GRB 211211A: The Case for Engine Powered over r-Process Powered Blue Kilonova

Hamid Hamidani Astronomical Institute, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan Masaomi Tanaka Astronomical Institute, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan Shigeo S. Kimura Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan Astronomical Institute, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan Gavin P. Lamb Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool, UK, L3 5RF Kyohei Kawaguchi Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany Center of Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502, Japan
Abstract

The recent Gamma-Ray Burst (GRB) GRB 211211A provides the earliest (5similar-toabsent5\sim 5∼ 5 h) data of a kilonova (KN) event, displaying bright (1042similar-toabsentsuperscript1042\sim 10^{42}∼ 10 start_POSTSUPERSCRIPT 42 end_POSTSUPERSCRIPT erg s-1) and blue early emission. Previously, this KN has been explained using simplistic multi-component fitting methods. Here, in order to understand the physical origin of the KN emission in GRB 211211A, we employ an analytic multi-zone model for r-process powered KN. We find that r-process powered KN models alone cannot explain the fast temporal evolution and the spectral energy distribution (SED) of the observed emission. Specifically, i) r-process models require high ejecta mass to match early luminosity, which overpredicts late-time emission, while ii) red KN models that reproduce late emission underpredict early luminosity. We propose an alternative scenario involving early contributions from the GRB central engine via a late low-power jet, consistent with plateau emission in short GRBs and GeV emission detected by Fermi-LAT at 104similar-toabsentsuperscript104\sim 10^{4}∼ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT s after GRB 211211A. Such late central engine activity, with an energy budget of a few %similar-toabsentpercenta few \sim\text{a few }\%∼ a few % of that of the prompt jet, combined with a single red-KN ejecta component, can naturally explain the light curve and SED of the observed emission; with the late-jet – ejecta interaction reproducing the early blue emission and r-process heating reproducing the late red emission. This supports claims that late low-power engine activity after prompt emission may be common. We encourage very early follow-up observations of future nearby GRBs, and compact binary merger events, to reveal more about the central engine of GRBs and r-process events.

Gamma-ray bursts (629), R-process (1324), Neutron stars (1108), Relativistic jets (1390), Hydrodynamics (1963), Gravitational waves (678)

1 Introduction

Traditionally, gamma-ray burst (GRB) are classified into two classes based on their duration (T90subscript𝑇90T_{\rm{90}}italic_T start_POSTSUBSCRIPT 90 end_POSTSUBSCRIPT): Long (LGRB; T90>2subscript𝑇902T_{\rm{90}}>2italic_T start_POSTSUBSCRIPT 90 end_POSTSUBSCRIPT > 2 s) and Short (SGRB; T90<2subscript𝑇902T_{\rm{90}}<2italic_T start_POSTSUBSCRIPT 90 end_POSTSUBSCRIPT < 2 s) (Kouveliotou et al. 1993). On one hand, LGRBs are explained by the collapse of massive stars (collapsar model; MacFadyen & Woosley 1999); and in fact, most nearby LGRBs (with a few exceptions; GRB 060614; GRB 060505; etc.) are associated with bright supernova (SN) explosions confirming this scenario (Iwamoto et al. 1998; Stanek et al. 2003). On the other hand, SGRBs have theoretically been associated with binary neutron star (BNS; also black hole-neutron star BH-NS) mergers (Paczynski 1986; Goodman 1986). This scenario is consistent with observations that show spatial off-sets between SGRB locations and their candidate host galaxies (Fong et al. 2010).

Moreover, BNS mergers (and SGRBs) are a site of r-process nucleosynthesis whose radioactivity powers an optical-infrared transient referred to as “kilonova/Macronova” (KN hereafter) (Li & Paczyński 1998; Kulkarni 2005; Metzger et al. 2010). This was confirmed with the gravitational wave (GW) and electromagnetic (EM) observations of GW170817, associating a BNS merger event with a SGRB (GRB 170817A) and with the KN transient AT2017gfo (e.g., Abbott et al. 2017a; Abbott et al. 2017b; Drout et al. 2017; Kasliwal et al. 2017; Tanaka et al. 2017).

Observations of GRB 211211A show a long main peak (13similar-toabsent13\sim 13∼ 13 s long), followed by a softer and smoother extended emission (55similar-toabsent55\sim 55∼ 55 s long) (Rastinejad et al. 2022; Yang et al. 2022; Troja et al. 2022). A candidate host galaxy was identified, allowing for redshift (z=0.0762𝑧0.0762z=0.0762italic_z = 0.0762) and distance (dL=346subscript𝑑L346d_{\rm{L}}=346italic_d start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT = 346 Mpc) measurements (Rastinejad et al. 2022; Troja et al. 2022). As a bright nearby GRB, GRB 211211A was the target of many follow-up observations. However, although according to the traditional classification scheme GRB 211211A is a LGRB, no sign of a supernova (SN) could be found, while a clear KN transient was identified (Rastinejad et al. 2022; Troja et al. 2022). This suggests that GRB 211211A originated from a BNS/BH-NS merger event, and that SGRBs’ engine activity can last longer than the nominal 2 s duration limit (see Figure 2 in Kisaka & Ioka 2015; Gao et al. 2022; Gottlieb et al. 2023a; also see Gillanders et al. 2023; Hotokezaka et al. 2023; Levan et al. 2024 for the similar event GRB 230307A).

Thanks to its nearby location, the KN that followed GRB 211211A was observed at times earlier than any event before (Rastinejad et al. 2022; Troja et al. 2022). These observations revealed a bright early blue KN (3×1042similar-toabsent3superscript1042\sim 3\times 10^{42}∼ 3 × 10 start_POSTSUPERSCRIPT 42 end_POSTSUPERSCRIPT erg s-1 at 5similar-toabsent5\sim 5∼ 5 h; Troja et al. 2022). The origin of this blue KN (also in the GW170817/AT2017gfo event; Kasliwal et al. 2017; Drout et al. 2017) is not well understood, considering that KNe are expected to peak in optical-infrared bands as they contain substantial fractions of heavy elements (i.e., lanthenides, with high opacities). Through the fitting of photometric data, it has been shown that the KN is well-explained by two or three ejecta components (red, blue, and purple) with given masses, opacities, and velocities (Rastinejad et al., 2022). However, these methods (e.g., Villar et al. 2017) lack physical motivation, particularly considering that they are based on simplistic one-zone models (Arnett 1982). Additionally, parameter fitting results are often at odds with first-principle numerical relativity simulations (see Shibata et al. 2017; Kawaguchi et al. 2018; Fujibayashi et al. 2018; Siegel 2019). Therefore, it is crucial to investigate the origin of the blue KN emission using more robust physical models.

Another key observation related to GRB 211211A is the detection of high-energy (0.11similar-toabsent0.11\sim 0.1-1∼ 0.1 - 1 GeV) photon emission by Fermi-LAT 104similar-toabsentsuperscript104\sim 10^{4}∼ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT s after the prompt emission (Mei et al. 2022; Zhang et al. 2022). This is the first time that late time GeV emission from a supposed BNS merger event has been detected with high significance at >5σabsent5𝜎>5\sigma> 5 italic_σ (GRB 160821B is another similar event where sub-TeV emission was detected by MAGIC, although less significantly at 3σsimilar-toabsent3𝜎\sim 3\sigma∼ 3 italic_σ; Lamb et al. 2019; Acciari et al. 2021; Zhang et al. 2021). The GeV emission was explained by KN photons interacting (via inverse Compton scattering) with low-power jet powered by the central engine long after the prompt phase (Mei et al. 2022).

The idea that the GRB engine stays active long after the prompt emission is not new111There is a similar argument for LGRBs based on observations of X-ray flares (Burrows et al. 2005; Nousek et al. 2006).; observations have consistently shown that 102104similar-toabsentsuperscript102superscript104\sim 10^{2}-10^{4}∼ 10 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT s after the prompt emission, bright X-ray emission that cannot be explained by the standard afterglow model is emitted (see Barthelmy et al. 2005a; Gompertz et al. 2013; Kisaka et al. 2017; Kagawa et al. 2019; etc.). These late phases are referred to as “extended” (with LX1048similar-tosubscript𝐿Xsuperscript1048L_{\rm{X}}\sim 10^{48}italic_L start_POSTSUBSCRIPT roman_X end_POSTSUBSCRIPT ∼ 10 start_POSTSUPERSCRIPT 48 end_POSTSUPERSCRIPT erg s-1 for 102similar-toabsentsuperscript102\sim 10^{2}∼ 10 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT s) or “plateau” (with LX1046similar-tosubscript𝐿Xsuperscript1046L_{\rm{X}}\sim 10^{46}italic_L start_POSTSUBSCRIPT roman_X end_POSTSUBSCRIPT ∼ 10 start_POSTSUPERSCRIPT 46 end_POSTSUPERSCRIPT erg s-1 for 104similar-toabsentsuperscript104\sim 10^{4}∼ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT s) phases, and are typically associated with late engine activity (Ioka et al. 2005; Kisaka & Ioka 2015; Gottlieb et al. 2023a; etc.). These late phases of engine activity might be ubiquitous in SGRBs (Kisaka et al. 2017).

In an effort to understand the origin of KN transients, we revisit GRB 211211A, which provides the earliest data of a KN to date. We investigate the source of the bright early blue KN emission via analytic modeling, and test the hypothesis that this blue emission is r-process powered. Additionally, we explore the impact of a late low-power (i.e., plateau) jet interacting with the merger ejecta has on the KN emission.

This paper is organized as follows. In Section 2 we present our physical model for r-process powered KN. In Section 3 we present our results and explain the limitations of the r-process powered KN scenario. An alternative scenario of central engine powered KN is presented in Section 4. Finally, a discussion and conclusion are presented in Section 5. Details related to GRB 211211A’s data can be found in Appendix A.

2 Method

2.1 R-process powered kilonova model

We consider the same KN model as in Hamidani et al. (2024) (see their Appendix E), with additional improvements. The main approximations of the model are:

  • The ejecta is expanding homologously with βmsubscript𝛽m\beta_{\rm{m}}italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and β0subscript𝛽0\beta_{\rm{0}}italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT as the maximum and minimum velocities (in units of c𝑐citalic_c), respectively.

  • The density profile of the ejecta is approximated to single power-law with n𝑛nitalic_n as its power-law index:

    ρβn.proportional-to𝜌superscript𝛽𝑛\rho\propto\beta^{-n}.italic_ρ ∝ italic_β start_POSTSUPERSCRIPT - italic_n end_POSTSUPERSCRIPT . (1)

    This is much more realistic than the widely used KN models (e.g., see Section 3 in Villar et al. 2017).

  • The time evolution of r-process energy deposition per mass (ε˙˙𝜀\dot{\varepsilon}over˙ start_ARG italic_ε end_ARG) is approximated to a power-law function:

    ε˙=ε˙0(t1d)k,˙𝜀subscript˙𝜀0superscript𝑡1d𝑘\dot{\varepsilon}=\dot{\varepsilon}_{\rm{0}}\left(\frac{t}{\rm{1\>d}}\right)^{% -k},over˙ start_ARG italic_ε end_ARG = over˙ start_ARG italic_ε end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( divide start_ARG italic_t end_ARG start_ARG 1 roman_d end_ARG ) start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT , (2)

    with k=1.3𝑘1.3k=1.3italic_k = 1.3, and ε˙0=2×1010subscript˙𝜀02superscript1010\dot{\varepsilon}_{\rm{0}}=2\times 10^{10}over˙ start_ARG italic_ε end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 2 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT erg g-1 s-1 (i.e., ε˙01similar-tosubscript˙𝜀01\dot{\varepsilon}_{\rm{0}}\sim 1over˙ start_ARG italic_ε end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∼ 1 MeV nuc-1 s-1 at t=0.1𝑡0.1t=0.1italic_t = 0.1 s; Wanajo et al. 2014; Ishizaki et al. 2021).

  • At early times (first a few days) r-process energy deposition is assumed to be dominated by beta-decay (Wanajo et al. 2014; Kasen & Barnes 2019)222This is a conservative consideration as it gives a faster time evolution for ftotsubscript𝑓totf_{\rm{tot}}italic_f start_POSTSUBSCRIPT roman_tot end_POSTSUBSCRIPT (without alpha and fission contributions), and considering our aim of exploring alternative scenarios that explain the fast time evolution in the light curve of the KN associated with GRB 211211A.. Hence, we adopt an analytic time dependent thermalization efficiency term ftot(t)subscript𝑓tot𝑡f_{\rm{tot}}(t)italic_f start_POSTSUBSCRIPT roman_tot end_POSTSUBSCRIPT ( italic_t ) (Hotokezaka et al. 2016; Barnes et al. 2016) following the analytic model in Kasen & Barnes (2019) [see their equation (51)]. In reality ftot(t)subscript𝑓tot𝑡f_{\rm{tot}}(t)italic_f start_POSTSUBSCRIPT roman_tot end_POSTSUBSCRIPT ( italic_t ) should also have spatial dependency, but here for simplicity we consider a one-zone prescription.

