Secular dynamics and the lifetimes of lunar artificial satellites under natural force-driven orbital evolution

Edoardo Legnaro Christos Efthymiopoulos
Abstract

In this paper, we study the long-term (time scale of several years) orbital evolution of lunar satellites under the sole action of natural forces. In particular, we focus on secular resonances, caused either by the influence of the multipole moments of the lunar potential and/or by the Earth’s and Sun’s third-body effect on the satellite’s long-term orbital evolution. Our study is based on a simplified secular model obtained in ‘closed form’ using the same methodology proposed in the recently published report on the semi-analytical propagator of lunar satellite orbits, SELENA [1]. Contrary to the case of artificial Earth satellites, in which many secular resonances compete in dynamical impact, we give numerical evidence that for lunar satellites only the 2glimit-from2𝑔2g-2 italic_g -resonance (ω˙=0˙𝜔0\dot{\omega}=0over˙ start_ARG italic_ω end_ARG = 0) affects significantly the orbits at secular timescales. We interpret this as a consequence of the strong effect of lunar mascons. We show that the lifetime of lunar satellites is, in particular, nearly exclusively dictated by the 2g2𝑔2g2 italic_g resonance. By deriving a simple analytic model, we propose a theoretical framework which allows for both qualitative and quantitative interpretation of the structures seen in numerically obtained lifetime maps. This involves explaining the main mechanisms driving eccentricity growth in the orbits of lunar satellites. In fact, we argue that the re-entry process for lunar satellites is not necessarily a chaotic process (as is the case for Earth satellites), but rather due to a sequence of bifurcations leading to a dramatic variation in the structure of the separatrices in the 2g2𝑔2g2 italic_g resonance’s phase portrait, as we move from the lowest to the highest limit in inclination (at each altitude) where the 2g2𝑔2g2 italic_g resonance is manifested.

keywords:
Lunar Satellites, Lifetime, Resonances, Eccentricity growth.
journal: Acta Astronautica
\affiliation

[UniGe]organization=University of Genova. Department of Mathematics,addressline=Via Dodecaneso 35, city=Genova, postcode=16146, state=GE, country=Italy

\affiliation

[UniPD]organization=University of Padova. Department of Mathematics ”Tullio Levi Civita”,addressline=Via Trieste 63, city=Padova, postcode=35131, state=PD, country=Italy

1 Introduction

The exploration of the lunar space and the deployment of satellites around the Moon represent critical steps in space exploration. These endeavors are emphasized in the Global Exploration Roadmap [2], a document outlining the collaborative efforts of international space agencies to set milestones for expanding human presence from Earth’s orbit to that of the Moon or Mars.

From a theoretical standpoint, the study of artificial satellites’ motion around non-spherical primaries has evolved from considering only the perturbation due to the body’s oblateness (the J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT term) ([3], [4], [5], [6]) to progressively including more complex gravitational models to accurately describe the satellites’ dynamics. Many studies ([7], [8], [9], [10], [11]) have focused on zonal harmonics. This is because the problem’s Hamiltonian, when averaged over the mean motion of the satellite, reduces to a one-degree-of-freedom system (see [12]), which allows for the identification of frozen orbits that maintain constant the argument of pericenter and eccentricity. These orbits, particularly near-polar frozen ones, are crucial for the planning and success of lunar mapping missions ([13], [14]).

However, the Moon’s gravitational field is quite complex due to the presence of lunar mascons ([15], [16], [17]). According to the recently published report on the semi-analytical propagator of lunar satellites SELENA (see [1]), the accumulation of several high-degree (n>10𝑛10n>10italic_n > 10) harmonics of the multipole expansion of the lunar potential implies that a reasonable secular model, eliminating all important short-period effects, is hard to obtain at altitudes 100less-than-or-similar-toabsent100\lesssim 100≲ 100 km above the Moon’s surface. As a rough guide to comparative force estimates, from Figure 7 of [1], we deduce that the force due to lunar potential harmonics at a multipole degree as high as n=10𝑛10n=10italic_n = 10 becomes equal to or smaller than the force due to the Earth’s tide on the satellite only at altitudes exceeding 500similar-toabsent500\sim 500∼ 500 km. Based on this information, we roughly distinguish three zones where the dynamics can be called essentially secular, i.e., where models averaged with respect to the satellite’s mean anomaly represent fairly well the true dynamics:

  • 1.

    The Low-Altitude zone (altitudes between 100 - 500 km), where the dynamics is dominated by several important zonal and tesseral harmonics of degree n10𝑛10n\leq 10italic_n ≤ 10, while the Earth’s tide is negligible.

  • 2.

    The Middle-Altitude zone (altitudes between 500 - 5000 km), where the forces produced on the satellite by some particular low-degree harmonics compete in size with the force due to the Earth.

  • 3.

    The High-Altitude zone (beyond 5000 km and up to about one third of the size of the Moon’s Hill sphere, 20000similar-toabsent20000\sim 20000∼ 20000 km), where the force due to the Earth is dominant. Our analysis in the present paper applies to all three zones above, but most results of practical interest refer to the middle-altitude zone. At any rate, the overall conclusion is that gravitational models substantially more comprehensive than J2+C22subscript𝐽2subscript𝐶22J_{2}+C_{22}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_C start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT are required for accurately recovering the long-term dynamics of satellite orbits in the Moon’s environment.

In many problems within celestial mechanics, resonances resulting from a commensurability relationship between the fundamental orbital frequencies play a key role in the system’s dynamics. In the case of Earth satellites, particularly in the Middle Earth orbit (MEO) zone, it is well known that several so-called ’secular’ resonances, i.e., resonances between the frequencies of precession of the satellite’s argument of perigee g𝑔gitalic_g, longitude of the ascending node hhitalic_h, and the Moon’s node with respect to the ecliptic plane—lead to significant effects with many potential applications (e.g., in satellite end-of-life disposal): the eccentricity growth effect. In short, the separatrices of these resonances are such that orbits moving near them exhibit a growth in eccentricity driven solely by natural forces, most importantly, the lunisolar tidal forces. In the case of the so-called 2g+h2𝑔2g+h2 italic_g + italic_h and 2g2𝑔2g2 italic_g resonances, this growth can eventually lead to an eccentricity value large enough that the orbit’s perigee reaches atmospheric re-entry ([18], [19], [20], [21], [22], [23], [24]). Additionally, the overlap of such resonances gives rise to large domains of chaotic motion in which diffusive phenomena occur ([25], [26], [27]). Analytical studies have provided insights into the mechanisms driving these phenomena for Earth satellites ([28], [29], [30], [31], [32], and [33]).

In the present paper, we explore the effects of secular resonances on the long-term dynamics of a lunar satellite. The emphasis is, again, on possible applications of such a study to understanding re-entry through the eccentricity growth mechanism. Here, re-entry simply means collision with the Moon’s surface, that is, a perigee lunicentric distance smaller than the Moon’s radius rLsubscript𝑟𝐿r_{L}italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT. By numerical experiments (see below), one can easily see that this condition can be fulfilled even if the (constant in time, under secular dynamics) satellite’s semi-major axis a𝑎aitalic_a is given a value substantially larger than rLsubscript𝑟𝐿r_{L}italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT. To this end, in our study, we first compute numerical lifetime maps. These maps show in color scale the time up to which the satellite survives in orbit above the Moon’s surface for a suitably chosen grid of initial conditions in element space. The numerical maps are obtained with a highly accurate force model (see section 2), but we then attempt to understand their main features using a much simpler analytical secular model of the equations of motion. Notwithstanding its simplicity, we find that our simple analytical secular model is sufficient for most practical purposes to interpret the lifetime maps obtained by the far more complex numerical model. In fact, the analytical secular model allows to build a theory, based on the structure of the separatrices of the 2g2𝑔2g2 italic_g-resonance, which reproduces quite accurately the borders of the domains in element space separating initial conditions leading to re-entry from those which do not.

The structure of the paper is as follows: Section 2 describes the force model, equations of motion, as well as the numerical lifetime maps obtained with the above model. Section 3 describes the analytical secular model used to interpret theoretically the lifetime maps. Section 4 summarizes our main conclusions from the present study.

2 Force Model and numerical lifetime maps

2.1 Force model

We adopt as a reference frame the Principal Axis Lunar Reference Frame (PALRF). This is a solidal frame with its origin at the barycenter of the Moon, the z𝑧zitalic_z-axis coinciding with the Moon’s mean axis of revolution, and the x𝑥xitalic_x-axis normal to the z𝑧zitalic_z-axis, pointing towards the Moon’s meridian with the largest equatorial radius. Owing to the Moon-Earth synchronous spin-orbit resonance, the PALRF’s x𝑥xitalic_x-axis practically points, also, towards the average lunicentric position of the Earth in the same frame.

The Hamiltonian describing the motion of a lunar satellite in the PALRF frame is

H=12p 2ωL(r×p)+V(r,t)𝐻12superscript𝑝2subscript𝜔𝐿𝑟𝑝𝑉𝑟𝑡H=\frac{1}{2}\vec{p}^{\;2}-\vec{\omega}_{L}\cdot(\;\vec{r}\times\vec{p}\;)+V(% \vec{r},t)italic_H = divide start_ARG 1 end_ARG start_ARG 2 end_ARG over→ start_ARG italic_p end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - over→ start_ARG italic_ω end_ARG start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ⋅ ( over→ start_ARG italic_r end_ARG × over→ start_ARG italic_p end_ARG ) + italic_V ( over→ start_ARG italic_r end_ARG , italic_t ) (1)

where r(t)𝑟𝑡\vec{r}(t)over→ start_ARG italic_r end_ARG ( italic_t ) is the lunicentric PALRF radius vector of the satellite, p(t)𝑝𝑡\vec{p}(t)over→ start_ARG italic_p end_ARG ( italic_t ) is the velocity vector of the satellite in a fictitious rest frame whose axes instantaneously coincide with the axes of the PALRF at time t𝑡titalic_t, ωL(t)subscript𝜔𝐿𝑡\vec{\omega}_{L}(t)over→ start_ARG italic_ω end_ARG start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_t ) is the Moon’s angular velocity vector and V𝑉Vitalic_V is the potential

V(r,t)=VL(r)+VE(r,t)+VS(r,t),𝑉𝑟𝑡subscript𝑉𝐿𝑟subscript𝑉𝐸𝑟𝑡subscript𝑉𝑆𝑟𝑡V(\vec{r},t)=V_{L}(\vec{r})+V_{E}(\vec{r},t)+V_{S}(\vec{r},t)~{}~{},italic_V ( over→ start_ARG italic_r end_ARG , italic_t ) = italic_V start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( over→ start_ARG italic_r end_ARG ) + italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( over→ start_ARG italic_r end_ARG , italic_t ) + italic_V start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( over→ start_ARG italic_r end_ARG , italic_t ) , (2)

where VL,VE,VSsubscript𝑉𝐿subscript𝑉𝐸subscript𝑉𝑆V_{L},V_{E},V_{S}italic_V start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT , italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT , italic_V start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT are respectively the potential of the Moon, the Earth and the Sun (in this study, we do not consider the influence of the solar radiation pressure). The time t=0𝑡0t=0italic_t = 0 corresponds to the Julian day JD2000 at 12.00 Noon (UTC). From Hamilton’s equations we obtain

r˙(t)˙𝑟𝑡\displaystyle\dot{\vec{r}}(t)over˙ start_ARG over→ start_ARG italic_r end_ARG end_ARG ( italic_t ) =p(t)ωL(t)×r(t),absent𝑝𝑡subscript𝜔𝐿𝑡𝑟𝑡\displaystyle=\vec{p}(t)-\vec{\omega}_{L}(t)\times\vec{r}(t),= over→ start_ARG italic_p end_ARG ( italic_t ) - over→ start_ARG italic_ω end_ARG start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_t ) × over→ start_ARG italic_r end_ARG ( italic_t ) , (3)
r¨(t)¨𝑟𝑡\displaystyle\ddot{\vec{r}}(t)over¨ start_ARG over→ start_ARG italic_r end_ARG end_ARG ( italic_t ) =V(r,t)ω˙L×r2ω×r˙ωL×(ωL×r).absent𝑉𝑟𝑡subscript˙𝜔𝐿𝑟2𝜔˙𝑟subscript𝜔𝐿subscript𝜔𝐿𝑟\displaystyle=-\nabla V(\vec{r},t)-\dot{\vec{\omega}}_{L}\times\vec{r}-2\vec{% \omega}\times\dot{\vec{r}}-\vec{\omega}_{L}\times(\;\vec{\omega}_{L}\times\vec% {r}\;)~{}.= - ∇ italic_V ( over→ start_ARG italic_r end_ARG , italic_t ) - over˙ start_ARG over→ start_ARG italic_ω end_ARG end_ARG start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT × over→ start_ARG italic_r end_ARG - 2 over→ start_ARG italic_ω end_ARG × over˙ start_ARG over→ start_ARG italic_r end_ARG end_ARG - over→ start_ARG italic_ω end_ARG start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT × ( over→ start_ARG italic_ω end_ARG start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT × over→ start_ARG italic_r end_ARG ) .

The lunar potential can be written as

VL(r)=𝒢MLrn=0(rLr)nm=0nPnm(sinϕ)[Cnmcos(mλ)+Snmsin(mλ)]subscript𝑉𝐿𝑟𝒢subscript𝑀𝐿𝑟superscriptsubscript𝑛0superscriptsubscript𝑟𝐿𝑟𝑛superscriptsubscript𝑚0𝑛subscript𝑃𝑛𝑚italic-ϕdelimited-[]subscript𝐶𝑛𝑚𝑚𝜆subscript𝑆𝑛𝑚𝑚𝜆\small V_{L}(\,\vec{r}\,)=-{\mathcal{G}M_{L}\over r}\sum_{n=0}^{\infty}\left({% r_{L}\over r}\right)^{n}\sum_{m=0}^{n}P_{nm}(\sin\phi)[C_{nm}\cos(m\lambda)+S_% {nm}\sin(m\lambda)]italic_V start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( over→ start_ARG italic_r end_ARG ) = - divide start_ARG caligraphic_G italic_M start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT end_ARG start_ARG italic_r end_ARG ∑ start_POSTSUBSCRIPT italic_n = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( divide start_ARG italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT end_ARG start_ARG italic_r end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_m = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT ( roman_sin italic_ϕ ) [ italic_C start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT roman_cos ( italic_m italic_λ ) + italic_S start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT roman_sin ( italic_m italic_λ ) ] (4)

where 𝒢𝒢\mathcal{G}caligraphic_G is Newton’s gravity constant, MLsubscript𝑀𝐿M_{L}italic_M start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT is the Moon’s mass and rLsubscript𝑟𝐿r_{L}italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT its radius. The angles ϕitalic-ϕ\phiitalic_ϕ and λ𝜆\lambdaitalic_λ are the satellite’s longitude and latitude and r𝑟ritalic_r is the lunicentric satellite’s distance. The functions Pnmsubscript𝑃𝑛𝑚P_{nm}italic_P start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT are normalized Legendre polynomials of degree n𝑛nitalic_n and order m𝑚mitalic_m, and Cnmsubscript𝐶𝑛𝑚C_{nm}italic_C start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT, Snmsubscript𝑆𝑛𝑚S_{nm}italic_S start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT are the zonal (m=0𝑚0m=0italic_m = 0) and tesseral (m0𝑚0m\neq 0italic_m ≠ 0) coefficients of the lunar gravity potential. We consider the numerical values of these parameters as provided by the GRAIL mission [17].

The Earth’s tidal potential is given by

VE(r,t)=𝒢ME(1r2+rE22rrErrErE3),subscript𝑉𝐸𝑟𝑡𝒢subscript𝑀𝐸1superscript𝑟2superscriptsubscript𝑟𝐸22𝑟subscript𝑟𝐸𝑟subscript𝑟𝐸superscriptsubscript𝑟𝐸3V_{E}(\vec{r},t)=-\mathcal{G}M_{E}\left({1\over\sqrt{r^{2}+r_{E}^{2}-2\vec{r}% \cdot\vec{r}_{E}}}-{\vec{r}\cdot\vec{r}_{E}\over r_{E}^{3}}\right)~{}~{},italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( over→ start_ARG italic_r end_ARG , italic_t ) = - caligraphic_G italic_M start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( divide start_ARG 1 end_ARG start_ARG square-root start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_r start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 over→ start_ARG italic_r end_ARG ⋅ over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT end_ARG end_ARG - divide start_ARG over→ start_ARG italic_r end_ARG ⋅ over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT end_ARG start_ARG italic_r start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ) , (5)

where rE(t)subscript𝑟𝐸𝑡\vec{r}_{E}(t)over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) is the lunicentric PALRF radius vector of the Earth. Multipole expansion yields:

