High-energy Neutrino Emission from NGC 1068 by Outflow-cloud Interactions

Yong-Han Huang Department of Astronomy, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China Kai Wang Department of Astronomy, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China Zhi-Peng Ma Department of Astronomy, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China Kai Wang kaiwang@hust.edu.cn
Abstract

As the hottest high-energy neutrino spot, NGC 1068 has received much attention in recent years. Here we focus on the central region of the active galactic nuclei (AGN) and propose an outflow-cloud interaction model that could probably explain the observed neutrino data. Considering the accretion process adjacent to the central supermassive black hole (SMBH) of NGC 1068, strong outflows will be generated, which will likely interact with surrounding clouds floating in the corona region. Particles carried by the outflow will be accelerated to very high energy by the shocks forming during the outflow-cloud interactions. For the accelerated high-energy protons, pγ𝑝𝛾p\gammaitalic_p italic_γ interactions with the background photon field of the corona and disk and pp𝑝𝑝ppitalic_p italic_p interaction with the surrounding gas will produce considerable high-energy γ𝛾\gammaitalic_γ-rays and neutrino. However, because of the extremely dense photon fields in the corona and disk, the newly generated γ𝛾\gammaitalic_γ-rays will be significantly attenuated through the γγ𝛾𝛾\gamma\gammaitalic_γ italic_γ absorptions. In our scenario, the expected GeV-TeV γ𝛾\gammaitalic_γ-ray emission will be suppressed to a much lower level than the neutrino emission, consistent with the observational characteristics of NGC 1068, while the generated 1-30 TeV neutrino flux can fit the IceCube data very well.

Neutrino Astronomy (1100); Active galactic nuclei (16); High energy astrophysics (739); Cosmic rays (329); Particle astrophysics (96)

1 Introduction

Active galactic nuclei (AGNs) are known as powerful high-energy astrophysical sources. Ultra-fast outflow can be continually generated from the central region of the AGN with a mildly relativistic velocity of about 0.03-0.3 c (Peretti et al., 2023b). NGC 1068 is a typical Seyfert II galaxy with an AGN (Bland-Hawthorn et al., 1997) and is found to be the hottest neutrino spot in the 10-year survey data of IceCube with 4.2σ𝜎\sigmaitalic_σ confidence level (Collaboration*† et al., 2022). NGC 1068 is about 14.4 Mpc away from us with a supermassive black hole (SMBH) in the center covered by thick gas and dust (García-Burillo et al., 2016; Gámez Rosas et al., 2022). According to the hard X-ray detection of NGC 1068,  Matt et al. (1997) suggests that it is Compton thick and difficult to detect the existence of the outflow. However, as indicated in Mizumoto et al. (2019), it is still possible that NGC 1068 has ultra-fast outflow. This energetic outflow can accelerate particles to PeV or even EeV (Peretti et al., 2023a) and interact with the AGN photon field through hadronic processes, producing high-energy neutrinos and γ𝛾\gammaitalic_γ-rays. For the hadronic processes, the production of very-high-energy (VHE) neutrinos always coincides with the emission of γ𝛾\gammaitalic_γ-rays, and the luminosity of the γ𝛾\gammaitalic_γ-ray emissions is comparable to that of the neutrinos (Gámez Rosas et al., 2022). However, it is found that its TeV neutrino flux for NGC 1068 is at least an order of magnitude larger than that of γ𝛾\gammaitalic_γ-rays (Collaboration*† et al., 2022). Thus, it is believed that the accompanying GeV-TeV γ𝛾\gammaitalic_γ-rays with neutrinos are highly obscured.

The neutrino production region is considered at the central corona region in the vicinity of SMBH to absorb the accompanying GeV-TeV γ𝛾\gammaitalic_γ-rays (e.g., in Inoue et al. (2020, 2022, 2021); Kheirandish et al. (2021); Anchordoqui et al. (2021); Eichmann et al. (2022); Murase et al. (2020); Murase (2022); Murase et al. (2024)) since X-ray emissions in the corona region have been suggested to be very bright (Bauer et al., 2015a; Marinucci et al., 2015a). Besides, the high-energy neutrinos produced by outflow-torus (Inoue et al., 2022) or jet-ISM (interstellar medium) (Fang et al., 2023) interactions have been explored as well.