  • A sharp diffusion shell at:

    τ=c/(vmvd),𝜏𝑐subscript𝑣msubscript𝑣d\tau=c/(v_{\rm{m}}-v_{\rm{d}}),italic_τ = italic_c / ( italic_v start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT - italic_v start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT ) , (3)

    is adopted, where βm=vm/csubscript𝛽msubscript𝑣m𝑐\beta_{\rm{m}}=v_{\rm{m}}/citalic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = italic_v start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT / italic_c and βd=vd/csubscript𝛽dsubscript𝑣d𝑐\beta_{\rm{d}}=v_{\rm{d}}/citalic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT = italic_v start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT / italic_c are the outer velocity of the ejecta and the velocity of the sharp diffusion shell, respectively (Nakar & Sari 2012; Kisaka et al. 2015; Hamidani & Ioka 2023a).

  • Grey opacity is adopted:

    κ=Const.𝜅Const\kappa=\rm{Const.}italic_κ = roman_Const . (4)

    with κ𝜅\kappaitalic_κ values taken from realistic radiative transfer simulation results (see Banerjee et al. 2023).

  • In the first a few days the KN emission is approximated to a blackbody (Kisaka et al. 2015; Waxman et al. 2018).

For a given shell in the ejecta with a velocity β𝛽\betaitalic_β, density, optical depth, and thermal energy density can be found as a function of time. Then, with the photon diffusion criteria, emission can be found analytically as a function of time. Therefore, for a given set of the following parameters KN emission (light curve and spectral energy distribution; SED) can be found analytically: ejecta mass (Mesubscript𝑀eM_{\rm{e}}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT), power-law index of the density profile of the ejecta (n𝑛nitalic_n), maximum ejecta velocity (βmsubscript𝛽m\beta_{\rm{m}}italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT), minimum ejecta velocity (β0subscript𝛽0\beta_{\rm{0}}italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT), and grey opacity (κ𝜅\kappaitalic_κ).

There are two distinct terms that contribute to the KN emission, as follows [equation (E3) in Hamidani et al. 2024]:

LKN(t)=LKN(<βd,t)+LKN(βd,t),L_{\rm{KN}}(t)=L_{\rm{KN}}(<\beta_{\rm{d}},t)+L_{\rm{KN}}(\geqslant\beta_{\rm{% d}},t),italic_L start_POSTSUBSCRIPT roman_KN end_POSTSUBSCRIPT ( italic_t ) = italic_L start_POSTSUBSCRIPT roman_KN end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) + italic_L start_POSTSUBSCRIPT roman_KN end_POSTSUBSCRIPT ( ⩾ italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) , (5)

where t𝑡titalic_t is time (ttobs𝑡subscript𝑡obst\approx t_{\rm{obs}}italic_t ≈ italic_t start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT), and βdsubscript𝛽d\beta_{\rm{d}}italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT is the velocity of the diffusion shell. The first term [LKN(<βd,t)L_{\rm{KN}}(<\beta_{\rm{d}},t)italic_L start_POSTSUBSCRIPT roman_KN end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t )] is emission due to leaking of trapped thermal (or internal) energy as the diffusion shell moves inward (in a Lagrangian coordinate) through the optically thick part of the ejecta; we refer to it as the “diffusion” term. The second term [LKN(βd,t)L_{\rm{KN}}(\geqslant\beta_{\rm{d}},t)italic_L start_POSTSUBSCRIPT roman_KN end_POSTSUBSCRIPT ( ⩾ italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t )] is emission due to instantaneous deposition of thermal energy (via r-process heating) in the optically thin part of the ejecta; we refer to it as the “deposition” term.

As shown in Figure 1, at early times (typically <1absent1<1< 1 d) the diffusion part is largely dominant; however, at later times, as the majority of the ejecta mass is exposed in the optically thin outer part, the second term takes over.

The time evolution of the term which represents the trapped thermal energy Ei(<βd,t)E_{\rm{i}}(<\beta_{\rm{d}},t)italic_E start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) at shells moving with velocities slower than βdsubscript𝛽d\beta_{\rm{d}}italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT can be found by considering energy deposition by r-process and adiabatic cooling, giving Ei(<βd,t)/t=Ei(<βd,t)/t+ftot(t)E˙dep(<βd,t){\partial E_{\rm{i}}(<\beta_{\rm{d}},t)}/{\partial t}=-{E_{\rm{i}}(<\beta_{\rm% {d}},t)}/{t}+f_{{\rm{tot}}}(t)\dot{E}_{\rm{dep}}(<\beta_{\rm{d}},t)∂ italic_E start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) / ∂ italic_t = - italic_E start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) / italic_t + italic_f start_POSTSUBSCRIPT roman_tot end_POSTSUBSCRIPT ( italic_t ) over˙ start_ARG italic_E end_ARG start_POSTSUBSCRIPT roman_dep end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ). Hence:

Ei(<βd,t)=1t0tftot(t)E˙tot(<βd,t)tdtt1kftot(t)Me(<βd,t),\begin{split}E_{\rm{i}}(<\beta_{\rm{d}},t)&=\frac{1}{t}\int_{0}^{t}f_{\rm{tot}% }(t)\dot{E}_{\rm{tot}}(<\beta_{\rm{d}},t)tdt\\ &\propto t^{1-k}f_{\rm{tot}}(t)M_{\rm{e}}(<\beta_{\rm{d}},t),\end{split}start_ROW start_CELL italic_E start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) end_CELL start_CELL = divide start_ARG 1 end_ARG start_ARG italic_t end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT roman_tot end_POSTSUBSCRIPT ( italic_t ) over˙ start_ARG italic_E end_ARG start_POSTSUBSCRIPT roman_tot end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) italic_t italic_d italic_t end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL ∝ italic_t start_POSTSUPERSCRIPT 1 - italic_k end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT roman_tot end_POSTSUBSCRIPT ( italic_t ) italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) , end_CELL end_ROW (6)

where E˙dep(<βd,t)=Me(<βd,t)ε˙0(t/1d)k\dot{E}_{\rm{dep}}(<\beta_{\rm{d}},t)=M_{\rm{e}}(<\beta_{\rm{d}},t)\dot{% \varepsilon}_{\rm{0}}\left({t}/{\rm{1\>d}}\right)^{-k}over˙ start_ARG italic_E end_ARG start_POSTSUBSCRIPT roman_dep end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) = italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) over˙ start_ARG italic_ε end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t / 1 roman_d ) start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT is r-process energy deposition in all shells slower than βdsubscript𝛽d\beta_{\rm{d}}italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT with a mass Me(<βd,t)M_{\rm{e}}(<\beta_{\rm{d}},t)italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ).

At early times, a key approximation is that βdβmsimilar-tosubscript𝛽dsubscript𝛽m\beta_{\rm{d}}\sim\beta_{\rm{m}}italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT ∼ italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, and hence ρ(βd,t)ρ(βm,t)similar-to𝜌subscript𝛽d𝑡𝜌subscript𝛽m𝑡\rho(\beta_{\rm{d}},t)\sim\rho(\beta_{\rm{m}},t)italic_ρ ( italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) ∼ italic_ρ ( italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT , italic_t ) (see Section 3.1 in Kisaka et al. 2015). From the condition of a sharp diffusion shell [equation (3)], 1/(βmβd)ρ(βm,t)t(βmβd)proportional-to1subscript𝛽msubscript𝛽d𝜌subscript𝛽m𝑡𝑡subscript𝛽msubscript𝛽d1/(\beta_{\rm{m}}-\beta_{\rm{d}})\propto\rho(\beta_{\rm{m}},t)t(\beta_{\rm{m}}% -\beta_{\rm{d}})1 / ( italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT - italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT ) ∝ italic_ρ ( italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT , italic_t ) italic_t ( italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT - italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT ), and the diffusion velocity moves inward through the ejecta so that βmβdtproportional-tosubscript𝛽msubscript𝛽d𝑡\beta_{\rm{m}}-\beta_{\rm{d}}\propto titalic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT - italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT ∝ italic_t [as ρ(βm,t)t3proportional-to𝜌subscript𝛽m𝑡superscript𝑡3\rho(\beta_{\rm{m}},t)\propto t^{-3}italic_ρ ( italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT , italic_t ) ∝ italic_t start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT]. Consequently, during a time interval ΔtΔ𝑡\Delta troman_Δ italic_t, (βmβd)Δtproportional-tosubscript𝛽msubscript𝛽dΔ𝑡(\beta_{\rm{m}}-\beta_{\rm{d}})\propto\Delta t( italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT - italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT ) ∝ roman_Δ italic_t, and the newly exposed mass ΔMe(<βd,t)=ρ(βm,t)ΔVΔt\Delta M_{\rm{e}}(<\beta_{\rm{d}},t)=\rho(\beta_{\rm{m}},t)\Delta V\propto\Delta troman_Δ italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) = italic_ρ ( italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT , italic_t ) roman_Δ italic_V ∝ roman_Δ italic_t. Hence, ΔMe(<βd,t)/ΔtConst\Delta M_{\rm{e}}(<\beta_{\rm{d}},t)/{\Delta t}\sim\rm{Const}roman_Δ italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) / roman_Δ italic_t ∼ roman_Const. In other words, at early times the diffusion shell moves constantly in the mass coordinate (see Kisaka et al. 2015; also see Appendix E in Hamidani et al. 2024). Also, at early times ftot(t)ftot0.7subscript𝑓tot𝑡subscript𝑓totsimilar-to0.7f_{\rm{tot}}(t)\equiv f_{\rm{tot}}\sim 0.7italic_f start_POSTSUBSCRIPT roman_tot end_POSTSUBSCRIPT ( italic_t ) ≡ italic_f start_POSTSUBSCRIPT roman_tot end_POSTSUBSCRIPT ∼ 0.7 as density is high and most radioactive energy deposition is thermalized (except neutrinos). Therefore, at early times the evolution of the kilonova luminosity LKN(t)LKN(<βd,t)ΔEi/ΔtL_{\rm{KN}}(t)\sim L_{\rm{KN}}(<\beta_{\rm{d}},t)\sim{\Delta E_{\rm{i}}}/{% \Delta t}italic_L start_POSTSUBSCRIPT roman_KN end_POSTSUBSCRIPT ( italic_t ) ∼ italic_L start_POSTSUBSCRIPT roman_KN end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) ∼ roman_Δ italic_E start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT / roman_Δ italic_t can be found as [using equations (5) and (6)]:

LKN(t)t1kt0.3[Early times].formulae-sequenceproportional-tosubscript𝐿KN𝑡superscript𝑡1𝑘proportional-tosuperscript𝑡0.3[Early times]L_{\rm{KN}}(t)\propto t^{1-k}\propto t^{-0.3}\>\>\>\>\>\>\text{[Early times]}.italic_L start_POSTSUBSCRIPT roman_KN end_POSTSUBSCRIPT ( italic_t ) ∝ italic_t start_POSTSUPERSCRIPT 1 - italic_k end_POSTSUPERSCRIPT ∝ italic_t start_POSTSUPERSCRIPT - 0.3 end_POSTSUPERSCRIPT [Early times] . (7)

Hence, as shown in Figure 1, at early times, the amount of trapped thermal energy to be released is expected to follow t0.3proportional-toabsentsuperscript𝑡0.3\propto t^{-0.3}∝ italic_t start_POSTSUPERSCRIPT - 0.3 end_POSTSUPERSCRIPT. It should be stressed that this time dependency is independent of parameters of the ejecta (such as n𝑛nitalic_n). This is consistent with Kisaka et al. (2015) [see their equation (19) and Figure 3].

The time evolution of the second term simply follows the deposition rate of thermal energy through r-process (initially as tkproportional-toabsentsuperscript𝑡𝑘\propto t^{-k}∝ italic_t start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT). Early on, most radioactive energy is thermalized (except neutrinos which account for 30%similar-toabsentpercent30\sim 30\%∼ 30 % of the energy deposition; i.e., ftot0.7similar-tosubscript𝑓tot0.7f_{\rm{tot}}\sim 0.7italic_f start_POSTSUBSCRIPT roman_tot end_POSTSUBSCRIPT ∼ 0.7) [see Wanajo et al. 2014; Barnes et al. 2016; Hotokezaka et al. 2016; Rosswog et al. 2017; Kasen & Barnes 2019; etc.]. At much later times as density decreases, ftotsubscript𝑓totf_{\rm{tot}}italic_f start_POSTSUBSCRIPT roman_tot end_POSTSUBSCRIPT drops as radioactive particles are less efficiently thermalized; hence the thermal energy deposition rate eventually enters its asymptotic phase and follows a steeper decline in the range t2.3proportional-toabsentsuperscript𝑡2.3\propto t^{-2.3}∝ italic_t start_POSTSUPERSCRIPT - 2.3 end_POSTSUPERSCRIPT (Kasen & Barnes 2019) to t2.8proportional-toabsentsuperscript𝑡2.8\propto t^{-2.8}∝ italic_t start_POSTSUPERSCRIPT - 2.8 end_POSTSUPERSCRIPT (Waxman et al. 2019; Hotokezaka & Nakar 2020).

