A Collaborative Explanation of Cosmic Ray Spectrum Based on the Gluon Condensation Model

Jintao Wu    Jianhong Ruan11footnotetext: Corresponding author.
Abstract

Based on the Gluon Condensation (GC) model, the relationship between the spectra of electrons, γ𝛾\gammaitalic_γ rays, and neutrinos in cosmic rays can be deduced. It has been found that these particles share the same parameter, βpsubscript𝛽𝑝\beta_{p}italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, and have an identical GC threshold values. This paper explores the connection between the second excess spectra of electron and the spectra of gamma rays and neutrinos. According to the observed gamma-ray data, it is suggested that the source LHAASO J2108+5157 might contribute to the second excess of electron.

1 Introduction

In recent decades, significant advancements have been made in scientific research through both space-based and ground-based experiments. A new generation of experiments has ushered in an era of high precision measurement of cosmic rays (CR), revealing a range of new phenomena. Notably, collaborative groups such as the Alpha Magnetic Spectrometer (AMS-02) [1, 2], the Fermi Large Area Telescope (Fermi-LAT) [3], and the Dark Matter Particle Explorer (DAMPE) [4, 5] have provided relatively precise experimental data of electron and positron (e+e+superscript𝑒superscript𝑒e^{-}+e^{+}italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT + italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT) as well as proton. The data cover an energy range from approximately 1 GeV to several TeV.

In these experiments, AMS-02 observed a sharp drop in the spectrum of leptons (electrons and positrons) at an energy about 284 GeV, the significant result being the excesses in electron spectra. The DAMPE experiment showed that at energies as high as about 0.9 TeV, the leptons spectrum exhibits a power-law shape, with a spectral break occurring at around 0.9 TeV [4]. All spectra display features deviating from a single power law, indicating the presence of new sources of CR electrons. The characteristics of CR spectra may be influenced by the nearby sources, including pulsar wind nebulae (PWNe) [6, 7, 8, 9, 10, 11, 12], supernova remnants (SNR) [13, 14, 15, 16, 17, 18, 19], as well as dark matter (DM) particle annihilation or decay [20, 21, 22, 23, 24, 25, 26], and others.

The widely adopted model usually treates the total spectrum as the sum of the background SNR and the local SNR sources. For primary nuclei (protons, He, C, O), observations by AMS-02 have shown significant excesses at around 200 GeV [27]. DAMPE confirmed the hardening of the proton spectrum [4]. This spectral excess has been confirmed in observations by the ATIC and NUCLEON experiments, implying that the excesses of nuclei and electrons may be accelerated by a same local SNR [28, 29, 30, 31, 32].

The research work [33] has proposed a collaborative explanation for the spectra excesses of electron and proton observed by DAMPE and AMS-02. Through the analysis of the electron spectrum from DAMPE, the study suggests a possible existence of a second excess near the upper limit of experimental measurement. However, due to limited data and large errors, the magnitude and the energy region of this excess cannot be determined from experiments presently. According to the GC model [34, 35, 36, 37, 38], there are definite relationship between the electron and proton spectra from a same source, so they proposed the energy region and flux of the second possible excess of electron from the proton spectra. However, for the GC process p+p(A)π±+π0+p+p¯+other𝑝𝑝𝐴superscript𝜋plus-or-minussuperscript𝜋0𝑝¯𝑝otherp+p(A)\to\pi^{\pm}+\pi^{0}+p+\overline{p}+\text{other}italic_p + italic_p ( italic_A ) → italic_π start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT + italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT + italic_p + over¯ start_ARG italic_p end_ARG + other and π0e++esuperscript𝜋0superscript𝑒superscript𝑒\pi^{0}\to e^{+}+e^{-}italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT + italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT, they only considered the final secondary particles electrons and protons, and didn’t consider the secondary particles gamma rays from the decay of π0superscript𝜋0\pi^{0}italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT, as well as the processes where π±superscript𝜋plus-or-minus\pi^{\pm}italic_π start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT and μ±superscript𝜇plus-or-minus\mu^{\pm}italic_μ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT decay into neutrinos. So, in this work we explore the possible gamma-ray and neutrino spectra relating to the second excess of electron based on the connections between these spectra proposed by the GC model. The first possible gamma-ray spectra relating to the first excess of electron has been studied in works[37].

This paper is organized as follows. Section 2 provides a brief introduction to the GC model and derives the spectrum equation for the cosmic ray neutrino. In the section 3, based on the cosmic ray particle equation given by the GC model, we fit the source LHAASO J2108-5157 and establish the connection between the γ𝛾\gammaitalic_γ spectrum and the neutrino spectrum. Finally, in the section 4 we give a discussion and summary.