VE(r,t)=VEP0(rE(t))+VEP2(r,rE(t))+VEP3(r,rE(t))subscript𝑉𝐸𝑟𝑡superscriptsubscript𝑉𝐸𝑃0subscript𝑟𝐸𝑡superscriptsubscript𝑉𝐸𝑃2𝑟subscript𝑟𝐸𝑡superscriptsubscript𝑉𝐸𝑃3𝑟subscript𝑟𝐸𝑡V_{E}(\vec{r},t)=V_{E}^{P0}\left(\vec{r}_{E}(t)\right)+V_{E}^{P2}\left(\vec{r}% ,\vec{r}_{E}(t)\right)+V_{E}^{P3}\left(\vec{r},\vec{r}_{E}(t)\right)italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( over→ start_ARG italic_r end_ARG , italic_t ) = italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 0 end_POSTSUPERSCRIPT ( over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) ) + italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 2 end_POSTSUPERSCRIPT ( over→ start_ARG italic_r end_ARG , over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) ) + italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 3 end_POSTSUPERSCRIPT ( over→ start_ARG italic_r end_ARG , over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) ) (6)

with

VEP0(rE(t))superscriptsubscript𝑉𝐸𝑃0subscript𝑟𝐸𝑡\displaystyle V_{E}^{P0}\left(\vec{r}_{E}(t)\right)italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 0 end_POSTSUPERSCRIPT ( over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) ) =𝒢MErE(t),absent𝒢subscript𝑀𝐸subscript𝑟𝐸𝑡\displaystyle=-{\mathcal{G}M_{E}\over r_{E}(t)},= - divide start_ARG caligraphic_G italic_M start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT end_ARG start_ARG italic_r start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) end_ARG , (7)
VEP2(r,rE(t))superscriptsubscript𝑉𝐸𝑃2𝑟subscript𝑟𝐸𝑡\displaystyle V_{E}^{P2}\left(\vec{r},\vec{r}_{E}(t)\right)italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 2 end_POSTSUPERSCRIPT ( over→ start_ARG italic_r end_ARG , over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) ) =𝒢MErE(t)(12r2rE2(t)32(rrE(t))2rE4(t)),absent𝒢subscript𝑀𝐸subscript𝑟𝐸𝑡12superscript𝑟2superscriptsubscript𝑟𝐸2𝑡32superscript𝑟subscript𝑟𝐸𝑡2superscriptsubscript𝑟𝐸4𝑡\displaystyle={\mathcal{G}M_{E}\over r_{E}(t)}\left({1\over 2}{r^{2}\over r_{E% }^{2}(t)}-{3\over 2}{(\vec{r}\cdot\vec{r}_{E}(t))^{2}\over r_{E}^{4}(t)}\right),= divide start_ARG caligraphic_G italic_M start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT end_ARG start_ARG italic_r start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) end_ARG ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) end_ARG - divide start_ARG 3 end_ARG start_ARG 2 end_ARG divide start_ARG ( over→ start_ARG italic_r end_ARG ⋅ over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ( italic_t ) end_ARG ) , (8)
VEP3(r,rE(t))superscriptsubscript𝑉𝐸𝑃3𝑟subscript𝑟𝐸𝑡\displaystyle V_{E}^{P3}\left(\vec{r},\vec{r}_{E}(t)\right)italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 3 end_POSTSUPERSCRIPT ( over→ start_ARG italic_r end_ARG , over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) ) =𝒢MErE(t)(32r2(rrE(t))rE4(t)52(rrE(t))3rE6(t)).absent𝒢subscript𝑀𝐸subscript𝑟𝐸𝑡32superscript𝑟2𝑟subscript𝑟𝐸𝑡superscriptsubscript𝑟𝐸4𝑡52superscript𝑟subscript𝑟𝐸𝑡3superscriptsubscript𝑟𝐸6𝑡\displaystyle={\mathcal{G}M_{E}\over r_{E}(t)}\left({3\over 2}{r^{2}(\vec{r}% \cdot\vec{r}_{E}(t))\over r_{E}^{4}(t)}-{5\over 2}{(\vec{r}\cdot\vec{r}_{E}(t)% )^{3}\over r_{E}^{6}(t)}\right).= divide start_ARG caligraphic_G italic_M start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT end_ARG start_ARG italic_r start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) end_ARG ( divide start_ARG 3 end_ARG start_ARG 2 end_ARG divide start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( over→ start_ARG italic_r end_ARG ⋅ over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) ) end_ARG start_ARG italic_r start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ( italic_t ) end_ARG - divide start_ARG 5 end_ARG start_ARG 2 end_ARG divide start_ARG ( over→ start_ARG italic_r end_ARG ⋅ over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT ( italic_t ) end_ARG ) . (9)

The term VEP0superscriptsubscript𝑉𝐸𝑃0V_{E}^{P0}italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 0 end_POSTSUPERSCRIPT can be omitted from the Hamiltonian since it does not depend on the satellite’s radius vector r𝑟\vec{r}over→ start_ARG italic_r end_ARG and, therefore, does not contribute to the equations of motion. The terms VEP2superscriptsubscript𝑉𝐸𝑃2V_{E}^{P2}italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 2 end_POSTSUPERSCRIPT, VEP3superscriptsubscript𝑉𝐸𝑃3V_{E}^{P3}italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 3 end_POSTSUPERSCRIPT are hereafter referred to as the quadrupolar and octopolar Earth’s tidal terms respectively.

The contribution due to the Sun is

VS(r,t)=𝒢MS(1r2+rS2(t)2rrS(t)rrS(t)rS3(t))subscript𝑉𝑆𝑟𝑡𝒢subscript𝑀𝑆1superscript𝑟2superscriptsubscript𝑟𝑆2𝑡2𝑟subscript𝑟𝑆𝑡𝑟subscript𝑟𝑆𝑡superscriptsubscript𝑟𝑆3𝑡V_{S}(\vec{r},t)=-\mathcal{G}M_{S}\left({1\over\sqrt{r^{2}+r_{S}^{2}(t)-2\vec{% r}\cdot\vec{r}_{S}(t)}}-{\vec{r}\cdot\vec{r}_{S}(t)\over r_{S}^{3}(t)}\right)italic_V start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( over→ start_ARG italic_r end_ARG , italic_t ) = - caligraphic_G italic_M start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( divide start_ARG 1 end_ARG start_ARG square-root start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_r start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) - 2 over→ start_ARG italic_r end_ARG ⋅ over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) end_ARG end_ARG - divide start_ARG over→ start_ARG italic_r end_ARG ⋅ over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) end_ARG start_ARG italic_r start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_t ) end_ARG ) (10)

where rS(t)subscript𝑟𝑆𝑡\vec{r}_{S}(t)over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) is the lunicentric PALRF radius vector of the Sun. This can be expanded in multipoles analogously to the Earth’s tidal potential.

It is possible to estimate the relative strength in acceleration of these forces with respect to the keplerian one aKepsubscript𝑎𝐾𝑒𝑝a_{Kep}italic_a start_POSTSUBSCRIPT italic_K italic_e italic_p end_POSTSUBSCRIPT using the formulas proposed in [1]. Regarding the Moon’s potential, we can estimate the acceleration Δa(n)Δ𝑎𝑛\Delta a(n)roman_Δ italic_a ( italic_n ) generated by the sum of all n𝑛nitalic_n-th degree harmonics through the formula

Δa(n)aKepm=0n(n+1)rLnrn(Cnm2+Snm2)1/2.similar-toΔ𝑎𝑛subscript𝑎𝐾𝑒𝑝superscriptsubscript𝑚0𝑛𝑛1superscriptsubscript𝑟𝐿𝑛superscript𝑟𝑛superscriptsuperscriptsubscript𝐶𝑛𝑚2superscriptsubscript𝑆𝑛𝑚212\frac{\Delta a(n)}{a_{Kep}}\sim\sum_{m=0}^{n}{(n+1)r_{L}^{n}\over r^{n}}\left(% C_{nm}^{2}+S_{nm}^{2}\right)^{1/2}~{}~{}.divide start_ARG roman_Δ italic_a ( italic_n ) end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_K italic_e italic_p end_POSTSUBSCRIPT end_ARG ∼ ∑ start_POSTSUBSCRIPT italic_m = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT divide start_ARG ( italic_n + 1 ) italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ( italic_C start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_S start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT . (11)

For perturbations due to the Earth’s and Sun’s tides (ΔaEΔsubscript𝑎𝐸\Delta a_{E}roman_Δ italic_a start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT, ΔaSΔsubscript𝑎𝑆\Delta a_{S}roman_Δ italic_a start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT), as well as non-inertial forces (ΔaNIΔsubscript𝑎𝑁𝐼\Delta a_{NI}roman_Δ italic_a start_POSTSUBSCRIPT italic_N italic_I end_POSTSUBSCRIPT) we have

ΔaEaKepMEr3MLaE3,ΔaSaKepMSr3MLaS3,ΔaNIaKepnL2r3𝒢ML=(ME+ML)r3MLaE3.formulae-sequencesimilar-toΔsubscript𝑎𝐸subscript𝑎𝐾𝑒𝑝subscript𝑀𝐸superscript𝑟3subscript𝑀𝐿superscriptsubscript𝑎𝐸3formulae-sequencesimilar-toΔsubscript𝑎𝑆subscript𝑎𝐾𝑒𝑝subscript𝑀𝑆superscript𝑟3subscript𝑀𝐿superscriptsubscript𝑎𝑆3similar-toΔsubscript𝑎𝑁𝐼subscript𝑎𝐾𝑒𝑝superscriptsubscript𝑛𝐿2superscript𝑟3𝒢subscript𝑀𝐿subscript𝑀𝐸subscript𝑀𝐿superscript𝑟3subscript𝑀𝐿superscriptsubscript𝑎𝐸3{\Delta a_{E}\over a_{Kep}}\sim{M_{E}r^{3}\over M_{L}a_{E}^{3}},\quad{\Delta a% _{S}\over a_{Kep}}\sim{M_{S}r^{3}\over M_{L}a_{S}^{3}},\quad{\Delta a_{NI}% \over a_{Kep}}\sim{n_{L}^{2}r^{3}\over{\cal G}M_{L}}={(M_{E}+M_{L})r^{3}\over M% _{L}a_{E}^{3}}~{}~{}.divide start_ARG roman_Δ italic_a start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_K italic_e italic_p end_POSTSUBSCRIPT end_ARG ∼ divide start_ARG italic_M start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG , divide start_ARG roman_Δ italic_a start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_K italic_e italic_p end_POSTSUBSCRIPT end_ARG ∼ divide start_ARG italic_M start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG , divide start_ARG roman_Δ italic_a start_POSTSUBSCRIPT italic_N italic_I end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_K italic_e italic_p end_POSTSUBSCRIPT end_ARG ∼ divide start_ARG italic_n start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG caligraphic_G italic_M start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT end_ARG = divide start_ARG ( italic_M start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT + italic_M start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG . (12)

Notice that, as explained in [1], the synchronous rotation of the Moon implies that the apparent forces due to the Moon’s rotation are of a similar size to the Earth’s tidal force at all possible lunicentric distances r𝑟ritalic_r that can be reached by a satellite.

Refer to caption
Figure 1: An estimate of the relative strength of the acceleration due to the lunar harmonics, the Earth and Sun with respect to the Keplerian acceleration as a function of the altitude (see Eq. (11), (12)). The vertical red dashed lines (100 km, 500 km and 5000 km) indicate the limits of the various zones defined in the text according to altitude.

With these formulas, we get Figure 1, from which we can see that for low-altitude orbits many harmonics compete in size. Actually, it has been suggested that zonal terms up to n=30𝑛30n=30italic_n = 30 still influence the secular behavior of orbits such as the low-altitude high-inclination ones ([34]). Also, notice that the Earth’s tidal acceleration (and correspondingly apparent accelerations) becomes more prominent than second-degree lunar potential terms after an altitude of 2065206520652065 km, while the Sun’s contribution becomes important only at very high altitudes.

Based on the information provided in Figure 1, we distinguish four zones in altitude, with somewhat arbitrary limits, corresponding to different dynamical regimes regarding the effects and relative importance of the various force perturbations determining a satellite’s long-term orbital dynamics.

Zone of essentially non-secular dynamics (altitude arL<100𝑎subscript𝑟𝐿100a-r_{L}<100italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT < 100 km): this is the zone where lunar mascons dominate, implying that any secular force model, i.e., based on averaging of the equations of motion with respect to the satellite’s mean anomaly, would require canonical transformations including a large number of Lunar potential harmonics of degree higher than n=10𝑛10n=10italic_n = 10. In practice, this means that, in osculating elements, the accumulation of the effects of all these harmonics would lead to a substantial (and possibly chaotic) long-term evolution of the satellite’s semi-major axis, an effect not consistent with the definition of ‘secular’ orbital behavior.

Low Altitude Zone of essentially secular dynamics (altitude 100kmarL<500100𝑘𝑚𝑎subscript𝑟𝐿500100km\leq a-r_{L}<500100 italic_k italic_m ≤ italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT < 500 km): the low limit of this zone is somewhat arbitrary, but motivated by the work [35], as well as by figures 14 and 15 of ref.[1], which show that the semi-major axis variations become of order <103absentsuperscript103<10^{-3}< 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT, i.e, two orders of magnitude smaller than those required for re-entry. On the other hand, in this zone we have an accumulation of the contribution of many harmonics of degree n10𝑛10n\leq 10italic_n ≤ 10, a fact leading to a total force perturbation of about two orders of magnitude larger than the one due to the Earth’s tide.

Middle Altitude Zone of essentially secular dynamics (altitude 500kmarL5000500𝑘𝑚𝑎subscript𝑟𝐿5000500km\leq a-r_{L}\leq 5000500 italic_k italic_m ≤ italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≤ 5000 km): near the lower limit of this zone the lunar multipoles produce a force perturbation superior by more than one order of magnitude to the Earth’s tidal perturbation. However, this is reversed at the higher limit, where the problem becomes essentially one perturbed by the Earth plus few harmonics n=2𝑛2n=2italic_n = 2 and n=3𝑛3n=3italic_n = 3.

High Altitude Zone of essentially non-secular dynamics (altitude arL>5000𝑎subscript𝑟𝐿5000a-r_{L}>5000italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT > 5000 km): any perturbation other than the Earth’s tidal becomes negligible.

2.2 Equations of motion

Consider Delaunay variables

L=μEa,G=L1e2,H=Gcosi,=M,g=ω,h=Ω,formulae-sequence𝐿subscript𝜇𝐸𝑎formulae-sequence𝐺𝐿1superscript𝑒2formulae-sequence𝐻𝐺𝑖formulae-sequence𝑀formulae-sequence𝑔𝜔Ω\small L=\sqrt{\mu_{E}a},\quad G=L\sqrt{1-e^{2}},\quad H=G\cos i,\quad\ell=M,% \quad g=\omega,\quad h=\Omega,italic_L = square-root start_ARG italic_μ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT italic_a end_ARG , italic_G = italic_L square-root start_ARG 1 - italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , italic_H = italic_G roman_cos italic_i , roman_ℓ = italic_M , italic_g = italic_ω , italic_h = roman_Ω , (13)

where (,g,h)=(M,ω,Ω)𝑔𝑀𝜔Ω(\ell,g,h)=(M,\omega,\Omega)( roman_ℓ , italic_g , italic_h ) = ( italic_M , italic_ω , roman_Ω ) are the satellite’s mean anomaly, argument of perilune and longitude of the nodes. In view of the analysis done in the previous section, we compute secular equations of motion equivalent to those reported in [1] for the semi-analytical propagator of lunar satellites SELENA, but without the use of the normalizing transformation switching back and forth from mean to osculating elements. As explained in subsection 5.5 of [1], a continuous transformation from mean to osculating elements along the orbital integration is not really necessary unless very high precision levels (better than one part in a million) are required, which is not the case in our present study. For orbits of relative error 106similar-toabsentsuperscript106\sim 10^{-6}∼ 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT, in [1] it is shown that the crucial step is to make the canonical transformation from osculating to mean elements only as regards the initial datum. Then, propagating the orbit using the averaged equations of motion, and simply equating thereafter mean with osculating elements yields results equal up to six significant figures with the far more cumbersome approach of back-transforming from mean to osculating elements at every time step. This leads to a propagation model called ‘SELENA-mean’ propagator in [1]. Here, we ignore even the initial transformation, which leads to orbits precise at about three significant figures, but with the advantage that one can simply reproduce the averaged equations of motion for all the terms included in the SELENA-mean model using just the basic formulas for first-order averaging of the Hamiltonian function in closed form. In addition, we ignore the SELENA terms due to the solar radiation pressure, which are orders of magnitude smaller than all other perturbations. This leads to the secular Hamiltonian model SMsubscript𝑆𝑀\mathcal{H}_{SM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT, hereafter called the ‘SELENA-Model’ (SM):

SM(a,e,i,g,h)subscript𝑆𝑀𝑎𝑒𝑖𝑔\displaystyle\mathcal{H}_{SM}(a,e,i,g,h)caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT ( italic_a , italic_e , italic_i , italic_g , italic_h ) =\displaystyle== 𝒢ML2aωL,z(t)H𝒢subscript𝑀𝐿2𝑎subscript𝜔𝐿𝑧𝑡𝐻\displaystyle-{\mathcal{G}M_{L}\over 2a}-\omega_{L,z}(t)H~{}~{}- divide start_ARG caligraphic_G italic_M start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_a end_ARG - italic_ω start_POSTSUBSCRIPT italic_L , italic_z end_POSTSUBSCRIPT ( italic_t ) italic_H
\displaystyle-- (ωL,x(t)sinisin(h)ωL,y(t)sinicos(h))Gsubscript𝜔𝐿𝑥𝑡𝑖subscript𝜔𝐿𝑦𝑡𝑖𝐺\displaystyle\bigg{(}\omega_{L,x}(t)\sin i\sin(h)-\omega_{L,y}(t)\sin i\cos(h)% \bigg{)}G~{}~{}( italic_ω start_POSTSUBSCRIPT italic_L , italic_x end_POSTSUBSCRIPT ( italic_t ) roman_sin italic_i roman_sin ( italic_h ) - italic_ω start_POSTSUBSCRIPT italic_L , italic_y end_POSTSUBSCRIPT ( italic_t ) roman_sin italic_i roman_cos ( italic_h ) ) italic_G
+\displaystyle++ 12π02πa2r2ηVLn10𝑑f12𝜋superscriptsubscript02𝜋superscript𝑎2superscript𝑟2𝜂superscriptsubscript𝑉𝐿𝑛10differential-d𝑓\displaystyle{1\over 2\pi}\int_{0}^{2\pi}{a^{2}\over r^{2}\eta}V_{L}^{n\leq 10% }df~{}divide start_ARG 1 end_ARG start_ARG 2 italic_π end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_π end_POSTSUPERSCRIPT divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η end_ARG italic_V start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n ≤ 10 end_POSTSUPERSCRIPT italic_d italic_f
+\displaystyle++ 12π02π(1ecosu)(VEP2+VEP3+VSP2)𝑑u12𝜋superscriptsubscript02𝜋1𝑒𝑢superscriptsubscript𝑉𝐸𝑃2superscriptsubscript𝑉𝐸𝑃3superscriptsubscript𝑉𝑆𝑃2differential-d𝑢\displaystyle{1\over 2\pi}\int_{0}^{2\pi}(1-e\cos u)(V_{E}^{P2}+V_{E}^{P3}+V_{% S}^{P2})dudivide start_ARG 1 end_ARG start_ARG 2 italic_π end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_π end_POSTSUPERSCRIPT ( 1 - italic_e roman_cos italic_u ) ( italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 2 end_POSTSUPERSCRIPT + italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 3 end_POSTSUPERSCRIPT + italic_V start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 2 end_POSTSUPERSCRIPT ) italic_d italic_u

where η=1e2𝜂1superscript𝑒2\eta=\sqrt{1-e^{2}}italic_η = square-root start_ARG 1 - italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG is the ‘eccentricity function’ and G𝐺Gitalic_G and H𝐻Hitalic_H the Delaunay actions defined above. To obtain the integrals over the truncated multipole lunar potential in closed form, we use the formulas