Here we propose the outflow-cloud interaction model (shown in Fig. 1) to explain the neutrino emission observed by Icecube. This kind of outflow with ultra-fast velocity has been discovered in many AGNs and quasars by analyzing their X-ray spectra (Chartas et al., 2002, 2003, 2009; Pounds et al., 2003; Dadina et al., 2005; Markowitz et al., 2006; Braito et al., 2007; Cappi et al., 2009; Reeves et al., 2009; Giustini et al., 2011; Gofford et al., 2011; Lobban et al., 2011; Dauser et al., 2012). Outflow launched by the SMBH-disk system passes through the corona region, where it is likely to interact with dense dark clouds around the central SMBH in the corona region. When outflow collides with the cloud, a bow shock can be produced outside the cloud, and it will significantly accelerate the particles to rather high energy through the diffuse shock acceleration (DSA) mechanism. Considering the high-density photon field existing in the central region of the AGN, those efficiently accelerated particles will be able to have pγ𝑝𝛾p\gammaitalic_p italic_γ interactions with X-ray and ultraviolet photon fields produced by the corona and disk respectively. Also, those accelerated particles may have pp𝑝𝑝ppitalic_p italic_p interactions with the outflow matters to produce γ𝛾\gammaitalic_γ-rays and neutrinos at the same time.

Refer to caption
Figure 1: The schematic outflow-cloud interaction model. The outflow launched from the SMBH-disk system collides with the cloud in the corona region. Particles undergo acceleration by the bow shock and cloud shock during the outflow-cloud interaction. Then high-energy neutrinos can be generated by hadronic processes with the surrounding photon fields or gas.

2 Dynamics and physical parameters for outflow-cloud interaction

After outflows from SMBH collide with the surrounding clouds, there will be two types of shock (McKee & Cowie, 1975), namely, a bow shock (BS) and a cloud shock (CS). Both shocks will accelerate particles, nevertheless, BS only exists outside the cloud while CS can sweep through the whole cloud. Here we provide two sets of parameters for the pp𝑝𝑝ppitalic_p italic_p dominant case and the pγ𝑝𝛾p\gammaitalic_p italic_γ dominant case. First, in Case 1 (Case 2) we assume that the outflows are spherically symmetric with a velocity V0subscript𝑉0V_{0}italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT of 0.3 c (0.2 c) and a kinetic luminosity Lkinsubscript𝐿kinL_{\rm kin}italic_L start_POSTSUBSCRIPT roman_kin end_POSTSUBSCRIPT = 5×1044ergs15superscript1044ergsuperscripts15\times 10^{44}\,\rm erg\,s^{-1}5 × 10 start_POSTSUPERSCRIPT 44 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (1046ergs1superscript1046ergsuperscripts110^{46}\,\rm erg\,s^{-1}10 start_POSTSUPERSCRIPT 46 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT). According to Inoue et al. (2022), the characteristic radius of the corona is 1014superscript101410^{14}10 start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT cm, so we assume that the clouds are situated around 5×1013cm5superscript1013cm5\times 10^{13}\,\rm cm5 × 10 start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT roman_cm away from SMBH. Then the kinetic luminosity can be written as Lkin=2πr02ρ0V03subscript𝐿kin2𝜋superscriptsubscript𝑟02subscript𝜌0superscriptsubscript𝑉03L_{\rm kin}=2\pi r_{0}^{2}\rho_{0}V_{0}^{3}italic_L start_POSTSUBSCRIPT roman_kin end_POSTSUBSCRIPT = 2 italic_π italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT, where r0subscript𝑟0r_{0}italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the distance from the SMBH and ρ0subscript𝜌0\rho_{0}italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the corresponding mass density of the outflow at the distance of r0subscript𝑟0r_{0}italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. So, it is easy to derive the number density of outflow in the typical cloud region, i.e., n0=ρ0mH3×1010subscript𝑛0subscript𝜌0subscript𝑚𝐻similar-to3superscript1010n_{0}=\frac{\rho_{0}}{m_{H}}\sim 3\times 10^{10}italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG italic_ρ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT end_ARG ∼ 3 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT(Lkin5×1044ergs1)(V00.3c)3(r05×1013cm)2cm3subscript𝐿kin5superscript1044ergsuperscripts1superscriptsubscript𝑉00.3𝑐3superscriptsubscript𝑟05superscript1013cm2superscriptcm3\left(\frac{L_{\rm kin}}{5\times 10^{44}\,\mathrm{erg\,s^{-1}}}\right)\left(% \frac{V_{0}}{0.3c}\right)^{-3\ }\left(\frac{r_{0}}{5\times 10^{13}\,\mathrm{cm% }}\right)^{-2}\,\rm cm^{-3}( divide start_ARG italic_L start_POSTSUBSCRIPT roman_kin end_POSTSUBSCRIPT end_ARG start_ARG 5 × 10 start_POSTSUPERSCRIPT 44 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG ) ( divide start_ARG italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG 0.3 italic_c end_ARG ) start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT ( divide start_ARG italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG 5 × 10 start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT roman_cm end_ARG ) start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT (2×1012cm32superscript1012superscriptcm32\times 10^{12}\,\rm cm^{-3}2 × 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT), with mHsubscript𝑚𝐻m_{H}italic_m start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT the mass of hydrogen atom. All adopted parameters have been listed in Table 1.