2 The GC Model

As we know the secondary CR particles may originate from hadronic processes, such as p+p(A)π±+π0+p+p¯+other𝑝𝑝𝐴superscript𝜋plus-or-minussuperscript𝜋0𝑝¯𝑝otherp+p(A)\to\pi^{\pm}+\pi^{0}+p+\overline{p}+\text{other}italic_p + italic_p ( italic_A ) → italic_π start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT + italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT + italic_p + over¯ start_ARG italic_p end_ARG + other, as well as subsequent processes like π02γsuperscript𝜋02𝛾\pi^{0}\to 2\gammaitalic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → 2 italic_γ and the decay of π±superscript𝜋plus-or-minus\pi^{\pm}italic_π start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT. Define Nπ(Epp(A),Eπ)subscript𝑁𝜋subscript𝐸𝑝𝑝𝐴subscript𝐸𝜋N_{\pi}(E_{p-p(A)},E_{\pi})italic_N start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) as the number of mesons with energy Eπsubscript𝐸𝜋E_{\pi}italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT in pp(A)𝑝𝑝𝐴p-p(A)italic_p - italic_p ( italic_A ) collisions, where Epp(A)subscript𝐸𝑝𝑝𝐴E_{p-p(A)}italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT is the energy of the incident proton in the rest frame of the target proton. Due to the non-perturbative hadronization process of pp(A)𝑝𝑝𝐴p-p(A)italic_p - italic_p ( italic_A ) collisions, it’s very hard to calculate the distribution of π𝜋\piitalic_π mesons. To simplify the calculation, in GC model, we only consider mesons as secondary particles, as their diversity is much greater than that of other particles in high-energy collisions. Typically, these π𝜋\piitalic_π mesons have relatively low kinetic energy (or momentum) in the center-of-mass (CM) system, especially in the central region of the rapidity distribution. At a given interaction energy, the maximum value of Nπsubscript𝑁𝜋N_{\pi}italic_N start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT can only occur when almost all available kinetic energy in the CM system is used to produce π𝜋\piitalic_π mesons. We assume that huge number of gluons are produced in the central region due to the GC effect which leads to the maximum value of Nπsubscript𝑁𝜋N_{\pi}italic_N start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT. It’s worth noting that this assumption is made for computational simplification purposes and is not a requirement of the GC condition. We will demonstrate the computational simplification brought by this assumption, and it does not fundamentally alter the characteristics of GC. Considering the relativistic invariants and energy conservation, the following equation holds [37]:

(2mp2+2Epp(A)mp)1/2superscript2superscriptsubscript𝑚𝑝22subscript𝐸𝑝𝑝𝐴subscript𝑚𝑝12\displaystyle(2m_{p}^{2}+2E_{p-p(A)}m_{p})^{1/2}( 2 italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT =Ep1+Ep2+Nπmπ,absentsuperscriptsubscript𝐸𝑝1superscriptsubscript𝐸𝑝2subscript𝑁𝜋subscript𝑚𝜋\displaystyle=E_{p1}^{*}+E_{p2}^{*}+N_{\pi}m_{\pi},= italic_E start_POSTSUBSCRIPT italic_p 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_E start_POSTSUBSCRIPT italic_p 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_N start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT , (2.1)
Epp(A)+mpsubscript𝐸𝑝𝑝𝐴subscript𝑚𝑝\displaystyle E_{p-p(A)}+m_{p}italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT + italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT =mpγ1+mpγ2+Nπmπγ.absentsubscript𝑚𝑝subscript𝛾1subscript𝑚𝑝subscript𝛾2subscript𝑁𝜋subscript𝑚𝜋𝛾\displaystyle=m_{p}\gamma_{1}+m_{p}\gamma_{2}+N_{\pi}m_{\pi}\gamma.= italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_γ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_γ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_N start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT italic_γ .

Here, E(pi)superscriptsubscript𝐸subscript𝑝𝑖E_{(p_{i})}^{*}italic_E start_POSTSUBSCRIPT ( italic_p start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is the energy of the leading protons in the CM system, γisubscript𝛾𝑖\gamma_{i}italic_γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is the Lorentz factor for the corresponding particles. Considering the parameter K0.5similar-to𝐾0.5K\sim 0.5italic_K ∼ 0.5 [39], the eq.2.1 can be simplified to:

Ep1+Ep2superscriptsubscript𝐸𝑝1superscriptsubscript𝐸𝑝2\displaystyle E_{p1}^{*}+E_{p2}^{*}italic_E start_POSTSUBSCRIPT italic_p 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_E start_POSTSUBSCRIPT italic_p 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT =(1K1)Nπmπ,absent1𝐾1subscript𝑁𝜋subscript𝑚𝜋\displaystyle=\left(\frac{1}{K}-1\right)N_{\pi}m_{\pi},= ( divide start_ARG 1 end_ARG start_ARG italic_K end_ARG - 1 ) italic_N start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT , (2.2)
mpγ1+mpγ2subscript𝑚𝑝subscript𝛾1subscript𝑚𝑝subscript𝛾2\displaystyle m_{p}\gamma_{1}+m_{p}\gamma_{2}italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_γ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_γ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT =(1K1)Nπmπγ.absent1𝐾1subscript𝑁𝜋subscript𝑚𝜋𝛾\displaystyle=\left(\frac{1}{K}-1\right)N_{\pi}m_{\pi}\gamma.= ( divide start_ARG 1 end_ARG start_ARG italic_K end_ARG - 1 ) italic_N start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT italic_γ .

For pp(A)𝑝𝑝𝐴p-p(A)italic_p - italic_p ( italic_A ) collisions, the solution for Nπ(Epp(A),Eπ)subscript𝑁𝜋subscript𝐸𝑝𝑝𝐴subscript𝐸𝜋N_{\pi}(E_{p-p(A)},E_{\pi})italic_N start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) can be expressed as:

lnNπsubscript𝑁𝜋\displaystyle\ln N_{\pi}roman_ln italic_N start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT =0.5lnEpp(A)+a,absent0.5subscript𝐸𝑝𝑝𝐴𝑎\displaystyle=0.5\ln E_{p-p(A)}+a,= 0.5 roman_ln italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT + italic_a , (2.3)
lnNπsubscript𝑁𝜋\displaystyle\ln N_{\pi}roman_ln italic_N start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT =lnEπ+b,absentsubscript𝐸𝜋𝑏\displaystyle=\ln E_{\pi}+b,= roman_ln italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT + italic_b ,

