure the masses, distances and transverse velocities of the FSPL Unbound FFPs (modulo the Refsdal 1966 four-fold degeneracy). However, without 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurements, only Wide and Kuiper FFPs will have mass measurements, some of these measurements will be quite crude, and there will be no mass measurements for Unbound FFPs. Hence, the premium on obtaining 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurements is extremely high.

As we showed in Section 5.1, it will usually not be possible to measure 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT for FFPs in the ρ1much-greater-than𝜌1\rho\gg 1italic_ρ ≫ 1 regime, which contains the lowest-mass FFPs. In order to illustrate the size of this region of parameter space relative to the region for which 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT is measurable, we show (in Figure 4) the “Detection Limit” (in blue) of θE>0.067μsubscript𝜃E0.067𝜇\theta_{\rm E}>0.067\,\muitalic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT > 0.067 italic_μas, by substituting Γ=8hr1Γ8superscripthr1\Gamma=8\,{\rm hr}^{-1}roman_Γ = 8 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, μrel=6masyr1subscript𝜇rel6massuperscriptyr1\mu_{\rm rel}=6\,{\rm mas}\,{\rm yr}^{-1}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = 6 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, and z=0.5𝑧0.5z=0.5italic_z = 0.5 into Equation (6) and demanding Δχexp2>300Δsubscriptsuperscript𝜒2exp300\Delta\chi^{2}_{\rm exp}>300roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT > 300. Note that it lies 0.35 dex below the Paczyński Limit in θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, corresponding to a factor 5similar-to-or-equalsabsent5\simeq 5≃ 5 smaller in planet mass at fixed πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT.

6.2 Possible Origins of the four classes of FFPs

In this section we speculate on the origins of the four categories of FFPs, i.e., Wide, Kuiper, Oort, and Unbound. The point is not to make predictions but to illustrate how specific hypotheses on these origins can be tested observationally by measuring the FFP mass functions of the four groups.

We begin with the Unbound objects. Most likely, these were ejected by planet-planet interactions (for references on ejection mechanisms, see the relevant discussions in the recent reviews by Zhu & Dong 2021 and Mróz & Poleski 2023). If so, the ejecting planet should have an escape velocity that is of order or greater than its orbital velocity. This applies in our own solar system to Jupiter, Saturn, Uranus, and Neptune, but not to any of the terrestrial planets. Moreover, if these were at the position of Earth, it would still robustly apply to Jupiter but only marginally to Saturn. Hence, we conjecture that such objects are mainly formed locally in the richest regions of the proto-planetary disk, i.e., just beyond the snow line, where they are perturbed by gas giants.

Next we turn to Oort objects. The process just described will inevitably put some of the ejected objects in Oort-like orbits, but only a fraction of order (vOort/vperturber)21%similar-toabsentsuperscriptsubscript𝑣Oortsubscript𝑣perturber2similar-topercent1\sim(v_{\rm Oort}/v_{\rm perturber})^{2}\sim 1\%∼ ( italic_v start_POSTSUBSCRIPT roman_Oort end_POSTSUBSCRIPT / italic_v start_POSTSUBSCRIPT roman_perturber end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∼ 1 %. Thus, if this hypothesis is correct, Oort objects should have a similar mass function to the Unbound objects, but be of order 100 times less numerous. Alternatively, the Oort objects could have formed like our own Oort Cloud is believed to, by repeated, pumping-type perturbations from relatively massive planets far beyond the snow line. In this case, the Oort objects would have a different mass function, being in particular cut off at the high end and perhaps different in form at lower masses as well.

If the Kuiper objects were the ultimate source of the Oort objects, as just hypothesized, then they should have a similar mass function, but in addition contain the perturbers, and they should also contain additional objects that are below the perturber masses, but that are deficient among Oort objects because they are too heavy to be pumped.

Finally, the Wide planets may simply be the members of the ordinary bound planet population that happen to escape notice because of geometry. If so, they should have a similar mass function to these bound planets.

Again, we emphasize that these are extreme-toy models and are in no sense meant to serve as predictions. They are just presented to illustrate the role of mass functions as probes of planet formation.

6.3 Measurement of the FFP Mass Function(s)

We adopt the orientation that ELT observations can be made of all FFPs after the source and host (or putative host) have separated enough to resolve them. And we further assume that, whenever necessary, a second epoch can be taken to measure the host-source relative proper motion, which (given the low orbital speeds of bound FFPs) will be essentially the same as the lens-source (i.e., FFP-source) relative proper motion 𝝁relsubscript𝝁rel{\mbox{\boldmath$\mu$}}_{\rm rel}bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT. In principle, the number of such objects could be too large for this to be a practical goal, but the logic outlined below can still be applied to a well-selected subsample.

6.3.1 What Can Be Accomplished Without 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT Measurements?

With or without microlens parallax measurements, the critical question will always be whether (or to what extent) the hosts of the bound FFPs can be identified. If they can be identified, then first (obviously) they can be identified as bound, in which case those that are actually Unbound will be mixed together with the bound FFPs whose hosts have simply not been identified as such. Second, it will be possible to derive mass, distance, and transverse-velocity measurements for these bound FFPs. The distance measurement will come from the photometric distance estimate666Note that this implicitly assumes that the hosts (or possibly stellar companions to the hosts) of bound FFPs are luminous. The practical implication of this assumption is that FFPs that have dark hosts (such as white dwarfs and brown dwarfs) that lack luminous stellar companions will not be recognized as such, and therefore they will inevitably be lumped together with Unbound FFPs in subsequent mass-function analyses. of the host (or possibly, a stellar companion to the host). In some cases, it will be possible to measure the trigonometric parallax of the host from the full time series of Roman astrometric data. However, these instances will be extremely rare for the non-microlens-parallax case, so we discuss this prospect within the context of microlensing parallax measurements, below.

The mass determination will come from combining measurements of the 𝝁relsubscript𝝁rel{\mbox{\boldmath$\mu$}}_{\rm rel}bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT and πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT (which very well approximate the host-source relative proper motion and parallax). The first of these will come directly from two epochs of late-time ELT observations. The second will come by combining the photometric host distance with the fact that the source is in the bulge. Then, using essentially the method first proposed by Refsdal (1964), the FFP mass is given by

M=θE2κπrel=(μreltE)2κπrel,𝑀superscriptsubscript𝜃E2𝜅subscript𝜋relsuperscriptsubscript𝜇relsubscript𝑡E2𝜅subscript𝜋relM={\theta_{\rm E}^{2}\over\kappa\pi_{\rm rel}}={(\mu_{\rm rel}t_{\rm E})^{2}% \over\kappa\pi_{\rm rel}},italic_M = divide start_ARG italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_κ italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG = divide start_ARG ( italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_κ italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG , (18)

where either θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT or tEsubscript𝑡Et_{\rm E}italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT is measured from the light-curve analysis. The only difference relative to Refsdal (1964) for the second (tEsubscript𝑡Et_{\rm E}italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT) case is that he imagined that πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT and μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT would be measured for the lens that generated the microlensing event, as opposed to a stellar companion to the lens that was of order a million times more massive.

Note that both forms of Equation (18) are important. For FSPL events, θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT can be measured even when tEsubscript𝑡Et_{\rm E}italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT cannot, in particular in the ρ1much-greater-than𝜌1\rho\gg 1italic_ρ ≫ 1 limit. Thus, masses can be derived for these seemingly poorly measured objects (provided that their hosts can be identified). On the other hand, the PSPL FFPs, which dominate the higher-mass FFPs (and so typically generate longer, better characterized events), will often have well-measured tEsubscript𝑡Et_{\rm E}italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT even though they lack a θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurement.

Finally, the transverse velocity can be derived from the distance and proper-motion measurements.

The main contributor to the error in the mass measurements will be the accuracy of the πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT estimate. For disk lenses, combining the knowledge that the source is in the bulge with the photometric lens distance will lead to a reasonably good (0.1less-than-or-similar-toabsent0.1\lesssim 0.1\,≲ 0.1dex) estimates of πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT and hence, taking account of the 10%similar-toabsentpercent10\sim 10\%∼ 10 % errors in θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, roughly 0.15 dex errors in M=θE2/κπrel𝑀superscriptsubscript𝜃E2𝜅subscript𝜋relM=\theta_{\rm E}^{2}/\kappa\pi_{\rm rel}italic_M = italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_κ italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT. For bulge lenses, the πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT errors will be more like a factor 2, so mass errors of 0.3 dex.

For the great majority of Wide and most Kuiper FFPs, it will be possible to identify the host with reasonably good confidence based primarily on proximity and supplemented by photometric estimates of the candidate-host distance, and brightness. The criterion will be the probability that an unrelated star at the estimated distance could be projected within the measured angular separation by chance. For example, stars whose photometric properties are consistent with them being in the bulge (and brighter than HVega<21subscript𝐻Vega21H_{\rm Vega}<21italic_H start_POSTSUBSCRIPT roman_Vega end_POSTSUBSCRIPT < 21) have a surface density of a few per square arcsec. Hence, if one appears projected at Δθ=17masΔ𝜃17mas\Delta\theta=17\,{\rm mas}roman_Δ italic_θ = 17 roman_mas (corresponding to a=100ausubscript𝑎perpendicular-to100aua_{\perp}=100\,{\rm au}italic_a start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT = 100 roman_au at Dl=6kpcsubscript𝐷𝑙6kpcD_{l}=6\,{\rm kpc}italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = 6 roman_kpc), then the false alarm probability (FAP) that it is unrelated to the event is p0.5%less-than-or-similar-to𝑝percent0.5p\lesssim 0.5\%italic_p ≲ 0.5 %. Hence, this star would be judged as being associated with the event unless there were another competing candidate (which would be very rare, i.e., just the same p=0.5%𝑝percent0.5p=0.5\%italic_p = 0.5 % of the time). The possibility (far from negligible) that the observed star was a companion to the source could easily be ruled out by the ELT proper motion measurement. Then the star must be either the host or a stellar companion to the host. The latter possibility would have no impact on the distance estimate and would be very unlikely to significantly affect either the mass or the transverse-velocity estimates, although it would potentially affect the estimate of asubscript𝑎perpendicular-toa_{\perp}italic_a start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT.

This argument could, by itself, be pushed to separations that are about 3 times larger, i.e., a300ausimilar-tosubscript𝑎perpendicular-to300aua_{\perp}\sim 300\,{\rm au}italic_a start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ∼ 300 roman_au. If the photometric distance estimate clearly excluded a bulge location for the candidate, then the same method could be pushed yet further by a factor of a few depending on the actual distance. For FSPL FFPs, which have scalar proper motion measurements, these could provide additional vetting against false candidates.

It is quite possible, in principle, that the overwhelming majority of bound FFPs lie projected at asubscript𝑎perpendicular-toa_{\perp}italic_a start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT values that are accessible to this technique. If so, this would likely become apparent from a rapid fall-off of FFPs with asubscript𝑎perpendicular-toa_{\perp}italic_a start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT. In this case, it would be reasonable to assume that most FFPs that lacked hosts within the range accessible to this technique were, in fact, Unbound FFPs, and in particular, that there were very few Oort FFPs.

On the other hand, it is also possible that the bound FFPs extend to larger separations than can be vetted by the techniques of this section, and so require microlens-parallax measurements in order to securely identify them. Moreover, whether or not this improved vetting of candidates proves necessary, 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurements would greatly improve the mass measurements for bound FFPs, and they would provide the only possible direct mass measurements for Unbound FFPs.