VLn10(a,e,i,f,g,h;t)=superscriptsubscript𝑉𝐿𝑛10𝑎𝑒𝑖𝑓𝑔𝑡absent\displaystyle V_{L}^{n\leq 10}(a,e,i,f,g,h;t)=italic_V start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n ≤ 10 end_POSTSUPERSCRIPT ( italic_a , italic_e , italic_i , italic_f , italic_g , italic_h ; italic_t ) =
μLrn=210(rLr)nm=0nPnm(sinϕ)[Cnmcos(mλ)+Snmsin(mλ)]subscript𝜇𝐿𝑟superscriptsubscript𝑛210superscriptsubscript𝑟𝐿𝑟𝑛superscriptsubscript𝑚0𝑛subscript𝑃𝑛𝑚italic-ϕdelimited-[]subscript𝐶𝑛𝑚𝑚𝜆subscript𝑆𝑛𝑚𝑚𝜆\displaystyle~{}~{}-{\mu_{L}\over r}\sum_{n=2}^{10}\left({r_{L}\over r}\right)% ^{n}\sum_{m=0}^{n}P_{nm}(\sin\phi)[C_{nm}\cos(m\lambda)+S_{nm}\sin(m\lambda)]- divide start_ARG italic_μ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT end_ARG start_ARG italic_r end_ARG ∑ start_POSTSUBSCRIPT italic_n = 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT ( divide start_ARG italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT end_ARG start_ARG italic_r end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∑ start_POSTSUBSCRIPT italic_m = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT ( roman_sin italic_ϕ ) [ italic_C start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT roman_cos ( italic_m italic_λ ) + italic_S start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT roman_sin ( italic_m italic_λ ) ]

with μL=𝒢MLsubscript𝜇𝐿𝒢subscript𝑀𝐿\mu_{L}=\mathcal{G}M_{L}italic_μ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = caligraphic_G italic_M start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT (the gravitational parameter of the Moon), setting

sinϕ=z/ritalic-ϕ𝑧𝑟\sin\phi=z/rroman_sin italic_ϕ = italic_z / italic_r
cos(mλ)=1rms=0[m/2](1)s(m2s)xm2sy2s,𝑚𝜆1superscript𝑟𝑚superscriptsubscript𝑠0delimited-[]𝑚2superscript1𝑠binomial𝑚2𝑠superscript𝑥𝑚2𝑠superscript𝑦2𝑠\cos(m\lambda)={1\over r^{m}}\sum_{s=0}^{[m/2]}(-1)^{s}{m\choose 2s}x^{m-2s}y^% {2s},~{}~{}roman_cos ( italic_m italic_λ ) = divide start_ARG 1 end_ARG start_ARG italic_r start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT end_ARG ∑ start_POSTSUBSCRIPT italic_s = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT [ italic_m / 2 ] end_POSTSUPERSCRIPT ( - 1 ) start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT ( binomial start_ARG italic_m end_ARG start_ARG 2 italic_s end_ARG ) italic_x start_POSTSUPERSCRIPT italic_m - 2 italic_s end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 italic_s end_POSTSUPERSCRIPT ,
sin(mλ)=1rms=0[(m1)/2](1)s(m2s+1)xm2s1y2s+1𝑚𝜆1superscript𝑟𝑚superscriptsubscript𝑠0delimited-[]𝑚12superscript1𝑠binomial𝑚2𝑠1superscript𝑥𝑚2𝑠1superscript𝑦2𝑠1\sin(m\lambda)={1\over r^{m}}\sum_{s=0}^{[(m-1)/2]}(-1)^{s}{m\choose 2s+1}x^{m% -2s-1}y^{2s+1}roman_sin ( italic_m italic_λ ) = divide start_ARG 1 end_ARG start_ARG italic_r start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT end_ARG ∑ start_POSTSUBSCRIPT italic_s = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT [ ( italic_m - 1 ) / 2 ] end_POSTSUPERSCRIPT ( - 1 ) start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT ( binomial start_ARG italic_m end_ARG start_ARG 2 italic_s + 1 end_ARG ) italic_x start_POSTSUPERSCRIPT italic_m - 2 italic_s - 1 end_POSTSUPERSCRIPT italic_y start_POSTSUPERSCRIPT 2 italic_s + 1 end_POSTSUPERSCRIPT

and then substituting (x,y,z)𝑥𝑦𝑧(x,y,z)( italic_x , italic_y , italic_z ) by the equations (30) of [1]. Similarly, to obtain the integrals over the multipole Earth and Sun potential terms VEP2superscriptsubscript𝑉𝐸𝑃2V_{E}^{P2}italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 2 end_POSTSUPERSCRIPT, VEP3superscriptsubscript𝑉𝐸𝑃3V_{E}^{P3}italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 3 end_POSTSUPERSCRIPT and VSP2superscriptsubscript𝑉𝑆𝑃2V_{S}^{P2}italic_V start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P 2 end_POSTSUPERSCRIPT, we use the formulas

r=a(1ecosu)rrE(t)=xxE(t)+yyE(t)+zzE(t)rrS(t)=xxS(t)+yyS(t)+zzS(t)𝑟𝑎1𝑒𝑢𝑟subscript𝑟𝐸𝑡𝑥subscript𝑥𝐸𝑡𝑦subscript𝑦𝐸𝑡𝑧subscript𝑧𝐸𝑡𝑟subscript𝑟𝑆𝑡𝑥subscript𝑥𝑆𝑡𝑦subscript𝑦𝑆𝑡𝑧subscript𝑧𝑆𝑡\begin{array}[]{rcl}r&=&a(1-e\cos u)\\ \vec{r}\cdot\vec{r}_{E}(t)&=&x~{}x_{E}(t)+y~{}y_{E}(t)+z~{}z_{E}(t)\\ \vec{r}\cdot\vec{r}_{S}(t)&=&x~{}x_{S}(t)+y~{}y_{S}(t)+z~{}z_{S}(t)\end{array}start_ARRAY start_ROW start_CELL italic_r end_CELL start_CELL = end_CELL start_CELL italic_a ( 1 - italic_e roman_cos italic_u ) end_CELL end_ROW start_ROW start_CELL over→ start_ARG italic_r end_ARG ⋅ over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) end_CELL start_CELL = end_CELL start_CELL italic_x italic_x start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) + italic_y italic_y start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) + italic_z italic_z start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) end_CELL end_ROW start_ROW start_CELL over→ start_ARG italic_r end_ARG ⋅ over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) end_CELL start_CELL = end_CELL start_CELL italic_x italic_x start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) + italic_y italic_y start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) + italic_z italic_z start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) end_CELL end_ROW end_ARRAY (15)

with (x,y,z)𝑥𝑦𝑧(x,y,z)( italic_x , italic_y , italic_z ) given by Eq. (37) of [1]. The Hamiltonian depends explicitly on time through the quantities

ωL(t)=(ωL,x(t),ωL,y(t),ωL,z(t))rE(t)=(xE(t),yE(t),zE(t)),rS(t)=(xS(t),yS(t),zS(t)),subscript𝜔𝐿𝑡subscript𝜔𝐿𝑥𝑡subscript𝜔𝐿𝑦𝑡subscript𝜔𝐿𝑧𝑡subscript𝑟𝐸𝑡subscript𝑥𝐸𝑡subscript𝑦𝐸𝑡subscript𝑧𝐸𝑡subscript𝑟𝑆𝑡subscript𝑥𝑆𝑡subscript𝑦𝑆𝑡subscript𝑧𝑆𝑡\begin{array}[]{rcl}\vec{\omega}_{L}(t)&=&(\omega_{L,x}(t),\omega_{L,y}(t),% \omega_{L,z}(t))\\ \vec{r}_{E}(t)&=&(x_{E}(t),y_{E}(t),z_{E}(t)),\\ \vec{r}_{S}(t)&=&(x_{S}(t),y_{S}(t),z_{S}(t)),\end{array}start_ARRAY start_ROW start_CELL over→ start_ARG italic_ω end_ARG start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_t ) end_CELL start_CELL = end_CELL start_CELL ( italic_ω start_POSTSUBSCRIPT italic_L , italic_x end_POSTSUBSCRIPT ( italic_t ) , italic_ω start_POSTSUBSCRIPT italic_L , italic_y end_POSTSUBSCRIPT ( italic_t ) , italic_ω start_POSTSUBSCRIPT italic_L , italic_z end_POSTSUBSCRIPT ( italic_t ) ) end_CELL end_ROW start_ROW start_CELL over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) end_CELL start_CELL = end_CELL start_CELL ( italic_x start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) , italic_y start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) , italic_z start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) ) , end_CELL end_ROW start_ROW start_CELL over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) end_CELL start_CELL = end_CELL start_CELL ( italic_x start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) , italic_y start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) , italic_z start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) ) , end_CELL end_ROW end_ARRAY (16)

which are respectively the Moon’s angular velocity and the Earth and Sun vector radii in the PALRF system. The vectors ωL(t)subscript𝜔𝐿𝑡\vec{\omega}_{L}(t)over→ start_ARG italic_ω end_ARG start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_t ), rE(t)subscript𝑟𝐸𝑡\vec{r}_{E}(t)over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) and rS(t)subscript𝑟𝑆𝑡\vec{r}_{S}(t)over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) are coded using the equations (2), (10) and (13) of [1] with the accompanying tables of coefficients.

While the Hamiltonian (2.2) is formally expressed in Keplerian elements, in reality it is a function of the canonical Delaunay action-angle variables (L,)𝐿(L,\ell)( italic_L , roman_ℓ ), (G,g)𝐺𝑔(G,g)( italic_G , italic_g ), and (H,h)𝐻(H,h)( italic_H , italic_h ), which are related to the Keplerian elements through the inverse of Eqs.(13). The equations of motion are then:

˙=SML,g˙=SMG,h˙=SMH,formulae-sequence˙subscript𝑆𝑀𝐿formulae-sequence˙𝑔subscript𝑆𝑀𝐺˙subscript𝑆𝑀𝐻\displaystyle\dot{\ell}=~{}~{}{\partial\mathcal{H}_{SM}\over\partial L},~{}~{}% ~{}~{}~{}~{}~{}~{}~{}~{}\dot{g}=~{}~{}{\partial\mathcal{H}_{SM}\over\partial G% },~{}~{}\dot{h}=~{}~{}{\partial\mathcal{H}_{SM}\over\partial H},~{}~{}over˙ start_ARG roman_ℓ end_ARG = divide start_ARG ∂ caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_L end_ARG , over˙ start_ARG italic_g end_ARG = divide start_ARG ∂ caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_G end_ARG , over˙ start_ARG italic_h end_ARG = divide start_ARG ∂ caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_H end_ARG , (17)
L˙=SM=0,G˙=SMg,H˙=SMh.formulae-sequence˙𝐿subscript𝑆𝑀0formulae-sequence˙𝐺subscript𝑆𝑀𝑔˙𝐻subscript𝑆𝑀\displaystyle\dot{L}=-{\partial\mathcal{H}_{SM}\over\partial\ell}=0,~{}~{}\dot% {G}=-{\partial\mathcal{H}_{SM}\over\partial g},~{}~{}\dot{H}=-{\partial% \mathcal{H}_{SM}\over\partial h}~{}~{}.over˙ start_ARG italic_L end_ARG = - divide start_ARG ∂ caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT end_ARG start_ARG ∂ roman_ℓ end_ARG = 0 , over˙ start_ARG italic_G end_ARG = - divide start_ARG ∂ caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_g end_ARG , over˙ start_ARG italic_H end_ARG = - divide start_ARG ∂ caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_h end_ARG .

For numerical orbits, the above equations are integrated using the integrator proposed in [36], yielding the evolution of all six canonical variables, then transformed in the values of the six osculating Kaplerian elements. We call the orbits obtained in this way the ‘SELENA-Model’ (SM) orbits.

An important remark in what follows stems from the fact that, in the canonical formalism, the position-momenta variables correspond to orbital elements in a rest frame whose axes instantaneously coincide with the orientation of the PALRF axes at time t𝑡titalic_t. This implies that even for a pure Keplerian ellipse, i.e., had we set all perturbations VL,VE,VSsubscript𝑉𝐿subscript𝑉𝐸subscript𝑉𝑆V_{L},V_{E},V_{S}italic_V start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT , italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT , italic_V start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT equal to zero in Eq.(2.2), the centrifugal term ωzHsubscript𝜔𝑧𝐻-\omega_{z}H- italic_ω start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_H has the effect that the line of nodes, which is fixed in the rest frame, would rotate clockwise at a rate h˙=𝒮/H=ωz˙subscript𝒮𝐻subscript𝜔𝑧\dot{h}=\partial\mathcal{H_{SM}}/\partial H=-\omega_{z}over˙ start_ARG italic_h end_ARG = ∂ caligraphic_H start_POSTSUBSCRIPT caligraphic_S caligraphic_M end_POSTSUBSCRIPT / ∂ italic_H = - italic_ω start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT. In reality, h˙˙\dot{h}over˙ start_ARG italic_h end_ARG is slightly different from minus the angular frequency of the Moon’s revolution (ωzsimilar-to-or-equalsabsentsubscript𝜔𝑧\simeq\omega_{z}≃ italic_ω start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT) because of the secular effects on the orbit caused by all three perturbations VL,VE,VSsubscript𝑉𝐿subscript𝑉𝐸subscript𝑉𝑆V_{L},V_{E},V_{S}italic_V start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT , italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT , italic_V start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT. On the other hand, g˙˙𝑔\dot{g}over˙ start_ARG italic_g end_ARG is not influenced by considering the motion in a rotating frame, since the angle g=ω𝑔𝜔g=\omegaitalic_g = italic_ω is always relative to the position of the line of nodes. This means that g˙=0˙𝑔0\dot{g}=0over˙ start_ARG italic_g end_ARG = 0 for a fixed Keplerian ellipse, implying that, when all the perturbations are taken into account, the correct secular frequencies to compare in the PALRF frame are g˙˙𝑔\dot{g}over˙ start_ARG italic_g end_ARG and h˙+ωz˙subscript𝜔𝑧\dot{h}+\omega_{z}over˙ start_ARG italic_h end_ARG + italic_ω start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT. The fact that the obliquity of the Moon is small, together with the presence of strong forces due to the lunar potential’s zonal multipole harmonics, leads to a radically different structure of the web of secular resonances for the Moon’s satellites compared to the case of Earth satellites, as discussed in detail in the next section.

2.3 Numerical lifetime maps

Refer to caption
Figure 2: Four different realizations of the lifetime map for orbits with a=rL+500km𝑎subscript𝑟𝐿500𝑘𝑚a=r_{L}+500kmitalic_a = italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT + 500 italic_k italic_m. The cartography parameters are: (top left) ng=9subscript𝑛𝑔9n_{g}=9italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 9, Ng=100subscript𝑁𝑔100N_{g}=100italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 100, Ω0=0subscriptΩ0superscript0\Omega_{0}=0^{\circ}roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, ω0=90subscript𝜔0superscript90\omega_{0}=90^{\circ}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 90 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, Trun=15subscript𝑇𝑟𝑢𝑛15T_{run}=15italic_T start_POSTSUBSCRIPT italic_r italic_u italic_n end_POSTSUBSCRIPT = 15 yr. (top right) ng=9subscript𝑛𝑔9n_{g}=9italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 9, Ng=100subscript𝑁𝑔100N_{g}=100italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 100, Ω0=20subscriptΩ0superscript20\Omega_{0}=20^{\circ}roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 20 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, ω0=70subscript𝜔0superscript70\omega_{0}=70^{\circ}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 70 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, Trun=15subscript𝑇𝑟𝑢𝑛15T_{run}=15italic_T start_POSTSUBSCRIPT italic_r italic_u italic_n end_POSTSUBSCRIPT = 15 yr. (bottom left) ng=10subscript𝑛𝑔10n_{g}=10italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 10, Ng=100subscript𝑁𝑔100N_{g}=100italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 100, Ω0=0subscriptΩ0superscript0\Omega_{0}=0^{\circ}roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, ω0=0subscript𝜔0superscript0\omega_{0}=0^{\circ}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, Trun=10subscript𝑇𝑟𝑢𝑛10T_{run}=10italic_T start_POSTSUBSCRIPT italic_r italic_u italic_n end_POSTSUBSCRIPT = 10 yr. (bottom right) ng=9subscript𝑛𝑔9n_{g}=9italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 9, Ng=300subscript𝑁𝑔300N_{g}=300italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 300, Ω0=0subscriptΩ0superscript0\Omega_{0}=0^{\circ}roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, ω0=90subscript𝜔0superscript90\omega_{0}=90^{\circ}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 90 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, Trun=20subscript𝑇𝑟𝑢𝑛20T_{run}=20italic_T start_POSTSUBSCRIPT italic_r italic_u italic_n end_POSTSUBSCRIPT = 20 yr.
Refer to caption
Figure 3: Lifetime cartography maps with a=rL+1000km𝑎subscript𝑟𝐿1000𝑘𝑚a=r_{L}+1000kmitalic_a = italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT + 1000 italic_k italic_m with Ng=300subscript𝑁𝑔300N_{g}=300italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 300, Ω0=0subscriptΩ0superscript0\Omega_{0}=0^{\circ}roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, ω0=0subscript𝜔0superscript0\omega_{0}=0^{\circ}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, Trun=20subscript𝑇𝑟𝑢𝑛20T_{run}=20italic_T start_POSTSUBSCRIPT italic_r italic_u italic_n end_POSTSUBSCRIPT = 20 yr and ng=7subscript𝑛𝑔7n_{g}=7italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 7 (left), ng=10subscript𝑛𝑔10n_{g}=10italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 10 (right).
Refer to caption
Figure 4: Each panel shows nine different realizations of the integration of one orbit with the lunar potential truncated at different maximum degrees varying from ng=2subscript𝑛𝑔2n_{g}=2italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 2 to ng=10subscript𝑛𝑔10n_{g}=10italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 10 (the resulting orbits are shown with different colors). In all six panels we have the same initial conditions for the five Keplerian elements e0=0,i0=63.5,Ω0=ω0=m0=0formulae-sequencesubscript𝑒00formulae-sequencesubscript𝑖0superscript63.5subscriptΩ0subscript𝜔0subscript𝑚00e_{0}=0,i_{0}=63.5^{\circ},\Omega_{0}=\omega_{0}=m_{0}=0italic_e start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 , italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 63.5 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT , roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_m start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0, and semi-major axes corresponding to the altitudes of 300300300300 km, 500500500500 km, 700700700700 km, 900900900900 km, 2000200020002000 km and 3000300030003000 km. In all computed trajectories the perturbations due to the Earth and the Sun are included.
Refer to caption
Figure 5: Lifetime maps with ng=10subscript𝑛𝑔10n_{g}=10italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 10, Ng=100subscript𝑁𝑔100N_{g}=100italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 100, ω0=Ω0=0subscript𝜔0subscriptΩ00\omega_{0}=\Omega_{0}=0italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0, Trunsubscript𝑇𝑟𝑢𝑛T_{run}italic_T start_POSTSUBSCRIPT italic_r italic_u italic_n end_POSTSUBSCRIPT as indicated in the top of the color bar in each panel, and various values of the altitude, as indicated in the legend above each panel.

