Astrophysics > Earth and Planetary Astrophysics
[Submitted on 20 Jun 2024]
Title:Combining reference-star and angular differential imaging for high-contrast imaging of extended sources
View PDF HTML (experimental)Abstract:High-contrast imaging (HCI) is a technique designed to observe faint signals near bright sources, such as exoplanets and circumstellar disks. The primary challenge in revealing the faint circumstellar signal near a star is the presence of quasi-static speckles, which can produce patterns on the science images that are as bright, or even brighter, than the signal of interest. Strategies such as angular differential imaging (ADI) or reference-star differential imaging (RDI) aim to provide a means of removing the quasi-static speckles in post-processing. In this paper, we present and discuss the adaptation of state-of-the-art algorithms, initially designed for ADI, to jointly leverage angular and reference-star differential imaging (ARDI) for direct high-contrast imaging of circumstellar disks. Using a collection of high-contrast imaging data sets, we assess the performance of ARDI in comparison to ADI and RDI based on iterative principal component analysis (IPCA). These diverse data sets are acquired under various observing conditions and include the injection of synthetic disk models at various contrast levels. Our results demonstrate that ARDI with IPCA improves the quality of recovered disk images and the sensitivity to planets embedded in disks, compared to ADI or RDI individually. This enhancement is particularly pronounced when dealing with extended sources exhibiting highly ambiguous structures that cannot be accurately retrieved using ADI alone, and when the quality of the reference frames is suboptimal, leading to an underperformance of RDI. We finally apply our method to a sample of real observations of protoplanetary disks taken in star-hopping mode, and propose to revisit the protoplanetary claims associated with these disks.
Submission history
From: Sandrine Juillard [view email][v1] Thu, 20 Jun 2024 16:07:21 UTC (26,511 KB)
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.