6.3.2 Role of a Parallax Satellite for FSPL FFPs

The measurement of the microlens parallax vector, 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, would provide several key pieces of information with respect to measuring the mass functions of the four different categories of FSPL FFPs. First, of course, it will essentially always yield the FFP mass, M=θE/κπE𝑀subscript𝜃E𝜅subscript𝜋EM=\theta_{\rm E}/\kappa\pi_{\rm E}italic_M = italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT / italic_κ italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, and its lens-source relative parallax, πrel=θEπEsubscript𝜋relsubscript𝜃Esubscript𝜋E\pi_{\rm rel}=\theta_{\rm E}\pi_{\rm E}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, because θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT will essentially always be measured for FSPL FFPs that are accessible to 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurements. As discussed in Section 6.3.1, mass measurements will be possible for a large fraction of bound FFPs by identifying their hosts, even in the absence of 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurements. However, first, 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT-based mass measurements will be substantially more accurate for disk FFPs and dramatically more accurate for bulge FFPs. Second, without 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurements, hosts cannot be identified at very wide separations a300augreater-than-or-equivalent-tosubscript𝑎perpendicular-to300aua_{\perp}\gtrsim 300\,{\rm au}italic_a start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ≳ 300 roman_au, so 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT-based mass measurements are essential for these cases. Third, for Unbound FFPs, the only possible way to measure the mass is via microlens parallax.

However, of more fundamental importance is that 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurements will enable systematic vetting of candidate hosts and therefore allow for robust identification of unique hosts, as well as robust identification of FFPs that lack hosts (i.e., Unbound FFPs). We say “more fundamental” because without host identification, one cannot distinguish between classes of FFPs, in particular to determine which are actually Unbound. Moreover, for bound FFPs, the only way to resolve the two-fold (Refsdal, 1966) mass degeneracy that derives from the 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurement is by identifying the host.

Therefore, the remainder of this section is devoted to the role of 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurements in robust host identification of FSPL FFPs.

The main technique for vetting candidates is to compare the observed candidate-source vector proper motion derived from late-time ELT imaging with the predicted vector lens-source proper motion

𝝁rel=μrel𝝅EπE,subscript𝝁relsubscript𝜇relsubscript𝝅Esubscript𝜋E{\mbox{\boldmath$\mu$}}_{\rm rel}=\mu_{\rm rel}{{\mbox{\boldmath$\pi$}}_{\rm E% }\over\pi_{\rm E}},bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT divide start_ARG bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG start_ARG italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG , (19)

where μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT is the scalar proper motion that is derived from the finite-source effects of the FSPL event. A complementary, though less discriminating, vetting method is to compare candidate-source πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT (usually from photometric distance estimates from late-time imaging), to the lens-source πrel=θEπEsubscript𝜋relsubscript𝜃Esubscript𝜋E\pi_{\rm rel}=\theta_{\rm E}\pi_{\rm E}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT.

Recall that the Refsdal (1966) four-fold degeneracy consists of a two-fold degeneracy in πEsubscript𝜋E\pi_{\rm E}italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, with each value being impacted by a two-fold degeneracy in the proper-motion direction, 𝝁^relsubscript^𝝁rel{\hat{\mbox{\boldmath$\mu$}}}_{\rm rel}over^ start_ARG bold_italic_μ end_ARG start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT. It is important to note that generally the two sets of directional degeneracies do not overlap: see Figure 1 of Gould (1994). The FSPL FFPs have measurements of the scalar μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT from the light curve. Bringing together all this information, a candidate host must be consistent with one of four vector proper motions 𝝁relsubscript𝝁rel{\mbox{\boldmath$\mu$}}_{\rm rel}bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT, all with the same amplitude but with different directions. And for each of these directions, there is a definite value (one of two, see Equation (17)) of πEsubscript𝜋E\pi_{\rm E}italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, implying a definite value of πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT.

Regarding Wide and Kuiper FFPs, we have already argued in Section 6.3.1 that excellent host identifications can usually be made based primarily on proximity, together with other information that does not require a 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurement. Nevertheless, making certain that the candidate’s proper motion is consistent with one of the four proper motions from Equation (19) is a useful sanity check. And in some cases the proximity technique may result in multiple candidates, which can be resolved based on the more stringent (vector) proper-motion requirement. And in some further rare cases, the πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT consistency check may play a role.

Next, we consider Oort FFPs, which according to our schematic characterization begin at a300ausimilar-tosubscript𝑎perpendicular-to300aua_{\perp}\sim 300\,{\rm au}italic_a start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ∼ 300 roman_au, or Δθ=50μΔ𝜃50𝜇\Delta\theta=50\,\muroman_Δ italic_θ = 50 italic_μas for Dl=6kpcsubscript𝐷𝑙6kpcD_{l}=6\,{\rm kpc}italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = 6 roman_kpc. At this nominal boundary, two aspects of the Kuiper situation would remain qualitatively similar: the source and host would not be resolved in Roman images at the time of the event and the FAP would still be relatively small (p5%similar-to𝑝percent5p\sim 5\%italic_p ∼ 5 %) so that the chance of multiple random interlopers at these separations would be small. However, the FAP would not be so small as to allow one to make a secure identification based on proximity alone. Nevertheless, with the amplitude of 𝝁relsubscript𝝁rel{\mbox{\boldmath$\mu$}}_{\rm rel}bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT accurately predicted from the event, and its direction predicted up to a four-fold degeneracy by the 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurement, it is very unlikely that the true host among the handful of candidates (still, most likely only one), would not be identified. Indeed, the latter statement would remain qualitatively the same out to a=1000ausubscript𝑎perpendicular-to1000aua_{\perp}=1000\,{\rm au}italic_a start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT = 1000 roman_au corresponding to Δθ=170masΔ𝜃170mas\Delta\theta=170\,{\rm mas}roman_Δ italic_θ = 170 roman_mas, for which p0.5similar-to𝑝0.5p\sim 0.5italic_p ∼ 0.5.

However, at this and larger separations, the source and host would be reasonably well resolved, and it would be possible, using Roman data alone (that is, without waiting for late-time ELT observations) to measure the candidate-source relative parallax and proper-motion, (πrel,𝝁rel)cssubscriptsubscript𝜋relsubscript𝝁rel𝑐𝑠(\pi_{\rm rel},{\mbox{\boldmath$\mu$}}_{\rm rel})_{c-s}( italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT , bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_c - italic_s end_POSTSUBSCRIPT and thus to ask whether they were both consistent with the values of these quantities that were derived from the event: (πrel,𝝁rel)ls=(θEπE,[θE/tE][𝝅E/πE])subscriptsubscript𝜋relsubscript𝝁rel𝑙𝑠subscript𝜃Esubscript𝜋Edelimited-[]subscript𝜃Esubscript𝑡Edelimited-[]subscript𝝅Esubscript𝜋E(\pi_{\rm rel},{\mbox{\boldmath$\mu$}}_{\rm rel})_{l-s}=(\theta_{\rm E}\pi_{% \rm E},[\theta_{\rm E}/t_{\rm E}][{\mbox{\boldmath$\pi$}}_{\rm E}/\pi_{\rm E}])( italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT , bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_l - italic_s end_POSTSUBSCRIPT = ( italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT , [ italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT / italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ] [ bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT / italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ] ). Scaling from Figure 1 of Gould et al. (2015), the individual-epoch astrometric precision would be (ignoring any extra noise due to blending),

σast=1.3mas100.2(HVega21)subscript𝜎ast1.3superscriptmas100.2subscript𝐻Vega21\sigma_{\rm ast}=1.3\,{\rm mas}10^{0.2(H_{\rm Vega}-21)}italic_σ start_POSTSUBSCRIPT roman_ast end_POSTSUBSCRIPT = 1.3 mas10 start_POSTSUPERSCRIPT 0.2 ( italic_H start_POSTSUBSCRIPT roman_Vega end_POSTSUBSCRIPT - 21 ) end_POSTSUPERSCRIPT (20)

Because the N=8×104𝑁8superscript104N=8\times 10^{4}italic_N = 8 × 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT epochs envisaged by our revised observation strategy are mainly near quadrature, this would imply a photon-limited trigonometric-parallax measurement of precision,

σ(πrel,cs)=4.6μas100.4(HVega,c21)+100.4(HVega,s21).𝜎subscript𝜋rel𝑐𝑠4.6𝜇assuperscript100.4subscript𝐻Vega𝑐21superscript100.4subscript𝐻Vega𝑠21\sigma(\pi_{{\rm rel},c-s})=4.6\,\mu{\rm as}\sqrt{10^{0.4(H_{{\rm Vega},c}-21)% }+10^{0.4(H_{{\rm Vega},s}-21)}}.italic_σ ( italic_π start_POSTSUBSCRIPT roman_rel , italic_c - italic_s end_POSTSUBSCRIPT ) = 4.6 italic_μ roman_as square-root start_ARG 10 start_POSTSUPERSCRIPT 0.4 ( italic_H start_POSTSUBSCRIPT roman_Vega , italic_c end_POSTSUBSCRIPT - 21 ) end_POSTSUPERSCRIPT + 10 start_POSTSUPERSCRIPT 0.4 ( italic_H start_POSTSUBSCRIPT roman_Vega , italic_s end_POSTSUBSCRIPT - 21 ) end_POSTSUPERSCRIPT end_ARG . (21)

This could provide considerable additional discriminatory power to weed out false candidates, depending on the brightness of the source and the candidates, beyond the weeding done by the proper-motion comparisons.