We define a satellite’s orbital lifetime as the time up to which a satellite, subject to secular variations of its orbital eccentricity, remains with a perigee satisfying the condition a(1e)>rL𝑎1𝑒subscript𝑟𝐿a(1-e)>r_{L}italic_a ( 1 - italic_e ) > italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT. Lifetime cartography at various ‘altitudes’ (fixed values of the semi-major axis a>rL𝑎subscript𝑟𝐿a>r_{L}italic_a > italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT) is obtained as follows: we consider a Ng×Ngsubscript𝑁𝑔subscript𝑁𝑔N_{g}\times N_{g}italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT × italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT rectangular grid of initial conditions for prograde orbits in the square 0i(0)<900𝑖0superscript900\leq i(0)<90^{\circ}0 ≤ italic_i ( 0 ) < 90 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 0e(0)<ere(a)0𝑒0subscript𝑒𝑟𝑒𝑎0\leq e(0)<e_{re}(a)0 ≤ italic_e ( 0 ) < italic_e start_POSTSUBSCRIPT italic_r italic_e end_POSTSUBSCRIPT ( italic_a ) where the re-entry eccentricity is:

ere=1rL/a.subscript𝑒𝑟𝑒1subscript𝑟𝐿𝑎e_{re}=1-r_{L}/a~{}~{}.italic_e start_POSTSUBSCRIPT italic_r italic_e end_POSTSUBSCRIPT = 1 - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT / italic_a . (18)

We consider a fixed value of the angles (0)=M00subscript𝑀0\ell(0)=M_{0}roman_ℓ ( 0 ) = italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, g(0)=ω0𝑔0subscript𝜔0g(0)=\omega_{0}italic_g ( 0 ) = italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, h(0)=Ω00subscriptΩ0h(0)=\Omega_{0}italic_h ( 0 ) = roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, same for all the points i(0),e(0)𝑖0𝑒0i(0),e(0)italic_i ( 0 ) , italic_e ( 0 ) in the grid, and run the numerical orbits as specified in the previous subsection up to a maximum time Trunsubscript𝑇𝑟𝑢𝑛T_{run}italic_T start_POSTSUBSCRIPT italic_r italic_u italic_n end_POSTSUBSCRIPT. The orbital lifetime of a satellite is defined as the time Tresubscript𝑇𝑟𝑒T_{re}italic_T start_POSTSUBSCRIPT italic_r italic_e end_POSTSUBSCRIPT of first occurence of its eccentricity becoming equal to eresubscript𝑒𝑟𝑒e_{re}italic_e start_POSTSUBSCRIPT italic_r italic_e end_POSTSUBSCRIPT. If no re-entry takes place up to the end of the integration we set Tre=Trunsubscript𝑇𝑟𝑒subscript𝑇𝑟𝑢𝑛T_{re}=T_{run}italic_T start_POSTSUBSCRIPT italic_r italic_e end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT italic_r italic_u italic_n end_POSTSUBSCRIPT. We then show in color map the function Tre(i(0),e(0))subscript𝑇𝑟𝑒𝑖0𝑒0T_{re}(i(0),e(0))italic_T start_POSTSUBSCRIPT italic_r italic_e end_POSTSUBSCRIPT ( italic_i ( 0 ) , italic_e ( 0 ) ) as computed at all the points of the grid. In the numerical integration we test how the lifetime map is altered by including the lunar potential harmonics starting from degree n=2𝑛2n=2italic_n = 2 and up to a maximum degree ngsubscript𝑛𝑔n_{g}italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT, for various choices of ngsubscript𝑛𝑔n_{g}italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT.

Figure 2 shows lifetime maps computed for a=rL+500𝑎subscript𝑟𝐿500a=r_{L}+500~{}italic_a = italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT + 500km. The four panels represent four different choices of the cartography parameters (Ng,ng,M0,ω0,Ω0)subscript𝑁𝑔subscript𝑛𝑔subscript𝑀0subscript𝜔0subscriptΩ0(N_{g},n_{g},M_{0},\omega_{0},\Omega_{0})( italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT , italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT , italic_M start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , roman_Ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) as indicated in the caption. We notice that the structure of the lifetime maps varies marginally with the choice of degree ngsubscript𝑛𝑔n_{g}italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT close to the limiting value ng=10subscript𝑛𝑔10n_{g}=10italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 10, while no substantial detail is added to the map also when passing from a resolution Ng=100subscript𝑁𝑔100N_{g}=100italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 100 to Ng=300subscript𝑁𝑔300N_{g}=300italic_N start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 300. The only noticeable difference refers to orbits near the upper limit in both the initial inclination and the initial eccentricity (top right corner in the lifetime maps). We find that several orbits in this domain are protected from re-entry when ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is close to zero, while they evolve towards re-entry if ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is substantially larger than zero. This tendency will be explained in section 3 below.

As the altitude is increased, in accordance with Figure 1 we find that the lifetime map stabilizes after the inclusion of harmonics of lower maximum degree ngsubscript𝑛𝑔n_{g}italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT. This is exemplified in Figure 3, where we see that truncating the force model at ng=7subscript𝑛𝑔7n_{g}=7italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 7 or ng=9subscript𝑛𝑔9n_{g}=9italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 9 yields practically equivalent lifetime maps. This is confirmed also by Figure 4, where a single orbit, with the same initial condition, is propagated using nine different truncations of the lunar potential, i.e., at ng=2,,10subscript𝑛𝑔210n_{g}=2,\dots,10italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 2 , … , 10. We see that the maximum degree ngsubscript𝑛𝑔n_{g}italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT after which the integration stabilizes to practically the same orbit decreases as the altitude increases, so that ng=10subscript𝑛𝑔10n_{g}=10italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 10 is required at the altitude arL=300𝑎subscript𝑟𝐿300a-r_{L}=300~{}italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 300km, while ng=2subscript𝑛𝑔2n_{g}=2italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 2 is sufficient at arL=3000𝑎subscript𝑟𝐿3000a-r_{L}=3000~{}italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 3000km.

Following these numerical tests, Figure 5 focuses on the main information obtained through the above-realized numerical lifetime cartography. The figure shows the lifetime maps obtained with the cartography parameters as indicated in the caption, for six different altitudes, namely a=rL+300𝑎subscript𝑟𝐿300a=r_{L}+300italic_a = italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT + 300, 500500500500, 700700700700, 900900900900, 2000200020002000, and 3000300030003000 km. At lower altitudes (arL<1000𝑎subscript𝑟𝐿1000a-r_{L}<1000italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT < 1000 km) we observe some sub-structure in the lifetime maps appearing in the form of some local minima of the border curve e(i)𝑒𝑖e(i)italic_e ( italic_i ) separating initial conditions leading to re-entry from those which do not. In the next section, we will argue that such minima are connected to some low-order secular resonances besides the ‘2g2𝑔2g2 italic_g’ resonance (see next section). However, their presence in the lifetime maps is no longer distinguished at altitudes arL>1000𝑎subscript𝑟𝐿1000a-r_{L}>1000italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT > 1000 km. Instead, from those altitudes on, we observe the presence of a nearly connected domain of initial conditions leading to re-entry, which has a nearly vertical right border and a nearly smooth concave left border. At the base of each map (for e(0)=0𝑒00e(0)=0italic_e ( 0 ) = 0) both borders terminate at two limiting values of the inclination (imin,imax)subscript𝑖𝑚𝑖𝑛subscript𝑖𝑚𝑎𝑥(i_{min},i_{max})( italic_i start_POSTSUBSCRIPT italic_m italic_i italic_n end_POSTSUBSCRIPT , italic_i start_POSTSUBSCRIPT italic_m italic_a italic_x end_POSTSUBSCRIPT ). The left limit iminsubscript𝑖𝑚𝑖𝑛i_{min}italic_i start_POSTSUBSCRIPT italic_m italic_i italic_n end_POSTSUBSCRIPT shows little variation with the altitude, around values 55<imin<60superscript55subscript𝑖𝑚𝑖𝑛superscript6055^{\circ}<i_{min}<60^{\circ}55 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT < italic_i start_POSTSUBSCRIPT italic_m italic_i italic_n end_POSTSUBSCRIPT < 60 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, while the right limit imaxsubscript𝑖𝑚𝑎𝑥i_{max}italic_i start_POSTSUBSCRIPT italic_m italic_a italic_x end_POSTSUBSCRIPT increases with the altitude, reaching imax=90subscript𝑖𝑚𝑎𝑥superscript90i_{max}=90^{\circ}italic_i start_POSTSUBSCRIPT italic_m italic_a italic_x end_POSTSUBSCRIPT = 90 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT at about the altitude arL=1300𝑎subscript𝑟𝐿1300a-r_{L}=1300italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 1300 km.

3 Analytic Model

In the present section, we demonstrate that most features observed in the numerical lifetime maps, as exposed in the previous section, can be reproduced qualitatively, and to a large extent also quantitatively, through a simple model of the most important secular resonance of the problem, namely the 2g2𝑔2g2 italic_g resonance. We first give some general account of the structure of secular resonances for lunar satellites, and then proceed to the interpretation of the lifetime maps through the phase portraits of the 2g2𝑔2g2 italic_g resonance.

3.1 The web of secular resonances

The secular model SMsubscript𝑆𝑀\mathcal{H}_{SM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT involves five different frequencies whose commensurabilities potentially lead to resonance effects: g˙˙𝑔\dot{g}over˙ start_ARG italic_g end_ARG (precession of the satellite’s perilune), h˙+ωz˙subscript𝜔𝑧\dot{h}+\omega_{z}over˙ start_ARG italic_h end_ARG + italic_ω start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT (precession of the satellite’s line of nodes in a fixed frame coinciding with the PALRF frame at t=0𝑡0t=0italic_t = 0) νL,g˙Lsubscript𝜈𝐿subscript˙𝑔𝐿\nu_{L},\dot{g}_{L}italic_ν start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT , over˙ start_ARG italic_g end_ARG start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT (precessions of the Moon ’s line of nodes in the ecliptic plane, and the Moon’s argument of the perigee). These frequencies enter into the Earth’s radius vector rE(t)subscript𝑟𝐸𝑡\vec{r}_{E}(t)over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ), and λS˙˙subscript𝜆𝑆\dot{\lambda_{S}}over˙ start_ARG italic_λ start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_ARG (the Sun’s orbital frequency, which enters in the Sun’s radius vector rS(t)subscript𝑟𝑆𝑡\vec{r}_{S}(t)over→ start_ARG italic_r end_ARG start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t )). Up to five significant figures we have that ωz(t)=const=2.64×106rad/secsubscript𝜔𝑧𝑡𝑐𝑜𝑛𝑠𝑡2.64superscript106𝑟𝑎𝑑𝑠𝑒𝑐\omega_{z}(t)=const=2.64\times 10^{-6}~{}rad/secitalic_ω start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_t ) = italic_c italic_o italic_n italic_s italic_t = 2.64 × 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT italic_r italic_a italic_d / italic_s italic_e italic_c (corresponding to the Moon’s siderial lunar day equal to 27.5527.5527.5527.55 days), νL=1.07×108rad/secsubscript𝜈𝐿1.07superscript108𝑟𝑎𝑑𝑠𝑒𝑐\nu_{L}=1.07\times 10^{-8}~{}rad/secitalic_ν start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 1.07 × 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT italic_r italic_a italic_d / italic_s italic_e italic_c (corresponding to a period of 18.618.618.618.6 yr), g˙L=2.25×108rad/secsubscript˙𝑔𝐿2.25superscript108𝑟𝑎𝑑𝑠𝑒𝑐\dot{g}_{L}=2.25\times 10^{-8}~{}rad/secover˙ start_ARG italic_g end_ARG start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 2.25 × 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT italic_r italic_a italic_d / italic_s italic_e italic_c (corresponding to a period of 8.858.858.858.85 yr), λ˙S=1.99×107rad/secsubscript˙𝜆𝑆1.99superscript107𝑟𝑎𝑑𝑠𝑒𝑐\dot{\lambda}_{S}=1.99\times 10^{-7}~{}rad/secover˙ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT = 1.99 × 10 start_POSTSUPERSCRIPT - 7 end_POSTSUPERSCRIPT italic_r italic_a italic_d / italic_s italic_e italic_c. However, from Fig.1 we deduce that the solar force is very small at all altitudes here considered, while the frequency g˙Lsubscript˙𝑔𝐿\dot{g}_{L}over˙ start_ARG italic_g end_ARG start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT only involves terms of small size depending on the eccentricity of the Moon’s geocentric orbit (eL=0.054subscript𝑒𝐿0.054e_{L}=0.054italic_e start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 0.054) and can also be ignored. On the other hand, in secular theory the frequencies g˙˙𝑔\dot{g}over˙ start_ARG italic_g end_ARG and h˙˙\dot{h}over˙ start_ARG italic_h end_ARG are functions of the elements (a,e,i)𝑎𝑒𝑖(a,e,i)( italic_a , italic_e , italic_i ) and can be computed as follows: first, from the tables provided in [1], we keep the most important terms in the trigonometric representation of the Earth and Sun PALRF vectors, assuming i) circular orbits for both bodies, and ii) a zero obliquity of the Moon with respect to the ecliptic (the true obliquity is equal to 1.5superscript1.51.5^{\circ}1.5 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT). Finally, we set the Earth’s position to depend only on one angle τE=ωztsubscript𝜏𝐸subscript𝜔𝑧𝑡\tau_{E}=\omega_{z}titalic_τ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT = italic_ω start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT italic_t with period the sidereal lunar day

xE(t)[km]subscript𝑥𝐸𝑡delimited-[]𝑘𝑚\displaystyle x_{E}(t)[km]italic_x start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) [ italic_k italic_m ] =382470+14800(cosτE+sinτE),absent38247014800subscript𝜏𝐸subscript𝜏𝐸\displaystyle=382470+14800(\cos\tau_{E}+\sin\tau_{E}),= 382470 + 14800 ( roman_cos italic_τ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT + roman_sin italic_τ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ) ,
yE(t)[km]subscript𝑦𝐸𝑡delimited-[]𝑘𝑚\displaystyle y_{E}(t)[km]italic_y start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) [ italic_k italic_m ] =29750(cosτEsinτE),absent29750subscript𝜏𝐸subscript𝜏𝐸\displaystyle=29750(\cos\tau_{E}-\sin\tau_{E}),= 29750 ( roman_cos italic_τ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT - roman_sin italic_τ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ) , (19)
zE(t)[km]subscript𝑧𝐸𝑡delimited-[]𝑘𝑚\displaystyle z_{E}(t)[km]italic_z start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) [ italic_k italic_m ] =44650cosτE,absent44650subscript𝜏𝐸\displaystyle=-44650\cos\tau_{E},= - 44650 roman_cos italic_τ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ,

and analogously the Sun’s position to depend only on one angle τS=(ωzλ˙S)tsubscript𝜏𝑆subscript𝜔𝑧subscript˙𝜆𝑆𝑡\tau_{S}=(\omega_{z}-\dot{\lambda}_{S})titalic_τ start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT = ( italic_ω start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT - over˙ start_ARG italic_λ end_ARG start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ) italic_t with period the synodic lunar day (29.53 days)

xS(t)[km]subscript𝑥𝑆𝑡delimited-[]𝑘𝑚\displaystyle x_{S}(t)[km]italic_x start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) [ italic_k italic_m ] =6.9917×107cosτS1.322×108sinτS,absent6.9917superscript107subscript𝜏𝑆1.322superscript108subscript𝜏𝑆\displaystyle=-6.9917\times 10^{7}\cos\tau_{S}-1.322\times 10^{8}\sin\tau_{S},= - 6.9917 × 10 start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT roman_cos italic_τ start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT - 1.322 × 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT roman_sin italic_τ start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ,
yS(t)[km]subscript𝑦𝑆𝑡delimited-[]𝑘𝑚\displaystyle y_{S}(t)[km]italic_y start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) [ italic_k italic_m ] =1.322×108cosτS+6.9917×107sinτS,absent1.322superscript108subscript𝜏𝑆6.9917superscript107subscript𝜏𝑆\displaystyle=-1.322\times 10^{8}\cos\tau_{S}+6.9917\times 10^{7}\sin\tau_{S},= - 1.322 × 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT roman_cos italic_τ start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT + 6.9917 × 10 start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT roman_sin italic_τ start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT , (20)
zS(t)[km]subscript𝑧𝑆𝑡delimited-[]𝑘𝑚\displaystyle z_{S}(t)[km]italic_z start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) [ italic_k italic_m ] =0.absent0\displaystyle=0~{}.= 0 .