Refer to caption
Figure 1: Time evolution of r-process powered KN light curve. The early blue KN emission (thick blue line) is t0.3proportional-toabsentsuperscript𝑡0.3\propto t^{-0.3}∝ italic_t start_POSTSUPERSCRIPT - 0.3 end_POSTSUPERSCRIPT as it is mostly powered by diffusion emission (thin blue line) [first term in equation (5)]. After a transitional phase, later emission (thick red line) follows deposition rate of thermal energy through r-process (thin red line in the optically thin part; and dashed line in the whole ejecta) as t1.3proportional-toabsentsuperscript𝑡1.3\propto t^{-1.3}∝ italic_t start_POSTSUPERSCRIPT - 1.3 end_POSTSUPERSCRIPT [second term in equation (5)], and asymptotically t2.3t2.8proportional-toabsentsuperscript𝑡2.3superscript𝑡2.8\propto t^{-2.3}-t^{-2.8}∝ italic_t start_POSTSUPERSCRIPT - 2.3 end_POSTSUPERSCRIPT - italic_t start_POSTSUPERSCRIPT - 2.8 end_POSTSUPERSCRIPT (for a similar figure see Figure 4 in Kasen & Barnes 2019; also see Waxman et al. 2019; Hotokezaka & Nakar 2020).

2.2 Application to GRB 211211A

We aim to investigate the origin of the KN emission associated with GRB 211211A, and whether it can entirely be explained by r-process powered KN emission (Rastinejad et al. 2022; Troja et al. 2022). We employ our analytical r-process KN model (see Section 2.1; and Appendix E in Hamidani et al. 2024 for a full description). First, we search for a combination of two KN models (i.e., two ejecta components) capable of explaining the SED and the bolometric data: a blue KN model with low opacity (to explain the early blue emission) and a red KN model with high opacity (to explain the late red emission). We proceed as follows: first we carry out a parameter search to find models capable of explaining the early time data, then we search for a complementary red KN model that explains the rest of data (late time data in particular).

The main parameters for each KN model are Mesubscript𝑀eM_{\rm{e}}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT and κ𝜅\kappaitalic_κ as the KN emission depends strongly on them. 11 values of Mesubscript𝑀eM_{\rm{e}}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT spread linearly in the interval 0.01M0.05M0.01subscript𝑀direct-product0.05subscript𝑀direct-product0.01\>M_{\odot}-0.05\>M_{\odot}0.01 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT - 0.05 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, and 11 values of κ𝜅\kappaitalic_κ spread logarithmically in the interval 10110superscript1011010^{-1}-1010 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT - 10 cm2 g-1 (range of values is motivated by results of radiative transfer simulations with realistic atomic data in Banerjee et al. 2023). β0subscript𝛽0\beta_{\rm{0}}italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is taken as 0.05 as suggested by post-merger mass ejection and GW170817 results (see Waxman et al. 2018; Fujibayashi et al. 2018). We take βm=0.4subscript𝛽m0.4\beta_{\rm{m}}=0.4italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.4 (also βm=0.3subscript𝛽m0.3\beta_{\rm{m}}=0.3italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.3, although the results are similar). Finally, we take n=2𝑛2n=2italic_n = 2 as expected from post-merger mass ejecta (i.e., constant mass ejection M˙eConst.proportional-tosubscript˙𝑀eConst\dot{M}_{\rm{e}}\propto\rm{Const.}over˙ start_ARG italic_M end_ARG start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT ∝ roman_Const .; n=3.5𝑛3.5n=3.5italic_n = 3.5 has also been considered, but the results are similar).

We focus on two observational facts: i) the early (5105105-105 - 10 h) blue KN emission associated with GRB 211211A is quite luminous (34×1042similar-toabsent34superscript1042\sim 3-4\times 10^{42}∼ 3 - 4 × 10 start_POSTSUPERSCRIPT 42 end_POSTSUPERSCRIPT erg s-1; see Table 2; Troja et al. 2022); ii) late observations at 4.4 d put an upper limit on the luminosity on the late red KN (in particular upper limit in R band by DOT; Troja et al. 2022). We search for combinations of KN models that can both reproduce the early brightness and that do not overpredict (overshoot) the late red KN emission.

3 Results

3.1 The light curve

To reproduce the bright bolometric luminosity of the early blue KN emission in GRB 211211A (see Table 2 and Troja et al. 2022), we search for viable r-process powered KN models. Via an r-process powered KN model, the bright early emission can be achieved by increasing the ratio Me/κsubscript𝑀e𝜅M_{\rm{e}}/\kappaitalic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT / italic_κ; as the photon diffusion time is κMeproportional-toabsent𝜅subscript𝑀e\propto\sqrt{\kappa M_{\rm{e}}}∝ square-root start_ARG italic_κ italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT end_ARG, and r-process energy EMproportional-to𝐸𝑀E\propto Mitalic_E ∝ italic_M, then LE/tMe/κproportional-to𝐿𝐸𝑡proportional-tosubscript𝑀e𝜅L\propto E/t\propto\sqrt{M_{\rm{e}}/\kappa}italic_L ∝ italic_E / italic_t ∝ square-root start_ARG italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT / italic_κ end_ARG.

We use n=2𝑛2n=2italic_n = 2 which corresponds to a constant mass ejecta rate M˙eConstproportional-tosubscript˙𝑀eConst\dot{M}_{\rm{e}}\propto\rm{Const}over˙ start_ARG italic_M end_ARG start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT ∝ roman_Const. As LKNt0.3proportional-tosubscript𝐿KNsuperscript𝑡0.3L_{\rm{KN}}\propto t^{-0.3}italic_L start_POSTSUBSCRIPT roman_KN end_POSTSUBSCRIPT ∝ italic_t start_POSTSUPERSCRIPT - 0.3 end_POSTSUPERSCRIPT at early times regardless of n𝑛nitalic_n, n𝑛nitalic_n has a limited effect. The impact of the parameter βmsubscript𝛽m\beta_{\rm{m}}italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT is also limited. This is because βmsubscript𝛽m\beta_{\rm{m}}italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT has a physically limited range (as <1absent1<1< 1), and the temperature dependence on it in this range is not strong. Also, as the kinetic energy of the merger ejecta is βm2proportional-toabsentsuperscriptsubscript𝛽m2\propto\beta_{\rm{m}}^{2}∝ italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, higher values (βm0.8similar-tosubscript𝛽m0.8\beta_{\rm{m}}\sim 0.8italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT ∼ 0.8) are not allowed as they imply very bright X-ray/radio emission from the merger ejecta, which has not been observed. The impact of β0subscript𝛽0\beta_{\rm{0}}italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is even weaker (as long as β0βmmuch-less-thansubscript𝛽0subscript𝛽m\beta_{\rm{0}}\ll\beta_{\rm{m}}italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≪ italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT).

Hence, either a low κ𝜅\kappaitalic_κ or a high Mesubscript𝑀eM_{\rm{e}}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT parameter space is expected to explain the bright early KN emission. However, it should be stressed that a KN model that overpredicts the late red KN emission (at 4similar-toabsent4\sim 4∼ 4 d) should also be ruled out. There are two important properties of r-process powered emission to recall: i) r-process energy deposition is t1.3proportional-toabsentsuperscript𝑡1.3\propto t^{-1.3}∝ italic_t start_POSTSUPERSCRIPT - 1.3 end_POSTSUPERSCRIPT and early emission is dominated by diffusion of trapped thermal energy which has a shallow luminosity evolution [t0.3proportional-toabsentsuperscript𝑡0.3\propto t^{-0.3}∝ italic_t start_POSTSUPERSCRIPT - 0.3 end_POSTSUPERSCRIPT at early times; see equation (7); see Section 2.1 and Figure 1]; and ii) luminosity at late times scales to the ejecta mass (Meproportional-toabsentsubscript𝑀e\propto M_{\rm{e}}∝ italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT). Hence, on one hand, employing a large ejecta mass model to explain the bright early KN emission can potentially overpredict the observed late red KN emission. On the other hand, adopting a low opacity (κ0.1similar-to𝜅0.1\kappa\sim 0.1italic_κ ∼ 0.1 cm2 g-1) and a less massive ejecta mass (0.02Msimilar-toabsent0.02subscript𝑀direct-product\sim 0.02\>M_{\odot}∼ 0.02 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT) could avoid the issue of overpredicting the late red KN emission; however, while this might reproduce the early bolometric luminosity, the emission would be shifted too far into bluer colors and will consequently underproduce (undershoot) the observed blue KN emission in optical bands. Adopting higher opacities (κ1similar-to𝜅1\kappa\sim 1italic_κ ∼ 1 cm2 g-1) would avoid this problem but, again, at the expense of making the early bolometric luminosity too faint to explain the early observations (5 h -- 10 h epoch) [similar effects can be seen in Figure 3 for Me0.04Msimilar-tosubscript𝑀e0.04subscript𝑀direct-productM_{\rm{e}}\sim 0.04\>M_{\odot}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT ∼ 0.04 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT and κ0.110similar-to𝜅0.110\kappa\sim 0.1-10italic_κ ∼ 0.1 - 10 cm2 g-1].

Figure 2 shows two light curves, the first from a blue KN model, and the second from a red KN model, chosen to reproduce early and late observations, respectively. The tendency of the blue KN model to overpredict the observed late red emission, as well as the tendency of the late red KN model to underpredict the early blue emission, is apparent. The overall time evolution of the observed KN emission (early to late KN emission in GRB 211211A; as well as AT2017gfo data) requiring a steeper power-law function (with an index between 11-1- 1 and 1.31.3-1.3- 1.3) than what is expected from r-process at early times [see equation (7) and Figure 1] is also apparent.

Refer to caption
Figure 2: The bolometric luminosity for a blue KN model (blue line; κ=1𝜅1\kappa=1italic_κ = 1 cm2 g-1 and Me=0.05Msubscript𝑀e0.05subscript𝑀direct-productM_{\rm{e}}=0.05\>M_{\odot}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT = 0.05 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT) that can explain the early KN emission in GRB 211211A (but overpredicts late KN emission); and a red KN model (red line; κ=10𝜅10\kappa=10italic_κ = 10 cm2 g-1 and Me=0.04Msubscript𝑀e0.04subscript𝑀direct-productM_{\rm{e}}=0.04\>M_{\odot}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT = 0.04 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT) that can explain the late KN emission in GRB 211211A (but underpredicts late KN emission). The observed KN emission in GRB 211211A (dark grey squares for our fit, and dark grey circles for Troja et al. 2022; see Table 2) and AT2017gfo (grey circles; data from Waxman et al. 2018) are shown. Dotted, dashed, and dotted dashed lines highlight time evolving power-law functions with indices of 0.30.3-0.3- 0.3, 1.01.0-1.0- 1.0, and 1.31.3-1.3- 1.3 respectively. This illustrates the difficulty of r-process powered KN models in explaining the fast time evolution of the KN emission in GRB 211211A. Other parameters of the KN models are β0=0.05subscript𝛽00.05\beta_{\rm{0}}=0.05italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0.05, βm=0.4subscript𝛽m0.4\beta_{\rm{m}}=0.4italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.4, and n=2𝑛2n=2italic_n = 2.

3.2 The SED

Figure 3 shows the SED for an afterglow and the r-process powered KNe models with varying opacities (κ=0.1𝜅0.1\kappa=0.1italic_κ = 0.1 cm2 g-1, κ=1𝜅1\kappa=1italic_κ = 1 cm2 g-1, and κ=10𝜅10\kappa=10italic_κ = 10 cm2 g-1, in light grey, dark grey, and black, respectively) and Me=0.04Msubscript𝑀e0.04subscript𝑀direct-productM_{\rm{e}}=0.04\>M_{\odot}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT = 0.04 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT. As explained in Section 3.1, low opacity tend to shift the SED to higher frequencies. Consequently, an r-process powered blue KN model with low opacity (κ=0.1𝜅0.1\kappa=0.1italic_κ = 0.1 cm2 g-1), although it can give a bright enough early blue emission, is inconsistent with early (and late) observations in terms of color (too blue). A moderate opacity of κ=1𝜅1\kappa=1italic_κ = 1 cm2 g-1, requires a higher mass to match early observations (5 h to 10 h); however, such high mass is incompatible with the late observations (1.4 d to 4.2 d), in particular such models overshoot the R-band upper-limit at the 4.2 d epoch (more precisely at 4.4 d; see Table 1 in Troja et al. 2022). Hence, we find that it is challenging to explain the entire data set even with a combination of two r-process powered KN models (blue KN and red KN models combined).