where

a𝑎\displaystyle aitalic_a 0.5ln(2mp)lnmπ+lnK,absent0.52subscript𝑚𝑝subscript𝑚𝜋𝐾\displaystyle\equiv 0.5\ln(2m_{p})-\ln m_{\pi}+\ln K,≡ 0.5 roman_ln ( 2 italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) - roman_ln italic_m start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT + roman_ln italic_K , (2.4)
b𝑏\displaystyle bitalic_b ln(2mp)2lnmπ+lnK.absent2subscript𝑚𝑝2subscript𝑚𝜋𝐾\displaystyle\equiv\ln(2m_{p})-2\ln m_{\pi}+\ln K.≡ roman_ln ( 2 italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) - 2 roman_ln italic_m start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT + roman_ln italic_K .

In these equations, Eπ[EπGC,Eπmax]subscript𝐸𝜋superscriptsubscript𝐸𝜋𝐺𝐶superscriptsubscript𝐸𝜋maxE_{\pi}\in[E_{\pi}^{GC},E_{\pi}^{\text{max}}]italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ∈ [ italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G italic_C end_POSTSUPERSCRIPT , italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT ]. Eq.2.3 establishes a direct relationship between Nπsubscript𝑁𝜋N_{\pi}italic_N start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT, Epp(A)subscript𝐸𝑝𝑝𝐴E_{p-p(A)}italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT and EπGCsuperscriptsubscript𝐸𝜋𝐺𝐶E_{\pi}^{GC}italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G italic_C end_POSTSUPERSCRIPT, thereby facilitating the derivation of the spectrum of gamma ray resulting from GC model.

Generally, the spectrum of gamma ray is given by:

Φγ(Eγ)=Φγ0(Eγ)+ΦγGC(Eγ).subscriptΦ𝛾subscript𝐸𝛾superscriptsubscriptΦ𝛾0subscript𝐸𝛾superscriptsubscriptΦ𝛾𝐺𝐶subscript𝐸𝛾\Phi_{\gamma}(E_{\gamma})=\Phi_{\gamma}^{0}(E_{\gamma})+\Phi_{\gamma}^{GC}(E_{% \gamma}).roman_Φ start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ) = roman_Φ start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ) + roman_Φ start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G italic_C end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ) . (2.5)

Here, Φγ0(Eγ)superscriptsubscriptΦ𝛾0subscript𝐸𝛾\Phi_{\gamma}^{0}(E_{\gamma})roman_Φ start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ) denotes the background gamma spectrum. In the GC model, the local contribution of gamma ray is:

ΦγGC(Eγ)superscriptsubscriptΦ𝛾𝐺𝐶subscript𝐸𝛾\displaystyle\Phi_{\gamma}^{GC}(E_{\gamma})roman_Φ start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G italic_C end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ) =Cpp(A)(EγE0)βγEπminEπmaxdEπ(Epp(A)Epp(A)GC)βpabsentsubscript𝐶𝑝𝑝𝐴superscriptsubscript𝐸𝛾subscript𝐸0subscript𝛽𝛾superscriptsubscriptsuperscriptsubscript𝐸𝜋minsuperscriptsubscript𝐸𝜋maxdifferential-dsubscript𝐸𝜋superscriptsubscript𝐸𝑝𝑝𝐴superscriptsubscript𝐸𝑝𝑝𝐴𝐺𝐶subscript𝛽𝑝\displaystyle=C_{p-p(A)}\left(\frac{E_{\gamma}}{E_{0}}\right)^{-\beta_{\gamma}% }\int_{E_{\pi}^{\text{min}}}^{E_{\pi}^{\text{max}}}\mathrm{d}E_{\pi}\left(% \frac{E_{p-p(A)}}{E_{p-p(A)}^{GC}}\right)^{-\beta_{p}}= italic_C start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT ( divide start_ARG italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT - italic_β start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT min end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT max end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT roman_d italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ( divide start_ARG italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G italic_C end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT (2.6)
×Nπ(Epp(A),Eπ)(dωπγ(Eπ,Eγ)dEγ).absentsubscript𝑁𝜋subscript𝐸𝑝𝑝𝐴subscript𝐸𝜋dsubscript𝜔𝜋𝛾subscript𝐸𝜋subscript𝐸𝛾dsubscript𝐸𝛾\displaystyle\times N_{\pi}(E_{p-p(A)},E_{\pi})\left(\frac{\mathrm{d}\omega_{% \pi-\gamma}(E_{\pi},E_{\gamma})}{\mathrm{d}E_{\gamma}}\right).× italic_N start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) ( divide start_ARG roman_d italic_ω start_POSTSUBSCRIPT italic_π - italic_γ end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ) end_ARG start_ARG roman_d italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT end_ARG ) .