Substituting the above expressions in the Hamiltonian SMsubscript𝑆𝑀\mathcal{H}_{SM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT, setting xE(t)=aL+ΔxE(t)subscript𝑥𝐸𝑡subscript𝑎𝐿Δsubscript𝑥𝐸𝑡x_{E}(t)=a_{L}+\Delta x_{E}(t)italic_x start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) = italic_a start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT + roman_Δ italic_x start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ), with aL=382470subscript𝑎𝐿382470a_{L}=382470italic_a start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 382470 km, expanding up to first order in the three small quantities ΔxE(t)Δsubscript𝑥𝐸𝑡\Delta x_{E}(t)roman_Δ italic_x start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ), yE(t),zE(t)subscript𝑦𝐸𝑡subscript𝑧𝐸𝑡y_{E}(t),z_{E}(t)italic_y start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) , italic_z start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ), noticing that only the constant Sun’s distance rS3=(xS(t)2+yS(t)2)3/2superscriptsubscript𝑟𝑆3superscriptsubscript𝑥𝑆superscript𝑡2subscript𝑦𝑆superscript𝑡232r_{S}^{3}=(x_{S}(t)^{2}+y_{S}(t)^{2})^{3/2}italic_r start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT = ( italic_x start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_y start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ( italic_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT appears in the denominator of the VSsubscript𝑉𝑆V_{S}italic_V start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT, and, finally, making all trigonometric reductions, we obtain an approximate model for the Hamiltonian which takes the form:

SM=SM,0(a,e,i)+SM,1(a,e,i,g,h,τE,τS).subscript𝑆𝑀subscript𝑆𝑀0𝑎𝑒𝑖subscript𝑆𝑀1𝑎𝑒𝑖𝑔subscript𝜏𝐸subscript𝜏𝑆\mathcal{H}_{SM}=\mathcal{H}_{SM,0}(a,e,i)+\mathcal{H}_{SM,1}(a,e,i,g,h,\tau_{% E},\tau_{S})~{}~{}.caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT = caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 0 end_POSTSUBSCRIPT ( italic_a , italic_e , italic_i ) + caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 1 end_POSTSUBSCRIPT ( italic_a , italic_e , italic_i , italic_g , italic_h , italic_τ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT , italic_τ start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ) . (21)

Then, we compute:

g˙(a,e,i)˙𝑔𝑎𝑒𝑖\displaystyle\dot{g}(a,e,i)over˙ start_ARG italic_g end_ARG ( italic_a , italic_e , italic_i ) =SM,0G=1μLa(ηeSM,0ecosiηsiniSM,0i)absentsubscript𝑆𝑀0𝐺1subscript𝜇𝐿𝑎𝜂𝑒subscript𝑆𝑀0𝑒𝑖𝜂𝑖subscript𝑆𝑀0𝑖\displaystyle={\partial\mathcal{H}_{SM,0}\over\partial G}={1\over\sqrt{\mu_{L}% a}}\left({\eta\over e}{\partial\mathcal{H}_{SM,0}\over\partial e}-{\cos i\over% \eta\sin i}{\partial\mathcal{H}_{SM,0}\over\partial i}\right)= divide start_ARG ∂ caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 0 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_G end_ARG = divide start_ARG 1 end_ARG start_ARG square-root start_ARG italic_μ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_a end_ARG end_ARG ( divide start_ARG italic_η end_ARG start_ARG italic_e end_ARG divide start_ARG ∂ caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 0 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_e end_ARG - divide start_ARG roman_cos italic_i end_ARG start_ARG italic_η roman_sin italic_i end_ARG divide start_ARG ∂ caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 0 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_i end_ARG ) (22)
h˙(a,e,i)˙𝑎𝑒𝑖\displaystyle\dot{h}(a,e,i)over˙ start_ARG italic_h end_ARG ( italic_a , italic_e , italic_i ) =SM,0H=1μLa(1ηsiniSM,0i).absentsubscript𝑆𝑀0𝐻1subscript𝜇𝐿𝑎1𝜂𝑖subscript𝑆𝑀0𝑖\displaystyle={\partial\mathcal{H}_{SM,0}\over\partial H}={1\over\sqrt{\mu_{L}% a}}\left({1\over\eta\sin i}{\partial\mathcal{H}_{SM,0}\over\partial i}\right)~% {}.= divide start_ARG ∂ caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 0 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_H end_ARG = divide start_ARG 1 end_ARG start_ARG square-root start_ARG italic_μ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_a end_ARG end_ARG ( divide start_ARG 1 end_ARG start_ARG italic_η roman_sin italic_i end_ARG divide start_ARG ∂ caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 0 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_i end_ARG ) .

Note that, besides (g,h,τE,τS)𝑔subscript𝜏𝐸subscript𝜏𝑆(g,h,\tau_{E},\tau_{S})( italic_g , italic_h , italic_τ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT , italic_τ start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ), in the complete SM the Hamiltonian HSM,1subscriptH𝑆𝑀1\textit{H}_{SM,1}H start_POSTSUBSCRIPT italic_S italic_M , 1 end_POSTSUBSCRIPT depends also on the angles νLtsubscript𝜈𝐿𝑡\nu_{L}titalic_ν start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_t and g˙Ltsubscript˙𝑔𝐿𝑡\dot{g}_{L}tover˙ start_ARG italic_g end_ARG start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_t, the latter dependence being, however, through terms of negligible size.

We then define the ‘k1g+k2(h+λL)+k3ΩLsubscript𝑘1𝑔subscript𝑘2subscript𝜆𝐿subscript𝑘3subscriptΩ𝐿k_{1}g+k_{2}(h+\lambda_{L})+k_{3}\Omega_{L}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_g + italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_h + italic_λ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) + italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT resonance’, with k=(k1,k2,k3)𝑘subscript𝑘1subscript𝑘2subscript𝑘3\vec{k}=\left(k_{1},k_{2},k_{3}\right)over→ start_ARG italic_k end_ARG = ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) 3absentsuperscript3\in\mathbb{Z}^{3}∈ blackboard_Z start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT as the two dimensional surface ksubscript𝑘\mathcal{R}_{\vec{k}}caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT in the 3D space of elements (a,e,i)𝑎𝑒𝑖(a,e,i)( italic_a , italic_e , italic_i ) where the commensurability

𝒮k:={(a,e,i):k1g˙(a,e,i)+k2(h˙(a,e,i)+ωz)+k3νL=0}assignsubscript𝒮𝑘conditional-set𝑎𝑒𝑖subscript𝑘1˙𝑔𝑎𝑒𝑖subscript𝑘2˙𝑎𝑒𝑖subscript𝜔𝑧subscript𝑘3subscript𝜈𝐿0\mathcal{S}_{\vec{k}}:=\left\{(a,e,i):~{}k_{1}\dot{g}(a,e,i)+k_{2}(\dot{h}(a,e% ,i)+\omega_{z})+k_{3}\nu_{L}=0\right\}~{}caligraphic_S start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT := { ( italic_a , italic_e , italic_i ) : italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT over˙ start_ARG italic_g end_ARG ( italic_a , italic_e , italic_i ) + italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( over˙ start_ARG italic_h end_ARG ( italic_a , italic_e , italic_i ) + italic_ω start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ) + italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_ν start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 0 } (23)

holds. Here, the angle λLsubscript𝜆𝐿\lambda_{L}italic_λ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT is defined as λL=λ0+τEsubscript𝜆𝐿subscript𝜆0subscript𝜏𝐸\lambda_{L}=\lambda_{0}+\tau_{E}italic_λ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = italic_λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_τ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT, and it indicates the angle of the PALRF xlimit-from𝑥x-italic_x -axis with respect to a chosen fixed frame. The value of λ0subscript𝜆0\lambda_{0}italic_λ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT depends on the choice of fixed frame and on the initial epoch.

Refer to caption
Figure 6: The curves corresponding to the intersection of the resonant surfaces ksubscript𝑘\mathcal{R}_{\vec{k}}caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT with the plane a=const𝑎𝑐𝑜𝑛𝑠𝑡a=constitalic_a = italic_c italic_o italic_n italic_s italic_t, with the constant value of the semi-major axis as indicated in each panel, for the most important secular resonances of the problem. The altitudes are the same as in the corresponding lifetime maps of Fig.5.

Figure 6 shows the curves corresponding to the most important (low-order) resonant surfaces ksubscript𝑘\mathcal{R}_{\vec{k}}caligraphic_R start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT in the (i,e)𝑖𝑒(i,e)( italic_i , italic_e ) plane for fixed a𝑎aitalic_a and at the bottom in the (i,a)𝑖𝑎(i,a)( italic_i , italic_a ) one for fixed e=0𝑒0e=0italic_e = 0. Opposing Fig.6 to Fig.5, we can observe that, at all altitudes, the domains where re-entry takes place are crossed by several of the resonances shown in Fig.6. However, a quick analysis can show that, at both low and high altitudes, not all of these resonances are important for eccentricity growth. Deferring a detailed analysis to a separate paper, we may summarize the way resonances act in this problem as follows. Recalling basic symmetries (the so-called ‘D’Alembert’ rules) of the Hamiltonian, it follows that:

  1. 1.

    The Hamiltonian SM,0subscript𝑆𝑀0\mathcal{H}_{SM,0}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 0 end_POSTSUBSCRIPT contains contributions only from the even degree zonal harmonics (J2,J4,subscript𝐽2subscript𝐽4J_{2},J_{4},\ldotsitalic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_J start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT , …) of the lunar multipole potential expansion VLsubscript𝑉𝐿V_{L}italic_V start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT, as well as a negligible contribution from the Earth’s potential term VEsubscript𝑉𝐸V_{E}italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT (of relative importance 𝒪((μE/μL)(a/RL)2\mathcal{O}((\mu_{E}/\mu_{L})(a/R_{L})^{2}caligraphic_O ( ( italic_μ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT / italic_μ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) ( italic_a / italic_R start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (a/aL)3)(a/a_{L})^{3})( italic_a / italic_a start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) with respect to the J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT term, see Fig.1). Thus, the locations of all resonances are determined, practically, by the even zonal harmonics J2jsubscript𝐽2𝑗J_{2j}italic_J start_POSTSUBSCRIPT 2 italic_j end_POSTSUBSCRIPT, j=1,2,𝑗12j=1,2,\ldotsitalic_j = 1 , 2 , …. We refer to this property in short as that ‘the even zonal harmonics define the centers of the resonances’.

  2. 2.

    The J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT term contributes no trigonometric term of first order in J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT to the Hamiltonian term SM,1subscript𝑆𝑀1\mathcal{H}_{SM,1}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 1 end_POSTSUBSCRIPT, while it contributes a (here neglected) term 𝒪(J22)cos(2g)𝒪superscriptsubscript𝐽222𝑔\mathcal{O}(J_{2}^{2})\cos(2g)caligraphic_O ( italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_cos ( 2 italic_g ) after second order normalization in closed form. The remaining even zonal harmonics 2j>22𝑗22j>22 italic_j > 2 all contribute a first order 𝒪(J2jRL2je2/a2j+1)cos(2g)𝒪subscript𝐽2𝑗superscriptsubscript𝑅𝐿2𝑗superscript𝑒2superscript𝑎2𝑗12𝑔\mathcal{O}(J_{2j}R_{L}^{2j}e^{2}/a^{2j+1})\cos(2g)caligraphic_O ( italic_J start_POSTSUBSCRIPT 2 italic_j end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_j end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_a start_POSTSUPERSCRIPT 2 italic_j + 1 end_POSTSUPERSCRIPT ) roman_cos ( 2 italic_g ) term to SM,1subscript𝑆𝑀1\mathcal{H}_{SM,1}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 1 end_POSTSUBSCRIPT. On the other hand, the odd zonal harmonics J2j+1subscript𝐽2𝑗1J_{2j+1}italic_J start_POSTSUBSCRIPT 2 italic_j + 1 end_POSTSUBSCRIPT, j=1,2,𝑗12j=1,2,\ldotsitalic_j = 1 , 2 , … contribute to odd trigonometric terms esin(g),e3sin(3g)𝑒𝑔superscript𝑒33𝑔e\sin(g),e^{3}\sin(3g)italic_e roman_sin ( italic_g ) , italic_e start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT roman_sin ( 3 italic_g ), etc, with amplitudes following a similar scaling as for the odd zonal terms. The Earth’s potential contributes a 𝒪(e2μE(a/aL)3)cos(2g)𝒪superscript𝑒2subscript𝜇𝐸superscript𝑎subscript𝑎𝐿32𝑔\mathcal{O}(e^{2}\mu_{E}(a/a_{L})^{3})\cos(2g)caligraphic_O ( italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_μ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_a / italic_a start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) roman_cos ( 2 italic_g ) to SM,1subscript𝑆𝑀1\mathcal{H}_{SM,1}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 1 end_POSTSUBSCRIPT. We shortly refer to the above set of properties as that ‘the exact position of the fixed points, and the form of the separatrices of the 2g2𝑔2g2 italic_g-resonance, are determined by both the zonal harmonics Jnsubscript𝐽𝑛J_{n}italic_J start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, n=2,3,𝑛23n=2,3,\ldotsitalic_n = 2 , 3 , … and the Earth’s tidal term VEsubscript𝑉𝐸V_{E}italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT. As seen in Fig.1, owing to their large value (due to the lunar mascons), the zonal harmonics are the main terms to determine the position of the fixed points and form of the separatrices of the 2glimit-from2𝑔2g-2 italic_g -resonance, at least up to the end of the middle-altitude zone.

  3. 3.

    No zonal harmonic contributes to any other secular resonance of the ensemble (23). Tesseral harmonics Cn,msubscript𝐶𝑛𝑚C_{n,m}italic_C start_POSTSUBSCRIPT italic_n , italic_m end_POSTSUBSCRIPT, Sn,msubscript𝑆𝑛𝑚S_{n,m}italic_S start_POSTSUBSCRIPT italic_n , italic_m end_POSTSUBSCRIPT, with n2𝑛2n\geq 2italic_n ≥ 2, 1mn1𝑚𝑛1\leq m\leq n1 ≤ italic_m ≤ italic_n, do not contribute any term to SM,0subscript𝑆𝑀0\mathcal{H}_{SM,0}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 0 end_POSTSUBSCRIPT, while they contribute cosine and sine trigonometric terms to SM,1subscript𝑆𝑀1\mathcal{H}_{SM,1}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 1 end_POSTSUBSCRIPT. The latter terms necessarily contain the satellite’s longitude of the nodes hhitalic_h, but not h+λLsubscript𝜆𝐿h+\lambda_{L}italic_h + italic_λ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT, which is the argument of interest for secular resonances. On the other hand, trigonometric terms involving the argument h+λLsubscript𝜆𝐿h+\lambda_{L}italic_h + italic_λ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT are due to the Earth’s potential VEsubscript𝑉𝐸V_{E}italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT, of relative importance proportional to the sine of the Moon’s obliquity εL0.12radsimilar-to-or-equalssubscript𝜀𝐿0.12𝑟𝑎𝑑\varepsilon_{L}\simeq 0.12~{}raditalic_ε start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≃ 0.12 italic_r italic_a italic_d. We shortly refer to this property as that ‘the form of the separatrices of all secular resonances of the form k1g+k2(h+λL)subscript𝑘1𝑔subscript𝑘2subscript𝜆𝐿k_{1}g+k_{2}(h+\lambda_{L})italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_g + italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_h + italic_λ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) with k20subscript𝑘20k_{2}\neq 0italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≠ 0 is determined only by terms in VEsubscript𝑉𝐸V_{E}italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT proportional to sin(εL)subscript𝜀𝐿\sin(\varepsilon_{L})roman_sin ( italic_ε start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ). Since such terms are one order of magnitude smaller than the respective Earth’s contribution to zonal harmonics, their impact on the structure of the resonance web is negligible even for high-altitude orbits.

  4. 4.

    Trigonometric terms in SM,1subscript𝑆𝑀1\mathcal{H}_{SM,1}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 1 end_POSTSUBSCRIPT depending on the angle ΩLsubscriptΩ𝐿\Omega_{L}roman_Ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT are produced only by the Earth potential VEsubscript𝑉𝐸V_{E}italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT, and they are of order 𝒪(e2μE(a/aL)3)𝒪superscript𝑒2subscript𝜇𝐸superscript𝑎subscript𝑎𝐿3\mathcal{O}(e^{2}\mu_{E}(a/a_{L})^{3})caligraphic_O ( italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_μ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_a / italic_a start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) sin(εL)sin(ip)subscript𝜀𝐿subscript𝑖𝑝\sin(\varepsilon_{L})\sin(i_{p})roman_sin ( italic_ε start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) roman_sin ( italic_i start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ), where iLsubscript𝑖𝐿i_{L}italic_i start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT is the inclination of the Moon’s orbit with respect to the ecliptic, iL0.09radsimilar-to-or-equalssubscript𝑖𝐿0.09𝑟𝑎𝑑i_{L}\simeq 0.09~{}raditalic_i start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≃ 0.09 italic_r italic_a italic_d.

3.2 Simplified Hamiltonian model

Refer to caption
Figure 7: Left: The values of the normalized coefficients C¯nmsubscript¯𝐶𝑛𝑚\bar{C}_{nm}over¯ start_ARG italic_C end_ARG start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT (blue) and S¯nmsubscript¯𝑆𝑛𝑚\bar{S}_{nm}over¯ start_ARG italic_S end_ARG start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT (red) as a function of the order n𝑛nitalic_n. The horizontal line corresponds to the threshold value 5×1065superscript1065\times 10^{-6}5 × 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT. Numerical values are reported in A. Right: Comparison between the evolution of the eccentricity of an orbit with initial conditions a=rL+500𝑎subscript𝑟𝐿500a=r_{L}+500italic_a = italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT + 500 km, e=0.01𝑒0.01e=0.01italic_e = 0.01, i=60𝑖superscript60i=60^{\circ}italic_i = 60 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, Ω=0Ωsuperscript0\Omega=0^{\circ}roman_Ω = 0 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, ω=0𝜔superscript0\omega=0^{\circ}italic_ω = 0 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, M=0𝑀superscript0M=0^{\circ}italic_M = 0 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT using the complete Hamiltonian SMsubscript𝑆𝑀\mathcal{H}_{SM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT (red), or the simplified model SSMsubscript𝑆𝑆𝑀\mathcal{H}_{SSM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT (black).