Refer to caption
Figure 3: SED of GRB 211211A and its time evolution. Five epochs are shown: 1 h (dark purple), 5 h (purple), 10 h (blue), 1.4 d (orange), and 4.2 d (red). Filled circles indicate detections, while triangles indicate upper limits. Central values for the X-ray’s photon index (dashed lines) and the corresponding incertitude (bow ties) are shown (see Section A). The afterglow model is shown at each epoch with a dotted line. Three r-process KN models are shown (using z=0.0762𝑧0.0762z=0.0762italic_z = 0.0762): A low opacity blue KN model (κ=0.1𝜅0.1\kappa=0.1italic_κ = 0.1 cm2 g-1 and Me=0.04Msubscript𝑀e0.04subscript𝑀direct-productM_{\rm{e}}=0.04\>M_{\odot}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT = 0.04 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT; light grey), a moderate opacity blue KN model (κ=1𝜅1\kappa=1italic_κ = 1 cm2 g-1 and Me=0.04Msubscript𝑀e0.04subscript𝑀direct-productM_{\rm{e}}=0.04\>M_{\odot}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT = 0.04 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT; dark grey), and a red KN model (κ=10𝜅10\kappa=10italic_κ = 10 cm2 g-1 and Me=0.04Msubscript𝑀e0.04subscript𝑀direct-productM_{\rm{e}}=0.04\>M_{\odot}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT = 0.04 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT; black). The inability of r-process powered blue KN models to explain both early observations without overproducing late emission is apparent. Also, the inconsistency of the low opacity model (light grey) with the color of early data is apparent. IR/Opt/UV data points were taken from Rastinejad et al. (2022); Troja et al. (2022) and X-ray data was taken from Troja et al. (2022). For clarity data is scaled at each epoch by the following factors 100superscript10010^{0}10 start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT, 100.8superscript100.810^{-0.8}10 start_POSTSUPERSCRIPT - 0.8 end_POSTSUPERSCRIPT, 101.6superscript101.610^{-1.6}10 start_POSTSUPERSCRIPT - 1.6 end_POSTSUPERSCRIPT, 102.4superscript102.410^{-2.4}10 start_POSTSUPERSCRIPT - 2.4 end_POSTSUPERSCRIPT, and 103.2superscript103.210^{-3.2}10 start_POSTSUPERSCRIPT - 3.2 end_POSTSUPERSCRIPT (same as in Troja et al. 2022). For a similar plot see Figure 2 in Troja et al. (2022) and Extended Data Figure 2 in Rastinejad et al. (2022).

3.3 Constraining κ𝜅\kappaitalic_κ & Mesubscript𝑀eM_{\rm{e}}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT

We investigate whether there are other possible r-process powered KN models, with different parameters, that could explain GRB 211211A’s data set. Our main parameters are Mesubscript𝑀eM_{\rm{e}}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT and κ𝜅\kappaitalic_κ; set to take 11 values each, in the range, 0.010.05M0.010.05subscript𝑀direct-product0.01-0.05\>M_{\odot}0.01 - 0.05 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, 0.1100.1100.1-100.1 - 10 cm2 g-1 respectively (see Section 2.2). The other parameters (βmsubscript𝛽m\beta_{\rm{m}}italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, β0subscript𝛽0\beta_{\rm{0}}italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, and n𝑛nitalic_n) have been explored individually but were found to have limited effects.

Refer to caption
Figure 4: The ejecta mass (Mesubscript𝑀eM_{\rm{e}}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT) and opacity (κ𝜅\kappaitalic_κ) parameter space for r-process powered KN models. Area constrained by the thick blue line (as indicated by the blue arrow) is where KN models are at least as bright as the early (5 h - 10 h) blue KN emission observed in GRB 211211A (within 1σ1𝜎1\sigma1 italic_σ); blue stripes indicate the parameter space where this is not the case (ruled out). Area constrained by the thick red line (as indicated by the red arrow) is where the KN models do not overpredict the late time red emission (1.4 d -- 4.2 d; see Figure 3); red stripes indicate the parameter space where this is not satisfied (ruled out). There is no eligible parameter space where both the early and late emission of the KN in GRB 211211A can be explained by a combination of two r-process powered KN models. Diamond symbols indicate the three KN models shown in Figure 3. The other parameters are taken as β0=0.05subscript𝛽00.05\beta_{\rm{0}}=0.05italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0.05, βm=0.4subscript𝛽m0.4\beta_{\rm{m}}=0.4italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.4 and n=2𝑛2n=2italic_n = 2 (found to have limited effects on the results).

Using our analytic model for r-process powered KN, and as a test of the hypothesis that the blue KN is r-process powered, we search for parameters where the KN associated with GRB 211211A can be explained in its entirety. First, we evaluate the bolometric luminosity, and rule out the parameter space where the r-process powered KN luminosity at early times (5 h -- 10 h) is less than that of the KN in GRB 211211A (by more than 1σ1𝜎1\sigma1 italic_σ; see Table 2). Then, we evaluate the observed νFν𝜈subscript𝐹𝜈\nu F_{\nu}italic_ν italic_F start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT, at late times (similar-to\sim1.4 d and similar-to\sim4.2 d), and rule out models that overshoot the data; in particular, the 3σ3𝜎3\sigma3 italic_σ R-band upper limit (by DOT; Gupta et al. 2021) at 4.4 d poses a strict constraint (see Figure 3; also see Figure 2 in Troja et al. 2022). It should be noted that these two criteria are quite conservative.

As shown in Figure 4, we find no parameter space where both criteria are fulfilled. In summary, the observed blue KN emission after GRB 211211A is so bright that in order to explain it via r-process, a large mass (and/or low κ𝜅\kappaitalic_κ) is required, which (due to the shallowness of the early KN light curve; see Figure 1) ends up overpredicting (and contradicting) the late red KN emission data. This result suggests a different origin for the early blue KN emission in GRB 211211A, other than “r-process”, such as the “central engine” [see Section 3].

4 The Alternative: Central Engine powered KN

In Section 3, we found that the r-process powered KN model has its limitations when explaining the early data in GRB 211211A; here we explore an alternative scenario.

It is important to highlight two important observational facts. First, observations of SGRBs (with a likely BNS merger origin) have consistently shown that, after the prompt phase, there is an extended/plateau phase (e.g., Barthelmy et al. 2005b; Norris & Bonnell 2006; Gompertz et al. 2013). This late phase is present in the majority of SGRBs (Kisaka et al. 2017), and it has been associated with late engine activity (Ioka et al. 2005). Second, follow-up observations of GRB 211211A by Fermi-LAT detected GeV emission at 104similar-toabsentsuperscript104\sim 10^{4}∼ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT s after the prompt emission (Mei et al. 2022). This late GeV emission has been explained with late central engine activity, launching a late (long-lasting) low-power jet that interacts with the KN (Kimura et al. 2019; Mei et al. 2022). Hence, these two observational facts support late engine activity launching a low-power jet in BNS merger systems, such as GRB 211211A and other SGRBs.

In an attempt to investigate the origin of the early blue KN emission in GRB 211211A, and find an alternative to the r-process powered KN scenario, we consider late central engine activity. Considering the timescale of the GeV emission (104similar-toabsentsuperscript104\sim 10^{4}∼ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT s after), we adopt a plateau-like long-lasting (104similar-toabsentsuperscript104\sim 10^{4}∼ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT s) and low-power engine (i.e., 10%similar-toabsentpercent10\sim 10\%∼ 10 % radiative efficiency). Since the typical luminosity of the plateau phase in X-rays is 1046similar-toabsentsuperscript1046\sim 10^{46}∼ 10 start_POSTSUPERSCRIPT 46 end_POSTSUPERSCRIPT erg s-1 (Kisaka et al. 2017), we consider a jet with a total power of 1047superscript104710^{47}10 start_POSTSUPERSCRIPT 47 end_POSTSUPERSCRIPT erg s-1. The late jet opening angle is not well understood from observations, however, considering that SGRB-jet opening angles (measured via jet break) are typically 6similar-toabsentsuperscript6\sim 6^{\circ}∼ 6 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT (Rouco Escorial et al. 2023), we take a jet with a comparable opening angle of 7.5superscript7.57.5^{\circ}7.5 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT.

In the central engine scenario, assuming the same ejecta as in the KN models, interaction of the central engine powered jet with the ejecta is considered. This jet-ejecta interaction produces a shock that converts kinetic energy into thermal energy, in the form of a hot “cocoon” component surrounding the jet. As this thermal energy diffuses out of the ejecta, it produces the emission. This emission is calculated analytically in two steps as follows.

In the first step, we solve the jet propagation through the merger ejecta (via jump conditions) using the analytic model in Hamidani et al. (2020); Hamidani & Ioka (2021), this allows us to estimate the time it takes the jet to break out of the ejecta, and estimate the amount of thermal energy produced via the jet-ejecta interaction in the form of a cocoon. For this, we use the above jet parameters (Liso,0=1047subscript𝐿iso0superscript1047L_{\rm{iso,0}}=10^{47}italic_L start_POSTSUBSCRIPT roman_iso , 0 end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT 47 end_POSTSUPERSCRIPT erg s-1 and θ0=7.5subscript𝜃0superscript7.5\theta_{\rm{0}}=7.5^{\circ}italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 7.5 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT) and the ejecta parameters that correspond to the red KN model: Me=0.04Msubscript𝑀e0.04subscript𝑀direct-productM_{\rm{e}}=0.04\>M_{\odot}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT = 0.04 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, n=2𝑛2n=2italic_n = 2, βm=0.4subscript𝛽m0.4\beta_{\rm{m}}=0.4italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.4, with the exception that we use a much smaller inner velocity β0=βm/100subscript𝛽0subscript𝛽m100\beta_{\rm{0}}=\beta_{\rm{m}}/100italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT / 100. The smaller inner velocity β0subscript𝛽0\beta_{\rm{0}}italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is motivated by the expected slower gravitationally bound component that is not relevant to the KN emission but is relevant to the jet propagation (at much earlier times). Note that the mass of this slower component is negligible (as n=2𝑛2n=2italic_n = 2 and Mβproportional-to𝑀𝛽M\propto\betaitalic_M ∝ italic_β), and the density profile here is the same as that in the red KN model.

In the second step, diffusion emission from the thermal energy produced in the jet-ejecta interaction is calculated analytically following Hamidani & Ioka (2023b, a)333It should be noted that, acceleration of ejecta shells due to energy supplied by the jet is assumed insignificant as the kinetic energy of the ejecta dominates (see Hamidani & Ioka 2023b).. We focus on the diffusion emission from the cocoon trapped inside the ejecta (<βmabsentsubscript𝛽m<\beta_{\rm{m}}< italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT) as this peaks at times relevant to the blue KN emission (see Appendix D in Hamidani et al. 2024). In addition, we estimate the ram pressure balance between the shocked ejecta (trapped cocoon) and the unshocked ejecta, to determine the lateral spreading velocity (βsubscript𝛽perpendicular-to\beta_{\perp}italic_β start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT) of the trapped cocoon; in the case where ββmgreater-than-or-equivalent-tosubscript𝛽perpendicular-tosubscript𝛽m\beta_{\perp}\gtrsim\beta_{\rm{m}}italic_β start_POSTSUBSCRIPT ⟂ end_POSTSUBSCRIPT ≳ italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, the trapped cocoon is considered to spread and reach a spherical asymptotic geometry. This was found to be the case for our central engine model444Here we did not consider the possibility of disintegration of r-process heavy element by the jet-cocoon shock (Horiuchi et al., 2012; Granot et al., 2023) because this would be inconsistent with observations of the late red KN..