In this equation, βγsubscript𝛽𝛾\beta_{\gamma}italic_β start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT signifies the propagation losses of gamma rays, and βpsubscript𝛽𝑝\beta_{p}italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT is related to the proton acceleration mechanism. The parameter Cpp(A)subscript𝐶𝑝𝑝𝐴C_{p-p(A)}italic_C start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT combines the kinematic factors and the dimensionality of the proton spectrum with the branching ratio of the π02γsuperscript𝜋02𝛾\pi^{0}\to 2\gammaitalic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → 2 italic_γ process. The normalized spectrum for π02γsuperscript𝜋02𝛾\pi^{0}\to 2\gammaitalic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → 2 italic_γ is:

dωπγ(Eπ,Eγ)dEγ=2βπEπH[Eγ;12Eπ(1βπ),12Eπ(1+βπ)],dsubscript𝜔𝜋𝛾subscript𝐸𝜋subscript𝐸𝛾dsubscript𝐸𝛾2subscript𝛽𝜋subscript𝐸𝜋𝐻subscript𝐸𝛾12subscript𝐸𝜋1subscript𝛽𝜋12subscript𝐸𝜋1subscript𝛽𝜋\frac{\mathrm{d}\omega_{\pi-\gamma}(E_{\pi},E_{\gamma})}{\mathrm{d}E_{\gamma}}% =\frac{2}{\beta_{\pi}E_{\pi}}H\left[E_{\gamma};\frac{1}{2}E_{\pi}(1-\beta_{\pi% }),\frac{1}{2}E_{\pi}(1+\beta_{\pi})\right],divide start_ARG roman_d italic_ω start_POSTSUBSCRIPT italic_π - italic_γ end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ) end_ARG start_ARG roman_d italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT end_ARG = divide start_ARG 2 end_ARG start_ARG italic_β start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT end_ARG italic_H [ italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ; divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ( 1 - italic_β start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) , divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ( 1 + italic_β start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) ] , (2.7)

where H(x;a,b)𝐻𝑥𝑎𝑏H(x;a,b)italic_H ( italic_x ; italic_a , italic_b ) represents the Heaviside function, which equals 1 when axb𝑎𝑥𝑏a\leq x\leq bitalic_a ≤ italic_x ≤ italic_b and 0 otherwise. By substituting eqs.2.3, 2.4 and 2.7 into eq.2.6, the GC-characteristic spectrum of gamma ray is obtained:

ΦγGC(Eγ)superscriptsubscriptΦ𝛾𝐺𝐶subscript𝐸𝛾\displaystyle\Phi_{\gamma}^{GC}(E_{\gamma})roman_Φ start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_G italic_C end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ) =Cpp(A)(EγEπGC)βγEπGC or EγEπGC,maxdEπ(Epp(A)Epp(A)GC)βpabsentsubscript𝐶𝑝𝑝𝐴superscriptsubscript𝐸𝛾superscriptsubscript𝐸𝜋GCsubscript𝛽𝛾superscriptsubscriptsuperscriptsubscript𝐸𝜋GC or subscript𝐸𝛾superscriptsubscript𝐸𝜋GC,maxdifferential-dsubscript𝐸𝜋superscriptsubscript𝐸𝑝𝑝𝐴superscriptsubscript𝐸𝑝𝑝𝐴GCsubscript𝛽𝑝\displaystyle=C_{p-p(A)}\left(\frac{E_{\gamma}}{E_{\pi}^{\text{GC}}}\right)^{-% \beta_{\gamma}}\int_{E_{\pi}^{\text{GC}}\text{ or }E_{\gamma}}^{E_{\pi}^{\text% {GC,max}}}\mathrm{d}E_{\pi}\left(\frac{E_{p-p(A)}}{E_{p-p(A)}^{\text{GC}}}% \right)^{-\beta_{p}}= italic_C start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT ( divide start_ARG italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT GC end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - italic_β start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT GC end_POSTSUPERSCRIPT or italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT GC,max end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT roman_d italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ( divide start_ARG italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT GC end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT (2.8)
×Nπ(Epp(A),Eπ)2βπEπ.absentsubscript𝑁𝜋subscript𝐸𝑝𝑝𝐴subscript𝐸𝜋2subscript𝛽𝜋subscript𝐸𝜋\displaystyle\times N_{\pi}(E_{p-p(A)},E_{\pi})\frac{2}{\beta_{\pi}E_{\pi}}.× italic_N start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) divide start_ARG 2 end_ARG start_ARG italic_β start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT end_ARG .

If EγEπGCsubscript𝐸𝛾superscriptsubscript𝐸𝜋GCE_{\gamma}\leq E_{\pi}^{\mathrm{GC}}italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ≤ italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT (or Eγ>EπGCsubscript𝐸𝛾superscriptsubscript𝐸𝜋GCE_{\gamma}>E_{\pi}^{\mathrm{GC}}italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT > italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT), the lower limit of the integral is EπGCsuperscriptsubscript𝐸𝜋GCE_{\pi}^{\mathrm{GC}}italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT (or Eγsubscript𝐸𝛾E_{\gamma}italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT). Finally, integrating this expression gives the parameterized form of gamma ray[40, 41]:

ΦγGC(Eγ)={50Cγ2βp1EπGC(EγEπGC)βγif EγEπGC,50Cγ2βp1EπGC(EγEπGC)βγ2βp+1if Eγ>EπGC.superscriptsubscriptΦ𝛾GCsubscript𝐸𝛾cases50subscript𝐶𝛾2subscript𝛽𝑝1superscriptsubscript𝐸𝜋GCsuperscriptsubscript𝐸𝛾superscriptsubscript𝐸𝜋GCsubscript𝛽𝛾if subscript𝐸𝛾superscriptsubscript𝐸𝜋GC50subscript𝐶𝛾2subscript𝛽𝑝1superscriptsubscript𝐸𝜋GCsuperscriptsubscript𝐸𝛾superscriptsubscript𝐸𝜋GCsubscript𝛽𝛾2subscript𝛽𝑝1if subscript𝐸𝛾superscriptsubscript𝐸𝜋GC\Phi_{\gamma}^{\mathrm{GC}}(E_{\gamma})=\begin{cases}\displaystyle\frac{50C_{% \gamma}}{2\beta_{p}-1}E_{\pi}^{\mathrm{GC}}\left(\frac{E_{\gamma}}{E_{\pi}^{% \mathrm{GC}}}\right)^{-\beta_{\gamma}}&\text{if }E_{\gamma}\leq E_{\pi}^{% \mathrm{GC}},\\ \displaystyle\frac{50C_{\gamma}}{2\beta_{p}-1}E_{\pi}^{\mathrm{GC}}\left(\frac% {E_{\gamma}}{E_{\pi}^{\mathrm{GC}}}\right)^{-\beta_{\gamma}-2\beta_{p}+1}&% \text{if }E_{\gamma}>E_{\pi}^{\mathrm{GC}}.\end{cases}roman_Φ start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ) = { start_ROW start_CELL divide start_ARG 50 italic_C start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - 1 end_ARG italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT ( divide start_ARG italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - italic_β start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_CELL start_CELL if italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ≤ italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL divide start_ARG 50 italic_C start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - 1 end_ARG italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT ( divide start_ARG italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - italic_β start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT - 2 italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT + 1 end_POSTSUPERSCRIPT end_CELL start_CELL if italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT > italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT . end_CELL end_ROW (2.9)

This parameterized form is a power-law function with a sharp break. The pure power-law form for EγEπGCsubscript𝐸𝛾superscriptsubscript𝐸𝜋GCE_{\gamma}\leq E_{\pi}^{\mathrm{GC}}italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ≤ italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT arises from the fixed lower limit of integration in eq.2.8, around EπGCsuperscriptsubscript𝐸𝜋GCE_{\pi}^{\mathrm{GC}}italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT. The characteristics of ΦγGCsuperscriptsubscriptΦ𝛾GC\Phi_{\gamma}^{\mathrm{GC}}roman_Φ start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT mentioned above are directly caused by the GC effect and are termed GC-characteristics. They differ from all other known smooth radiation spectra. In eq.2.9, the second power-law function for Eγ>EπGCsubscript𝐸𝛾superscriptsubscript𝐸𝜋GCE_{\gamma}>E_{\pi}^{\mathrm{GC}}italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT > italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT results from the simplified assumption in eq.2.1, which assumes that all available kinetic energy in the central region is used to produce π𝜋\piitalic_π mesons. It’s important to note that if this simplification is modified, the power-law for Eγ>EπGCsubscript𝐸𝛾superscriptsubscript𝐸𝜋GCE_{\gamma}>E_{\pi}^{\mathrm{GC}}italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT > italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT under the integral conditions becomes variable. This parameterized form can be compared with experimental data to test the validity of the simplification. Nevertheless, it does not alter the GC-characteristics mentioned above.

Considering the processes π±μ±+νμ(ν¯μ)superscript𝜋plus-or-minussuperscript𝜇plus-or-minussubscript𝜈𝜇subscript¯𝜈𝜇\pi^{\pm}\rightarrow\mu^{\pm}+\nu_{\mu}(\bar{\nu}_{\mu})italic_π start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT → italic_μ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT + italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ( over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ) and μ±e±+νe(ν¯e)+ν¯μ(νμ)superscript𝜇plus-or-minussuperscript𝑒plus-or-minussubscript𝜈𝑒subscript¯𝜈𝑒subscript¯𝜈𝜇subscript𝜈𝜇\mu^{\pm}\rightarrow e^{\pm}+\nu_{e}(\bar{\nu}_{e})+\bar{\nu}_{\mu}(\nu_{\mu})italic_μ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT → italic_e start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT + italic_ν start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ) + over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ( italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ) which produce neutrinos and electrons, the GC spectrum for electrons is given by [37]:

ΦeGC(Ee)superscriptsubscriptΦ𝑒GCsubscript𝐸𝑒\displaystyle\Phi_{e}^{\mathrm{GC}}(E_{e})roman_Φ start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ) =Ce(EeEπGC)βedEμ2.5Ee or EπGCEπmaxdEπEπ(Epp(A)Epp(A)GC)βpabsentsubscript𝐶𝑒superscriptsubscript𝐸𝑒superscriptsubscript𝐸𝜋GCsubscript𝛽𝑒differential-dsubscript𝐸𝜇superscriptsubscript2.5subscript𝐸𝑒 or superscriptsubscript𝐸𝜋GCsuperscriptsubscript𝐸𝜋𝑚𝑎𝑥dsubscript𝐸𝜋subscript𝐸𝜋superscriptsubscript𝐸𝑝𝑝𝐴superscriptsubscript𝐸𝑝𝑝𝐴GCsubscript𝛽𝑝\displaystyle=C_{e}\left(\frac{E_{e}}{E_{\pi}^{\mathrm{GC}}}\right)^{-\beta_{e% }}\int\mathrm{d}E_{\mu}\int_{2.5E_{e}\text{ or }E_{\pi}^{\mathrm{GC}}}^{E_{\pi% }^{max}}\frac{\mathrm{d}E_{\pi}}{E_{\pi}}\left(\frac{E_{p-p(A)}}{E_{p-p(A)}^{% \mathrm{GC}}}\right)^{-\beta_{p}}= italic_C start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( divide start_ARG italic_E start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - italic_β start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∫ roman_d italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT 2.5 italic_E start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT or italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m italic_a italic_x end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT divide start_ARG roman_d italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT end_ARG ( divide start_ARG italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT (2.10)
×Nπ±(Epp(A),Eπ)(dωπμ(Eπ,Eμ)dEμ)(dωμe(Eμ,Ee)dEe).absentsubscript𝑁superscript𝜋plus-or-minussubscript𝐸𝑝𝑝𝐴subscript𝐸𝜋dsubscript𝜔𝜋𝜇subscript𝐸𝜋subscript𝐸𝜇dsubscript𝐸𝜇dsubscript𝜔𝜇𝑒subscript𝐸𝜇subscript𝐸𝑒dsubscript𝐸𝑒\displaystyle\times N_{\pi^{\pm}}(E_{p-p(A)},E_{\pi})\left(\frac{\mathrm{d}% \omega_{\pi-\mu}(E_{\pi},E_{\mu})}{\mathrm{d}E_{\mu}}\right)\left(\frac{% \mathrm{d}\omega_{\mu-e}(E_{\mu},E_{e})}{\mathrm{d}E_{e}}\right).× italic_N start_POSTSUBSCRIPT italic_π start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) ( divide start_ARG roman_d italic_ω start_POSTSUBSCRIPT italic_π - italic_μ end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ) end_ARG start_ARG roman_d italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT end_ARG ) ( divide start_ARG roman_d italic_ω start_POSTSUBSCRIPT italic_μ - italic_e end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ) end_ARG start_ARG roman_d italic_E start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_ARG ) .