To give a somewhat extreme but realistic example, suppose the actual FFP had M=M𝑀subscript𝑀direct-sumM=M_{\oplus}italic_M = italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT, Dl=2kpcsubscript𝐷𝑙2kpcD_{l}=2\,{\rm kpc}italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = 2 roman_kpc, and a=104ausubscript𝑎perpendicular-tosuperscript104aua_{\perp}=10^{4}\,{\rm au}italic_a start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT roman_au, i.e., similar to separations of the Solar System objects that feed the long-period comets. The host would be separated from the source by Δθ=5′′Δ𝜃superscript5′′\Delta\theta=5^{\prime\prime}roman_Δ italic_θ = 5 start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT inside of which there would be roughly 300 “candidates”. In this example, suppose that Ds=8kpcsubscript𝐷𝑠8kpcD_{s}=8\,{\rm kpc}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 8 roman_kpc and HVega,s=21subscript𝐻Vega𝑠21H_{{\rm Vega},s}=21italic_H start_POSTSUBSCRIPT roman_Vega , italic_s end_POSTSUBSCRIPT = 21, while Mhost=0.5Msubscript𝑀host0.5subscript𝑀direct-productM_{\rm host}=0.5\,M_{\odot}italic_M start_POSTSUBSCRIPT roman_host end_POSTSUBSCRIPT = 0.5 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT so that HVega,host=18subscript𝐻Vegahost18H_{\rm Vega,host}=18italic_H start_POSTSUBSCRIPT roman_Vega , roman_host end_POSTSUBSCRIPT = 18. Then, the astrometric measurement would be a random realization of πrel,cs=375±5μsubscript𝜋rel𝑐𝑠plus-or-minus3755𝜇\pi_{{\rm rel},c-s}=375\pm 5\,\muitalic_π start_POSTSUBSCRIPT roman_rel , italic_c - italic_s end_POSTSUBSCRIPT = 375 ± 5 italic_μas, for example, πrel,cs=381±5μsubscript𝜋rel𝑐𝑠plus-or-minus3815𝜇\pi_{{\rm rel},c-s}=381\pm 5\,\muitalic_π start_POSTSUBSCRIPT roman_rel , italic_c - italic_s end_POSTSUBSCRIPT = 381 ± 5 italic_μas. This astrometric measurement would be vetted against the two possible πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT values coming from the light-curve analysis πrel,±=πE,±θEsubscript𝜋relplus-or-minussubscript𝜋Eplus-or-minussubscript𝜃E\pi_{{\rm rel},\pm}=\pi_{{\rm E},\pm}\theta_{\rm E}italic_π start_POSTSUBSCRIPT roman_rel , ± end_POSTSUBSCRIPT = italic_π start_POSTSUBSCRIPT roman_E , ± end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, which might be, for example, πrel,+=410±50μsubscript𝜋relplus-or-minus41050𝜇\pi_{{\rm rel},+}=410\pm 50\,\muitalic_π start_POSTSUBSCRIPT roman_rel , + end_POSTSUBSCRIPT = 410 ± 50 italic_μas and πrel,=270±30μsubscript𝜋relplus-or-minus27030𝜇\pi_{{\rm rel},-}=270\pm 30\,\muitalic_π start_POSTSUBSCRIPT roman_rel , - end_POSTSUBSCRIPT = 270 ± 30 italic_μas. One would demand that any candidate be consistent with one of these two at 2σ2𝜎2\,\sigma2 italic_σ, which would span 210μas<πrel<510μas210𝜇assubscript𝜋rel510𝜇as210\,\mu{\rm as}<\pi_{\rm rel}<510\,\mu{\rm as}210 italic_μ roman_as < italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT < 510 italic_μ roman_as, corresponding approximately to 3.0kpcDl0.8kpcgreater-than-or-equivalent-to3.0kpcsubscript𝐷𝑙greater-than-or-equivalent-to0.8kpc3.0\,{\rm kpc}\gtrsim D_{l}\gtrsim 0.8\,{\rm kpc}3.0 roman_kpc ≳ italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ≳ 0.8 roman_kpc. Of course, the actual host would easily pass this vetting, being within 1σsimilar-toabsent1𝜎\sim 1\,\sigma∼ 1 italic_σ of πrel,+subscript𝜋rel\pi_{{\rm rel},+}italic_π start_POSTSUBSCRIPT roman_rel , + end_POSTSUBSCRIPT. However, the great majority of other candidates would be removed by this cut because only a small fraction of field stars seen toward the bulge lie within 3kpcabsent3kpc\leq 3\,{\rm kpc}≤ 3 roman_kpc of the Sun. This is before vetting the vector proper motion against the four possible values allowed by the light curve analysis. In fact, the photon-limited astrometric precision was somewhat overkill in this example, because the resulting error bar was 40 times smaller than the range allowed by the light-curve prediction. Hence, even a photometric relative parallax would have been quite satisfactory. Nevertheless, this added precision would not “go to waste” (assuming it could be achieved) because it would greatly improve the precision of the mass measurement. The same would be true of the astrometric measurement of 𝝁relsubscript𝝁rel{\mbox{\boldmath$\mu$}}_{\rm rel}bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT, which (whether based on Roman or ELT astrometry) would likely have much higher precision than the light-curve based determination777Such higher precision is already routinely achieved when the lens and source are separately resolved in late-time high-resolution images, as in the specific cases of OGLE-2005-BLG-071 (Bennett et al., 2020), OGLE-2005-BLG-169 (Batista et al., 2015; Bennett et al., 2015), MOA-2007-BLG-400 (Bhattacharya et al., 2021), MOA-2009-BLG-319 (Terry et al., 2021), OGLE-2012-BLG-0950 (Bhattacharya et al., 2018), and MOA-2013-BLG-220 (Vandorou et al., 2020). . Then the major contributor to the fractional mass error would be (twice) the fractional error in tEsubscript𝑡Et_{\rm E}italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT (from the light curve), via M=μrel2tE2/κπrel𝑀superscriptsubscript𝜇rel2superscriptsubscript𝑡E2𝜅subscript𝜋relM=\mu_{\rm rel}^{2}t_{\rm E}^{2}/\kappa\pi_{\rm rel}italic_M = italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_κ italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT.

In brief, a combination of light-curve data from Roman and a second (i.e., parallax) observatory, late-time ELT astrometry and photometry, and within-mission Roman astrometry can vet against false-candidate hosts over a very wide range of separations, which enable essentially unambiguous identification of all Unbound FSPL FFPs, as well as excellent mass, distance, projected-separation, and transverse-velocity measurements of all three categories of bound FFPs. The Unbound FFPs would then have mass and distance measurements that were subject to the two-fold Refsdal (1966) ambiguity, which would have to be handled statistically.

6.3.3 Role of a Parallax Satellite for PSPL FFPs

A large fraction of low-mass FFPs will be FSPL simply because their Einstein radii are small, so if the source suffers significant magnification, it has a high probability to be transited by the FFP, i.e., an FSPL event. However, at higher masses, MMgreater-than-or-equivalent-to𝑀subscript𝑀direct-sumM\gtrsim M_{\oplus}italic_M ≳ italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT, a declining fraction of FFP events will be FSPL. For example, scaling to typical values πrel=50μsubscript𝜋rel50𝜇\pi_{\rm rel}=50\,\muitalic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = 50 italic_μas and θ=0.3massubscript𝜃0.3mas\theta_{*}=0.3\,{\rm mas}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0.3 roman_mas, the fraction of FSPL events will be

ηFSPL=min(1,ρ);ρ=0.27(MM)1/2(πrel50μas)1/2(θ0.3μas),formulae-sequencesubscript𝜂FSPLmin1𝜌𝜌0.27superscript𝑀subscript𝑀direct-sum12superscriptsubscript𝜋rel50𝜇as12subscript𝜃0.3𝜇as\eta_{\rm FSPL}={\rm min}(1,\rho);\qquad\rho=0.27\biggl{(}{M\over M_{\oplus}}% \biggr{)}^{-1/2}\biggl{(}{\pi_{\rm rel}\over 50\,\mu\rm as}\biggr{)}^{-1/2}% \biggl{(}{\theta_{*}\over 0.3\,\mu\rm as}\biggr{)},italic_η start_POSTSUBSCRIPT roman_FSPL end_POSTSUBSCRIPT = roman_min ( 1 , italic_ρ ) ; italic_ρ = 0.27 ( divide start_ARG italic_M end_ARG start_ARG italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG 50 italic_μ roman_as end_ARG ) start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG 0.3 italic_μ roman_as end_ARG ) , (22)

so that, e.g., for M>10M𝑀10subscript𝑀direct-sumM>10\,M_{\oplus}italic_M > 10 italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT (and for these fiducial parameters) more than 92%percent9292\%92 % will be PSPL. Because PSPL events generally do not yield θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurements, it may first appear that microlens-parallax measurements for PSPL FFPs would provide only ambiguous information.

The lack of a θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurement is, in fact, the main issue for Unbound PSPL FFPs. However, for bound PSPL FFPs, the actual issue is host identification. If the host can be identified, then the host-source relative proper motion can be measured astrometrically (as was the case for bound FSPL FFPs) using either ELT or Roman data, which will give a measurement of θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT.

Thus, we focus in this section on the issue of host identification of bound PSPL FFPs, under the assumption that they have 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT measurements (with, of course, Refsdal 1966 four-fold ambiguities).

The cases of Wide and Kuiper PSPL FFPs are very similar to their FSPL counterparts that were discussed in Section 6.3.2. There will actually be very few false candidates due the small offset ΔθΔ𝜃\Delta\thetaroman_Δ italic_θ for these cases. For FSPL FFPs, we vetted these only by comparing the vector proper motion measurement from late-time astrometry with the four values coming out of the light-curve analysis. For PSPL FFPs, we can compare only the directions of the vector proper motions, but not their amplitudes. However, because of the small number of candidates, this should be adequate in the great majority of cases.

As in the case of FSPL FFPs, the problem of confusion gradually worsens as one moves toward higher ΔθΔ𝜃\Delta\thetaroman_Δ italic_θ, and therefore in this regime the loss of vetting from the amplitude of the proper motion may undermine some identifications.

Eventually, within the Oort regime, ΔθΔ𝜃\Delta\thetaroman_Δ italic_θ becomes sufficiently large that Roman field-star astrometry can be brought into play. In the context of FSPL FFPs, this enabled simultaneous vetting by three parameters, i.e., a scalar plus a two-vector: (πrel,𝝁relsubscript𝜋relsubscript𝝁rel\pi_{\rm rel},{\mbox{\boldmath$\mu$}}_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT , bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT). The effect of removing the θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT information is to reduce the vetting parameters from three to two. From the standpoint of astrometry, these can be expressed as the “projected velocity”, 𝐯~~𝐯\tilde{\bf v}over~ start_ARG bold_v end_ARG,

𝐯~=au𝝁relπrel.~𝐯ausubscript𝝁relsubscript𝜋rel{\tilde{\bf v}}={\rm au}{{\mbox{\boldmath$\mu$}}_{\rm rel}\over\pi_{\rm rel}}.over~ start_ARG bold_v end_ARG = roman_au divide start_ARG bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG . (23)

In fact, the “projected velocity” was originally introduced in a microlensing context (Gould, 1992) as 𝐯~=(r~E/tE)(𝝅E/πE)~𝐯subscript~𝑟Esubscript𝑡Esubscript𝝅Esubscript𝜋E{\tilde{\bf v}}=({\tilde{r}}_{\rm E}/t_{\rm E})({\mbox{\boldmath$\pi$}}_{\rm E% }/\pi_{\rm E})over~ start_ARG bold_v end_ARG = ( over~ start_ARG italic_r end_ARG start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT / italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ) ( bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT / italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ), but we can see that the two definitions are equivalent,

𝐯~r~EtE𝝅EπE=r~EtE𝝁relμrel=r~E𝝁relθE=auπE𝝁relθE=au𝝁relπrel.~𝐯subscript~𝑟Esubscript𝑡Esubscript𝝅Esubscript𝜋Esubscript~𝑟Esubscript𝑡Esubscript𝝁relsubscript𝜇relsubscript~𝑟Esubscript𝝁relsubscript𝜃Eausubscript𝜋Esubscript𝝁relsubscript𝜃Eausubscript𝝁relsubscript𝜋rel{\tilde{\bf v}}\equiv{{\tilde{r}}_{\rm E}\over t_{\rm E}}{{\mbox{\boldmath$\pi% $}}_{\rm E}\over\pi_{\rm E}}={{\tilde{r}}_{\rm E}\over t_{\rm E}}{{\mbox{% \boldmath$\mu$}}_{\rm rel}\over\mu_{\rm rel}}={{\tilde{r}}_{\rm E}{\mbox{% \boldmath$\mu$}}_{\rm rel}\over\theta_{\rm E}}={{\rm au}\over\pi_{\rm E}}{{% \mbox{\boldmath$\mu$}}_{\rm rel}\over\theta_{\rm E}}={\rm au}{{\mbox{\boldmath% $\mu$}}_{\rm rel}\over\pi_{\rm rel}}.over~ start_ARG bold_v end_ARG ≡ divide start_ARG over~ start_ARG italic_r end_ARG start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG start_ARG italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG divide start_ARG bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG start_ARG italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG = divide start_ARG over~ start_ARG italic_r end_ARG start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG start_ARG italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG divide start_ARG bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG = divide start_ARG over~ start_ARG italic_r end_ARG start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG = divide start_ARG roman_au end_ARG start_ARG italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG divide start_ARG bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG = roman_au divide start_ARG bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG . (24)

Vetting with two parameters is clearly weaker than with 3 parameters. It is premature to decide what to do about this in the absence of real data, in particular, without an assessment of the robustness of the astrometric measurement of 𝐯~~𝐯\tilde{\bf v}over~ start_ARG bold_v end_ARG. It may be, for example, that the entire point is moot because there are extremely few Oort FFPs. Or, it could be that 𝐯~~𝐯\tilde{\bf v}over~ start_ARG bold_v end_ARG-based vetting works extremely well, and there are no real issues of concern. Or, it could be that there are sufficiently many FSPL Oort FFPs at the higher masses MMgreater-than-or-equivalent-to𝑀subscript𝑀direct-sumM\gtrsim M_{\oplus}italic_M ≳ italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT where PSPL predominates, that it is unnecessary to include the PSPL FFPs. Or, most likely, the situation will be more complicated in some way that we are unable to anticipate. For the present, we content ourselves with describing the vetting tools without forecasting how well they will function in practice.