According to (McKee & Cowie, 1975; Mou & Wang, 2021), we have a relationship between the outflow velocity V0subscript𝑉0V_{0}italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and the cloud shock velocity of Vc=χ0.5V0subscript𝑉𝑐superscript𝜒0.5subscript𝑉0V_{c}=\chi^{-0.5}V_{0}italic_V start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = italic_χ start_POSTSUPERSCRIPT - 0.5 end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, where χ=ncn0𝜒subscript𝑛𝑐subscript𝑛0\chi=\frac{n_{c}}{n_{0}}italic_χ = divide start_ARG italic_n start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG start_ARG italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG and ncsubscript𝑛𝑐n_{c}italic_n start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT is the number density of cloud particles, which should be higher than the outflow number density, otherwise, the cloud will be destructed by outflow soon after they crash and there will be little time to accelerate particles. Given this, ncsubscript𝑛𝑐n_{c}italic_n start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT is set to 1012cm3superscript1012superscriptcm310^{12}\,\rm cm^{-3}10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT (1014cm3superscript1014superscriptcm310^{14}\,\rm cm^{-3}10 start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT), thus χ40similar-to-or-equals𝜒40\chi\simeq 40italic_χ ≃ 40 (60).

The lifetime of the cloud can directly affect the efficiency of DSA process as the particle acceleration will cease when the cloud is destructed by the outflow and shocks. As discussed in Klein et al. (1994), the lifetime of the cloud (Tcloudsubscript𝑇cloudT_{\rm cloud}italic_T start_POSTSUBSCRIPT roman_cloud end_POSTSUBSCRIPT) is comparable to the timescale of CS that sweeps the cloud, that is, Tcloud=rcVc=rcV0χ0.530ssubscript𝑇cloudsubscript𝑟𝑐subscript𝑉𝑐subscript𝑟𝑐subscript𝑉0superscript𝜒0.5similar-to30sT_{\rm cloud}=\frac{r_{c}}{V_{c}}=\frac{r_{c}}{V_{0}}\chi^{0.5}\sim 30\,\rm sitalic_T start_POSTSUBSCRIPT roman_cloud end_POSTSUBSCRIPT = divide start_ARG italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG start_ARG italic_V start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG start_ARG italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG italic_χ start_POSTSUPERSCRIPT 0.5 end_POSTSUPERSCRIPT ∼ 30 roman_s (60s) with rc=5×1010subscript𝑟𝑐5superscript1010{r_{c}=5\times 10^{10}}italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 5 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPTcm the radius of cloud. Next, according to Drury (1983), a particle (in most cases a proton) with charge number Z and energy Epsubscript𝐸𝑝E_{p}italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT can be accelerated by BS on a timescale of TBS83cEpZeBV02subscript𝑇BS83𝑐subscript𝐸𝑝𝑍𝑒𝐵superscriptsubscript𝑉02T_{\rm BS}\approx\frac{8}{3}\frac{cE_{p}}{ZeBV_{0}^{2}}italic_T start_POSTSUBSCRIPT roman_BS end_POSTSUBSCRIPT ≈ divide start_ARG 8 end_ARG start_ARG 3 end_ARG divide start_ARG italic_c italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG start_ARG italic_Z italic_e italic_B italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG and by CS in a timescale of TCS83cEpZeBVc2subscript𝑇CS83𝑐subscript𝐸𝑝𝑍𝑒𝐵superscriptsubscript𝑉𝑐2T_{\rm CS}\approx\frac{8}{3}\frac{cE_{p}}{ZeBV_{c}^{2}}italic_T start_POSTSUBSCRIPT roman_CS end_POSTSUBSCRIPT ≈ divide start_ARG 8 end_ARG start_ARG 3 end_ARG divide start_ARG italic_c italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG start_ARG italic_Z italic_e italic_B italic_V start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG, where e𝑒eitalic_e is the electron charge and B=10G𝐵10GB=10\,\rm Gitalic_B = 10 roman_G (25G) is the magnetic field strength. For simplicity, we assume that the outflow and clouds share the same magnetic field. In addition, we have considered the possibly existing pp𝑝𝑝ppitalic_p italic_p interactions. We use an approximate equation to estimate the pp𝑝𝑝ppitalic_p italic_p interaction timescales: in the BS region, it is tpp,BS1cn0σppsimilar-to-or-equalssubscript𝑡𝑝𝑝BS1𝑐subscript𝑛0subscript𝜎𝑝𝑝t_{pp,\rm BS}\simeq\frac{1}{cn_{0}\sigma_{pp}}italic_t start_POSTSUBSCRIPT italic_p italic_p , roman_BS end_POSTSUBSCRIPT ≃ divide start_ARG 1 end_ARG start_ARG italic_c italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_p italic_p end_POSTSUBSCRIPT end_ARG, and in the CS region (inside the cloud), it is tpp,CS1cncσppsimilar-to-or-equalssubscript𝑡𝑝𝑝CS1𝑐subscript𝑛𝑐subscript𝜎𝑝𝑝t_{pp,\mathrm{CS}}\simeq\frac{1}{cn_{c}\sigma_{pp}}italic_t start_POSTSUBSCRIPT italic_p italic_p , roman_CS end_POSTSUBSCRIPT ≃ divide start_ARG 1 end_ARG start_ARG italic_c italic_n start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_σ start_POSTSUBSCRIPT italic_p italic_p end_POSTSUBSCRIPT end_ARG, where σpp30mbsubscript𝜎𝑝𝑝30mb\sigma_{pp}\approx 30\,\rm mbitalic_σ start_POSTSUBSCRIPT italic_p italic_p end_POSTSUBSCRIPT ≈ 30 roman_mb is the pp𝑝𝑝ppitalic_p italic_p cross-section.

The emissions from the corona and disk are the two main components taken into account in our calculation for the pγ𝑝𝛾p\gammaitalic_p italic_γ interaction. We adopt the disk photon spectral energy distribution (SED) as a diluted blackbody spectrum with a typical photon energy of 32 eV, and total luminosity Ldisk=1045ergs1subscript𝐿disksuperscript1045ergsuperscripts1L_{\rm disk}=10^{45}\,\rm erg\,s^{-1}italic_L start_POSTSUBSCRIPT roman_disk end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT 45 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT(Woo & Urry, 2002; Zaino et al., 2020). Given the observation of NuSTAR and XMM-Newton (Bauer et al., 2015b; Marinucci et al., 2015b), we choose LX=1.4×1044ergs1subscript𝐿X1.4superscript1044ergsuperscripts1L_{\rm X}=1.4\times 10^{44}\rm erg\,s^{-1}italic_L start_POSTSUBSCRIPT roman_X end_POSTSUBSCRIPT = 1.4 × 10 start_POSTSUPERSCRIPT 44 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (2102102-102 - 10 keV band) as the luminosity of corona X-ray photon field and a index of -2 with exponential cutoff energy of 128 keV for SED.

