Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 20 Jun 2024]
Title:A More Precise Measurement of the Radius of PSR J0740+6620 Using Updated NICER Data
View PDF HTML (experimental)Abstract:PSR J0740+6620 is the neutron star with the highest precisely determined mass, inferred from radio observations to be $2.08\pm0.07\,\rm M_\odot$. Measurements of its radius therefore hold promise to constrain the properties of the cold, catalyzed, high-density matter in neutron star cores. Previously, Miller et al. (2021) and Riley et al. (2021) reported measurements of the radius of PSR J0740+6620 based on Neutron Star Interior Composition Explorer (NICER) observations accumulated through 17 April 2020, and an exploratory analysis utilizing NICER background estimates and a data set accumulated through 28 December 2021 was presented in Salmi et al. (2022). Here we report an updated radius measurement, derived by fitting models of X-ray emission from the neutron star surface to NICER data accumulated through 21 April 2022, totaling $\sim1.1$ Ms additional exposure compared to the data set analyzed in Miller et al. (2021) and Riley et al. (2021), and to data from X-ray Multi-Mirror (XMM-Newton) observations. We find that the equatorial circumferential radius of PSR J0740+6620 is $12.92_{-1.13}^{+2.09}$ km (68% credibility), a fractional uncertainty $\sim83\%$ the width of that reported in Miller et al. (2021), in line with statistical expectations given the additional data. If we were to require the radius to be less than 16 km, as was done in Salmi et al. (2024), then our 68% credible region would become $R=12.76^{+1.49}_{-1.02}$ km, which is close to the headline result of Salmi et al. (2024). Our updated measurements, along with other laboratory and astrophysical constraints, imply a slightly softer equation of state than that inferred from our previous measurements.
Submission history
From: Alexander Dittmann [view email][v1] Thu, 20 Jun 2024 16:30:10 UTC (7,939 KB)
Current browse context:
astro-ph.HE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.