7 Additional Benefits

As mentioned in Section 1, re-orienting the Roman observational strategy toward low-mass FFPs (by increasing the cadence) will come at some cost to the total number of detected bound planets, in particular those at relatively high mass ratios. For example, if Roman can support a cycle of 9 observations every 15 minutes, i.e., 36 observations per hour, then these could be reorganized as [4×Γ8+1×Γ44subscriptΓ81subscriptΓ44\times\Gamma_{8}+1\times\Gamma_{4}4 × roman_Γ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT + 1 × roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT] rather than [9×Γ49subscriptΓ49\times\Gamma_{4}9 × roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT], where ΓnsubscriptΓ𝑛\Gamma_{n}roman_Γ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT means “Γ=nhr1Γ𝑛superscripthr1\Gamma=n\,{\rm hr}^{-1}roman_Γ = italic_n roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT”.

This change would reduce the number of 2L1S bound planets over the entire mass-ratio range 4.5<logq<1.54.5𝑞1.5-4.5<\log q<-1.5- 4.5 < roman_log italic_q < - 1.5, but by variable amounts, with a greater reduction at the high mass end than the low-mass end. We estimate that this reduction will be 25%similar-toabsentpercent25\sim 25\%∼ 25 % at logq=4.5𝑞4.5\log q=-4.5roman_log italic_q = - 4.5 and 40%similar-toabsentpercent40\sim 40\%∼ 40 % at logq=1.5𝑞1.5\log q=-1.5roman_log italic_q = - 1.5

However, this high-mass regime is already reasonably well understood from the homogeneous KMT sample, and will be much better understood by the time of Roman launch. For example, the 2016-2019 sample contains 15 planets within the range 4.5<logq4.04.5𝑞4.0-4.5<\log q\leq-4.0- 4.5 < roman_log italic_q ≤ - 4.0, four planets within the range 5.0<logq4.55.0𝑞4.5-5.0<\log q\leq-4.5- 5.0 < roman_log italic_q ≤ - 4.5, and just one planet with logq5.0𝑞5.0\log q\leq-5.0roman_log italic_q ≤ - 5.0. It is plausible that the data already in hand from 2021-2024 contain comparable numbers, and assuming that the experiment continues through 2028, there will be an additional comparable number. Thus, plausibly, there will be 45 KMT planets in the range 4.5<logq4.04.5𝑞4.0-4.5<\log q\leq-4.0- 4.5 < roman_log italic_q ≤ - 4.0. By a similar estimate, there will be of order 240 KMT planets in the range 4.0<logq1.54.0𝑞1.5-4.0<\log q\leq-1.5- 4.0 < roman_log italic_q ≤ - 1.5. Thus, about 95 planets per dex over the three decades 4.5logq1.54.5𝑞1.5-4.5\leq\log q\leq-1.5- 4.5 ≤ roman_log italic_q ≤ - 1.5. This implies roughly 10% errors for each decade of mass ratio.

7.1 Lowest-mass-ratio 2L1S Planets

The real benefit from Roman will be to survey the regions 5.5<logq4.55.5𝑞4.5-5.5<\log q\leq-4.5- 5.5 < roman_log italic_q ≤ - 4.5 (where it will likely have relative sensitivities similar to KMT at 1 dex higher, 4.5<logq3.54.5𝑞3.5-4.5<\log q\leq-3.5- 4.5 < roman_log italic_q ≤ - 3.5) and especially 6.0<logq5.56.0𝑞5.5-6.0<\log q\leq-5.5- 6.0 < roman_log italic_q ≤ - 5.5 (where it will likely have relative sensitivities similar to KMT at 5.0<logq4.55.0𝑞4.5-5.0<\log q\leq-4.5- 5.0 < roman_log italic_q ≤ - 4.5). This is because, KMT has only weak sensitivity in the first of these regions and essentially zero sensitivity in the second. In the first of these regions there will be little or no loss because the (4/9) lost area will be partially or wholly compensated for by additional planets recovered from higher cadence. And in the second region, there will be a net increase in detected planets, or at least in planets that can be reliably characterized.

According to our understanding, Roman planet-parameter recovery has never been simulated. However, from our experience, this is a major issue at low q𝑞qitalic_q, i.e., near the threshold of detectability. That is, it does little good to detect a planet that is actually q=106𝑞superscript106q=10^{-6}italic_q = 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT, if in the recovery, it is found to be equally likely to be q=106𝑞superscript106q=10^{-6}italic_q = 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT or q=105.3𝑞superscript105.3q=10^{-5.3}italic_q = 10 start_POSTSUPERSCRIPT - 5.3 end_POSTSUPERSCRIPT. This statement would not apply to a planet that was found to be equally likely to be q=104𝑞superscript104q=10^{-4}italic_q = 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT or q=103.3𝑞superscript103.3q=10^{-3.3}italic_q = 10 start_POSTSUPERSCRIPT - 3.3 end_POSTSUPERSCRIPT. In that case, one could assign Bayesian priors to each possibility based on the hundred or so other planets whose mass ratio was reliably measured in this regime. But without a significant number of reliable q=106𝑞superscript106q=10^{-6}italic_q = 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT recoveries, there is no basis to establish reliable priors for ambiguous cases.

Hence, for the lowest-q𝑞qitalic_q planets, for which Roman will provide truly unique information, doubling the cadence will enable more reliable recovery.

7.2 Low-mass Wide-orbit 2L1S Planets

Physically, there is no distinction between wide planets in 2L1S events and the Wide FFPs. There is only the observational difference that for the first, the host leaves traces on the microlensing event, whereas for the second, it does not. If the experiment had similar sensitivities to both, then there would be far more Wide FFPs than wide 2L1S events simply because (for planets at wide separation) a favorable geometry is required for the host to leave a trace.

However, the sensitivity to wide planets in 2L1S events is potentially much greater because the Δχ2Δsuperscript𝜒2\Delta\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT threshold is lower, perhaps Δχ2>60Δsuperscript𝜒260\Delta\chi^{2}>60roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT > 60 as opposed to Δχ2>300Δsuperscript𝜒2300\Delta\chi^{2}>300roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT > 300. As discussed in Section 4.2, this is because the number of effective trials is much less, roughly 109superscript10910^{9}10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT versus 1013superscript101310^{13}10 start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT. Secondarily, for 2L1S events, fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is already known from the main event, while for FFPs it must be determined either from the anomaly or from auxiliary information.

The key point here is that the functional form of a wide 2L1S “bump” will differ very little from a Wide FFP “bump” at the same normalized separation s𝑠sitalic_s, but which happens to lack a trace of the host due to the geometry of the event. This immediately begs the question of why, if the FFP bumps require six 3-σ𝜎\sigmaitalic_σ points for proper characterization, fewer would be needed to characterize the wide 2L1S bumps? In fact, because fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is already known (thus removing one degree of freedom), one could argue that the requirement should be reduced from six to five. Regardless of the exact number, the origin of this “requirement” is not some arbitrarily chosen selection criterion, but what is needed to have an interpretable event. For wide low-mass 2L1S planets, with ρ1greater-than-or-equivalent-to𝜌1\rho\gtrsim 1italic_ρ ≳ 1 (see Equation (22)), the number of significantly magnified points is given by Equation (4). Hence, for Γ=4hr1Γ4superscripthr1\Gamma=4\,{\rm hr}^{-1}roman_Γ = 4 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and typical parameters, Nexp=3subscript𝑁exp3N_{\rm exp}=3italic_N start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT = 3, not 5 or 6. By doubling the cadence to Γ=8hr1Γ8superscripthr1\Gamma=8\,{\rm hr}^{-1}roman_Γ = 8 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, these low-mass planets will be “saved”, i.e., rendered interpretable. Indeed, if one adopts the requirement of six points, then the entire analysis of Section 2, including Figure 3, can be directly applied. If the requirement is reduced to five points, then the analysis would be modified accordingly.

Again, we emphasize that the detection of these wide 2L1S planets can be pushed down a factor 5similar-toabsent5\sim 5∼ 5 in Δχ2Δsuperscript𝜒2\Delta\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT relative to the physically similar but morphologically distinct Wide FFPs. Thus, while among physically wide planets, there will be many more Wide FFPs than wide 2L1S planets, the latter have special importance because they can probe to lower mass.

7.3 Auxiliary Science

The Roman microlensing survey will have many auxiliary science applications. Some of these have been studied in the literature. Undoubtedly others will be identified only when the data are in hand. These would all be impacted by a decision to double the cadence at the expense of observing half the sky area. These potential impacts should be studied for each application separately. Here we examine a few applications in order to briefly argue that the science return will generally be improved by making this change.

7.3.1 Transiting Planets

Roman will be a powerful tool to detect transiting planets (Montet et al., 2017; Tamburo et al., 2023; Wilson et al., 2023).

In a transit study of this type, the Δχ2Δsuperscript𝜒2\Delta\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT threshold of detection is set by the FAP based on the effective number of trials, rather than the signal required to characterize the planet. One must consider period steps, ΔPΔ𝑃\Delta Proman_Δ italic_P, of ΔP=P/(ΓT)Δ𝑃𝑃Γ𝑇\Delta P=P/(\Gamma T)roman_Δ italic_P = italic_P / ( roman_Γ italic_T ) where T=5𝑇5T=5\,italic_T = 5yr is the duration of the experiment. For each P𝑃Pitalic_P and each diameter crossing time ΔtΔ𝑡\Delta troman_Δ italic_t, one should consider 5P/Δt5𝑃Δ𝑡5\,P/\Delta t5 italic_P / roman_Δ italic_t eclipse phases. And for each of these, perhaps 100 combinations of transit depth and impact parameter. For main-sequence stars with R=R(M/M)𝑅subscript𝑅direct-product𝑀subscript𝑀direct-productR=R_{\odot}(M/M_{\odot})italic_R = italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ( italic_M / italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ) radii, we have Δt/P=R/πa=(R/R)(R/au)/π[(M/M)(P/yr)2]1/3Δ𝑡𝑃𝑅𝜋𝑎𝑅subscript𝑅direct-productsubscript𝑅direct-productau𝜋superscriptdelimited-[]𝑀subscript𝑀direct-productsuperscript𝑃yr213\Delta t/P=R/\pi a=(R/R_{\odot})(R_{\odot}/{\rm au})/\pi[(M/M_{\odot})(P/{\rm yr% })^{2}]^{1/3}roman_Δ italic_t / italic_P = italic_R / italic_π italic_a = ( italic_R / italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ) ( italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT / roman_au ) / italic_π [ ( italic_M / italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ) ( italic_P / roman_yr ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT, i.e.,

PΔt=πauR(Pyr)2/3(MM)2/3=13(Pday)2/3(MM)2/3.𝑃Δ𝑡𝜋ausubscript𝑅direct-productsuperscript𝑃yr23superscript𝑀subscript𝑀direct-product2313superscript𝑃day23superscript𝑀subscript𝑀direct-product23{P\over\Delta t}=\pi{{\rm au}\over R_{\odot}}\biggl{(}{P\over{\rm yr}}\biggr{)% }^{2/3}\biggl{(}{M\over M_{\odot}}\biggr{)}^{-2/3}=13\biggl{(}{P\over{\rm day}% }\biggr{)}^{2/3}\biggl{(}{M\over M_{\odot}}\biggr{)}^{-2/3}.divide start_ARG italic_P end_ARG start_ARG roman_Δ italic_t end_ARG = italic_π divide start_ARG roman_au end_ARG start_ARG italic_R start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG ( divide start_ARG italic_P end_ARG start_ARG roman_yr end_ARG ) start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT ( divide start_ARG italic_M end_ARG start_ARG italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 2 / 3 end_POSTSUPERSCRIPT = 13 ( divide start_ARG italic_P end_ARG start_ARG roman_day end_ARG ) start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT ( divide start_ARG italic_M end_ARG start_ARG italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 2 / 3 end_POSTSUPERSCRIPT . (25)

And thus, for each observed star, one should consider a total of number of trials,