Diffusion emission from the thermal energy deposited by the jet-ejecta interaction gives an additional luminosity term (LCEsubscript𝐿CEL_{\rm{CE}}italic_L start_POSTSUBSCRIPT roman_CE end_POSTSUBSCRIPT) in addition to the two r-process terms in equation (5) so that:

Ltot(t)=LKN(<βd,t)+LKN(βd,t)+LCE(<βd,t),L_{{\rm{tot}}}(t)=L_{{\rm{KN}}}(<\beta_{\rm{d}},t)+L_{{\rm{KN}}}(\geqslant% \beta_{\rm{d}},t)+L_{{\rm{CE}}}(<\beta_{\rm{d}},t),italic_L start_POSTSUBSCRIPT roman_tot end_POSTSUBSCRIPT ( italic_t ) = italic_L start_POSTSUBSCRIPT roman_KN end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) + italic_L start_POSTSUBSCRIPT roman_KN end_POSTSUBSCRIPT ( ⩾ italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) + italic_L start_POSTSUBSCRIPT roman_CE end_POSTSUBSCRIPT ( < italic_β start_POSTSUBSCRIPT roman_d end_POSTSUBSCRIPT , italic_t ) , (8)

and LCEsubscript𝐿CEL_{{\rm{CE}}}italic_L start_POSTSUBSCRIPT roman_CE end_POSTSUBSCRIPT can be found as [see equation (12) in Hamidani et al. 2024; for more details see their Appendix D]:

LCE2.6×1042 erg s-1(θ07.5)2(Liso,01047 erg s-1)(tb4.7×103 s)(κ10 cm2 g-1)p22(Me0.04M)p22(tobs5 h)p,subscript𝐿CE2.6superscript1042 erg s-1superscriptsubscript𝜃0superscript7.52subscript𝐿iso0superscript1047 erg s-1subscript𝑡b4.7superscript103 ssuperscript𝜅10 cm2 g-1𝑝22superscriptsubscript𝑀e0.04subscript𝑀direct-product𝑝22superscriptsubscript𝑡obs5 h𝑝\begin{split}&L_{{\rm{CE}}}\approx 2.6\times 10^{42}\text{ erg s${}^{-1}$}\\ &\left(\frac{\theta_{\rm{0}}}{7.5^{\circ}}\right)^{2}\left(\frac{L_{{\rm{iso,0% }}}}{10^{47}\text{ erg s${}^{-1}$}}\right)\left(\frac{t_{\rm{b}}}{4.7\times 10% ^{3}\text{ s}}\right)\left(\frac{\kappa}{\text{$10$ cm${}^{2}$ g${}^{-1}$}}% \right)^{\frac{p-2}{2}}\\ &\left(\frac{M_{\rm{e}}}{0.04\,{M_{\odot}}}\right)^{\frac{p-2}{2}}\left(\frac{% t_{\rm{obs}}}{5\text{ h}}\right)^{-p},\\ \end{split}start_ROW start_CELL end_CELL start_CELL italic_L start_POSTSUBSCRIPT roman_CE end_POSTSUBSCRIPT ≈ 2.6 × 10 start_POSTSUPERSCRIPT 42 end_POSTSUPERSCRIPT erg s end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL ( divide start_ARG italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG 7.5 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_L start_POSTSUBSCRIPT roman_iso , 0 end_POSTSUBSCRIPT end_ARG start_ARG 10 start_POSTSUPERSCRIPT 47 end_POSTSUPERSCRIPT erg s end_ARG ) ( divide start_ARG italic_t start_POSTSUBSCRIPT roman_b end_POSTSUBSCRIPT end_ARG start_ARG 4.7 × 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT s end_ARG ) ( divide start_ARG italic_κ end_ARG start_ARG 10 cm g end_ARG ) start_POSTSUPERSCRIPT divide start_ARG italic_p - 2 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL ( divide start_ARG italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT end_ARG start_ARG 0.04 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT divide start_ARG italic_p - 2 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG italic_t start_POSTSUBSCRIPT roman_obs end_POSTSUBSCRIPT end_ARG start_ARG 5 h end_ARG ) start_POSTSUPERSCRIPT - italic_p end_POSTSUPERSCRIPT , end_CELL end_ROW (9)

where the index p𝑝pitalic_p take values as p1similar-to𝑝1p\sim 1italic_p ∼ 1 (at 5similar-toabsent5\sim 5∼ 5 h 1010-10- 10 h) to p2similar-to𝑝2p\sim 2italic_p ∼ 2 (at 1similar-toabsent1\sim 1∼ 1 d 4.24.2-4.2- 4.2 d) which results in a steeper/faster time evolution than in the r-process model at early times [see equation (7)]. We use the exact same ejecta parameters as those of the red KN model (shown in Figures 2, 3, 5, and 6) to calculate LCEsubscript𝐿CEL_{{\rm{CE}}}italic_L start_POSTSUBSCRIPT roman_CE end_POSTSUBSCRIPT: κ=10𝜅10\kappa=10italic_κ = 10 cm2 g-1, βm=0.4subscript𝛽m0.4\beta_{\rm{m}}=0.4italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.4, n=2𝑛2n=2italic_n = 2, and β0=0.05subscript𝛽00.05\beta_{\rm{0}}=0.05italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0.05. Noting that this choice of parameters is for convenience, and should not be regarded as unique for central engine model.

In summary, with this central engine scenario, no additional KN components are required and only a single red ejecta component is used. Here the new consideration is the additional thermal energy from the jet-ejecta interaction.

Figure 5 shows the bolometric light curve of our central engine powered model. In comparison to the r-process powered blue KN model (see Figure 2), the central engine model light curve has a steeper decay. This fast evolution at early times is in contrast with the r-process model, as the issue of overpredicting the late red KN emission is avoided (see Section 3.1). This major difference is due to the thermal energy deposition at much earlier times relative to diffusion timescale in the central engine model; whereas thermal energy is constantly being supplied to the system in the r-process model (t1.3proportional-toabsentsuperscript𝑡1.3\propto t^{-1.3}∝ italic_t start_POSTSUPERSCRIPT - 1.3 end_POSTSUPERSCRIPT; see Section 2.1).

Refer to caption
Figure 5: Same as Figure 2. The bolometric luminosity of our alternative central engine model where a low-power jet launched by late engine activity interacts with the lanthenide rich ejecta to explain the early (<1absent1<1< 1 d) KN emission in GRB 211211A (blue line), while r-process explains the late (14141-41 - 4 d) red KN emission (red line) [see Figure 6 for the SED]. This model can explain GRB 211211A data with only one red ejecta component. Parameters of the jet in the central engine model are: jet isotropic equivalent luminosity Liso,0=1047subscript𝐿iso0superscript1047L_{\rm{iso,0}}=10^{47}italic_L start_POSTSUBSCRIPT roman_iso , 0 end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT 47 end_POSTSUPERSCRIPT erg s-1 and jet opening angle θ0=7.5subscript𝜃0superscript7.5\theta_{\rm{0}}=7.5^{\circ}italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 7.5 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT.

Although the late low-power jet has in total an energy budget that is on the order of a few %similar-toabsentpercenta few \sim\text{a few }\%∼ a few %555This can be found considering that the the isotropic equivalent energy of the prompt emission of GRB 211211A is 5×1051similar-toabsent5superscript1051\sim 5\times 10^{51}∼ 5 × 10 start_POSTSUPERSCRIPT 51 end_POSTSUPERSCRIPT erg s-1 (Yang et al. 2022), and that typical luminosity and duration of the average plateau phase gives an energy of 1046×1041050similar-toabsentsuperscript1046superscript104similar-tosuperscript1050\sim 10^{46}\times 10^{4}\sim 10^{50}∼ 10 start_POSTSUPERSCRIPT 46 end_POSTSUPERSCRIPT × 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ∼ 10 start_POSTSUPERSCRIPT 50 end_POSTSUPERSCRIPT erg (Kisaka et al. 2017). Radiation efficiencies were assumed to be comparable (ηγ10%similar-tosubscript𝜂𝛾percent10\eta_{\gamma}\sim 10\%italic_η start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ∼ 10 %; Matsumoto et al. 2020; Mei et al. 2022; Rouco Escorial et al. 2023; Hamidani et al. 2024). of that of the prompt jet, its blue KN-like emission is bright (e.g., compared to the prompt jet’s cocoon; see Hamidani et al. 2024; also see Nakar & Piran 2017; Gottlieb et al. 2018 for the prompt jet case). This is because: i) the system is expanding homologously and thermal energy is subjected to adiabatic cooling (as V13t1proportional-toabsentsuperscript𝑉13proportional-tosuperscript𝑡1\propto V^{-\frac{1}{3}}\propto t^{-1}∝ italic_V start_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT ∝ italic_t start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT); and ii) the blue KN peaks at 1similar-toabsent1\sim 1∼ 1 d 105similar-toabsentsuperscript105\sim 10^{5}∼ 10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT s. Therefore, by the peak time, ejecta heated by the prompt jet (launched at 1similar-toabsent1\sim 1∼ 1 s) would have cooled down adiabatically by a factor of 105similar-toabsentsuperscript105\sim 10^{-5}∼ 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT; whereas, ejecta heated by the late jet (launched at 104similar-toabsentsuperscript104\sim 10^{4}∼ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT s) cools down only by a factor of 101similar-toabsentsuperscript101\sim 10^{-1}∼ 10 start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, which combined with the low energy budget of the late jet would still make the late jet model 10100similar-toabsent10100\sim 10-100∼ 10 - 100 times brighter than the prompt jet model.

In Figure 6 the SED of the central engine powered model is presented (double lines). The fast temporal evolution of the central engine model is noticeable (to be contrasted with r-process models in Figure 3). Combined with the r-process powered red KN model, the central engine model is consistent with almost all data points at all epochs.

Refer to caption
Figure 6: Same as Figure 3. The SED of our alternative central engine model where a low-power jet launched by late engine activity interacts with the lanthenide rich ejecta to explain the early (5105105-105 - 10 h) blue KN emission in GRB 211211A (double lines), while r-process explains the late (1.44.21.44.21.4-4.21.4 - 4.2 d) red KN emission (black line; same model as in Figures 2 and 3). The central engine model, combined with the red KN model (solid colored lines), can explain both early and late emission data [see Figure 6 for the bolometric luminosity].

Besides naturally explaining the KN associated with GRB 211211A at all epochs, our central engine model is appealing in other aspects. Firstly, it is consistent with detection of extended/plateau emission in SGRBs; as highlighted in Table 1, this is also coherent with the detection of GeV emission in GRB 211211A and associated with the same type of jet (Mei et al. 2022). Hence, the consideration of a late jet is quite reasonable. In addition, the energy requirement for the late jet is just a few %similar-toabsentpercenta few \sim\text{a few }\%∼ a few % of that of the prompt jet, which could naturally be explained (e.g., by fall back accretion, magnetar energy injection).

Table 1: A summary of our results on the KN associated with GRB 211211A, showing the limitation of r-process powered KN models, and our suggested alternative model (central engine powered KN).
Early observations Late observations
Models [5105105-105 - 10 h] [1.44.21.44.21.4-4.21.4 - 4.2 d] Comment(s)
Blue r-process KN ×\times× Overpredicts late observations
Red r-process KN ×\times× Can only explain late observations
Central engine + Explain i) early and late observations together
red r-process KN and ii) late Fermi-LAT GeV emission (Mei et al. 2022)

Secondly, it only requires one single ejecta component. Here, this single ejecta component is red (i.e., lanthenide rich; Waxman et al. 2018), which is consistent with numerical relatively calculations showing that the red dynamical ejecta is faster, shielding the bluer post-merger ejecta, and giving the impression of an effectively red ejecta (Kawaguchi et al. 2018). There is no need to invoke a second blue (or even a third purple) component, whose parameters are not physically driven (Villar et al. 2017). In fact, they would typically require parameters that are not trivial considering numerical relativity calculation results (see Shibata et al. 2017; Fujibayashi et al. 2018; Siegel 2019); although recently other physical mechanisms have been suggested (e.g., Miller et al. 2019; Shibata et al. 2021; Just et al. 2023; also see Figure 9 in Kawaguchi et al. 2023).

The scenario of GRB central engine powered KN has been proposed in Kisaka et al. (2015, 2016) in general terms (and in Matsumoto et al. 2018 in the context of AT2017gfo/GW170817). It has been suggested that the prompt jet can affect the color of the KN emission (bluer Ciolfi & Kalinani 2020; Nativi et al. 2021; Combi & Siegel 2023; or redder Shrestha et al. 2023). Troja et al. (2022) pointed out the possibility of the GRB-jet’s contribution to the KN associated with GRB 211211A. Meng et al. (2024) argued for the same from statistical fitting of Troja et al. (2022)’s results using a one-zone cocoon model. However, their model is not reasonable as it assumes that the prompt jet somehow shocks most of the ejecta (0.01Msimilar-toabsent0.01subscript𝑀direct-product\sim 0.01\>M_{\odot}∼ 0.01 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT) in the timescale of 1similar-toabsent1\sim 1∼ 1 s (inconsistent with numerical simulations: Murguia-Berthier et al. 2014; Nagakura et al. 2014; Gottlieb et al. 2018; Hamidani & Ioka 2021; etc.) depositing large amounts of thermal energy (also inconsistent with numerical simulations showing that kinetic energy dominates; see Figure 1 in Hamidani & Ioka 2021), which gives inappropriate luminosity and temperature estimates when compared with numerical simulation estimates (Gottlieb et al. 2018, 2023b) and realistic analytic modeling (in particular; see Section 4.3.2 in Hamidani & Ioka 2023b; Section 5.5 Hamidani & Ioka 2023a). Here, we demonstrate that energy injection from a long-lived central engine can naturally explain the KN associated with GRB 211211A; with the crucial difference being, instead of the prompt jet, we suggest a late low-power plateau-like jet with a reasonable energy budget of a few %similar-toabsentpercenta few \sim\text{a few }\%∼ a few % of the prompt jet’s energy.

