Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 20 Jun 2024]
Title:Evidence for bipolar explosions in Type IIP supernovae
View PDF HTML (experimental)Abstract:Recent observations of core-collapse supernovae (SNe) suggest aspherical explosions. Globally aspherical structures in SN explosions are regarded as the key for understanding their explosion mechanism. However, the exact explosion geometries from the inner cores to the outer envelopes are poorly understood. Here, we present photometric, spectroscopic and polarimetric observations of the Type IIP SN 2021yja and discuss its explosion geometry, in comparison to those of other Type IIP SNe that show large-scale aspherical structures in their hydrogen envelopes (SNe 2012aw, 2013ej and 2017gmr). During the plateau phase, SNe 2012aw and 2021yja exhibit high continuum polarization characterized by two components with perpendicular polarization angles. This behavior can be interpreted to be due to a bipolar explosion, composed of a polar (energetic) and an equatorial (bulk) components of the SN ejecta. In such a bipolar explosion, an aspherical axis created by the polar ejecta would be dominating at early phases, while the perpendicular axis along the equatorial ejecta would emerge at late phases after the receding of the photosphere in the polar ejecta. The interpretation of the bipolar explosions in SNe 2012aw and 2021yja is also supported by other observational properties, including the time evolution of the line velocities and the line shapes in the nebular spectra. The polarization of other Type IIP SNe that show large-scale aspherical structures in the hydrogen envelope (SNe 2013ej and 2017gmr) is also consistent with the bipolar-explosion scenario, although this is not conclusive.
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.