Similarly, the GC spectrum for neutrinos can be derived as:

ΦνGC(Eν)superscriptsubscriptΦ𝜈GCsubscript𝐸𝜈\displaystyle\Phi_{\nu}^{\mathrm{GC}}(E_{\nu})roman_Φ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ) =Cν(EνEπGC)βνdEμEπGC or EνEπmaxdEπEπ(Epp(A)Epp(A)GC)βpabsentsubscript𝐶𝜈superscriptsubscript𝐸𝜈superscriptsubscript𝐸𝜋GCsubscript𝛽𝜈differential-dsubscript𝐸𝜇superscriptsubscriptsuperscriptsubscript𝐸𝜋GC or subscript𝐸𝜈superscriptsubscript𝐸𝜋𝑚𝑎𝑥dsubscript𝐸𝜋subscript𝐸𝜋superscriptsubscript𝐸𝑝𝑝𝐴superscriptsubscript𝐸𝑝𝑝𝐴GCsubscript𝛽𝑝\displaystyle=C_{\nu}\left(\frac{E_{\nu}}{E_{\pi}^{\mathrm{GC}}}\right)^{-% \beta_{\nu}}\int\mathrm{d}E_{\mu}\int_{E_{\pi}^{\mathrm{GC}}\text{ or }E_{\nu}% }^{E_{\pi}^{max}}\frac{\mathrm{d}E_{\pi}}{E_{\pi}}\left(\frac{E_{p-p(A)}}{E_{p% -p(A)}^{\mathrm{GC}}}\right)^{-\beta_{p}}= italic_C start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ( divide start_ARG italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - italic_β start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ∫ roman_d italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT or italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m italic_a italic_x end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT divide start_ARG roman_d italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT end_ARG ( divide start_ARG italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT (2.11)
×Nπ±(Epp(A),Eπ)(dωπμ(Eπ,Eμ)dEμ)(1+dωμν(Eμ,Eν)dEν)absentsubscript𝑁superscript𝜋plus-or-minussubscript𝐸𝑝𝑝𝐴subscript𝐸𝜋dsubscript𝜔𝜋𝜇subscript𝐸𝜋subscript𝐸𝜇dsubscript𝐸𝜇1dsubscript𝜔𝜇𝜈subscript𝐸𝜇subscript𝐸𝜈dsubscript𝐸𝜈\displaystyle\times N_{\pi^{\pm}}(E_{p-p(A)},E_{\pi})\left(\frac{\mathrm{d}% \omega_{\pi-\mu}(E_{\pi},E_{\mu})}{\mathrm{d}E_{\mu}}\right)\left(1+\frac{% \mathrm{d}\omega_{\mu-\nu}(E_{\mu},E_{\nu})}{\mathrm{d}E_{\nu}}\right)× italic_N start_POSTSUBSCRIPT italic_π start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_p - italic_p ( italic_A ) end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) ( divide start_ARG roman_d italic_ω start_POSTSUBSCRIPT italic_π - italic_μ end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ) end_ARG start_ARG roman_d italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT end_ARG ) ( 1 + divide start_ARG roman_d italic_ω start_POSTSUBSCRIPT italic_μ - italic_ν end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ) end_ARG start_ARG roman_d italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_ARG )
=CνEπGC(EνEπGC)βνabsentsubscript𝐶𝜈superscriptsubscript𝐸𝜋GCsuperscriptsubscript𝐸𝜈superscriptsubscript𝐸𝜋GCsubscript𝛽𝜈\displaystyle=C_{\nu}E_{\pi}^{\mathrm{GC}}\left(\frac{E_{\nu}}{E_{\pi}^{% \mathrm{GC}}}\right)^{-\beta_{\nu}}= italic_C start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT ( divide start_ARG italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - italic_β start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_POSTSUPERSCRIPT
×{(312βp1+240βpEνEπGC)if EνEπGC,(312βp1+240βp)(EνEπGC)2βp+1if Eν>EπGC.absentcases312subscript𝛽𝑝1240subscript𝛽𝑝subscript𝐸𝜈superscriptsubscript𝐸𝜋GCif subscript𝐸𝜈superscriptsubscript𝐸𝜋GC312subscript𝛽𝑝1240subscript𝛽𝑝superscriptsubscript𝐸𝜈superscriptsubscript𝐸𝜋GC2subscript𝛽𝑝1if subscript𝐸𝜈superscriptsubscript𝐸𝜋GC\displaystyle\times\begin{cases}(\frac{-31}{2\beta_{p}-1}+\frac{240}{\beta_{p}% }\frac{E_{\nu}}{E_{\pi}^{\mathrm{GC}}})&\text{if }E_{\nu}\leq E_{\pi}^{\mathrm% {GC}},\\ \left(\frac{-31}{2\beta_{p}-1}+\frac{240}{\beta_{p}}\right)\left(\frac{E_{\nu}% }{E_{\pi}^{\mathrm{GC}}}\right)^{-2\beta_{p}+1}&\text{if }E_{\nu}>E_{\pi}^{% \mathrm{GC}}.\end{cases}× { start_ROW start_CELL ( divide start_ARG - 31 end_ARG start_ARG 2 italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - 1 end_ARG + divide start_ARG 240 end_ARG start_ARG italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG divide start_ARG italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT end_ARG ) end_CELL start_CELL if italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ≤ italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL ( divide start_ARG - 31 end_ARG start_ARG 2 italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT - 1 end_ARG + divide start_ARG 240 end_ARG start_ARG italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG ) ( divide start_ARG italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT - 2 italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT + 1 end_POSTSUPERSCRIPT end_CELL start_CELL if italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT > italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT . end_CELL end_ROW