Ntrial,star=500PminPmaxdPΔPPΔt=6500PminPmax𝑑PΓTP(Pday)2/3(MM)2/3104ΓT(Pmaxday)2/3(MM)2/3subscript𝑁trialstar500superscriptsubscriptsubscript𝑃minsubscript𝑃max𝑑𝑃Δ𝑃𝑃Δ𝑡6500superscriptsubscriptsubscript𝑃minsubscript𝑃maxdifferential-d𝑃Γ𝑇𝑃superscript𝑃day23superscript𝑀subscript𝑀direct-product23similar-to-or-equalssuperscript104Γ𝑇superscriptsubscript𝑃maxday23superscript𝑀subscript𝑀direct-product23N_{\rm trial,star}=500\int_{P_{\rm min}}^{P_{\rm max}}{dP\over\Delta P}\,{P% \over\Delta t}=6500\int_{P_{\rm min}}^{P_{\rm max}}dP\,{\Gamma T\over P}\biggl% {(}{P\over{\rm day}}\biggr{)}^{2/3}\biggl{(}{M\over M_{\odot}}\biggr{)}^{-2/3}% \simeq 10^{4}\Gamma T\biggl{(}{P_{\rm max}\over{\rm day}}\biggr{)}^{2/3}\biggl% {(}{M\over M_{\odot}}\biggr{)}^{-2/3}italic_N start_POSTSUBSCRIPT roman_trial , roman_star end_POSTSUBSCRIPT = 500 ∫ start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT end_POSTSUPERSCRIPT divide start_ARG italic_d italic_P end_ARG start_ARG roman_Δ italic_P end_ARG divide start_ARG italic_P end_ARG start_ARG roman_Δ italic_t end_ARG = 6500 ∫ start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d italic_P divide start_ARG roman_Γ italic_T end_ARG start_ARG italic_P end_ARG ( divide start_ARG italic_P end_ARG start_ARG roman_day end_ARG ) start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT ( divide start_ARG italic_M end_ARG start_ARG italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 2 / 3 end_POSTSUPERSCRIPT ≃ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT roman_Γ italic_T ( divide start_ARG italic_P start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT end_ARG start_ARG roman_day end_ARG ) start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT ( divide start_ARG italic_M end_ARG start_ARG italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 2 / 3 end_POSTSUPERSCRIPT (26)

or

Ntrial,star=1010Γ4hr1T5yr(Pmax10day)2/3(0.6MM)2/3.subscript𝑁trialstarsuperscript1010Γ4superscripthr1𝑇5yrsuperscriptsubscript𝑃max10day23superscript0.6𝑀subscript𝑀direct-product23N_{\rm trial,star}=10^{10}{\Gamma\rm\over 4\,hr^{-1}}\,{T\over 5\,\rm yr}% \biggl{(}{P_{\rm max}\over 10\,{\rm day}}\biggr{)}^{2/3}\biggl{(}{0.6\,M\over M% _{\odot}}\biggr{)}^{-2/3}.italic_N start_POSTSUBSCRIPT roman_trial , roman_star end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT divide start_ARG roman_Γ end_ARG start_ARG 4 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG divide start_ARG italic_T end_ARG start_ARG 5 roman_yr end_ARG ( divide start_ARG italic_P start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT end_ARG start_ARG 10 roman_day end_ARG ) start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT ( divide start_ARG 0.6 italic_M end_ARG start_ARG italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 2 / 3 end_POSTSUPERSCRIPT . (27)

Then, considering that there are of order Nstars108similar-tosubscript𝑁starssuperscript108N_{\rm stars}\sim 10^{8}italic_N start_POSTSUBSCRIPT roman_stars end_POSTSUBSCRIPT ∼ 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT stars being monitored, this yields a total number of trials Ntrial,tot=NstarsNtrial,star1018subscript𝑁trialtotsubscript𝑁starssubscript𝑁trialstarsimilar-tosuperscript1018N_{\rm trial,tot}=N_{\rm stars}N_{\rm trial,star}\sim 10^{18}italic_N start_POSTSUBSCRIPT roman_trial , roman_tot end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT roman_stars end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT roman_trial , roman_star end_POSTSUBSCRIPT ∼ 10 start_POSTSUPERSCRIPT 18 end_POSTSUPERSCRIPT, and thus a Δχ2Δsuperscript𝜒2\Delta\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT threshold (assuming Gaussian statistics) of Δχ2=2lnNtrial,tot=83Δsuperscript𝜒22subscript𝑁trialtot83\Delta\chi^{2}=2\ln N_{\rm trial,tot}=83roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 2 roman_ln italic_N start_POSTSUBSCRIPT roman_trial , roman_tot end_POSTSUBSCRIPT = 83. Plausibly, this should be increased by some amount to take account of non-Gaussian noise, but this amount can only be determined from having data in hand.

From the present standpoint, the key point is that the Δχ2Δsuperscript𝜒2\Delta\chi^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT threshold depends on Ntrial,totΓNstarsproportional-tosubscript𝑁trialtotΓsubscript𝑁starsN_{\rm trial,tot}\propto\Gamma N_{\rm stars}italic_N start_POSTSUBSCRIPT roman_trial , roman_tot end_POSTSUBSCRIPT ∝ roman_Γ italic_N start_POSTSUBSCRIPT roman_stars end_POSTSUBSCRIPT, so doubling ΓΓ\Gammaroman_Γ, which automatically cuts Nstarssubscript𝑁starsN_{\rm stars}italic_N start_POSTSUBSCRIPT roman_stars end_POSTSUBSCRIPT by a factor 2, does not impact the threshold.

Therefore doubling ΓΓ\Gammaroman_Γ has the effect or reducing the planet-radius detection threshold by a factor 21/40.84similar-to-or-equalssuperscript2140.842^{-1/4}\simeq 0.842 start_POSTSUPERSCRIPT - 1 / 4 end_POSTSUPERSCRIPT ≃ 0.84. That is, the noise remains essentially the same whether the planet is transiting or not because only a small fraction of the light is occulted. On the other hand, the signal is directly proportional to the planet area, A𝐴Aitalic_A. Therefore, Δχ2ΓA2proportional-toΔsuperscript𝜒2Γsuperscript𝐴2\Delta\chi^{2}\propto\Gamma A^{2}roman_Δ italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ roman_Γ italic_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, i.e., AminΓ1/2proportional-tosubscript𝐴minsuperscriptΓ12A_{\rm min}\propto\Gamma^{-1/2}italic_A start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT ∝ roman_Γ start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT.

Thus, the effect of increasing ΓΓ\Gammaroman_Γ will be to probe to 0.84 times smaller planets at the expense of probing half as many potential hosts. Even if we consider only hot Jupiters, for which the transit rate is of order 0.1%, there will be at least 100,000 transiting planets. Thus, it seems far more important to probe to the smallest planets possible, rather than maximizing the total number detected.

7.3.2 Asteroseismology

Gould et al. (2015) argued that the Roman data stream could be mined for asteroseismic signals in sources down to about HVega<14subscript𝐻Vega14H_{\rm Vega}<14italic_H start_POSTSUBSCRIPT roman_Vega end_POSTSUBSCRIPT < 14, of which they estimated about 106superscript10610^{6}10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT would be in the Roman field. Such measurements can potentially yield the mass and radius of the sources, although depending on the quality of the data, the two determinations can be correlated. However, assuming that photon-limited astrometry can be extracted from the Roman data stream, the source radii can be directly determined from a combination of their trigonometric parallaxes, observed flux, observed color, and a color/surface-brightness relation. The astrometric radii can then be cross checked with the asteroseismic radii for the stars that are bright enough to have unambiguous asteroseismic radii. Assuming that the reliability of both are verified, the astrometric radii can be used to constrain the asteroseismic solutions of the fainter sources.

The effect of doubling ΓΓ\Gammaroman_Γ will be, as usual, to improve the measurements of each star at the expense of halving the number of stars. To understand the first of these effects more quantitatively, we note that from Figure 1 of Gould et al. (2015), the flux error per observation scales as σ(lnF)F1/3proportional-to𝜎𝐹superscript𝐹13\sigma(\ln F)\propto F^{-1/3}italic_σ ( roman_ln italic_F ) ∝ italic_F start_POSTSUPERSCRIPT - 1 / 3 end_POSTSUPERSCRIPT. We can also state “per observation” as “per 15 minutes”, according to which doubling ΓΓ\Gammaroman_Γ would decrease the “per 15 minutes” error by 22\sqrt{2}square-root start_ARG 2 end_ARG. That is, for a star at a given magnitude H𝐻Hitalic_H, one would achieve the same fractional error with the higher cadence, as one would under the current regimen for a star that is brighter by a factor 23/2superscript2322^{3/2}2 start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT, i.e., ΔH=1.1Δ𝐻1.1\Delta H=1.1\,roman_Δ italic_H = 1.1mag.

Gould et al. (2015) estimate that the threshold of sensitivity begins just below the clump, a region that is critical for probing stellar physics in the bulge, a unique domain of Roman, compared to e.g., Plato (2026 current launch date), which will target stars that are much closer to Sun. Given that the threshold lies near this key region of the color-magnitude diagram, and considering the huge number of stars in the Roman sample, it seems far more valuable to increase the S/N of each star, even at the expense of losing half the area.

7.3.3 Kuiper Belt Objects

Gould (2014b) argued that Roman could discover and measure the orbits of about 5000 Kuiper Belt Objects (KBOs). In contrast to the other two applications that we have reviewed, the impact of doubling ΓΓ\Gammaroman_Γ on KBOs is somewhat complex. In particular, Gould (2014b) estimated that 60% of all KBOs that initially lay in the Roman field (assumed to consist of 10 contiguous pointings) would remain in it for the full 72-day season. His main orbit reconstruction calculations were restricted to this subsample. He then examined (his Figure 3) the effects of KBOs leaving and entering the field and concluded that these effects are modest.

Naively, halving the number of fields would greatly decrease the fraction of KBOs remaining in the field, possibly requiring much more detailed calculations of the effect. However, we believe that his original estimate of only 60% of the KBOs remaining in the field during the whole 72 days is probably in error.

There are two effects. First, at a=40au𝑎40aua=40\,{\rm au}italic_a = 40 roman_au, the KBOs move in their orbit at vorb=(a/au)1/2vsubscript𝑣orbsuperscript𝑎au12subscript𝑣direct-sumv_{\rm orb}=(a/{\rm au})^{-1/2}v_{\oplus}italic_v start_POSTSUBSCRIPT roman_orb end_POSTSUBSCRIPT = ( italic_a / roman_au ) start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT and therefore have a proper motion μ=vorb/a=(1.4/yr)(a/40au)3/2𝜇subscript𝑣orb𝑎superscript1.4yrsuperscript𝑎40au32\mu=v_{\rm orb}/a=(1.4^{\circ}/{\rm yr})(a/40\,{\rm au})^{-3/2}italic_μ = italic_v start_POSTSUBSCRIPT roman_orb end_POSTSUBSCRIPT / italic_a = ( 1.4 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT / roman_yr ) ( italic_a / 40 roman_au ) start_POSTSUPERSCRIPT - 3 / 2 end_POSTSUPERSCRIPT or 0.28similar-toabsentsuperscript0.28\sim 0.28^{\circ}∼ 0.28 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT during a 72-day season. Second, because the season is approximately centered on quadrature, Earth moves back and forth by [1cos(2π×36day/yr)]au=0.19audelimited-[]12𝜋36dayyrau0.19au[1-\cos(2\pi\times 36\,{\rm day/yr})]{\rm au}=0.19\,{\rm au}[ 1 - roman_cos ( 2 italic_π × 36 roman_day / roman_yr ) ] roman_au = 0.19 roman_au, which yields a reflex motion of 0.27(a/40au)1superscript0.27superscript𝑎40au10.27^{\circ}(a/40\,{\rm au})^{-1}0.27 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT ( italic_a / 40 roman_au ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. For (northern) spring seasons, these two effects add at the beginning but are contrary at the end, while the reverse is true of the autumn seasons. Approximating the KBO and Earth orbits as circular, and focusing on the spring season for definiteness, the instantaneous apparent motion is (v/a)[(a/au)1/2sin(2πt/yr)]subscript𝑣direct-sum𝑎delimited-[]superscript𝑎au122𝜋𝑡yr(v_{\oplus}/a)[(a/{\rm au})^{-1/2}-\sin(2\pi t/{\rm yr})]( italic_v start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT / italic_a ) [ ( italic_a / roman_au ) start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT - roman_sin ( 2 italic_π italic_t / roman_yr ) ], which reverses sign at t=(yr/2π)sin1[(a/au)1/2]9.2𝑡yr2𝜋superscript1superscript𝑎au129.2t=({\rm yr}/2\pi)\sin^{-1}[(a/{\rm au})^{-1/2}]\rightarrow 9.2\,italic_t = ( roman_yr / 2 italic_π ) roman_sin start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT [ ( italic_a / roman_au ) start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT ] → 9.2d after equinox for a=40au𝑎40aua=40\,{\rm au}italic_a = 40 roman_au, at which point the relative displacement of Earth and the KBO is 0.296au0.296au0.296\,{\rm au}0.296 roman_au, or an angle of 0.42superscript0.420.42^{\circ}0.42 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT. Hence, if the field were 2.8deg22.8superscriptdeg22.8\,{\rm deg}^{2}2.8 roman_deg start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and more-or-less square, the fraction leaving (and possibly re-entering) the field would be about 25%. Thus, with the smaller field that we are proposing, the fraction leaving would be about 40%. As Gould (2014b) has already shown that such a fraction does not have much impact, we conclude that the increase in ΓΓ\Gammaroman_Γ does not adversely affect orbit reconstruction.

