Astrophysics > Solar and Stellar Astrophysics
[Submitted on 18 Jun 2024]
Title:Constraining the Stellar Masses and Origin of the Protostellar VLA 1623 System
View PDF HTML (experimental)Abstract:We present ALMA Band 7 molecular line observations of the protostars within the VLA 1623 system. We map C$^{17}$O (3 - 2) in the circumbinary disk around VLA 1623A and the outflow cavity walls of the collimated outflow. We further detect red-shifted and blue-shifted velocity gradients in the circumstellar disks around VLA 1623B and VLA 1623W that are consistent with Keplerian rotation. We use the radiative transfer modeling code, pdspy, and simple flared disk models to measure stellar masses of $0.27 \pm 0.03$ M$_\odot$, $1.9^{+0.3}_{-0.2}$ M$_\odot$, and $0.64 \pm 0.06$ M$_\odot$ for the VLA 1623A binary, VLA 1623B, and VLA 1623W, respectively. These results represent the strongest constraints on stellar mass for both VLA 1623B and VLA 1623W, and the first measurement of mass for all stellar components using the same tracer and methodology. We use these masses to discuss the relationship between the young stellar objects (YSOs) in the VLA 1623 system. We find that VLA 1623W is unlikely to be an ejected YSO, as has been previously proposed. While we cannot rule out that VLA 1623W is a unrelated YSO, we propose that it is a true companion star to the VLA 1623A/B system and that the these stars formed in situ through turbulent fragmentation and have had only some dynamical interactions since their inception.
Current browse context:
astro-ph.SR
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.