Figure 7, in conjunction with what was exposed in the previous subsection, allows now to construct a ‘simplified SELENA-mean’ secular Hamiltonian model (hereafter SSMsubscript𝑆𝑆𝑀\mathcal{H}_{SSM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT), which contains only a small subset of terms of SMsubscript𝑆𝑀\mathcal{H}_{SM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT, while, yielding essentially the same long-term behavior of the orbits. The left panel of Fig.7 shows the values of all the normalized GRAIL coefficients C¯nmsubscript¯𝐶𝑛𝑚\bar{C}_{nm}over¯ start_ARG italic_C end_ARG start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT (blue) and S¯nmsubscript¯𝑆𝑛𝑚\bar{S}_{nm}over¯ start_ARG italic_S end_ARG start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT (red) as a function of the degree n𝑛nitalic_n, with 2n102𝑛102\leq n\leq 102 ≤ italic_n ≤ 10. These values are reported in Appendix I. The horizontal line corresponds to an arbitrary threshold value 5×1065superscript1065\times 10^{-6}5 × 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT. We find twelve harmonics whose normalized value is above such threshold, namely the set

𝒞𝒮SSM={C20,C22,C30,C31,S31,C40,C41,C60,C70,C71,C80,C90}.𝒞subscript𝒮𝑆𝑆𝑀subscript𝐶20subscript𝐶22subscript𝐶30subscript𝐶31subscript𝑆31subscript𝐶40subscript𝐶41subscript𝐶60subscript𝐶70subscript𝐶71subscript𝐶80subscript𝐶90\mathcal{CS}_{SSM}=\left\{C_{20},C_{22},C_{30},C_{31},S_{31},C_{40},C_{41},C_{% 60},C_{70},C_{71},C_{80},C_{90}\right\}~{}.caligraphic_C caligraphic_S start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT = { italic_C start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 30 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 31 end_POSTSUBSCRIPT , italic_S start_POSTSUBSCRIPT 31 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 40 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 41 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 60 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 70 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 71 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 80 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 90 end_POSTSUBSCRIPT } . (24)

Using i) only the harmonics of Eq.(24), ii) the simplified form of the PALRF Earth vector, given in Eq.(3.1) (expanding again up to first order with respect to the small quantities ΔxE(t)Δsubscript𝑥𝐸𝑡\Delta x_{E}(t)roman_Δ italic_x start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ), yE(t),zE(t)subscript𝑦𝐸𝑡subscript𝑧𝐸𝑡y_{E}(t),z_{E}(t)italic_y start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ) , italic_z start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( italic_t ), iii) ignoring the negligible contribution of the Sun and iv) setting ωz=const=ωL=2.64×106rad/secsubscript𝜔𝑧𝑐𝑜𝑛𝑠𝑡subscript𝜔𝐿2.64superscript106𝑟𝑎𝑑𝑠𝑒𝑐\omega_{z}=const=\omega_{L}=2.64\times 10^{-6}rad/secitalic_ω start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT = italic_c italic_o italic_n italic_s italic_t = italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 2.64 × 10 start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT italic_r italic_a italic_d / italic_s italic_e italic_c, as well as ωx=ωy=0subscript𝜔𝑥subscript𝜔𝑦0\omega_{x}=\omega_{y}=0italic_ω start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = italic_ω start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT = 0, leads to the simplified model SSMsubscript𝑆𝑆𝑀\mathcal{H}_{SSM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT. The right panel of Fig.7 shows an orbit leading to re-entry, as integrated with the full Hamiltonian SMsubscript𝑆𝑀\mathcal{H}_{SM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT of the SELENA-mean model, or with the simplified Hamiltonian SSMsubscript𝑆𝑆𝑀\mathcal{H}_{SSM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT, showing that the orbital evolution is nearly identical with the two models all the way up to the re-entry.

Refer to caption
Figure 8: The inclination at which ω˙=0˙𝜔0\dot{\omega}=0over˙ start_ARG italic_ω end_ARG = 0 for circular orbits as a function of the altitude.

As an additional test, Fig.8 shows the value of the inclination i(a)𝑖𝑎i(a)italic_i ( italic_a ) where the 2glimit-from2𝑔2g-2 italic_g -resonance (plane 𝒮2,0,0subscript𝒮200\mathcal{S}_{2,0,0}caligraphic_S start_POSTSUBSCRIPT 2 , 0 , 0 end_POSTSUBSCRIPT) intersects the plane e=0𝑒0e=0italic_e = 0, as a function of the altitude arL𝑎subscript𝑟𝐿a-r_{L}italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT. The black curve shows the computation with the integrable part of the complete model SM,0subscript𝑆𝑀0\mathcal{H}_{SM,0}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M , 0 end_POSTSUBSCRIPT plus the J22superscriptsubscript𝐽22J_{2}^{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT terms of the SELENA model. The remaining curves show the same curve as obtained under various truncations in the Moon’s zonal harmonics. Note that the J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT term alone yields icritical=63.4subscript𝑖𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙superscript63.4i_{critical}=63.4^{\circ}italic_i start_POSTSUBSCRIPT italic_c italic_r italic_i italic_t italic_i italic_c italic_a italic_l end_POSTSUBSCRIPT = 63.4 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, which holds as well for any value of e0𝑒0e\neq 0italic_e ≠ 0. Since the J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT term is dominant over all other lunar harmonics at high altitude, the location of the resonance converges towards the value icritsubscript𝑖𝑐𝑟𝑖𝑡i_{crit}italic_i start_POSTSUBSCRIPT italic_c italic_r italic_i italic_t end_POSTSUBSCRIPT as arL𝑎subscript𝑟𝐿a-r_{L}italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT increases, and the critical value is essentially reached at arL5000𝑎subscript𝑟𝐿5000a-r_{L}\approx 5000italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≈ 5000 km. As concluded from the convergence of the curves, the correct dependence of the location of the 2glimit-from2𝑔2g-2 italic_g -resonance on the altitude is essentially recovered for all altitudes arL>100𝑎subscript𝑟𝐿100a-r_{L}>100italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT > 100 km, by the addition of the first three important zonal harmonics, i.e., adding J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, J4subscript𝐽4J_{4}italic_J start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT and J6subscript𝐽6J_{6}italic_J start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT.

Refer to caption
Figure 9: (left) FLI maps, and (right) lifetime maps in a grid of initial conditions in the (i,e)𝑖𝑒(i,e)( italic_i , italic_e ) plane for orbits with Ω=ω=0Ω𝜔superscript0\Omega=\omega=0^{\circ}roman_Ω = italic_ω = 0 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT at the altitudes arL=500km𝑎subscript𝑟𝐿500𝑘𝑚a-r_{L}=500kmitalic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 500 italic_k italic_m (top row), arL=1000km𝑎subscript𝑟𝐿1000𝑘𝑚a-r_{L}=1000kmitalic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 1000 italic_k italic_m (middle row), arL=1500km𝑎subscript𝑟𝐿1500𝑘𝑚a-r_{L}=1500kmitalic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 1500 italic_k italic_m (bottom row). The numerical trajectories are computed in the complete Hamiltonian SMsubscript𝑆𝑀\mathcal{H}_{SM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT, while the FLI is computed by calculating the associated variational equations of motion. The thick points in the lifetime maps correspond to theoretical predictions of the borders of the domains of re-entry obtained through the model of the 2glimit-from2𝑔2g-2 italic_g -resonance discussed in subsection 3.3. The dashed curves indicate the ‘planes of fast drift’ defined in the same subsection.

Having checked that the terms of the ensemble 𝒮SSMsubscript𝒮𝑆𝑆𝑀\mathcal{S}_{SSM}caligraphic_S start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT are the only important ones as regards the behavior of secular resonances, we proceed to check which of the resonances have well developed separatrices as a function of the altitude arL𝑎subscript𝑟𝐿a-r_{L}italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT. By property 2 above, all the zonal terms within the set 𝒮SSMsubscript𝒮𝑆𝑆𝑀\mathcal{S}_{SSM}caligraphic_S start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT (even or odd) contribute only to the separatrices of the 2g2𝑔2g2 italic_g resonances. On the other hand, by D’Alembert rules the tesseral harmonics C22subscript𝐶22C_{22}italic_C start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT, C31subscript𝐶31C_{31}italic_C start_POSTSUBSCRIPT 31 end_POSTSUBSCRIPT, S31subscript𝑆31S_{31}italic_S start_POSTSUBSCRIPT 31 end_POSTSUBSCRIPT C41subscript𝐶41C_{41}italic_C start_POSTSUBSCRIPT 41 end_POSTSUBSCRIPT and C71subscript𝐶71C_{71}italic_C start_POSTSUBSCRIPT 71 end_POSTSUBSCRIPT generate trigonometric terms according to the rule that the Cnmsubscript𝐶𝑛𝑚C_{nm}italic_C start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT or Snmsubscript𝑆𝑛𝑚S_{nm}italic_S start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT harmonic generates terms with arguments m1g±mhplus-or-minussubscript𝑚1𝑔𝑚m_{1}g\pm mhitalic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_g ± italic_m italic_h, where 0m1n20subscript𝑚1𝑛20\leq m_{1}\leq n-20 ≤ italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ italic_n - 2. None of these terms involve the angle h+λLsubscript𝜆𝐿h+\lambda_{L}italic_h + italic_λ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT, thus the tesseral terms do not create separatrices for any of the secular resonances of the problem. Finally, the Earth’s term contributes to the separatrices of all the secular resonances involving the angle m(h+λL)𝑚subscript𝜆𝐿m(h+\lambda_{L})italic_m ( italic_h + italic_λ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) through terms 𝒪(μEa2/aL3sin(mεL)\mathcal{O}(\mu_{E}a^{2}/a_{L}^{3}\sin(m\varepsilon_{L})caligraphic_O ( italic_μ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_a start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT roman_sin ( italic_m italic_ε start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ), where εL0.1similar-to-or-equalssubscript𝜀𝐿0.1\varepsilon_{L}\simeq 0.1italic_ε start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≃ 0.1 is the obliquity of the Moon. We have already seen that the coefficient μEa2/aL3subscript𝜇𝐸superscript𝑎2superscriptsubscript𝑎𝐿3\mu_{E}a^{2}/a_{L}^{3}italic_μ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_a start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT yields a negligible contribution to the 2g2𝑔2g2 italic_g resonance compared with the zonal harmonics of the lunar potential. Since the tesseral harmonics do not contribute to other resonances, and the Earth yields a negligible contribution, we conclude that no resonance other than 2g2𝑔2g2 italic_g has developed separatrices in all three zones of altitude considered in the present study, i.e. up to arL=10000𝑎subscript𝑟𝐿10000a-r_{L}=10000italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 10000 km.

The above conclusion can be substantiated with numerical experiments in the complete model SMsubscript𝑆𝑀\mathcal{H}_{SM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT, obtaining an indirect indication of the separatrix width of each of the resonances of Fig.6 by computing Fast Lyapunov Indicator (FLI) maps ([37]), as in the left column of Fig.9 for three different altitudes. The right column in the same figure shows the lifetime maps for the same grids of initial conditions, as indicated in the caption. The FLI maps reveal the existence of separatrix structures associated with the 2g2𝑔2g2 italic_g resonance, but give no hint of important secular resonances other than 2g2𝑔2g2 italic_g. Comparing with the lifetime maps, however, reveals that the domains of initial conditions leading to eccentricity growth and re-entry are way more extended than the chaotic separatrix layers of the 2g2𝑔2g2 italic_g resonance indicated through the FLI maps. We now theoretically interpret this effect, following an analysis of the structure of the separatrices of the 2g2𝑔2g2 italic_g resonance in the simplified model SSMsubscript𝑆𝑆𝑀\mathcal{H}_{SSM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT.

3.3 Integrable model and the separatrices of the 2g-resonance

A resonant Hamiltonian model for the 2g2𝑔2g2 italic_g resonance can be obtained starting from the simplified model SSMsubscript𝑆𝑆𝑀\mathcal{H}_{SSM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT, by following the same procedure as in [32] for the case of Earth satellites. We here summarize only the main steps leading to this model. First, we consider Modified Delaunay variables

Λ=L=μLaΛ𝐿subscript𝜇𝐿𝑎\Lambda=L=\sqrt{\mu_{L}a}roman_Λ = italic_L = square-root start_ARG italic_μ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_a end_ARG, λ=l+g+h=M+ω+Ω𝜆𝑙𝑔𝑀𝜔Ω\lambda=l+g+h=M+\omega+\Omegaitalic_λ = italic_l + italic_g + italic_h = italic_M + italic_ω + roman_Ω,
P=LG=L(11e2)𝑃𝐿𝐺𝐿11superscript𝑒2P=L-G=L\left(1-\sqrt{1-e^{2}}\right)italic_P = italic_L - italic_G = italic_L ( 1 - square-root start_ARG 1 - italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ), p=gh=ωΩ𝑝𝑔𝜔Ωp=-g-h=-\omega-\Omegaitalic_p = - italic_g - italic_h = - italic_ω - roman_Ω,
Q=GH=L1e2(1cosi)𝑄𝐺𝐻𝐿1superscript𝑒21𝑖Q=G-H=L\sqrt{1-e^{2}}(1-\cos i)italic_Q = italic_G - italic_H = italic_L square-root start_ARG 1 - italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( 1 - roman_cos italic_i ), q=h=Ω.𝑞Ωq=-h=-\Omega.italic_q = - italic_h = - roman_Ω .
(25)

We fix a value of the semimajor axis, which, in turn, gives the location isubscript𝑖i_{\star}italic_i start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT of the 2g2𝑔2g2 italic_g resonance, according to the procedure discussed in the previous subsection. Next, we perform a series expansion in powers of the Hamiltonian SSMsubscript𝑆𝑆𝑀\mathcal{H}_{SSM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT in powers of the small quantities P𝑃Pitalic_P (which is 𝒪(e2)𝒪superscript𝑒2\mathcal{O}(e^{2})caligraphic_O ( italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )) and QQ𝑄subscript𝑄Q-Q_{*}italic_Q - italic_Q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT (which is of the order 𝒪(ii)𝒪𝑖subscript𝑖\mathcal{O}(i-i_{*})caligraphic_O ( italic_i - italic_i start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ), with Q=Q(e=0,i=i)subscript𝑄𝑄formulae-sequence𝑒0𝑖subscript𝑖Q_{*}=Q(e=0,i=i_{*})italic_Q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = italic_Q ( italic_e = 0 , italic_i = italic_i start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT )). This leads to a truncated polynomial representation of the Hamiltonian SSMsubscript𝑆𝑆𝑀\mathcal{H}_{SSM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT in the variables (P,ΔQ=QQ)𝑃Δ𝑄𝑄subscript𝑄(P,\Delta Q=Q-Q_{*})( italic_P , roman_Δ italic_Q = italic_Q - italic_Q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ). We then introduce resonant action-angle variables

JR=P,JF=P+(QQ),uR=pq,uF=q,formulae-sequencesubscript𝐽𝑅𝑃formulae-sequencesubscript𝐽𝐹𝑃𝑄subscript𝑄formulae-sequencesubscript𝑢𝑅𝑝𝑞subscript𝑢𝐹𝑞J_{R}=P,\quad J_{F}=P+(Q-Q_{*}),\quad u_{R}=p-q,u_{F}=q,italic_J start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT = italic_P , italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT = italic_P + ( italic_Q - italic_Q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) , italic_u start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT = italic_p - italic_q , italic_u start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT = italic_q , (26)

and, finally, the Poincaré canonical variables

X=2JRsinuR,Y=2JRcosuR.formulae-sequence𝑋2subscript𝐽𝑅subscript𝑢𝑅𝑌2subscript𝐽𝑅subscript𝑢𝑅X=\sqrt{2J_{R}}\sin u_{R},\qquad Y=\sqrt{2J_{R}}\cos u_{R}~{}~{}~{}.italic_X = square-root start_ARG 2 italic_J start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT end_ARG roman_sin italic_u start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT , italic_Y = square-root start_ARG 2 italic_J start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT end_ARG roman_cos italic_u start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT . (27)

The Hamiltonian becomes now a function of the resonant variables

SSM=SSM(X,Y,JF,uF,τE;a).subscript𝑆𝑆𝑀subscript𝑆𝑆𝑀𝑋𝑌subscript𝐽𝐹subscript𝑢𝐹subscript𝜏𝐸𝑎\mathcal{H}_{SSM}=\mathcal{H}_{SSM}(X,Y,J_{F},u_{F},\tau_{E};a).caligraphic_H start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT = caligraphic_H start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT ( italic_X , italic_Y , italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT , italic_τ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ; italic_a ) . (28)

To get an integrable model of the 2g2𝑔2g2 italic_g resonance, we compute the average of SSM(X,Y,JF,uF,τE;a)subscript𝑆𝑆𝑀𝑋𝑌subscript𝐽𝐹subscript𝑢𝐹subscript𝜏𝐸𝑎\mathcal{H}_{SSM}(X,Y,J_{F},u_{F},\tau_{E};a)caligraphic_H start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT ( italic_X , italic_Y , italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT , italic_τ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ; italic_a ) over the ‘fast’ angles (uF,τE)subscript𝑢𝐹subscript𝜏𝐸(u_{F},\tau_{E})( italic_u start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT , italic_τ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ) (faster than the resonant angle g𝑔gitalic_g). This is a polynomial in X𝑋Xitalic_X and Y𝑌Yitalic_Y, with JFsubscript𝐽𝐹J_{F}italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT and a𝑎aitalic_a as parameters:

I(X,Y;JF,a)=1(2π)202π𝑑uF02π𝑑τESSM(X,Y,JF,uF,τE;a)=ωFJF+α2JF2+R10X+M110JFX+M120JF2X+R20X2+M120JFX2+M220JF2X2+R02Y2+M102JFY2+M022JF2Y2+R30X3+M130JFX3+M230JF2X3+R12XY2+M112JFXY2+M212JF2XY2+R40X4+R04Y4+M140JFX4+M104JFY4+R22X2Y2+M122JFX2Y2+R50X5+R32X3Y2++M132JFX3Y2+R14XY4+M114JFXY4+R60Y6+R42X4Y2+R24X2Y4+R52X5Y2+\displaystyle\begin{split}&\mathcal{H}_{I}(X,Y;J_{F},a)=\frac{1}{(2\pi)^{2}}% \int_{0}^{2\pi}du_{F}\int_{0}^{2\pi}d\tau_{E}\;\;\mathcal{H}_{SSM}(X,Y,J_{F},u% _{F},\tau_{E};a)=\\ &\omega_{F}J_{F}+\alpha^{2}J_{F}^{2}+\\ &R_{10}X+M_{110}J_{F}X+M_{120}J_{F}^{2}X+\\ &R_{20}X^{2}+M_{120}J_{F}X^{2}+M_{220}J_{F}^{2}X^{2}+R_{02}Y^{2}+M_{102}J_{F}Y% ^{2}+M_{022}J_{F}^{2}Y^{2}+\\ &R_{30}X^{3}+M_{130}J_{F}X^{3}+M_{230}J_{F}^{2}X^{3}+R_{12}XY^{2}+M_{112}J_{F}% XY^{2}+M_{212}J_{F}^{2}XY^{2}+\\ &R_{40}X^{4}+R_{04}Y^{4}+M_{140}J_{F}X^{4}+M_{104}J_{F}Y^{4}+R_{22}X^{2}Y^{2}+% M_{122}J_{F}X^{2}Y^{2}+\\ &R_{50}X^{5}+R_{32}X^{3}Y^{2}++M_{132}J_{F}X^{3}Y^{2}+R_{14}XY^{4}+M_{114}J_{F% }XY^{4}+\\ &R_{60}Y^{6}+R_{42}X^{4}Y^{2}+R_{24}X^{2}Y^{4}+R_{52}X^{5}Y^{2}+\dots\end{split}start_ROW start_CELL end_CELL start_CELL caligraphic_H start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ( italic_X , italic_Y ; italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT , italic_a ) = divide start_ARG 1 end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_π end_POSTSUPERSCRIPT italic_d italic_u start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_π end_POSTSUPERSCRIPT italic_d italic_τ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT caligraphic_H start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT ( italic_X , italic_Y , italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT , italic_u start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT , italic_τ start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ; italic_a ) = end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_ω start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT + italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_R start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_X + italic_M start_POSTSUBSCRIPT 110 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT italic_X + italic_M start_POSTSUBSCRIPT 120 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_X + end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_R start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_M start_POSTSUBSCRIPT 120 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_M start_POSTSUBSCRIPT 220 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_R start_POSTSUBSCRIPT 02 end_POSTSUBSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_M start_POSTSUBSCRIPT 102 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_M start_POSTSUBSCRIPT 022 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_R start_POSTSUBSCRIPT 30 end_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_M start_POSTSUBSCRIPT 130 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_M start_POSTSUBSCRIPT 230 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_X start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_R start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT italic_X italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_M start_POSTSUBSCRIPT 112 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT italic_X italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_M start_POSTSUBSCRIPT 212 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_X italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_R start_POSTSUBSCRIPT 40 end_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + italic_R start_POSTSUBSCRIPT 04 end_POSTSUBSCRIPT italic_Y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + italic_M start_POSTSUBSCRIPT 140 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + italic_M start_POSTSUBSCRIPT 104 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT italic_Y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + italic_R start_POSTSUBSCRIPT 22 end_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_M start_POSTSUBSCRIPT 122 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_R start_POSTSUBSCRIPT 50 end_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT + italic_R start_POSTSUBSCRIPT 32 end_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + + italic_M start_POSTSUBSCRIPT 132 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_R start_POSTSUBSCRIPT 14 end_POSTSUBSCRIPT italic_X italic_Y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + italic_M start_POSTSUBSCRIPT 114 end_POSTSUBSCRIPT italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT italic_X italic_Y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL italic_R start_POSTSUBSCRIPT 60 end_POSTSUBSCRIPT italic_Y start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT + italic_R start_POSTSUBSCRIPT 42 end_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_R start_POSTSUBSCRIPT 24 end_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + italic_R start_POSTSUBSCRIPT 52 end_POSTSUBSCRIPT italic_X start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + … end_CELL end_ROW (29)

where ωF=h˙(a,e=0,i=i)\omega_{F}=-\dot{h}(a,e=0,i=i_{*})italic_ω start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT = - over˙ start_ARG italic_h end_ARG ( italic_a , italic_e = 0 , italic_i = italic_i start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ).

Refer to caption
Figure 10: Phase portraits of the integrable Hamiltonian Isubscript𝐼\mathcal{H}_{I}caligraphic_H start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT at an altitude of arL=500𝑎subscript𝑟𝐿500a-r_{L}=500italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 500 km at the inclinations i0=50subscript𝑖0superscript50i_{0}=50^{\circ}italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 50 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 55superscript5555^{\circ}55 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 57superscript5757^{\circ}57 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 57.25superscript57.2557.25^{\circ}57.25 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 60superscript6060^{\circ}60 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 60.5superscript60.560.5^{\circ}60.5 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 62superscript6262^{\circ}62 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 66superscript6666^{\circ}66 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 66.25superscript66.2566.25^{\circ}66.25 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 67superscript6767^{\circ}67 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 70superscript7070^{\circ}70 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 75superscript7575^{\circ}75 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT. The blue curve shows the separatrix passing through the central fixed point, whenever this point is unstable. Light-blue curves are tangent and entirely contained within the disc e=ere𝑒subscript𝑒𝑟𝑒e=e_{re}italic_e = italic_e start_POSTSUBSCRIPT italic_r italic_e end_POSTSUBSCRIPT end define the borders of initial conditions of orbits protected from collision. Frozen orbits are plotted in red.
Refer to caption
Figure 11: Same as in Fig.10, but for the altitude of 1000100010001000 km at the inclinations i0=50subscript𝑖0superscript50i_{0}=50^{\circ}italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 50 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 55superscript5555^{\circ}55 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 57superscript5757^{\circ}57 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 58superscript5858^{\circ}58 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 59superscript5959^{\circ}59 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 62superscript6262^{\circ}62 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 69superscript6969^{\circ}69 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 70superscript7070^{\circ}70 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 72superscript7272^{\circ}72 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 74superscript7474^{\circ}74 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 76superscript7676^{\circ}76 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 77superscript7777^{\circ}77 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT.
Refer to caption
Figure 12: Same as in Fig.10, but for the altitude of 1500150015001500 km at the inclinations i0=45subscript𝑖0superscript45i_{0}=45^{\circ}italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 45 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 50superscript5050^{\circ}50 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 53superscript5353^{\circ}53 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 56superscript5656^{\circ}56 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 60superscript6060^{\circ}60 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 65superscript6565^{\circ}65 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 70superscript7070^{\circ}70 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 75superscript7575^{\circ}75 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 77superscript7777^{\circ}77 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 78superscript7878^{\circ}78 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 79superscript7979^{\circ}79 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT, 85superscript8585^{\circ}85 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT.

The above Hamiltonian is integrable, since JFsubscript𝐽𝐹J_{F}italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT is a second integral of motion in addition to the energy. From Isubscript𝐼\mathcal{H}_{I}caligraphic_H start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT it is possible to plot phase portraits in the (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y ) plane, which can then be transformed to plots in the plane (esin(uR),ecos(uR))𝑒subscript𝑢𝑅𝑒subscript𝑢𝑅(e\sin(u_{R}),e\cos(u_{R}))( italic_e roman_sin ( italic_u start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ) , italic_e roman_cos ( italic_u start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ) ) through the relations e=1(1(P/μLa))2𝑒1superscript1𝑃subscript𝜇𝐿𝑎2e=\sqrt{1-(1-(P/\sqrt{\mu_{L}a}))^{2}}italic_e = square-root start_ARG 1 - ( 1 - ( italic_P / square-root start_ARG italic_μ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_a end_ARG ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG, with P=(X2+Y2)1/2𝑃superscriptsuperscript𝑋2superscript𝑌212P=(X^{2}+Y^{2})^{1/2}italic_P = ( italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT, and uR=g=arctan(X,Y)subscript𝑢𝑅𝑔𝑋𝑌u_{R}=-g=\arctan(X,Y)italic_u start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT = - italic_g = roman_arctan ( italic_X , italic_Y ). Figures 10, 11 and 12 show a set of phase portraits obtained in the above way. Each portrait is parameterized by a constant value of JFsubscript𝐽𝐹J_{F}italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT. The locus of points in the surface (i,e)𝑖𝑒(i,e)( italic_i , italic_e ) where

μLa(11e2cosi)Q=JFsubscript𝜇𝐿𝑎11superscript𝑒2𝑖subscript𝑄subscript𝐽𝐹\sqrt{\mu_{L}a}(1-\sqrt{1-e^{2}}\cos i)-Q_{*}=J_{F}square-root start_ARG italic_μ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_a end_ARG ( 1 - square-root start_ARG 1 - italic_e start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_cos italic_i ) - italic_Q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT (30)

is called fast drift plane, and allows to map each point of the phase portrait to a point in the plane (i,e)𝑖𝑒(i,e)( italic_i , italic_e ), as explained in detail in [31]. The inclinations shown as labels in each phase portrait in the above pictures, correpond to the inclination of a circular orbit with parameter equal to the label value JFsubscript𝐽𝐹J_{F}italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT, i0=cos1(1((JF+Q)/μLa))subscript𝑖0superscript11subscript𝐽𝐹subscript𝑄subscript𝜇𝐿𝑎i_{0}=\cos^{-1}\left(1-((J_{F}+Q_{*})/\sqrt{\mu_{L}a})\right)italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = roman_cos start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( 1 - ( ( italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT + italic_Q start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ) / square-root start_ARG italic_μ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_a end_ARG ) ).

One important remark regarding these figures is that, while the shown portraits extend to eccentricities up to 0.90.90.90.9, in reality the computation is valid only in the inner white disc domains whose border represents the collision condition e=ere(a)𝑒subscript𝑒𝑟𝑒𝑎e=e_{re}(a)italic_e = italic_e start_POSTSUBSCRIPT italic_r italic_e end_POSTSUBSCRIPT ( italic_a ). In fact, points exterior to the discs correspond to orbital radii smaller than rLsubscript𝑟𝐿r_{L}italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT, hence, where the multipole expansion of the Moon’s potential is no longer valid. However, we here show how these phase portraits formally look even ignoring the collision singularity of the multipole expansion, since this allows to visualize the domains where the separatrices formed by unstable fixed points within the discs separate bounded from unbounded motions as regards the evolution of the eccentricity e𝑒eitalic_e. Deferring details to a separate study, we here report only the main phenomenon of relevance for the re-entry mechanism, namely the fact that, at each altitude, increasing the inclination leads to a Kozai-Lidov type bifurcation (similar in nature as for the Earth satellites in the 2g2𝑔2g2 italic_g resonance, see [33]), which turns the central fixed point of the resonance from stable to unstable, generating a figure-8 separatrix along with a pair of new stable fixed points corresponding to frozen orbits of constant eccentricity. At even higher inclinations, additional frozen orbits can also be generated by a second (pitchfork) bifurcation, which turns the central fixed point from unstable to stable.

3.4 Eccentricity growth and the re-entry mechanism

Based on the phase portraits of the integrable Hamiltonian Isubscript𝐼\mathcal{H}_{I}caligraphic_H start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT, as shown above, we can now obtain a theoretical prediction on the borders of initial conditions in the plane (i,e)𝑖𝑒(i,e)( italic_i , italic_e ), for fixed altitude, separating the initial conditions of orbits leading to re-entry from those which do not. This prediction is shown by the thick green dots in all three panels of Fig.9, and they are computed as follows.

  • 1.

    For a given altitude (value of a𝑎aitalic_a), and for each fixed value of JFsubscript𝐽𝐹J_{F}italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT (or i0subscript𝑖0i_{0}italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT), we first locate all the stable fixed points within the corresponding phase portrait of Isubscript𝐼\mathcal{H}_{I}caligraphic_H start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT which are inside the disc e=ere(a)𝑒subscript𝑒𝑟𝑒𝑎e=e_{re}(a)italic_e = italic_e start_POSTSUBSCRIPT italic_r italic_e end_POSTSUBSCRIPT ( italic_a ). Such can be either the central fixed point of the resonance (see top row of Fig.14, which corresponds to the value i0=55subscript𝑖0superscript55i_{0}=55^{\circ}italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 55 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT for arL=500km𝑎subscript𝑟𝐿500𝑘𝑚a-r_{L}=500~{}kmitalic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 500 italic_k italic_m), or the stable fixed point of the frozen orbit generated after the Lidov-Kozai bifurcation (see top row of Fig.14, which corresponds to the value i0=56subscript𝑖0superscript56i_{0}=56^{\circ}italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 56 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT for arL=1500km𝑎subscript𝑟𝐿1500𝑘𝑚a-r_{L}=1500~{}kmitalic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 1500 italic_k italic_m)). In either case, provided that the stable fixed point is within the disc e=ere(a)𝑒subscript𝑒𝑟𝑒𝑎e=e_{re}(a)italic_e = italic_e start_POSTSUBSCRIPT italic_r italic_e end_POSTSUBSCRIPT ( italic_a ), we compute the outermost closed invariant curve 𝒞(e,g;JF)𝒞𝑒𝑔subscript𝐽𝐹\mathcal{C}(e,g;J_{F})caligraphic_C ( italic_e , italic_g ; italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT ) around the point which comes tangent to the circumference of the disc. The area inside this curve corresponds, now, to orbits of bounded eccentricity e<ere𝑒subscript𝑒𝑟𝑒e<e_{re}italic_e < italic_e start_POSTSUBSCRIPT italic_r italic_e end_POSTSUBSCRIPT.

  • 2.

    The curve 𝒞(e,g;JF)𝒞𝑒𝑔subscript𝐽𝐹\mathcal{C}(e,g;J_{F})caligraphic_C ( italic_e , italic_g ; italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT ) intersects each of the the planes (i,e)𝑖𝑒(i,e)( italic_i , italic_e ) of Figure 9 at one point. The initial choice of the angle ω𝜔\omegaitalic_ω determines a ‘scanning direction’ (e.g. g=0𝑔0g=0italic_g = 0 in Figure 9 corresponds to a vertical scanning direction). The intersection of such line with 𝒞(e,g;JF)𝒞𝑒𝑔subscript𝐽𝐹\mathcal{C}(e,g;J_{F})caligraphic_C ( italic_e , italic_g ; italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT ) yields a unique value of the eccentricity for each value of JFsubscript𝐽𝐹J_{F}italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT and this can be transformed to a unique point in the plane (i,e)𝑖𝑒(i,e)( italic_i , italic_e ) solving the fast drift plane equation (Eq. (30)).

  • 3.

    Iterating the computation for different values of the parameter JFsubscript𝐽𝐹J_{F}italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT yields the ensemble of points marking the theoretical borders of the re-entry domain.

A visualization of the above process is shown in Figure 13. The closed green curves are tangent to the circles e=ere𝑒subscript𝑒𝑟𝑒e=e_{re}italic_e = italic_e start_POSTSUBSCRIPT italic_r italic_e end_POSTSUBSCRIPT and mark the border of motions protected from re-entry. The thick points on these curves correspond to the points of a chosen fixed argument of perilune ω0=g=uRsubscript𝜔0𝑔subscript𝑢𝑅\omega_{0}=g=-u_{R}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_g = - italic_u start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT. The distance of this point from the origin (0,0)00(0,0)( 0 , 0 ) yields the eccentricity of one point (i,e)𝑖𝑒(i,e)( italic_i , italic_e ) in the theoretical curve marking the border of re-entry in the lifetime maps.

Refer to caption
Figure 13: Visualization of the theoretical prediction of the borders of initial conditions in the plane (i,e)𝑖𝑒(i,e)( italic_i , italic_e ), for fixed altitude, separating the initial conditions of orbits leading to re-entry from those which do not detailed in 3.4. Figure 9 shows such predictions for ω0=0subscript𝜔00\omega_{0}=0italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0, which corresponds to the vertical scanning direction. Thus, we find a value of the eccentricity for a given value of JFsubscript𝐽𝐹J_{F}italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT by intersecting 𝒞(e,g;JF)𝒞𝑒𝑔subscript𝐽𝐹\mathcal{C}(e,g;J_{F})caligraphic_C ( italic_e , italic_g ; italic_J start_POSTSUBSCRIPT italic_F end_POSTSUBSCRIPT ) (green curve) with the vertical axis.
Refer to caption
Figure 14: Two phase portraits (left)of the integrable resonance model for the altitude arL=500𝑎subscript𝑟𝐿500a-r_{L}=500italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 500 km, at the label values of the inclination i0=55subscript𝑖0superscript55i_{0}=55^{\circ}italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 55 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT (top) and i0=65subscript𝑖0superscript65i_{0}=65^{\circ}italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 65 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT (bottom). The middle panels show a zoom to the disc e<ere𝑒subscript𝑒𝑟𝑒e<e_{re}italic_e < italic_e start_POSTSUBSCRIPT italic_r italic_e end_POSTSUBSCRIPT, and the right panels the numerical FLI maps for the same initial conditions (see text).
Refer to caption
Figure 15: Same as in Fig.14, but for the altitude arL=1500𝑎subscript𝑟𝐿1500a-r_{L}=1500~{}italic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 1500km. The label values of the inclinations are i0=56subscript𝑖0superscript56i_{0}=56^{\circ}italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 56 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT (top) and i0=78subscript𝑖0superscript78i_{0}=78^{\circ}italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 78 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT (bottom).

In all three panels of Fig.9 we observe that the theoretical prediction for the borders follows closely the limits of the numerical domain of re-entry obtained with the full model SMsubscript𝑆𝑀\mathcal{H}_{SM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_M end_POSTSUBSCRIPT. This indicates that the chains of bifurcations generating new stable fixed points (and, hence, frozen orbits) as predicted by the integrable model Isubscript𝐼\mathcal{H}_{I}caligraphic_H start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT roughly corresponds to the sequence of emergence of frozen orbits in the real problem. Figures 14 and 15 show that this is essentially correct. The right panels in these figures provide FLI maps for the same initial conditions as in the phase portraits of the integrable approximation. These figures show that the stability character of the fixed points in the integrable approximation is essentially reproduced by the FLI maps made with the complete force model. However, in the FLI maps we see several chaotic structures formed around the unstable fixed points, which are not present in the phase portraits of the integrable model. Similarly as exposed in [31], one can show that such structures represent the stable manifolds of the normally hyperbolic invariant manifold of circular orbits at the resonance. In practical terms, such manifolds render fuzzy the border separating bounded from re-entry orbits, as readily recognised in Figure 9.