5 Discussion & Conclusion

Here, we revisited the early blue KN emission in GRB 211211A to better investigate its origin, having been previously explained using r-process heating.

We have presented a fully analytic KN model (Section 2.1) and explained that r-process powered KNe follow a shallow temporal evolution at early times (LKNt0.3proportional-tosubscript𝐿KNsuperscript𝑡0.3L_{{\rm{KN}}}\propto t^{-0.3}italic_L start_POSTSUBSCRIPT roman_KN end_POSTSUBSCRIPT ∝ italic_t start_POSTSUPERSCRIPT - 0.3 end_POSTSUPERSCRIPT) due to the continuous r-process energy deposition and the dominance of the diffusion of trapped thermal energy at early times (see Figure 1). We then applied our model to the KN in the afterglow of GRB 211211A (Section 2.2).

Our results indicate that the light curve of the early blue KN emission in GRB 211211A has a temporal evolution that is too fast to be explained via our analytic models (Section 3.1), even with a wide parameter space (Me0.01M0.05Msimilar-tosubscript𝑀e0.01subscript𝑀direct-product0.05subscript𝑀direct-productM_{\rm{e}}\sim 0.01\>M_{\odot}-0.05\>M_{\odot}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT ∼ 0.01 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT - 0.05 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT, and κ0.110similar-to𝜅0.110\kappa\sim 0.1-10italic_κ ∼ 0.1 - 10 cm2 g-1, βm0.40.5similar-tosubscript𝛽m0.40.5\beta_{\rm{m}}\sim 0.4-0.5italic_β start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT ∼ 0.4 - 0.5, and n23.5similar-to𝑛23.5n\sim 2-3.5italic_n ∼ 2 - 3.5). The main issue being that the early data is too bright, and in order to explain this via the r-process powered blue KN models, the required mass is large so that it leads to an overprediction of the red KN emission observed at late times; whereas the red KN model is too dim at early times to explain the early bright blue KN emission (see Figure 2). Employing low-opacity low-mass blue KN models is not ideal either, as the resulting colors are too blue to be consistent with early data (see Figure 3). As a result, over our wide parameter space, we did not find any combination of two r-process powered KN models (i.e., two component) that could explain the entire data set of GRB 211211A (see Figure 4).

We argue that the early data (5 -- 10 h) in GRB 211211A, may not be predominantly r-process powered. Our alternative is a central engine powered KN. We suggest that a low-power jet from late engine activity that interacts with the merger ejecta, offers a more natural explanation; which is consistent with observations indicating that the majority of SGRBs have late long-lasting extended/plateau emission phases after the prompt emission (Kisaka et al. 2017). Also, GeV emission observed 104similar-toabsentsuperscript104\sim 10^{4}∼ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT s after the GRB 211211A has been explained with the same type of engine activity, jet, and timescale (Mei et al. 2022). We showed that such a low-power jet (1046similar-toabsentsuperscript1046\sim 10^{46}∼ 10 start_POSTSUPERSCRIPT 46 end_POSTSUPERSCRIPT erg s-1 in X-ray) with its typical opening angle (7.5similar-toabsentsuperscript7.5\sim 7.5^{\circ}∼ 7.5 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT), explains naturally the bolometric light curve (see Figure 5), and the SED at all epochs (see Figure 6; see Table 1).

Hence, our conclusion is that the early blue KN emission in GRB 211211A hints to late engine activity. This suggests that after the prompt emission, a late low-power engine activity phase may be quite common in SGRBs, and also potentially in LGRBs (as X-ray flares; Nousek et al. 2006). We argue that the interaction of this late jet with the surrounding ejecta could not have been identified in most standard/cosmological GRBs due to its faintness at large distances. In the multi-messenger event GW170817/AT2017gfo, the first observations started at 10similar-toabsent10\sim 10∼ 10 h, hence any early blue emission has been missed. However, GRB 211211A as a nearby, well observed event, may have opened a new window to indirectly probe the evolution of the central engine of GRBs at later times after the prompt phase. Rossi et al. (2020) suggested that several KNe candidates associate with SGRBs show exceptionally bright blue KNe (e.g., GRB 050724, GRB 060614, and GRB 070714B) while their red KNe are typical; this is challenging to explain with r-process heating but can be explained naturally with our scenario of a late low-power jet.

Our result shows that a typical late-low-power jet model (1046similar-toabsentsuperscript1046\sim 10^{46}∼ 10 start_POSTSUPERSCRIPT 46 end_POSTSUPERSCRIPT erg s-1 in X-ray; and 7.5similar-toabsentsuperscript7.5\sim 7.5^{\circ}∼ 7.5 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT) synergies well with the red ejecta component to explain the blue KN. However, it should be noted that alternative jet models may be viable. Different central engine powered models such as the magnetar model have not been investigated here (Metzger et al. 2018; Yu et al. 2013). However, high neutrino radiation from the deferentially rotating hyper massive NS remnant can be a potential issue, as neutrinos increase the electron fraction (Yesubscript𝑌eY_{\rm{e}}italic_Y start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT) of the ejecta and suppress nucleosynthesis of heavy elements which would be at odds with the red KN emission (Metzger & Fernández 2014)666It should be noted that recent works indicate that even in cases where the remnant is a BH the disk outflow tend to have a higher Yesubscript𝑌eY_{\rm{e}}italic_Y start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT (see Fujibayashi et al. 2020; Just et al. 2022) and hence, the formation mechanism of high-opacity massive ejecta is still being investigated; although MHD effects may favor lower Yesubscript𝑌eY_{\rm{e}}italic_Y start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT values (Kiuchi et al. 2023).. Additionally, the magnetar model could face the issue of producing a KN that is too bright when compared to the observations (Wang et al. 2024a), and even if the magnetar outflow is collimated and on-axis (Wang et al. 2024b), GRB 211211A would be expected to have a much brighter KN. Finally, the magnetar model may not have as coherent an explanation for the GeV emission in GRB 211211A as our low-power-jet model (Mei et al. 2022).

Our main finding here is that the current r-process powered blue KN models struggle at explaining the observed emission after GRB 211211A. Here, we used a simplified model of the heating rate (t1.3proportional-toabsentsuperscript𝑡1.3\propto t^{-1.3}∝ italic_t start_POSTSUPERSCRIPT - 1.3 end_POSTSUPERSCRIPT), however, it should be stressed that r-process models are still incomplete and uncertain (Zhu et al. 2021; Barnes et al. 2021; Mumpower et al. 2024)777Is it worth noting that with revised heating rates, Sarin & Rosswog (2024) found that the decline rates of KN are typically overestimated (i.e., they decline more slowly than classically considered with simple models). This further supports our conclusion.. For instance, the heating rate could have a steeper decay for some very specific models (with high Yesubscript𝑌eY_{\rm{e}}italic_Y start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT, see Figure 5 in Wanajo et al. 2014). Although, such models are not typical, they could present an alternative explanation for the KN emission following GRB 211211A. It should be stressed that we do not rule out the existence of the r-process powered blue KN, or the existence of a blue (or purple) ejecta component. Instead, we indicate that it is subdominant in luminosity and cannot fully explain the observed early emission. Hence, it could still coexist with the engine-powered emission in our scenario.

It should also be noted, that in terms of radiative transfer, our result relied on two simplifications: grey opacity (although the adopted values are compatible with realistic radioactive transfer simulations Banerjee et al. 2023), and a single-temperature blackbody model. In reality, radiative transfer in the KN ejecta can be more complex, which could result in a more fluctuating light curve (although at short timescales; see Banerjee et al. 2023), and reprocessing of radiation.

Also, we explored a wide parameter space (in particular for κ𝜅\kappaitalic_κ and Mesubscript𝑀eM_{\rm{e}}italic_M start_POSTSUBSCRIPT roman_e end_POSTSUBSCRIPT) that, with the current understanding, is expected to cover a typical BNS event; however, considering the diversity in BNS and BH-NS mergers, extreme parameters that we did not cover could be possible in nature (e.g., see Kawaguchi et al. 2024).

Finally, despite the KN of GRB 211211A being nearby and well observed, there are gaps in observations (in particular the SED), and systematic uncertainties; especially considering uncertainties in afterglow modeling (Lamb et al. 2022). Hence, although we disfavor the current r-process model, more research (e.g., nuclear physics and r-process nucleosynthesis) and more observations are needed to reach a more general conclusion.

With more GRB-related missions available, such as Einstein Probe (Yuan et al. 2015) and SVOM (Cordier et al. 2015), and in the near future ULTRASAT (Shvartzvald et al. 2024), HiZ-GUNDAM (Yonetoku et al. 2020), THESEUS (Amati et al. 2018), etc., the prospect of more, and very early observations/follow-ups of GRBs, BNS/BH-NS mergers, and X-ray transients is promising. Our proposed scenario of engine powered early kilonova, can be tested with such future observations; together with the scenario of r-process powered KN.

6 Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

We thank Alessio Mei, Ayari Kitamura, Kazumi Kashiyama, Kunihito Ioka, Nanae Domoto, Norita Kawanaka, Om S. Salafia, Sho Fujibayashi, Smaranika Banerjee, Tomoki Wada, and Wataru Ishizaki for their fruitful discussions and comments. This research was supported by Japan Science and Technology Agency (JST) FOREST Program (Grant Number JPMJFR212Y), the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (19H00694, 20H00158, 20H00179, 21H04997, 23H00127, 23H04894, 23H04891, 23H05432, and 23K19059), JSPS Bilateral Joint Research Project, and National Institute for Fusion Science (NIFS) Collaborative Research Program (NIFS22KIIF005). This work was partly supported by JSPS KAKENHI nos. 22K14028, 21H04487, and 23H04899 (S.S.K.). S.S.K. acknowledges the support by the Tohoku Initiative for Fostering Global Researchers for Interdisciplinary Sciences (TI-FRIS) of MEXT’s Strategic Professional Development Program for Young Researchers. Numerical computations were achieved thanks to the following: Cray XC50 of the Center for Computational Astrophysics at the National Astronomical Observatory of Japan, and Cray XC40 at the Yukawa Institute Computer Facility.