Therefore, the pγ𝑝𝛾p\gammaitalic_p italic_γ timescale can be calculated by (Murase, 2007)

tpγ1=c2γp2ε¯thσpγ(ε¯)κpγ(ε¯)ε¯𝑑ε¯ε¯2γpε2dndε𝑑ε,superscriptsubscript𝑡𝑝𝛾1𝑐2superscriptsubscript𝛾𝑝2superscriptsubscriptsubscript¯𝜀𝑡subscript𝜎𝑝𝛾¯𝜀subscript𝜅𝑝𝛾¯𝜀¯𝜀differential-d¯𝜀superscriptsubscript¯𝜀2subscript𝛾𝑝superscript𝜀2𝑑𝑛𝑑𝜀differential-d𝜀\ t_{p\gamma}^{-1}=\frac{c}{2\gamma_{p}^{2}}\int_{\bar{\varepsilon}_{th}}^{% \infty}\sigma_{p\gamma}\left(\bar{\varepsilon}\right)\kappa_{p\gamma}\left(% \bar{\varepsilon}\right)\bar{\varepsilon}d\bar{\varepsilon}\int_{\frac{\bar{% \varepsilon}}{2\gamma_{p}}}^{\infty}\varepsilon^{-2}\frac{dn}{d\varepsilon}d\varepsilon,italic_t start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = divide start_ARG italic_c end_ARG start_ARG 2 italic_γ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT over¯ start_ARG italic_ε end_ARG start_POSTSUBSCRIPT italic_t italic_h end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT ( over¯ start_ARG italic_ε end_ARG ) italic_κ start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT ( over¯ start_ARG italic_ε end_ARG ) over¯ start_ARG italic_ε end_ARG italic_d over¯ start_ARG italic_ε end_ARG ∫ start_POSTSUBSCRIPT divide start_ARG over¯ start_ARG italic_ε end_ARG end_ARG start_ARG 2 italic_γ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_ε start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT divide start_ARG italic_d italic_n end_ARG start_ARG italic_d italic_ε end_ARG italic_d italic_ε , (1)