However, it does still reduce the total number of KBOs in the field by close to a factor of two, while increasing the effective depth of the survey by doubling the number of measurements. Because the measurements are below sky, it is likely that the added S/N from the extra measurements would be highly welcomed when analyzing the data.

Finally, we note that the change in cadence will have absolutely no effect on the detection and measurement of KBO occultations. This is because the occultation time is short compared to the exposure time, so the number of occultations is just proportional to the total number of pointings, without reference to the specific pointing direction.

7.4 Possible Compromises

As we argued in Section 1, the principal revolutionary potential of Roman microlensing lies in FFPs. To fully exploit this potential requires a radical revision of the observing strategy,

[9×Γ4][4×Γ8+1×Γ4],delimited-[]9subscriptΓ4delimited-[]4subscriptΓ81subscriptΓ4[9\times\Gamma_{4}]\rightarrow[4\times\Gamma_{8}+1\times\Gamma_{4}],[ 9 × roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ] → [ 4 × roman_Γ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT + 1 × roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ] , (28)

where, again, ΓnsubscriptΓ𝑛\Gamma_{n}roman_Γ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT means “Γ=nhr1Γ𝑛superscripthr1\Gamma=n\,{\rm hr}^{-1}roman_Γ = italic_n roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT”.

Moreover, the remaining revolutionary potential from the original Roman 2L1S-centric microlensing program lies in extremely low-mass planets, and these are also best pursued using the observing strategy of Equation (28).

Nevertheless (as is often the case), for reasons ranging from bureaucratic intransigence, to “treaty commitments”, to the recalcitrance of outdated thinking, such a thoroughgoing FFP-centric revolution may not be possible, at least not immediately.

Therefore, we describe several possible compromises.

7.4.1 [9×Γ4][2×Γ8+5×Γ4]delimited-[]9subscriptΓ4delimited-[]2subscriptΓ85subscriptΓ4[9\times\Gamma_{4}]\rightarrow[2\times\Gamma_{8}+5\times\Gamma_{4}][ 9 × roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ] → [ 2 × roman_Γ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT + 5 × roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ]

This approach would target 7 fields, each with at least the Γ4subscriptΓ4\Gamma_{4}roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT cadence of the original strategy, so that none of the goals of the original strategy would be qualitatively undermined. At the same time, it would permit testing of the new strategy. Assuming that FFP searches were carried out quickly, the results might argue for a complete change of strategy, as described in Equation (28), after a year or two. Or, failing that, it could lay the basis for full adoption of Equation (28) in an extended mission. In particular, the existence of a large Γ8subscriptΓ8\Gamma_{8}roman_Γ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT data stream would permit a direct assessment of what would have been lost by reverting to a Γ4subscriptΓ4\Gamma_{4}roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT strategy, simply by masking every other data point.

7.4.2 [9×Γ4][1×Γ8+7×Γ4]delimited-[]9subscriptΓ4delimited-[]1subscriptΓ87subscriptΓ4[9\times\Gamma_{4}]\rightarrow[1\times\Gamma_{8}+7\times\Gamma_{4}][ 9 × roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ] → [ 1 × roman_Γ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT + 7 × roman_Γ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ]

This approach would be a more severe version of the compromise laid out in Section 7.4.1. It would drastically undermine the practical results that would flow from Equation (28), but would enable testing of the concepts and advantages that we have outlined.

7.4.3 Summary Statement on Compromises

Again, we do not advocate any of these (or other) compromises. We believe the case for an FFP-centric strategy is clear. However, we also recognize that in the real world, compromise must always be considered as an option.

J.C.Y. acknowledges support from US NSF Grant No. AST-2108414. S.D. acknowledges the New Cornerstone Science Foundation through the XPLORER PRIZE.

Appendix A Primer on FFP Events and Mass Measurements

Here we give a comprehensive introduction to microlensing and microlensing mass measurements, specifically with respect to FFPs. As such, we will restrict attention to single-lens single-source (1L1S) microlensing events.

A microlensing event consists of a lens of mass M𝑀Mitalic_M at distance Dlsubscript𝐷𝑙D_{l}italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT and source star of flux fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and radius Rssubscript𝑅𝑠R_{s}italic_R start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT at distance Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT. Microlensing events are primarily expressed in terms of lens-source relative astrometric variables, which are then scaled to the Einstein radius, θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT,

θEκMπrel=1.11μas(MM)1/2(πrel50μas)1/2;κ=4Gc2au=8144μasMformulae-sequencesubscript𝜃E𝜅𝑀subscript𝜋rel1.11𝜇assuperscript𝑀subscript𝑀direct-sum12superscriptsubscript𝜋rel50𝜇as12𝜅4𝐺superscript𝑐2au8144𝜇assubscript𝑀direct-product\theta_{\rm E}\equiv\sqrt{\kappa M\pi_{\rm rel}}=1.11\,\mu{\rm as}\biggl{(}{M% \over M_{\oplus}}\biggr{)}^{1/2}\biggl{(}{\pi_{\rm rel}\over 50\,\mu\rm as}% \biggr{)}^{1/2};\qquad\kappa={4G\over c^{2}\,{\rm au}}=8144\,{\mu{\rm as}\over M% _{\odot}}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ≡ square-root start_ARG italic_κ italic_M italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG = 1.11 italic_μ roman_as ( divide start_ARG italic_M end_ARG start_ARG italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG 50 italic_μ roman_as end_ARG ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ; italic_κ = divide start_ARG 4 italic_G end_ARG start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_au end_ARG = 8144 divide start_ARG italic_μ roman_as end_ARG start_ARG italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG (A1)

The astrometric variables are the standard 5-parameter position, parallax, proper motion (pppm) (𝜽,π,𝝁)𝜽𝜋𝝁({\mbox{\boldmath$\theta$}},\pi,{\mbox{\boldmath$\mu$}})( bold_italic_θ , italic_π , bold_italic_μ ), where 𝜽𝜽\thetabold_italic_θ and 𝝁𝝁\mubold_italic_μ are two-vectors. The relative lens-source astrometric variables are then

(𝜽rel,πrel,𝝁rel)=(𝜽,π,𝝁)l(𝜽,π,𝝁)ssubscript𝜽relsubscript𝜋relsubscript𝝁relsubscript𝜽𝜋𝝁𝑙subscript𝜽𝜋𝝁𝑠({\mbox{\boldmath$\theta$}}_{\rm rel},\pi_{\rm rel},{\mbox{\boldmath$\mu$}}_{% \rm rel})=({\mbox{\boldmath$\theta$}},\pi,{\mbox{\boldmath$\mu$}})_{l}-({\mbox% {\boldmath$\theta$}},\pi,{\mbox{\boldmath$\mu$}})_{s}( bold_italic_θ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT , italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT , bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ) = ( bold_italic_θ , italic_π , bold_italic_μ ) start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT - ( bold_italic_θ , italic_π , bold_italic_μ ) start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT (A2)

and the astrometric variables scaled to θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT are (or rather, in a perfect world, would be)

𝐮𝜽relθE;πE=πrelθE;𝝎=𝝁relθE.formulae-sequence𝐮subscript𝜽relsubscript𝜃Eformulae-sequencesubscript𝜋Esubscript𝜋relsubscript𝜃E𝝎subscript𝝁relsubscript𝜃E{\bf u}\equiv{{\mbox{\boldmath$\theta$}}_{\rm rel}\over\theta_{\rm E}};\qquad% \pi_{\rm E}={\pi_{\rm rel}\over\theta_{\rm E}};\qquad{\mbox{\boldmath$\omega$}% }={{\mbox{\boldmath$\mu$}}_{\rm rel}\over\theta_{\rm E}}.bold_u ≡ divide start_ARG bold_italic_θ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG ; italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = divide start_ARG italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG ; bold_italic_ω = divide start_ARG bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG . (A3)

However, in practice, the latter two variables are modified/replaced by

tE=1ω;𝝅E=πE𝝁relμrel.formulae-sequencesubscript𝑡E1𝜔subscript𝝅Esubscript𝜋Esubscript𝝁relsubscript𝜇relt_{\rm E}={1\over\omega};\qquad{\mbox{\boldmath$\pi$}}_{\rm E}=\pi_{\rm E}{{% \mbox{\boldmath$\mu$}}_{\rm rel}\over\mu_{\rm rel}}.italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG italic_ω end_ARG ; bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT divide start_ARG bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG . (A4)

That is, whereas in astrometry, the proper motion is a vector, which indicates the direction of motion, in microlensing, the proper motion is a scalar (and is expressed inversely as a timescale, tEsubscript𝑡Et_{\rm E}italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT), while the direction of motion is associated with the microlens parallax 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT. Finally, the source radius is also expressed as an angle, θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT which is also scaled to the θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT,

ρθθE;θ=RsDs.formulae-sequence𝜌subscript𝜃subscript𝜃Esubscript𝜃subscript𝑅𝑠subscript𝐷𝑠\rho\equiv{\theta_{*}\over\theta_{\rm E}};\qquad\theta_{*}={R_{s}\over D_{s}}.italic_ρ ≡ divide start_ARG italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG ; italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = divide start_ARG italic_R start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG . (A5)

If the parallactic reflex motion of Earth can be ignored (as is almost always the case for FFPs), then the normalized trajectory is given by