References

  • Abbott et al. (2017a) Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a, Physical Review Letters, 119, 161101, doi: 10.1103/PhysRevLett.119.161101
  • Abbott et al. (2017b) —. 2017b, ApJ, 848, L13, doi: 10.3847/2041-8213/aa920c
  • Acciari et al. (2021) Acciari, V. A., Ansoldi, S., Antonelli, L. A., et al. 2021, ApJ, 908, 90, doi: 10.3847/1538-4357/abd249
  • Amati et al. (2018) Amati, L., O’Brien, P., Götz, D., et al. 2018, Advances in Space Research, 62, 191, doi: 10.1016/j.asr.2018.03.010
  • Arnett (1982) Arnett, W. D. 1982, ApJ, 253, 785, doi: 10.1086/159681
  • Banerjee et al. (2023) Banerjee, S., Tanaka, M., Kato, D., & Gaigalas, G. 2023, arXiv e-prints, arXiv:2304.05810, doi: 10.48550/arXiv.2304.05810
  • Barnes et al. (2016) Barnes, J., Kasen, D., Wu, M.-R., & Martínez-Pinedo, G. 2016, ApJ, 829, 110, doi: 10.3847/0004-637X/829/2/110
  • Barnes et al. (2021) Barnes, J., Zhu, Y. L., Lund, K. A., et al. 2021, ApJ, 918, 44, doi: 10.3847/1538-4357/ac0aec
  • Barthelmy et al. (2005a) Barthelmy, S. D., Chincarini, G., Burrows, D. N., et al. 2005a, Nature, 438, 994, doi: 10.1038/nature04392
  • Barthelmy et al. (2005b) Barthelmy, S. D., Cannizzo, J. K., Gehrels, N., et al. 2005b, ApJ, 635, L133, doi: 10.1086/499432
  • Burrows et al. (2005) Burrows, D. N., Romano, P., Falcone, A., et al. 2005, Science, 309, 1833, doi: 10.1126/science.1116168
  • Ciolfi & Kalinani (2020) Ciolfi, R., & Kalinani, J. V. 2020, ApJ, 900, L35, doi: 10.3847/2041-8213/abb240
  • Combi & Siegel (2023) Combi, L., & Siegel, D. M. 2023, Phys. Rev. Lett., 131, 231402, doi: 10.1103/PhysRevLett.131.231402
  • Cordier et al. (2015) Cordier, B., Wei, J., Atteia, J. L., et al. 2015, arXiv e-prints, arXiv:1512.03323, doi: 10.48550/arXiv.1512.03323
  • Drout et al. (2017) Drout, M. R., Piro, A. L., Shappee, B. J., et al. 2017, Science, 358, 1570, doi: 10.1126/science.aaq0049
  • Fong et al. (2010) Fong, W., Berger, E., & Fox, D. B. 2010, ApJ, 708, 9, doi: 10.1088/0004-637X/708/1/9
  • Fujibayashi et al. (2018) Fujibayashi, S., Kiuchi, K., Nishimura, N., Sekiguchi, Y., & Shibata, M. 2018, ApJ, 860, 64, doi: 10.3847/1538-4357/aabafd
  • Fujibayashi et al. (2020) Fujibayashi, S., Shibata, M., Wanajo, S., et al. 2020, Phys. Rev. D, 101, 083029, doi: 10.1103/PhysRevD.101.083029
  • Gao et al. (2022) Gao, H., Lei, W.-H., & Zhu, Z.-P. 2022, ApJ, 934, L12, doi: 10.3847/2041-8213/ac80c7
  • Gillanders et al. (2023) Gillanders, J. H., Troja, E., Fryer, C. L., et al. 2023, arXiv e-prints, arXiv:2308.00633, doi: 10.48550/arXiv.2308.00633
  • Gompertz et al. (2013) Gompertz, B. P., O’Brien, P. T., Wynn, G. A., & Rowlinson, A. 2013, MNRAS, 431, 1745, doi: 10.1093/mnras/stt293
  • Goodman (1986) Goodman, J. 1986, ApJ, 308, L47, doi: 10.1086/184741
  • Gottlieb et al. (2018) Gottlieb, O., Nakar, E., & Piran, T. 2018, MNRAS, 473, 576, doi: 10.1093/mnras/stx2357
  • Gottlieb et al. (2023a) Gottlieb, O., Metzger, B. D., Quataert, E., et al. 2023a, ApJ, 958, L33, doi: 10.3847/2041-8213/ad096e
  • Gottlieb et al. (2023b) Gottlieb, O., Issa, D., Jacquemin-Ide, J., et al. 2023b, ApJ, 953, L11, doi: 10.3847/2041-8213/acec4a
  • Granot et al. (2023) Granot, A., Levinson, A., & Nakar, E. 2023, arXiv e-prints, arXiv:2305.08575, doi: 10.48550/arXiv.2305.08575
  • Gupta et al. (2021) Gupta, R., Pandey, S. B., Ror, A., et al. 2021, GRB Coordinates Network, 31299, 1
  • Hamidani & Ioka (2021) Hamidani, H., & Ioka, K. 2021, MNRAS, 500, 627, doi: 10.1093/mnras/staa3276
  • Hamidani & Ioka (2023a) —. 2023a, MNRAS, 524, 4841, doi: 10.1093/mnras/stad1933
  • Hamidani & Ioka (2023b) —. 2023b, MNRAS, 520, 1111, doi: 10.1093/mnras/stad041
  • Hamidani et al. (2024) Hamidani, H., Kimura, S. S., Tanaka, M., & Ioka, K. 2024, ApJ, 963, 137, doi: 10.3847/1538-4357/ad20d0
  • Hamidani et al. (2020) Hamidani, H., Kiuchi, K., & Ioka, K. 2020, MNRAS, 491, 3192, doi: 10.1093/mnras/stz3231
  • Horiuchi et al. (2012) Horiuchi, S., Murase, K., Ioka, K., & Mészáros, P. 2012, ApJ, 753, 69, doi: 10.1088/0004-637X/753/1/69
  • Hotokezaka & Nakar (2020) Hotokezaka, K., & Nakar, E. 2020, ApJ, 891, 152, doi: 10.3847/1538-4357/ab6a98
  • Hotokezaka et al. (2023) Hotokezaka, K., Tanaka, M., Kato, D., & Gaigalas, G. 2023, MNRAS, 526, L155, doi: 10.1093/mnrasl/slad128
  • Hotokezaka et al. (2016) Hotokezaka, K., Wanajo, S., Tanaka, M., et al. 2016, MNRAS, 459, 35, doi: 10.1093/mnras/stw404
  • Ioka et al. (2005) Ioka, K., Kobayashi, S., & Zhang, B. 2005, ApJ, 631, 429, doi: 10.1086/432567
  • Ishizaki et al. (2021) Ishizaki, W., Kiuchi, K., Ioka, K., & Wanajo, S. 2021, ApJ, 922, 185, doi: 10.3847/1538-4357/ac23d9
  • Iwamoto et al. (1998) Iwamoto, K., Mazzali, P. A., Nomoto, K., et al. 1998, Nature, 395, 672, doi: 10.1038/27155
  • Just et al. (2022) Just, O., Goriely, S., Janka, H. T., Nagataki, S., & Bauswein, A. 2022, MNRAS, 509, 1377, doi: 10.1093/mnras/stab2861
  • Just et al. (2023) Just, O., Vijayan, V., Xiong, Z., et al. 2023, ApJ, 951, L12, doi: 10.3847/2041-8213/acdad2
  • Kagawa et al. (2019) Kagawa, Y., Yonetoku, D., Sawano, T., et al. 2019, ApJ, 877, 147, doi: 10.3847/1538-4357/ab1bd6
  • Kasen & Barnes (2019) Kasen, D., & Barnes, J. 2019, ApJ, 876, 128, doi: 10.3847/1538-4357/ab06c2
  • Kasliwal et al. (2017) Kasliwal, M. M., Nakar, E., Singer, L. P., et al. 2017, Science, 358, 1559, doi: 10.1126/science.aap9455
  • Kawaguchi et al. (2024) Kawaguchi, K., Domoto, N., Fujibayashi, S., et al. 2024, arXiv e-prints, arXiv:2404.15027, doi: 10.48550/arXiv.2404.15027
  • Kawaguchi et al. (2023) Kawaguchi, K., Fujibayashi, S., Domoto, N., et al. 2023, MNRAS, 525, 3384, doi: 10.1093/mnras/stad2430
  • Kawaguchi et al. (2018) Kawaguchi, K., Shibata, M., & Tanaka, M. 2018, ApJ, 865, L21, doi: 10.3847/2041-8213/aade02
  • Kimura et al. (2019) Kimura, S. S., Murase, K., Ioka, K., et al. 2019, ApJ, 887, L16, doi: 10.3847/2041-8213/ab59e1
  • Kisaka & Ioka (2015) Kisaka, S., & Ioka, K. 2015, ApJ, 804, L16, doi: 10.1088/2041-8205/804/1/L16
  • Kisaka et al. (2016) Kisaka, S., Ioka, K., & Nakar, E. 2016, ApJ, 818, 104, doi: 10.3847/0004-637X/818/2/104
  • Kisaka et al. (2017) Kisaka, S., Ioka, K., & Sakamoto, T. 2017, ApJ, 846, 142, doi: 10.3847/1538-4357/aa8775
  • Kisaka et al. (2015) Kisaka, S., Ioka, K., & Takami, H. 2015, ApJ, 802, 119, doi: 10.1088/0004-637X/802/2/119
  • Kiuchi et al. (2023) Kiuchi, K., Fujibayashi, S., Hayashi, K., et al. 2023, Phys. Rev. Lett., 131, 011401, doi: 10.1103/PhysRevLett.131.011401
  • Kouveliotou et al. (1993) Kouveliotou, C., Meegan, C. A., Fishman, G. J., et al. 1993, ApJ, 413, L101, doi: 10.1086/186969
  • Kulkarni (2005) Kulkarni, S. R. 2005, arXiv e-prints, astro. https://arxiv.org/abs/astro-ph/0510256
  • Lamb et al. (2021) Lamb, G. P., Kann, D. A., Fernández, J. J., et al. 2021, MNRAS, 506, 4163, doi: 10.1093/mnras/stab2071
  • Lamb et al. (2018) Lamb, G. P., Mandel, I., & Resmi, L. 2018, MNRAS, 481, 2581, doi: 10.1093/mnras/sty2196
  • Lamb et al. (2022) Lamb, G. P., Nativi, L., Rosswog, S., et al. 2022, Universe, 8, 612, doi: 10.3390/universe8120612
  • Lamb et al. (2019) Lamb, G. P., Tanvir, N. R., Levan, A. J., et al. 2019, ApJ, 883, 48, doi: 10.3847/1538-4357/ab38bb
  • Levan et al. (2024) Levan, A. J., Gompertz, B. P., Salafia, O. S., et al. 2024, Nature, 626, 737, doi: 10.1038/s41586-023-06759-1
  • Li & Paczyński (1998) Li, L.-X., & Paczyński, B. 1998, ApJ, 507, L59, doi: 10.1086/311680
  • MacFadyen & Woosley (1999) MacFadyen, A. I., & Woosley, S. E. 1999, ApJ, 524, 262, doi: 10.1086/307790
  • Matsumoto et al. (2018) Matsumoto, T., Ioka, K., Kisaka, S., & Nakar, E. 2018, ApJ, 861, 55, doi: 10.3847/1538-4357/aac4a8
  • Matsumoto et al. (2020) Matsumoto, T., Kimura, S. S., Murase, K., & Mészáros, P. 2020, MNRAS, 493, 783, doi: 10.1093/mnras/staa305
  • Mei et al. (2022) Mei, A., Banerjee, B., Oganesyan, G., et al. 2022, Nature, 612, 236, doi: 10.1038/s41586-022-05404-7
  • Meng et al. (2024) Meng, Y.-Z., Wang, X. I., & Liu, Z.-K. 2024, ApJ, 963, 112, doi: 10.3847/1538-4357/ad1bd7
  • Metzger & Fernández (2014) Metzger, B. D., & Fernández, R. 2014, MNRAS, 441, 3444, doi: 10.1093/mnras/stu802
  • Metzger et al. (2018) Metzger, B. D., Thompson, T. A., & Quataert, E. 2018, ApJ, 856, 101, doi: 10.3847/1538-4357/aab095
  • Metzger et al. (2010) Metzger, B. D., Martínez-Pinedo, G., Darbha, S., et al. 2010, MNRAS, 406, 2650, doi: 10.1111/j.1365-2966.2010.16864.x
  • Miller et al. (2019) Miller, J. M., Ryan, B. R., Dolence, J. C., et al. 2019, Phys. Rev. D, 100, 023008, doi: 10.1103/PhysRevD.100.023008
  • Mumpower et al. (2024) Mumpower, M. R., Sprouse, T. M., Miller, J. M., et al. 2024, arXiv e-prints, arXiv:2404.03699, doi: 10.48550/arXiv.2404.03699
  • Murguia-Berthier et al. (2014) Murguia-Berthier, A., Montes, G., Ramirez-Ruiz, E., De Colle, F., & Lee, W. H. 2014, ApJ, 788, L8, doi: 10.1088/2041-8205/788/1/L8
  • Nagakura et al. (2014) Nagakura, H., Hotokezaka, K., Sekiguchi, Y., Shibata, M., & Ioka, K. 2014, ApJ, 784, L28, doi: 10.1088/2041-8205/784/2/L28
  • Nakar & Piran (2017) Nakar, E., & Piran, T. 2017, ApJ, 834, 28, doi: 10.3847/1538-4357/834/1/28
  • Nakar & Sari (2012) Nakar, E., & Sari, R. 2012, ApJ, 747, 88, doi: 10.1088/0004-637X/747/2/88
  • Nativi et al. (2021) Nativi, L., Bulla, M., Rosswog, S., et al. 2021, MNRAS, 500, 1772, doi: 10.1093/mnras/staa3337
  • Norris & Bonnell (2006) Norris, J. P., & Bonnell, J. T. 2006, ApJ, 643, 266, doi: 10.1086/502796
  • Nousek et al. (2006) Nousek, J. A., Kouveliotou, C., Grupe, D., et al. 2006, ApJ, 642, 389, doi: 10.1086/500724
  • Paczynski (1986) Paczynski, B. 1986, ApJ, 308, L43, doi: 10.1086/184740
  • Rastinejad et al. (2022) Rastinejad, J. C., Gompertz, B. P., Levan, A. J., et al. 2022, Nature, 612, 223, doi: 10.1038/s41586-022-05390-w
  • Rossi et al. (2020) Rossi, A., Stratta, G., Maiorano, E., et al. 2020, MNRAS, 493, 3379, doi: 10.1093/mnras/staa479
  • Rosswog et al. (2017) Rosswog, S., Feindt, U., Korobkin, O., et al. 2017, Classical and Quantum Gravity, 34, 104001, doi: 10.1088/1361-6382/aa68a9
  • Rouco Escorial et al. (2023) Rouco Escorial, A., Fong, W., Berger, E., et al. 2023, ApJ, 959, 13, doi: 10.3847/1538-4357/acf830
  • Sarin & Rosswog (2024) Sarin, N., & Rosswog, S. 2024, arXiv e-prints, arXiv:2404.07271, doi: 10.48550/arXiv.2404.07271
  • Shibata et al. (2017) Shibata, M., Fujibayashi, S., Hotokezaka, K., et al. 2017, Phys. Rev. D, 96, 123012, doi: 10.1103/PhysRevD.96.123012
  • Shibata et al. (2021) Shibata, M., Fujibayashi, S., & Sekiguchi, Y. 2021, Phys. Rev. D, 104, 063026, doi: 10.1103/PhysRevD.104.063026
  • Shrestha et al. (2023) Shrestha, M., Bulla, M., Nativi, L., et al. 2023, MNRAS, 523, 2990, doi: 10.1093/mnras/stad1583
  • Shvartzvald et al. (2024) Shvartzvald, Y., Waxman, E., Gal-Yam, A., et al. 2024, ApJ, 964, 74, doi: 10.3847/1538-4357/ad2704
  • Siegel (2019) Siegel, D. M. 2019, European Physical Journal A, 55, 203, doi: 10.1140/epja/i2019-12888-9
  • Stanek et al. (2003) Stanek, K. Z., Matheson, T., Garnavich, P. M., et al. 2003, ApJ, 591, L17, doi: 10.1086/376976
  • Tanaka et al. (2017) Tanaka, M., Utsumi, Y., Mazzali, P. A., et al. 2017, PASJ, 69, 102, doi: 10.1093/pasj/psx121
  • Troja et al. (2022) Troja, E., Fryer, C. L., O’Connor, B., et al. 2022, Nature, 612, 228, doi: 10.1038/s41586-022-05327-3
  • Villar et al. (2017) Villar, V. A., Guillochon, J., Berger, E., et al. 2017, ApJ, 851, L21, doi: 10.3847/2041-8213/aa9c84
  • Wanajo et al. (2014) Wanajo, S., Sekiguchi, Y., Nishimura, N., et al. 2014, ApJ, 789, L39, doi: 10.1088/2041-8205/789/2/L39
  • Wang et al. (2024a) Wang, H., Beniamini, P., & Giannios, D. 2024a, MNRAS, 527, 5166, doi: 10.1093/mnras/stad3560
  • Wang et al. (2024b) Wang, Y., Zhang, B., & Zhu, Z. 2024b, MNRAS, 528, 3705, doi: 10.1093/mnras/stae136
  • Waxman et al. (2019) Waxman, E., Ofek, E. O., & Kushnir, D. 2019, ApJ, 878, 93, doi: 10.3847/1538-4357/ab1f71
  • Waxman et al. (2018) Waxman, E., Ofek, E. O., Kushnir, D., & Gal-Yam, A. 2018, MNRAS, 481, 3423, doi: 10.1093/mnras/sty2441
  • Yang et al. (2022) Yang, J., Ai, S., Zhang, B.-B., et al. 2022, Nature, 612, 232, doi: 10.1038/s41586-022-05403-8
  • Yonetoku et al. (2020) Yonetoku, D., Mihara, T., Doi, A., et al. 2020, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 11444, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 114442Z, doi: 10.1117/12.2560603
  • Yu et al. (2013) Yu, Y.-W., Zhang, B., & Gao, H. 2013, ApJ, 776, L40, doi: 10.1088/2041-8205/776/2/L40
  • Yuan et al. (2015) Yuan, W., Zhang, C., Feng, H., et al. 2015, arXiv e-prints, arXiv:1506.07735, doi: 10.48550/arXiv.1506.07735
  • Zhang et al. (2021) Zhang, B. T., Murase, K., Yuan, C., Kimura, S. S., & Mészáros, P. 2021, ApJ, 908, L36, doi: 10.3847/2041-8213/abe0b0
  • Zhang et al. (2022) Zhang, H.-M., Huang, Y.-Y., Zheng, J.-H., Liu, R.-Y., & Wang, X.-Y. 2022, ApJ, 933, L22, doi: 10.3847/2041-8213/ac7b23
  • Zhu et al. (2021) Zhu, Y. L., Lund, K. A., Barnes, J., et al. 2021, ApJ, 906, 94, doi: 10.3847/1538-4357/abc69e