4 Conclusions

In the sections above, we discussed the main features of secular dynamics for lunar satellites, by constructing various models of secular equations of motion, all stemming from simplifications of the secular model proposed in the final report [1] on the semi-analytic propagator for lunar satellite orbits SELENA. In particular, we discussed the emergence of secular resonances and their role in the phenomenon of eccentricity growth and re-entry (collision with the Moon) for lunar satellites. Our main conclusions can be summarized as follows:

  • 1.

    As a result of the strong influence of lunar mascons, the character of the orbits is what we call ‘essentially non-secular’ at altitudes arL<100km𝑎subscript𝑟𝐿100𝑘𝑚a-r_{L}<100~{}kmitalic_a - italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT < 100 italic_k italic_m. This is defined as the altitude where the short-period variations in semi-major axis exceed a value of 1%percent11\%1 %. On the other hand, based on the relative importance of the multipole harmonics of the lunar potential or the tidal forces by third bodies (essentially only by the Earth), we distinguish three zones of ‘essentially secular dynamics’: the low, middle, and high altitude zone.

  • 2.

    A careful comparison of the contributions of all secular terms produced either by the lunar potential, or by the Earth’s tidal potential, shows that the only secular resonance with well developed separatrices present in all three altitude zones is the 2g2𝑔2g2 italic_g one. Most other resonances are supressed, due to the high value of the coefficients of the Moon’s zonal harmonics compared to the small value of the Moon’s obliquity angle.

  • 3.

    We create a simplified model (Hamiltonian SSMsubscript𝑆𝑆𝑀\mathcal{H}_{SSM}caligraphic_H start_POSTSUBSCRIPT italic_S italic_S italic_M end_POSTSUBSCRIPT; see subsection 3.2), with few harmonics (Eq.(24)) which accurately represents the secular dynamics of the complete model and allows to study independently the role of each potential term in it.

  • 4.

    We further construct an integrable model, whose sequences of bifurcations of frozen orbits allow to obtain theoretically the borders separating domains of initial conditions leading to a satellite’s re-entry by eccentricity growth, from those which do not. These borders were compared with numerical lifetime maps, obtained with the full equations of motion, showing a very good agreement.

Appendix A GRAIL coefficients

Here, we report in the table below the numerical values of the Cnmsubscript𝐶𝑛𝑚C_{nm}italic_C start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT and Snmsubscript𝑆𝑛𝑚S_{nm}italic_S start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT coefficients of the lunar potential expansion up to order 10, and their respective normalized values C¯nmsubscript¯𝐶𝑛𝑚\bar{C}_{nm}over¯ start_ARG italic_C end_ARG start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT and S¯nmsubscript¯𝑆𝑛𝑚\bar{S}_{nm}over¯ start_ARG italic_S end_ARG start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT obtained by multiplying the coefficients with the factor

s(1+2n)(nm)!(n+m)!,s=1 if n=0, otherwise s=2.𝑠12𝑛𝑛𝑚𝑛𝑚s=1 if n=0, otherwise s=2\sqrt{\frac{s(1+2n)(n-m)!}{(n+m)!}},\quad{\text{$s=1$ if $n=0$, otherwise $s=2% $}}.square-root start_ARG divide start_ARG italic_s ( 1 + 2 italic_n ) ( italic_n - italic_m ) ! end_ARG start_ARG ( italic_n + italic_m ) ! end_ARG end_ARG , italic_s = 1 if italic_n = 0 , otherwise italic_s = 2 . (31)

The radius of the Moon is rL=1738.0subscript𝑟𝐿1738.0r_{L}=1738.0italic_r start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 1738.0 km, and the gravitational parameter of the Moon is μL=𝒢ML=0.490280012616×104km3/s2.subscript𝜇𝐿𝒢subscript𝑀𝐿0.490280012616superscript104superscriptkm3superscripts2\mu_{L}={\cal G}M_{L}=0.490280012616\times 10^{4}\;$\mathrm{k}\mathrm{m}$^{3}/% $\mathrm{s}$^{2}.italic_μ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = caligraphic_G italic_M start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 0.490280012616 × 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT roman_km start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT / roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

n𝑛nitalic_n m𝑚mitalic_m Cnmsubscript𝐶𝑛𝑚C_{nm}italic_C start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT Snmsubscript𝑆𝑛𝑚S_{nm}italic_S start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT C¯nmsubscript¯𝐶𝑛𝑚\bar{C}_{nm}over¯ start_ARG italic_C end_ARG start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT S¯nmsubscript¯𝑆𝑛𝑚\bar{S}_{nm}over¯ start_ARG italic_S end_ARG start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT
1 0 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
1 1 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
2 0 -9.0884e-05 0.0000e+00 -2.0322e-04 0.0000e+00
2 1 1.4664e-11 1.1733e-09 1.8931e-11 1.5147e-09
2 2 3.4673e-05 9.0792e-10 2.2381e-05 5.8606e-10
3 0 -3.1973e-06 0.0000e+00 -8.4593e-06 0.0000e+00
3 1 2.6368e-05 5.4545e-06 2.8481e-05 5.8916e-06
3 2 1.4172e-05 4.8780e-06 4.8405e-06 1.6662e-06
3 3 1.2275e-05 -1.7742e-06 1.7117e-06 -2.4740e-07
4 0 3.2348e-06 0.0000e+00 9.7043e-06 0.0000e+00
4 1 -6.0135e-06 1.6643e-06 -5.7049e-06 1.5789e-06
4 2 -7.1162e-06 -6.7770e-06 -1.5912e-06 -1.5154e-06
4 3 -1.3499e-06 -1.3445e-05 -8.0670e-08 -8.0349e-07
4 4 -6.0070e-06 3.9264e-06 -1.2692e-07 8.2961e-08
5 0 -2.2379e-07 0.0000e+00 -7.4221e-07 0.0000e+00
5 1 -1.0116e-06 -4.1189e-06 -8.6628e-07 -3.5272e-06
5 2 4.3995e-06 1.0571e-06 7.1200e-07 1.7108e-07
5 3 4.6614e-07 8.6989e-06 1.5399e-08 2.8736e-07
5 4 2.7543e-06 6.7678e-08 2.1445e-08 5.2696e-10
5 5 3.1106e-06 -2.7544e-06 7.6589e-09 -6.7820e-09
6 0 3.8184e-06 0.0000e+00 1.3768e-05 0.0000e+00
6 1 1.5283e-06 -2.5996e-06 1.2024e-06 -2.0454e-06
6 2 -4.3973e-06 -2.1677e-06 -5.4704e-07 -2.6967e-07
6 3 -3.3175e-06 -3.4274e-06 -6.8785e-08 -7.1064e-08
6 4 3.4124e-07 -4.0581e-06 1.2917e-09 -1.5362e-08
6 5 1.4544e-06 -1.0342e-05 1.1738e-09 -8.3465e-09
6 6 -4.6842e-06 7.2299e-06 -1.0913e-09 1.6844e-09
7 0 5.5934e-06 0.0000e+00 2.1663e-05 0.0000e+00
7 1 7.4717e-06 -1.1973e-07 5.4687e-06 -8.7635e-08
7 2 -6.5015e-07 2.4111e-06 -6.4756e-08 2.4015e-07
7 3 5.9942e-07 2.3573e-06 8.4434e-09 3.3205e-08
7 4 -8.4367e-07 7.5653e-07 -1.7916e-09 1.6065e-09
7 5 -2.0686e-07 1.0693e-06 -7.3213e-11 3.7845e-10
7 6 -1.0652e-06 1.1005e-06 -7.3938e-11 7.6385e-11
7 7 -1.8204e-06 -1.6003e-06 -3.3770e-11 -2.9686e-11
8 0 2.3468e-06 0.0000e+00 9.6762e-06 0.0000e+00
8 1 4.1684e-09 1.0980e-06 2.8644e-09 7.5455e-07
8 2 3.0093e-06 1.9306e-06 2.4717e-07 1.5857e-07
8 3 -1.8890e-06 9.5448e-07 -1.9098e-08 9.6498e-09
8 4 3.4087e-06 -5.2825e-07 4.4490e-09 -6.8947e-10
8 5 -1.2481e-06 2.9186e-06 -2.2590e-10 5.2826e-10
8 6 -1.6604e-06 -2.1147e-06 -4.6373e-11 -5.9060e-11
8 7 -1.5097e-06 3.2689e-06 -7.6980e-12 1.6668e-11
8 8 -2.4857e-06 2.1163e-06 -3.1687e-12 2.6978e-12
9 0 -3.5309e-06 0.0000e+00 -1.5391e-05 0.0000e+00
9 1 1.8670e-06 8.1043e-08 1.2131e-06 5.2660e-08
9 2 1.9278e-06 -1.3876e-06 1.3353e-07 -9.6113e-08
9 3 -1.9924e-06 2.2018e-06 -1.5058e-08 1.6640e-08
9 4 -1.8844e-06 -1.4258e-06 -1.6126e-09 -1.2201e-09
9 5 -1.5625e-06 -3.5247e-06 -1.5982e-10 -3.6051e-10
9 6 -2.1272e-06 -3.0026e-06 -2.8088e-11 -3.9648e-11
9 7 -3.9148e-06 -1.0688e-07 -7.4612e-12 -2.0371e-13
9 8 -1.3120e-06 -2.2035e-06 -4.2883e-13 -7.2021e-13
9 9 -9.3820e-07 2.4881e-06 -7.2280e-14 1.9169e-13
10 0 -1.0693e-06 0.0000e+00 -4.9001e-06 0.0000e+00
10 1 8.4160e-07 -9.5407e-07 5.2004e-07 -5.8953e-07
10 2 3.5724e-07 -2.6511e-07 2.1241e-08 -1.5763e-08
10 3 4.8420e-07 6.6884e-07 2.8231e-09 3.8996e-09
10 4 -3.5730e-06 1.5789e-06 -2.1043e-09 9.2992e-10
10 5 6.9970e-07 -3.1458e-07 4.3439e-11 -1.9530e-11
10 6 -1.2729e-07 -2.0953e-06 -8.8353e-13 -1.4543e-11
10 7 -3.9986e-06 -9.1075e-07 -3.3657e-12 -7.6659e-13
10 8 -3.5594e-06 2.8489e-06 -4.0771e-13 3.2632e-13
10 9 -4.7532e-06 -5.1547e-08 -8.8320e-14 -9.5782e-16
10 10 9.4793e-07 -1.7194e-06 3.9386e-15 -7.1439e-15

References

  • [1] C. Efthymiopoulos, K. Tsiganis, I. Gkolias, M. Gaitanas, C. Yanez, Selena: Semi-analytical integrator for lunar artificial satellites, arXiv preprint arXiv:2309.11904 (2023).
  • [2] International Space Exploration Coordination Group, The global exploration roadmap, https://www.nasa.gov/humans-in-space/international-space-exploration-coordination-group/ (2023).
  • [3] D. G. King-Hele, The effect of the earth’s oblateness on the orbit of a near satellite, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 247 (1248) (1958) 49–72.
  • [4] R. Allan, The critical inclination problem: a simple treatment, Celestial Mechanics, Volume 2, Issue 1, pp. 121-122 2 (1970) 121–122.
  • [5] A. Jupp, The critical inclination problem—30 years of progress, Celestial mechanics 43 (1-4) (1987) 127–138.
  • [6] S. L. Coffey, A. Deprit, B. R. Miller, The critical inclination in artificial satellite theory, Celestial mechanics 39 (1986) 365–406.
  • [7] Z. Knežević, A. Milani, Orbit maintenance of a lunar polar orbiter, Planetary and Space Science 46 (11-12) (1998) 1605–1611.
  • [8] D. Folta, D. Quinn, Lunar frozen orbits, in: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2006, p. 6749.
  • [9] A. Abad, A. Elipe, E. Tresaco, Analytical model to find frozen orbits for a lunar orbiter, Journal of guidance, control, and dynamics 32 (3) (2009) 888–898.
  • [10] M. Lara, B. De Saedeleer, S. Ferrer, Preliminary design of low lunar orbits, in: Proceedings of the 21st International Symposium on Space Flight Dynamics, 2009, pp. 1–15.
  • [11] T. Nie, P. Gurfil, Lunar frozen orbits revisited, Celestial Mechanics and Dynamical Astronomy 130 (10) (2018) 61.
  • [12] B. D. Saedeleer, Complete zonal problem of the artificial satellite: generic compact analytic first order in closed form, Celestial Mechanics and Dynamical Astronomy 91 (2005) 239–268.
  • [13] S. K. Singh, E. Taheri, R. Woollands, J. Junkins, Mission design for close-range lunar mapping by quasi-frozen orbits, in: 70th International Astronautical Congress, Washington DC, USA, 2019.
  • [14] Y. Wang, P. Lu, T. Fu, Transfers to frozen orbits around planetary moons using manifolds of averaged dynamics, Journal of Guidance, Control, and Dynamics 47 (2) (2024) 262–278.
  • [15] P. M. Muller, W. L. Sjogren, Mascons: Lunar mass concentrations, Science 161 (3842) (1968) 680–684.
  • [16] A. Konopliv, S. Asmar, E. Carranza, W. Sjogren, D. Yuan, Recent gravity models as a result of the lunar prospector mission, Icarus 150 (1) (2001) 1–18.
  • [17] M. T. Zuber, D. E. Smith, M. M. Watkins, S. W. Asmar, A. S. Konopliv, F. G. Lemoine, H. J. Melosh, G. A. Neumann, R. J. Phillips, S. C. Solomon, et al., Gravity field of the moon from the gravity recovery and interior laboratory (grail) mission, Science 339 (6120) (2013) 668–671.
  • [18] C. Chao, R. Gick, Long-term evolution of navigation satellite orbits: Gps/glonass/galileo, Advances in Space Research 34 (5) (2004) 1221–1226.
  • [19] A. Rossi, Resonant dynamics of medium earth orbits: space debris issues, Celestial Mechanics and Dynamical Astronomy 100 (4) (2008) 267–286.
  • [20] E. M. Alessi, A. Rossi, G. Valsecchi, L. Anselmo, C. Pardini, C. Colombo, H. Lewis, J. Daquin, F. Deleflie, M. Vasile, et al., Effectiveness of gnss disposal strategies, Acta Astronautica 99 (2014) 292–302.
  • [21] I. Gkolias, J. Daquin, F. Gachet, A. J. Rosengren, From order to chaos in earth satellite orbits, The Astronomical Journal 152 (5) (2016) 119.
  • [22] E. M. Alessi, F. Deleflie, A. J. Rosengren, A. Rossi, G. B. Valsecchi, J. Daquin, K. Merz, A numerical investigation on the eccentricity growth of gnss disposal orbits, Celestial Mechanics and Dynamical Astronomy 125 (1) (2016) 71–90.
  • [23] R. Armellin, J. F. San-Juan, Optimal earth’s reentry disposal of the galileo constellation, Advances in Space Research 61 (4) (2018) 1097–1120.
  • [24] D. K. Skoulidou, A. J. Rosengren, K. Tsiganis, G. Voyatzis, Medium earth orbit dynamical survey and its use in passive debris removal, Advances in Space Research 63 (11) (2019) 3646–3674.
  • [25] J. Daquin, I. Gkolias, A. J. Rosengren, Drift and its mediation in terrestrial orbits, Frontiers in Applied Mathematics and Statistics 4 (2018) 35. doi:10.3389/fams.2018.00035.
  • [26] I. Gkolias, J. Daquin, D. K. Skoulidou, K. Tsiganis, C. Efthymiopoulos, Chaotic transport of navigation satellites, Chaos: An Interdisciplinary Journal of Nonlinear Science 29 (10) (2019) 101106.
  • [27] Semi-analytical estimates for the chaotic diffusion in the second fundamental model of resonance. application to earth’s navigation satellites (2023). doi:https://doi.org/10.1016/j.physd.2023.133946.
  • [28] A. Celletti, C. Galeş, On the dynamics of space debris: 1: 1 and 2: 1 resonances, Journal of Nonlinear Science 24 (6) (2014) 1231–1262.
  • [29] J. Daquin, A. J. Rosengren, E. M. Alessi, F. Deleflie, G. B. Valsecchi, A. Rossi, The dynamical structure of the meo region: long-term stability, chaos, and transport, Celestial Mechanics and Dynamical Astronomy 124 (4) (2016) 335–366.
  • [30] A. Celletti, C. Efthymiopoulos, F. Gachet, C. Galeş, G. Pucacco, Dynamical models and the onset of chaos in space debris, International Journal of Non-Linear Mechanics 90 (2017) 147–163.
  • [31] J. Daquin, E. Legnaro, I. Gkolias, C. Efthymiopoulos, A deep dive into the 2g+h2𝑔2g+h2 italic_g + italic_h resonance: separatrices, manifolds and phase space structure of navigation satellites, Celestial Mechanics and Dynamical Astronomy 134 (1) (2022) 1–31.
  • [32] E. Legnaro, C. Efthymiopoulos, A detailed dynamical model for inclination-only dependent lunisolar resonances. effect on the “eccentricity growth” mechanism, Advances in Space Research (2022) S0273117722006871doi:10.1016/j.asr.2022.07.057.
  • [33] E. Legnaro, Orbital dynamics and diffusion at the resonances in the near-earth space environment, Ph.D. thesis, Aristotle University of Thessaolinki (2023).
  • [34] M. Lara, R. López, I. Pérez, J. F. San-Juan, Exploring the long-term dynamics of perturbed keplerian motion in high degree potential fields, Communications in Nonlinear Science and Numerical Simulation 82 (2020) 105053.
  • [35] S. Tzirti, A. Noullez, K. Tsiganis, Secular dynamics of a lunar orbiter: a global exploration using prony’s frequency analysis, Celestial Mechanics and Dynamical Astronomy 118 (2014) 379.
  • [36] F. Biscani, D. Izzo, Revisiting high-order Taylor methods for astrodynamics and celestial mechanics, Monthly Notices of the Royal Astronomical Society 504 (2) (2021) 2614–2628. arXiv:https://academic.oup.com/mnras/article-pdf/504/2/2614/37750349/stab1032.pdf, doi:10.1093/mnras/stab1032.
    URL https://doi.org/10.1093/mnras/stab1032
  • [37] C. Froeschlé, E. Lega, R. Gonczi, Fast lyapunov indicators. application to asteroidal motion, Celestial Mechanics and Dynamical Astronomy 67 (1) (1997) 41–62.