𝐮(t)=𝐮0+𝝎(tt0)=𝐮0+(tt0)tE𝝁relμrel;(𝐮0𝝁rel0),formulae-sequence𝐮𝑡subscript𝐮0𝝎𝑡subscript𝑡0subscript𝐮0𝑡subscript𝑡0subscript𝑡Esubscript𝝁relsubscript𝜇relsubscript𝐮0subscript𝝁rel0{\bf u}(t)={\bf u}_{0}+{\mbox{\boldmath$\omega$}}(t-t_{0})={\bf u}_{0}+{(t-t_{% 0})\over t_{\rm E}}{{\mbox{\boldmath$\mu$}}_{\rm rel}\over\mu_{\rm rel}};% \qquad({\bf u}_{0}\cdot{\mbox{\boldmath$\mu$}}_{\rm rel}\equiv 0),bold_u ( italic_t ) = bold_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + bold_italic_ω ( italic_t - italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = bold_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + divide start_ARG ( italic_t - italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG divide start_ARG bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG ; ( bold_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ⋅ bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ≡ 0 ) , (A6)

implying (by the Pythagorean theorem),

u(t)=(tt0)2tE2+u02,𝑢𝑡superscript𝑡subscript𝑡02superscriptsubscript𝑡E2superscriptsubscript𝑢02u(t)=\sqrt{{(t-t_{0})^{2}\over t_{\rm E}^{2}}+u_{0}^{2}},italic_u ( italic_t ) = square-root start_ARG divide start_ARG ( italic_t - italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , (A7)

where t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the time of closest approach and 𝐮0subscript𝐮0{\bf u}_{0}bold_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the closest position (vector impact parameter). If u0ρmuch-greater-thansubscript𝑢0𝜌u_{0}\gg\rhoitalic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≫ italic_ρ, i.e., the lens passes well outside the face of the source, then the flux evolution is unaffected by the finite-size of the source (point-source point-lens [PSPL] event) and is given by

f(t)=fsA(t)+fb;A(t;t0,u0,tE)=u2+2uu2+4,formulae-sequence𝑓𝑡subscript𝑓𝑠𝐴𝑡subscript𝑓𝑏𝐴𝑡subscript𝑡0subscript𝑢0subscript𝑡Esuperscript𝑢22𝑢superscript𝑢24f(t)=f_{s}A(t)+f_{b};\qquad A(t;t_{0},u_{0},t_{\rm E})={u^{2}+2\over u\sqrt{u^% {2}+4}},italic_f ( italic_t ) = italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_A ( italic_t ) + italic_f start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ; italic_A ( italic_t ; italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ) = divide start_ARG italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 end_ARG start_ARG italic_u square-root start_ARG italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 end_ARG end_ARG , (A8)

where A𝐴Aitalic_A is the magnification and fbsubscript𝑓𝑏f_{b}italic_f start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT is the blended light that does not participate in the event. One can then solve for the five parameters (t0,u0,tE,fs,fb)subscript𝑡0subscript𝑢0subscript𝑡Esubscript𝑓𝑠subscript𝑓𝑏(t_{0},u_{0},t_{\rm E},f_{s},f_{b})( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT ) from the light curve. The Einstein timescale,

tE=θEμrel=κMπrelμrel=1.6hr(MM)1/2(πrel50μas)1/2(μrel6masyr1)1,subscript𝑡Esubscript𝜃Esubscript𝜇rel𝜅𝑀subscript𝜋relsubscript𝜇rel1.6hrsuperscript𝑀subscript𝑀direct-sum12superscriptsubscript𝜋rel50𝜇as12superscriptsubscript𝜇rel6massuperscriptyr11t_{\rm E}={\theta_{\rm E}\over\mu_{\rm rel}}={\sqrt{\kappa M\pi_{\rm rel}}% \over\mu_{\rm rel}}=1.6\,{\rm hr}\,\biggl{(}{M\over M_{\oplus}}\biggr{)}^{1/2}% \biggl{(}{\pi_{\rm rel}\over 50\,\mu\rm as}\biggr{)}^{1/2}\biggl{(}{\mu_{\rm rel% }\over 6\,{\rm mas}\,{\rm yr}^{-1}}\biggr{)}^{-1},italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = divide start_ARG italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG = divide start_ARG square-root start_ARG italic_κ italic_M italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG end_ARG start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG = 1.6 roman_hr ( divide start_ARG italic_M end_ARG start_ARG italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG 50 italic_μ roman_as end_ARG ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG start_ARG 6 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , (A9)

then gives an indication of M𝑀Mitalic_M (“short events have low mass”) but does not determine it because the actual mass further scales inversely with the unknown πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT and quadratically with the unknown μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT.

This problem can be partially solved if the lens transits the face of the source (ρu0)greater-than-or-equivalent-to𝜌subscript𝑢0(\rho\gtrsim u_{0})( italic_ρ ≳ italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) in which case the magnification is a function of four variables A(t;t0,u0,tE,ρ)𝐴𝑡subscript𝑡0subscript𝑢0subscript𝑡E𝜌A(t;t_{0},u_{0},t_{\rm E},\rho)italic_A ( italic_t ; italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT , italic_ρ ), i.e., a finite-source point-lens (FSPL) event. Then, θE=θ/ρsubscript𝜃Esubscript𝜃𝜌\theta_{\rm E}=\theta_{*}/\rhoitalic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / italic_ρ can be determined provided that θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT is known. There are standard techniques (Yoo et al., 2004) for measuring θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT from microlensing data. As discussed in Section 3.1, these can break down for Roman FFPs, but as discussed in Section 3.2, θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT can usually be recovered even when they do.

When θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT is measured, M𝑀Mitalic_M is better constrained because it only depends on one unknown variable (πrel)subscript𝜋rel(\pi_{\rm rel})( italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ), but it is still not unambiguously determined. For this, it is necessary to measure either πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT itself, or the microlens parallax, 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT. In the latter case, both πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT and the lens mass M𝑀Mitalic_M are determined:

πrel=θEπE;M=θEκπrel.formulae-sequencesubscript𝜋relsubscript𝜃Esubscript𝜋E𝑀subscript𝜃E𝜅subscript𝜋rel\pi_{\rm rel}=\theta_{\rm E}\pi_{\rm E};\qquad M={\theta_{\rm E}\over\kappa\pi% _{\rm rel}}.italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ; italic_M = divide start_ARG italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG start_ARG italic_κ italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG . (A10)

The techniques for measuring πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT and/or 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT are extensively discussed in Sections 5 and 6, and (with one exception) we do not repeat that discussion here.

The exception is the use of adaptive optics (AO) on extremely large telescopes (ELTs) to measure the mass of bound planets. The only way to determine whether an FFP (by definition, an event for which there is no light-curve evidence of a host) is bound, is to search for its putative host in late-time AO observations. If a host is found, then 𝝁relsubscript𝝁rel{\mbox{\boldmath$\mu$}}_{\rm rel}bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT can easily be measured from two epochs, and so θE=μreltEsubscript𝜃Esubscript𝜇relsubscript𝑡E\theta_{\rm E}=\mu_{\rm rel}t_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT of the planet can also be determined, even if the event is PSPL. Then, there can be several possible routes to measuring the lens mass. First, by combining this measurement of 𝝁relsubscript𝝁rel{\mbox{\boldmath$\mu$}}_{\rm rel}bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT with the flux of the host, one can measure the distance (also the mass) of the host (Batista et al., 2015; Bennett et al., 2015; Gould, 2022), and thereby obtain an estimate of πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT. Then, Mplanet=θE2/κπrelsubscript𝑀planetsuperscriptsubscript𝜃E2𝜅subscript𝜋relM_{\rm planet}=\theta_{\rm E}^{2}/\kappa\pi_{\rm rel}italic_M start_POSTSUBSCRIPT roman_planet end_POSTSUBSCRIPT = italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_κ italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT. Second, πrelsubscript𝜋rel\pi_{\rm rel}italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT of the host and source can be measured directly from astrometry. Third, if there are L2-parallax measurements of 𝝅Esubscript𝝅E{\mbox{\boldmath$\pi$}}_{\rm E}bold_italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, then these can be combined with θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT (and also the directional information from 𝝁relsubscript𝝁rel{\mbox{\boldmath$\mu$}}_{\rm rel}bold_italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT) to yield a unique mass.

Some typical values of quantities mentioned here are Ds8kpcsimilar-tosubscript𝐷𝑠8kpcD_{s}\sim 8\,{\rm kpc}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∼ 8 roman_kpc, Dl4similar-tosubscript𝐷𝑙4D_{l}\sim 4italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ∼ 46kpc6kpc6\,{\rm kpc}6 roman_kpc, πrel=50μsubscript𝜋rel50𝜇\pi_{\rm rel}=50\,\muitalic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = 50 italic_μas for disk lenses and πrel=15μsubscript𝜋rel15𝜇\pi_{\rm rel}=15\,\muitalic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT = 15 italic_μas for bulge lenses, μrel6masyr1similar-tosubscript𝜇rel6massuperscriptyr1\mu_{\rm rel}\sim 6\,{\rm mas}\,{\rm yr}^{-1}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ∼ 6 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, θ0.3similar-tosubscript𝜃0.3\theta_{*}\sim 0.3italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ∼ 0.30.6μ0.6𝜇0.6\,\mu0.6 italic_μas. Equations (A1) and (A9) give the values of θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT and tEsubscript𝑡Et_{\rm E}italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT when scaled to these typical parameters. Note that ρ1greater-than-or-equivalent-to𝜌1\rho\gtrsim 1italic_ρ ≳ 1 (i.e., θEθless-than-or-similar-tosubscript𝜃Esubscript𝜃\theta_{\rm E}\lesssim\theta_{*}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ≲ italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT) for M0.5Mless-than-or-similar-to𝑀0.5subscript𝑀direct-sumM\lesssim 0.5\,M_{\oplus}italic_M ≲ 0.5 italic_M start_POSTSUBSCRIPT ⊕ end_POSTSUBSCRIPT.