The normalization spectra in the above integration are given by:

dωπμ(Eπ,Eμ)dEμdsubscript𝜔𝜋𝜇subscript𝐸𝜋subscript𝐸𝜇dsubscript𝐸𝜇\displaystyle\frac{\mathrm{d}\omega_{\pi-\mu}(E_{\pi},E_{\mu})}{\mathrm{d}E_{% \mu}}divide start_ARG roman_d italic_ω start_POSTSUBSCRIPT italic_π - italic_μ end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ) end_ARG start_ARG roman_d italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT end_ARG =δ(Eμ0.8Eπ),absent𝛿subscript𝐸𝜇0.8subscript𝐸𝜋\displaystyle=\delta(E_{\mu}-0.8E_{\pi}),= italic_δ ( italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - 0.8 italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT ) , (2.12)
dωμν(Eμ,Eν)dEνdsubscript𝜔𝜇𝜈subscript𝐸𝜇subscript𝐸𝜈dsubscript𝐸𝜈\displaystyle\frac{\mathrm{d}\omega_{\mu-\nu}(E_{\mu},E_{\nu})}{\mathrm{d}E_{% \nu}}divide start_ARG roman_d italic_ω start_POSTSUBSCRIPT italic_μ - italic_ν end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT , italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ) end_ARG start_ARG roman_d italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_ARG =16(1EνEμ)2(2EνEμ0.5).absent16superscript1subscript𝐸𝜈subscript𝐸𝜇22subscript𝐸𝜈subscript𝐸𝜇0.5\displaystyle=16\left(1-\frac{E_{\nu}}{E_{\mu}}\right)^{2}\left(\frac{2E_{\nu}% }{E_{\mu}}-0.5\right).= 16 ( 1 - divide start_ARG italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG 2 italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT end_ARG - 0.5 ) .

It is important to note that the lower limit of the integral in eq.2.11 is max(EπGC,Eν)superscriptsubscript𝐸𝜋GCsubscript𝐸𝜈\max(E_{\pi}^{\mathrm{GC}},E_{\nu})roman_max ( italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT , italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ), and it also shows a sharp break around Eν=EπGCsubscript𝐸𝜈superscriptsubscript𝐸𝜋GCE_{\nu}=E_{\pi}^{\mathrm{GC}}italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT = italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT. The parameters βesubscript𝛽𝑒\beta_{e}italic_β start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT and βνsubscript𝛽𝜈\beta_{\nu}italic_β start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT in eqs.2.10 and 2.11 indicate the propagation losses of electrons and neutrinos.

3 Predictions

In our previous work [33] , the second possible electron excess was predicted. According to the GC model, the same GC source is expected to simultaneously produce corresponding gamma-ray and neutrino emissions. In work [33], potential sources were predicted with a GC threshold of EπGC=24.0TeVsuperscriptsubscript𝐸𝜋GC24.0TeVE_{\pi}^{\mathrm{GC}}=24.0\mathrm{~{}TeV}italic_E start_POSTSUBSCRIPT italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT = 24.0 roman_TeV, and the corresponding parameters were chosen as βp=1.8subscript𝛽𝑝1.8\beta_{p}=1.8italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = 1.8, βe=0.2subscript𝛽𝑒0.2\beta_{e}=0.2italic_β start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT = 0.2, and βγ=0.3subscript𝛽𝛾0.3\beta_{\gamma}=0.3italic_β start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT = 0.3. This section explores the possible simultaneous production of gamma-ray and neutrino spectra based on the GC model.

