Astrophysics > Earth and Planetary Astrophysics
[Submitted on 20 Jun 2024]
Title:Secular dynamics and the lifetimes of lunar artificial satellites under natural force-driven orbital evolution
View PDF HTML (experimental)Abstract:In this paper, we study the long-term (time scale of several years) orbital evolution of lunar satellites under the sole action of natural forces. In particular, we focus on secular resonances, caused either by the influence of the multipole moments of the lunar potential and/or by the Earth's and Sun's third-body effect on the satellite's long-term orbital evolution. Our study is based on a simplified secular model obtained in `closed form' using the same methodology proposed in the recently published report on the semi-analytical propagator of lunar satellite orbits, SELENA. Contrary to the case of artificial Earth satellites, in which many secular resonances compete in dynamical impact, we give numerical evidence that for lunar satellites only the 2 g resonance affects significantly the orbits at secular timescales. We interpret this as a consequence of the strong effect of lunar mascons. We show that the lifetime of lunar satellites is, in particular, nearly exclusively dictated by the 2 g resonance. By deriving a simple analytic model, we propose a theoretical framework which allows for both qualitative and quantitative interpretation of the structures seen in numerically obtained lifetime maps. This involves explaining the main mechanisms driving eccentricity growth in the orbits of lunar satellites. In fact, we argue that the re-entry process for lunar satellites is not necessarily a chaotic process (as is the case for Earth satellites), but rather due to a sequence of bifurcations leading to a dramatic variation in the structure of the separatrices in the 2 g resonance's phase portrait, as we move from the lowest to the highest limit in inclination (at each altitude) where the 2 g resonance is manifested.
Submission history
From: Edoardo Legnaro [view email][v1] Thu, 20 Jun 2024 10:39:28 UTC (16,878 KB)
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.