References

  • Ban (2020) Ban, M. 2020, MNRAS, 494, 3235
  • Bachelet & Penny (2019) Bachelet, E. & Penny, M. 2019, ApJ, 880, L32
  • Bachelet (2022) Bachelet, E., Specht, D., Penny, M., et al. 2022, A&A, 664, 136
  • Batista et al. (2015) Batista, V., Beaulieu, J.-P., Bennett, D.P., et al. 2015, ApJ, 808, 170
  • Bennett et al. (2015) Bennett, D.P., Bhattacharya, A., Anderson, J., et al. 2015, ApJ, 808, 169
  • Bennett et al. (2020) Bennett, D. P., Bhattacharya, A., Beaulieu, J. P., et al. 2020, AJ, 159, 68
  • Bensby et al. (2017) Bensby, T., Feltzing, S., Gould A. et al. 2017, A&A, 605, A89
  • Bhattacharya et al. (2018) Bhattacharya, A., Beaulieu, J.-P., Bennett, D.P., et al. 2018, AJ, 156, 289
  • Bhattacharya et al. (2021) Bhattacharya, A., Bennett, D.P., Beaulieu, J.-P., et al. 2021, AJ, 162, 60
  • Calamida et al. (2015) Calamida, A., Sahu, K.C., Casertano, S., et al. 2015, ApJ, 810, 8
  • Ge et al. (2022) Ge, J., Zhang, H., Zang, W., et al. 2022, arXiv:2206.06693
  • Gould (1992) Gould, A. 1992, ApJ, 392, 442
  • Gould (1994) Gould, A. 1992, ApJ, 421, L75
  • Gould et al. (2003) Gould, A., Gaudi, B.S. & Han, C. 2003, ApJ, 591, L53
  • Gould (2009) Gould, A. 2009, arXiv:0902.2211
  • Gould (2014a) Gould, A. 2014a, JKAS, 47, 215
  • Gould (2014b) Gould, A. 2014b, JKAS, 47, 279
  • Gould (2016) Gould, A. 2016, JKAS, 49, 123
  • Gould (2022) Gould, A. 2022, arXiv:2209.12501
  • Gould & Yee (2013) Gould, A. & Yee, J.C. 2013, ApJ, 764, 107
  • Gould et al. (2015) Gould, A., Huber, D., Penny, M., & Stello D. 2015, JKAS, 48, 93
  • Gould et al. (2021) Gould, A., Zang, W., Mao, S., & Dong, S., 2021, RAA, 21, 133
  • Gould et al. (2022) Gould, A., Jung, Y.K., Hwang, K.-H., et al. 2022, JKAS, 55, 173
  • Johnson et al. (2020) Johnson, S.A., Penny, M., Gaudi, B.S., et al. 2020, AJ, 160, 123
  • Johnson et al. (2022) Johnson, S.A., Penny, M., & Gaudi, B.S. 2022, ApJ, 927, 63
  • Jung et al. (2024) Jung, Y.K., Hwang, K.-H., Yang, H., et al. 2024, AJ, submitted, arXiv:2405.1685
  • Kim et al. (2016) Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, JKAS, 49, 37
  • Kim et al. (2021) Kim, H.-W., Hwang, K.-H., Gould, A., et al. 2021, AJ, 162, 15
  • Koshimoto et al. (2023) Koshimoto, N., Sumi, T., Bennett, D.P., et al. 2023, arXiv:2303.08279
  • Montet et al. (2017) Montet, B.T., Yee, J.C. & Penny, M.T. 2017, PASP, 129, 044401
  • Mróz et al. (2017) Mróz, P., Udalski, A., Skowron, J., et al. 2017, Nature, 548, 183
  • Mróz et al. (2018) Mróz, P., Ryu, Y.-H., Skowron, J., et al. 2018, AJ, 155, 121
  • Mróz et al. (2019) Mróz, P., Udalski, A., Bennett, D.P.., et al. 2019, A&A, 622, A201
  • Mróz et al. (2020a) Mróz, P., Poleski, R., Han, C., et al. 2020a, AJ, 159, 262
  • Mróz et al. (2020b) Mróz, P., Poleski, R., Gould, A., et al. 2020b, ApJ, 903, 11
  • Mróz & Poleski (2023) Mróz, P. & Poleski, R. 2023, arXiv:2310.07502
  • Paczyński (1986) Paczyński, B. 1986, ApJ, 304, 1
  • Refsdal (1964) Refsdal, S. 1964, MNRAS, 128, 295
  • Refsdal (1966) Refsdal, S. 1966, MNRAS, 134, 315
  • Ryu et al. (2018) Ryu, Y.-H., Yee, J.C., Udalski, A., et al. 2018, AJ, 155, 40
  • Ryu et al. (2021) Ryu, Y.-H., Mroz, P., Gould, A. et al. 2021, AJ, 161, 126
  • Sumi et al. (2011) Sumi, T., Kamiya, K., Bennett, D. P., et al.. 2011, Nature, 473, 349
  • Tamburo et al. (2023) Tamburo, P., Muirhead, P.S. & Dressing, C.D. 2023, AJ, 165, 251
  • Terry et al. (2021) Terry, S.K., Bhattacharya, A., Bennett, D.P., et al. 2021, AJ, 161, 54
  • Vandorou et al. (2020) Vandorou, A., Bennett, D.P., Beaulieu, J.-P., et al. 2020, AJ, 160, 121
  • Wilson et al. (2023) Wilson, R.F., Barclay, T., Powell, B.P., et al. 2023, ApJS, 269, 5
  • Yan & Zhu (2022) Yan, S. & Zhu, W. 2022, RAA, 22, 025006
  • Yee & Gould (2023) Yee, J.C. & Gould, A. 2023, arXiv:2306.15037
  • Yoo et al. (2004) Yoo, J., DePoy, D.L., Gal-Yam, A. et al. 2004, ApJ, 603, 139
  • Zang et al. (2024) Zang, W., Jung, Y.K., Yee, J.C., et al. 2024, Science, submitted
  • Zhu & Gould (2016) Zhu, W. & Gould, A. 2016, JKAS, 49, 93
  • Zhu et al. (2017) Zhu, W., Udalski, A., Huang, C.X. et al. 2017, ApJ, 849, L31
  • Zhu & Dong (2021) Zhu, W. & Dong, S. 2021, ARA&A, 59, 291
Table 1: Complement to Figure 3
Γ(hr1)Γsuperscripthr1\Gamma\ ({\rm hr}^{-1})roman_Γ ( roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) ζ𝜁\zetaitalic_ζ Cum (bulge) Cum (disk) ratio (bulge) ratio (disk) weighted ratio (W𝑊Witalic_W) Wζ/2𝑊𝜁2W\zeta/2italic_W italic_ζ / 2
2 4.00 0.0282 0.0643 0.164 0.273 0.195 0.390
4 2.00 0.1723 0.2352 1.000 1.000 1.000 1.000
6 1.33 0.4044 0.4500 2.347 1.913 2.223 1.482
8 1.00 0.6254 0.6451 3.630 2.743 3.377 1.689
10 0.80 0.7853 0.7878 4.558 3.347 4.212 1.685
12 0.67 0.8847 0.8811 5.135 3.375 4.632 1.544

Note. — Bold-faced lines are illustrated in Figure 3.

Refer to caption
Figure 1: Top Panel: Cumulative μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT distribution based on the source and lens both being drawn from 2-dimensional isotropic Gaussians with σ=3masyr1𝜎3massuperscriptyr1\sigma=3\,{\rm mas}\,{\rm yr}^{-1}italic_σ = 3 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, appropriate for bulge lenses. At the currently adopted cadence (Γ=4hr1Γ4superscripthr1\Gamma=4\,{\rm hr}^{-1}roman_Γ = 4 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT) and a “typical” value of θ=0.3μsubscript𝜃0.3𝜇\theta_{*}=0.3\,\muitalic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0.3 italic_μas, proper motions μrel3masyr1subscript𝜇rel3massuperscriptyr1\mu_{\rm rel}\leq 3\,{\rm mas}\,{\rm yr}^{-1}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ≤ 3 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (blue) would be required to achieve 6 magnified observations, which is the first requirement for an FFP detection. This would capture only 19% of the μrel6masyr1subscript𝜇rel6massuperscriptyr1\mu_{\rm rel}\leq 6\,{\rm mas}\,{\rm yr}^{-1}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT ≤ 6 roman_mas roman_yr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (red) range that would be available if the cadence were doubled to Γ=8hr1Γ8superscripthr1\Gamma=8\,{\rm hr}^{-1}roman_Γ = 8 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Bottom Panel: Similar but for disk lenses: the corresponding fraction is 30%.
Refer to caption
Figure 2: Differential and cumulative θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT distributions based on the Calamida et al. (2015) mass function, taking account that for ρ1much-greater-than𝜌1\rho\gg 1italic_ρ ≫ 1, the event cross section is θproportional-toabsentsubscript𝜃\propto\theta_{*}∝ italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, and that on the main sequence, θMsproportional-tosubscript𝜃subscript𝑀𝑠\theta_{*}\propto M_{s}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ∝ italic_M start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT. Bigger θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT is better because the number of magnified observations scales Nexpθproportional-tosubscript𝑁expsubscript𝜃N_{\rm exp}\propto\theta_{*}italic_N start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT ∝ italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. See Equation (4), which scales to θ=0.3μsubscript𝜃0.3𝜇\theta_{*}=0.3\,\muitalic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0.3 italic_μas, so that θ0.6μsubscript𝜃0.6𝜇\theta_{*}\geq 0.6\,\muitalic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≥ 0.6 italic_μas would be required for an FFP detection if all other factors were unchanged. In practice, at the current Γ=4hr1Γ4superscripthr1\Gamma=4\,{\rm hr}^{-1}roman_Γ = 4 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, detections come from both lower μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT (Figure 1) and higher θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. See Section 2.3 and Figure 3.
Refer to caption
Figure 3: Cumulative distribution of large-ρ𝜌\rhoitalic_ρ FFP events that satisfy the Nexp=6subscript𝑁exp6N_{\rm exp}=6italic_N start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT = 6 requirement, taking account of both the distributions of μrelsubscript𝜇rel\mu_{\rm rel}italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT (Figure 1) and θsubscript𝜃\theta_{*}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT (Figure 2). The abscissa is the fraction of events with ratios θ/μrelsubscript𝜃subscript𝜇rel\theta_{*}/\mu_{\rm rel}italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / italic_μ start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT that exceed a certain given factor (ζ𝜁\zetaitalic_ζ) relative to the scaling factors in Equation (4), whose prefactor is 3.0. Thus, to meet the Nexp=6subscript𝑁exp6N_{\rm exp}=6italic_N start_POSTSUBSCRIPT roman_exp end_POSTSUBSCRIPT = 6 requirement with Γ=4hr1Γ4superscripthr1\Gamma=4\,{\rm hr}^{-1}roman_Γ = 4 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, the factor ζ𝜁\zetaitalic_ζ must be at least 2.0, but with Γ=8hr1Γ8superscripthr1\Gamma=8\,{\rm hr}^{-1}roman_Γ = 8 roman_hr start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, a factor of ζ1.0𝜁1.0\zeta\geq 1.0italic_ζ ≥ 1.0 is sufficient. The ratio of surviving events is (0.6254/0.1723)=3.630.62540.17233.63(0.6254/0.1723)=3.63( 0.6254 / 0.1723 ) = 3.63 for bulge lenses and (0.6451/0.2352)=2.740.64510.23522.74(0.6451/0.2352)=2.74( 0.6451 / 0.2352 ) = 2.74 for disk lenses. Weighting these by the FSPL bulge/disk ratio of 2.5:1 (Figure 9 from Gould et al. 2022) gives an overall average of 3.38.
Refer to caption
Figure 4: Region of the (logπrel,logM)subscript𝜋rel𝑀(\log\pi_{\rm rel},\log M)( roman_log italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT , roman_log italic_M ) plane that is accessible to microlens-parallax measurements (green), as constrained by the Refsdal Limits (red) on the microlens parallax (πE=πrel/κMsubscript𝜋Esubscript𝜋rel𝜅𝑀\pi_{\rm E}=\sqrt{\pi_{\rm rel}/\kappa M}italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = square-root start_ARG italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT / italic_κ italic_M end_ARG) and the Paczyński Limit (magenta) on the Einstein radius (θE=κMπrelsubscript𝜃E𝜅𝑀subscript𝜋rel\theta_{\rm E}=\sqrt{\kappa M\pi_{\rm rel}}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT = square-root start_ARG italic_κ italic_M italic_π start_POSTSUBSCRIPT roman_rel end_POSTSUBSCRIPT end_ARG). The first requires that the Earth-L2 projected separation, D=0.01ausubscript𝐷perpendicular-to0.01auD_{\perp}=0.01\,{\rm au}italic_D start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT = 0.01 roman_au, lies in the range 0.05D/r~E2less-than-or-similar-to0.05subscript𝐷perpendicular-tosubscript~𝑟Eless-than-or-similar-to20.05\lesssim D_{\perp}/{\tilde{r}}_{\rm E}\lesssim 20.05 ≲ italic_D start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT / over~ start_ARG italic_r end_ARG start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ≲ 2 relative to the projected Einstein radius r~Eau/πEsubscript~𝑟Eausubscript𝜋E{\tilde{r}}_{\rm E}\equiv{\rm au}/\pi_{\rm E}over~ start_ARG italic_r end_ARG start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ≡ roman_au / italic_π start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT, i.e., big enough that the Earth and the satellite see sufficiently different events to make a measurement, yet small enough that both observatories actually see a signal. The second requires that θEsubscript𝜃E\theta_{\rm E}italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT is large enough that the Paczyński (1986) parameters (u0,tE)subscript𝑢0subscript𝑡E(u_{0},t_{\rm E})( italic_u start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ) can be measured from the light curve. Some FFPs (with ρ=θ/θE>2𝜌subscript𝜃subscript𝜃E2\rho=\theta_{*}/\theta_{\rm E}>2italic_ρ = italic_θ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT / italic_θ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT > 2) fall below the latter threshold, but can still be detected (blue). These can have non-parallax mass measurements provided that they are bound and their hosts can be identified. The masses of various Solar-System bodies are shown for reference. Regions corresponding to the outer-disk (Dl4kpcless-than-or-similar-tosubscript𝐷𝑙4kpcD_{l}\lesssim 4\,{\rm kpc}italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ≲ 4 roman_kpc), inner-disk (4kpcDl6.5kpcless-than-or-similar-to4kpcsubscript𝐷𝑙less-than-or-similar-to6.5kpc4\,{\rm kpc}\lesssim D_{l}\lesssim 6.5\,{\rm kpc}4 roman_kpc ≲ italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ≲ 6.5 roman_kpc), and bulge (Dl6.5kpcgreater-than-or-equivalent-tosubscript𝐷𝑙6.5kpcD_{l}\gtrsim 6.5\,{\rm kpc}italic_D start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ≳ 6.5 roman_kpc) FFPs are delineated by dashed lines.