As in work [33] and eqs.2.9 and 2.10, all the three spectra (electron, gamma-ray, neutrino) contain the parameter βpsubscript𝛽𝑝\beta_{p}italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT for proton propagation energy loss. The electron and gamma-ray spectra contain the parameter βγsubscript𝛽𝛾\beta_{\gamma}italic_β start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT for gamma-ray propagation energy loss, and the neutrino spectrum includes the parameter βνsubscript𝛽𝜈\beta_{\nu}italic_β start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT for neutrino propagation energy loss. According to the GC model, the cosmic rays come from a same GC source should share the same propagation parameters. So, as in [33], relating to the second excess of electron, we take βp=1.8subscript𝛽𝑝1.8\beta_{p}=1.8italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = 1.8, βe=0.2subscript𝛽𝑒0.2\beta_{e}=0.2italic_β start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT = 0.2, and βγ=0.3subscript𝛽𝛾0.3\beta_{\gamma}=0.3italic_β start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT = 0.3. It is known from the literature [42, 33] that the GC threshold for gamma rays and neutrinos is the same as that for electrons, EγGC=EνGC=EeGC=24TeVsuperscriptsubscript𝐸𝛾GCsuperscriptsubscript𝐸𝜈GCsuperscriptsubscript𝐸𝑒GC24TeVE_{\gamma}^{\mathrm{GC}}=E_{\nu}^{\mathrm{GC}}=E_{e}^{\mathrm{GC}}=24\,\text{TeV}italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT = italic_E start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT = italic_E start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT = 24 TeV.

According to eq.2.9, we can now draw the gamma-ray spectra except that the parameter Cγsubscript𝐶𝛾C_{\gamma}italic_C start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT is unkown. Searched for all the possible gamma-ray spectra, it was found that the source J2108+5157 detected by LHASSO exhibits the GC characteristics, with spectral parameters matching the aforementioned values. Based on the observed data of LHASSO J2108+5157, the parameter Cγ=3.71×1041subscript𝐶𝛾3.71superscript1041C_{\gamma}=3.71\times 10^{41}italic_C start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT = 3.71 × 10 start_POSTSUPERSCRIPT 41 end_POSTSUPERSCRIPT was determined in eq.2.9, and the corresponding spectrum is shown in Fig.1.

Refer to caption
Figure 1: Gamma-ray Spectrum. The green solid line represents the GC gamma-ray spectrum at the GC threshold EγGC=24.0TeVsuperscriptsubscript𝐸𝛾GC24.0TeVE_{\gamma}^{\mathrm{GC}}=24.0\mathrm{~{}TeV}italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT = 24.0 roman_TeV. The red dots indicate the observed data of the source LHASSO J2108+5157 [43].

For the neutrino spectra as eq.2.11, the parameters Cνsubscript𝐶𝜈C_{\nu}italic_C start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT and βνsubscript𝛽𝜈\beta_{\nu}italic_β start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT are unkown. We take βν=0subscript𝛽𝜈0\beta_{\nu}=0italic_β start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT = 0 since neutrinos hardly lose their energy during the transmission. The parameters Cνsubscript𝐶𝜈C_{\nu}italic_C start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT should be fitted with experiments, while there is very limited experimental data available for neutrino observations. Fig.2 shows the observation data from the IceCube [44] experiment. Using eq.2.11, with βp=1.8subscript𝛽𝑝1.8\beta_{p}=1.8italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = 1.8, βν=0subscript𝛽𝜈0\beta_{\nu}=0italic_β start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT = 0, and Cν=1.42×1022subscript𝐶𝜈1.42superscript1022C_{\nu}=1.42\times 10^{-22}italic_C start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT = 1.42 × 10 start_POSTSUPERSCRIPT - 22 end_POSTSUPERSCRIPT , the spectrum is shown in Fig.2. Considering the large errors of the observation data, our results appear to be consistent with the experiment data almostly.

Refer to caption
Figure 2: Neutrino spectrum. The black dots represent the observational data from the IceCube experiment [44].

From Figs.1 and 2, it can be seen that both the gamma-ray and neutrino spectrum curves exhibit distinct GC features, with the typical GC break occurring at around 24.0 TeV.

4 Discussion and summary

During intense astrophysical processes, the hadron collidings often happen, cosmic rays, such as electrons (positrons), protons (antiprotons), gamma rays, and neutrinos are often generated concurrently. However, due to complecated interaction mechanisms, it’s hard to make a clear correlations among different type of spectra. In our work, GC phenomena may happen during ultra-high-energy collisions. According to this model, cosmic rays originate from one certain GC process have definite correlations between different types of spectra. So, in our previous work[33], a second electron excess was infered which originated from the GC process of a local source, the possible shape and amplitude of its spectra were predicted based on proton data. The primary focus of this paper is the prediction of gamma-ray and neutrino spectra potentially generated by this local source.

According to work[33] and eqs.2.9 and 2.11, it is evident that for the electron, gamma-ray and neutrino spectra, there is a common parameter βpsubscript𝛽𝑝\beta_{p}italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT, and their GC thresholds are also identical. Based on this characteristic, LHASSO J2108+5157 was identified as the source that best matches the GC-characterization, βpsubscript𝛽𝑝\beta_{p}italic_β start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and EγGCsuperscriptsubscript𝐸𝛾GCE_{\gamma}^{\mathrm{GC}}italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_GC end_POSTSUPERSCRIPT. Using the observational data, its amplitude was determined. For the neutrino spectrum, which has only several observational data, the amplitude was determined using the observation data from the IceCube experiment.

Considering that gamma-rays and neutrinos propagate in straight lines in cosmic space, it is possible to determine the local sources that contributes to the second electron excess by examining the gamma sources. However, since LHASSO did not detect the specific data (years and distance) for the source J2108+5157, it cannot be confirmed whether this source contributes to the second electron excess or not. Similarly, the observational data for neutrinos only provide flux data while without specifying the astrophysical sources, making it impossible to verify the connection between their sources. Ultimately, more precise experiments are anticipated to enrich the data of electrons, gamma- rays and neutrinos, as well as parameters of radiation sources, to validate our model.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No.11851303).

References