Appendix A Data of the KN in GRB 211211A

GRB 211211A’s photometric data infrared/optical/UV data is gathered from the literature (Rastinejad et al. 2022; Troja et al. 2022). Similarly to Troja et al. (2022) we consider 5 epochs as a function of the observed time (since the GRB): 1 h, 5 h, 10 h, 1.4 d, and 4.2 d.

X-ray data is obtained from Swift’s burst analyser webpage888https://www.swift.ac.uk/burst_analyser/01088940/. X-ray data is integrated over the intervals 3.5×1033.5superscript1033.5\times 10^{3}3.5 × 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT s -- 5×1035superscript1035\times 10^{3}5 × 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT s, 15.9×10315.9superscript10315.9\times 10^{3}15.9 × 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT s -- 22.1×10322.1superscript10322.1\times 10^{3}22.1 × 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT, 20.0×10320.0superscript10320.0\times 10^{3}20.0 × 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT -- 64.8×10364.8superscript10364.8\times 10^{3}64.8 × 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT, and 50.0×10350.0superscript10350.0\times 10^{3}50.0 × 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT s -- 300.0×103300.0superscript103300.0\times 10^{3}300.0 × 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT s, so that the logarithmic central times correspond to the times of each respective epoch (all epochs except 4.2 d). For each epoch we determine the photon index (ΓΓ\Gammaroman_Γ) and the normalization level. Considering uncertainties in both parameters, X-ray observations are represented in the form of bow ties (see Figures 3 and 6).

In addition, X-ray data points in Troja et al. (2022) are used as a reference; except for the 1.4 d epoch (where the photon arrival time is not well consistent with the epoch time) all epochs are considered.

A.1 Afterglow model

Rastinejad et al. (2022), using a Markov Chain Monte Carlo, fit a decelerating, relativistic forward shock with synchrotron emission model (see, Lamb et al. 2018) to the afterglow dominated data from GRB 211211A. The fit model parameters are determined via the X-ray and radio afterglow data, with the early optical/near-infrared providing a spectral energy distribution constraint to the model and the later (>0.1absent0.1>0.1> 0.1 d) KN dominated optical/NIR data providing upper limits for the afterglow model. This light curve fit allows for the subtraction of the afterglow contribution to the kilonova dominated optical/NIR data. The optical afterglow emission at >0.1absent0.1>0.1> 0.1 d is within the self-similar deceleration phase and behaves as a simple power-law decline governed by the spectral and temporal indices inferred from the X-ray to radio broadband data.

The afterglow model assumes a uniform “top-hat” jet structure viewed on-axis – where the bright GRB 211211A supports the “on-axis viewer” assumption. The observable afterglow emission from a jet with an ultra-relativistic velocity, where the Lorentz factor is 70similar-toabsent70\sim 70∼ 70 (Rastinejad et al. 2022), is emitted from within a narrow cone with an angle defined by the inverse of the Lorentz factor, initially <1absentsuperscript1<1^{\circ}< 1 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT. Any wide-angle jet structure will be hidden to an on-axis observer until the jet break time when, as the jet decelerates, the inverse of the Lorentz factor becomes comparable to the jet core half opening angle. At the jet break time, the afterglow decline will typically steepen, and the shape of the jet break (how sharp/rapid the jet break is) contains information about the extent of any wider angled jet structure (Lamb et al. 2021). Observations rarely have sufficient cadence and sensitivity at the jet break time to accurately determine the sharpness of the light curve change, thus the top-hat jet structure assumption is a valid approximation for most bright, and therefore on-axis viewed, GRBs.

The SED of our afterglow model have been compared to the X-ray data. Apart from epoch 4 (1.4 d) where X-ray became too faint, our fit is consistent with the measured X-ray photon index. Our afterglow model is also consistent with IR/Opt/UV data (see dotted lines in Figure 3).

A.2 Bolometric luminosity

After subtracting the afterglow contribution, excess in IR/Opt/UV that is interpreted as KN emission is found. Assuming a blackbody emission model, we determine the best fit (temperature and photospheric radius) for the excess. Our results are shown in Table 2 in comparison to those of Troja et al. (2022). Our fit is very consistent with Troja et al. (2022), despite differences in afterglow modeling. It should be noted that, due to the limited spectral coverage (in particular in UV at later epochs), this bolometric luminosity should be considered as a lower limit for the KN emission in the form of afterglow excess.

It should also be noted that, as our fit is statistical, fitting results (photospheric radius in particular) do not necessarily have a robust physical meaning. For instance, in our physical model (that could explain the data) the maximum physical photospheric velocity βphsubscript𝛽ph\beta_{{\rm{ph}}}italic_β start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT is <0.4absent0.4<0.4< 0.4, while the fitting results indicates photospheric velocities βph>0.4subscript𝛽ph0.4\beta_{{\rm{ph}}}>0.4italic_β start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT > 0.4 at early times. Hence, these photospheric values should not be taken at face value for their physical meaning.

Table 2: Parameters of the best-fit for the afterglow excess in GRB 211211A, in comparison to fitting results in Troja et al. (2022). 1-σ𝜎\sigmaitalic_σ errors are given. Errors in the 4.2 d epoch could not be statistically evaluated due to the limited data (only two data points).
Our fit Troja+22
Time Lbolsubscript𝐿bolL_{\rm{bol}}italic_L start_POSTSUBSCRIPT roman_bol end_POSTSUBSCRIPT T𝑇Titalic_T rphsubscript𝑟phr_{\rm{ph}}italic_r start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT Lbolsubscript𝐿bolL_{\rm{bol}}italic_L start_POSTSUBSCRIPT roman_bol end_POSTSUBSCRIPT T𝑇Titalic_T rphsubscript𝑟phr_{\rm{ph}}italic_r start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT
[d] [1042superscript104210^{42}10 start_POSTSUPERSCRIPT 42 end_POSTSUPERSCRIPT erg s-1] [103superscript10310^{3}10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT K] [1015superscript101510^{15}10 start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT cm] [1042superscript104210^{42}10 start_POSTSUPERSCRIPT 42 end_POSTSUPERSCRIPT erg s-1] [103superscript10310^{3}10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT K] [1015superscript101510^{15}10 start_POSTSUPERSCRIPT 15 end_POSTSUPERSCRIPT cm]
0.2 4.11±1.07plus-or-minus4.111.074.11\pm 1.074.11 ± 1.07 14.55±3.32plus-or-minus14.553.3214.55\pm 3.3214.55 ± 3.32 0.36±0.13plus-or-minus0.360.130.36\pm 0.130.36 ± 0.13 3.50±2.00plus-or-minus3.502.003.50\pm 2.003.50 ± 2.00 16.00±5.00plus-or-minus16.005.0016.00\pm 5.0016.00 ± 5.00 0.28±0.14plus-or-minus0.280.140.28\pm 0.140.28 ± 0.14
0.4 2.05±0.06plus-or-minus2.050.062.05\pm 0.062.05 ± 0.06 8.04±0.28plus-or-minus8.040.288.04\pm 0.288.04 ± 0.28 0.83±0.056plus-or-minus0.830.0560.83\pm 0.0560.83 ± 0.056 1.90±0.15plus-or-minus1.900.151.90\pm 0.151.90 ± 0.15 8.00±0.30plus-or-minus8.000.308.00\pm 0.308.00 ± 0.30 0.80±0.05plus-or-minus0.800.050.80\pm 0.050.80 ± 0.05
1.4 0.39±0.04plus-or-minus0.390.040.39\pm 0.040.39 ± 0.04 3.98±0.18plus-or-minus3.980.183.98\pm 0.183.98 ± 0.18 1.47±0.21plus-or-minus1.470.211.47\pm 0.211.47 ± 0.21 0.37±0.10plus-or-minus0.370.100.37\pm 0.100.37 ± 0.10 4.90±0.50plus-or-minus4.900.504.90\pm 0.504.90 ± 0.50 0.90±0.20plus-or-minus0.900.200.90\pm 0.200.90 ± 0.20
4.2 0.130.130.130.13 2.682.682.682.68 1.901.901.901.90 0.13±0.02plus-or-minus0.130.020.13\pm 0.020.13 ± 0.02 2.50±0.10plus-or-minus2.500.102.50\pm 0.102.50 ± 0.10 2.00±0.20plus-or-minus2.000.202.00\pm 0.202.00 ± 0.20
\listofchanges