where σpγ(ε¯)subscript𝜎𝑝𝛾¯𝜀\sigma_{p\gamma}\left(\bar{\varepsilon}\right)italic_σ start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT ( over¯ start_ARG italic_ε end_ARG ) and κpγ(ε¯)subscript𝜅𝑝𝛾¯𝜀\kappa_{p\gamma}\left(\bar{\varepsilon}\right)italic_κ start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT ( over¯ start_ARG italic_ε end_ARG ) represent the cross section and the inelastic parameter respectively. We set σpγ(ε¯)subscript𝜎𝑝𝛾¯𝜀\sigma_{p\gamma}\left(\bar{\varepsilon}\right)italic_σ start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT ( over¯ start_ARG italic_ε end_ARG ) to 0.5 mb for simplicity and take κpγ(ε¯)subscript𝜅𝑝𝛾¯𝜀\kappa_{p\gamma}\left(\bar{\varepsilon}\right)italic_κ start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT ( over¯ start_ARG italic_ε end_ARG ) as described in Stecker (1968). γpsubscript𝛾𝑝\gamma_{p}italic_γ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT is the Lorentz factor of the proton, ε¯¯𝜀\bar{\varepsilon}over¯ start_ARG italic_ε end_ARG is the photon energy in the proton rest frame, and the threshold energy ε¯th145MeVsimilar-to-or-equalssubscript¯𝜀𝑡145MeV\bar{\varepsilon}_{th}\simeq 145\,\rm MeVover¯ start_ARG italic_ε end_ARG start_POSTSUBSCRIPT italic_t italic_h end_POSTSUBSCRIPT ≃ 145 roman_MeV. Now we can plot all the timescales in Fig. 2. Interestingly, in Case 1, we find that the BS pp𝑝𝑝ppitalic_p italic_p interaction efficiency surpasses that of pγ𝑝𝛾p\gammaitalic_p italic_γ interaction at the energy below similar-to\sim10 TeV, and the pγ𝑝𝛾p\gammaitalic_p italic_γ interaction dominates in energy above similar-to\sim10 TeV. In Case 2, due to the high proton luminosity, the pp𝑝𝑝ppitalic_p italic_p interaction efficiency is significantly higher than the pγ𝑝𝛾p\gammaitalic_p italic_γ interaction and dominates in the energy of 7×1014less-than-or-similar-toabsent7superscript1014\lesssim 7\times 10^{14}\,≲ 7 × 10 start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPTeV. Now one can get the accelerated maximum energy by the BS using TBS=min(Tcloud,tpp,BS,tpγ)subscript𝑇BSsubscript𝑇cloudsubscript𝑡𝑝𝑝BSsubscript𝑡𝑝𝛾T_{\rm BS}=\min(T_{\rm cloud},t_{pp,\rm BS},t_{p\gamma})italic_T start_POSTSUBSCRIPT roman_BS end_POSTSUBSCRIPT = roman_min ( italic_T start_POSTSUBSCRIPT roman_cloud end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_p italic_p , roman_BS end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT ), says, Ep,max,bs100(B10G)(V00.3c)2(Tcloud30s)TeVsimilar-to-or-equalssubscript𝐸𝑝maxbs100𝐵10Gsuperscriptsubscript𝑉00.3𝑐2subscript𝑇cloud30sTeVE_{p,\rm max,bs}\simeq 100\left(\frac{B}{10\,\rm G}\right)\left(\frac{V_{0}}{0% .3c}\right)^{2}\left(\frac{T_{\rm cloud}}{30\,\rm s}\right)\,\rm TeVitalic_E start_POSTSUBSCRIPT italic_p , roman_max , roman_bs end_POSTSUBSCRIPT ≃ 100 ( divide start_ARG italic_B end_ARG start_ARG 10 roman_G end_ARG ) ( divide start_ARG italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG 0.3 italic_c end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_T start_POSTSUBSCRIPT roman_cloud end_POSTSUBSCRIPT end_ARG start_ARG 30 roman_s end_ARG ) roman_TeV (200TeV)200TeV(200\,\rm TeV)( 200 roman_TeV ) and by the CS using TCS=min(Tcloud,tpp,CS,tpγ)subscript𝑇CSsubscript𝑇cloudsubscript𝑡𝑝𝑝CSsubscript𝑡𝑝𝛾T_{\rm CS}=\min(T_{\rm cloud},t_{pp,\rm CS},t_{p\gamma})italic_T start_POSTSUBSCRIPT roman_CS end_POSTSUBSCRIPT = roman_min ( italic_T start_POSTSUBSCRIPT roman_cloud end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_p italic_p , roman_CS end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT italic_p italic_γ end_POSTSUBSCRIPT ), says, Ep,max,cs3(B10G)(Vc1×109cms1)2(tpp,CS10s)TeVsimilar-to-or-equalssubscript𝐸𝑝maxcs3𝐵10Gsuperscriptsubscript𝑉𝑐1superscript109cmsuperscripts12subscript𝑡𝑝𝑝CS10sTeVE_{p,\rm max,cs}\simeq 3\left(\frac{B}{10\,\rm G}\right)\left(\frac{V_{c}}{1% \times 10^{9}\,\rm cm\,s^{-}1}\right)^{2}\left(\frac{t_{pp,\rm CS}}{10\,\rm s}% \right)\,\rm TeVitalic_E start_POSTSUBSCRIPT italic_p , roman_max , roman_cs end_POSTSUBSCRIPT ≃ 3 ( divide start_ARG italic_B end_ARG start_ARG 10 roman_G end_ARG ) ( divide start_ARG italic_V start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG start_ARG 1 × 10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT roman_cm roman_s start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT 1 end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_t start_POSTSUBSCRIPT italic_p italic_p , roman_CS end_POSTSUBSCRIPT end_ARG start_ARG 10 roman_s end_ARG ) roman_TeV (0.6TeV)0.6TeV(0.6\,\rm TeV)( 0.6 roman_TeV ). As seen in Fig. 2, the maximum proton energy is typically determined by the lifetime of the cloud.

As the maximum proton energy Ep,max,cssubscript𝐸𝑝maxcsE_{p,\rm max,cs}italic_E start_POSTSUBSCRIPT italic_p , roman_max , roman_cs end_POSTSUBSCRIPT accelerated by CS is quite small and outside of the interesting energy region, we neglect the accelerated protons by CS and only focus on the BS acceleration. Another reason to neglect the CS is that the CS energy converted from the kinetic energy of the outflow is small since the energy ratio between the CS and BS is proportional to χ0.50.16similar-to-or-equalssuperscript𝜒0.50.16\chi^{-0.5}\simeq 0.16italic_χ start_POSTSUPERSCRIPT - 0.5 end_POSTSUPERSCRIPT ≃ 0.16 (0.13similar-to-or-equalsabsent0.13\simeq 0.13≃ 0.13 for Case 2) (Mou & Wang, 2021). In addition, different with Wu et al. (2022), we assume the most accelerated protons by BS are advected away with the downstream shocked materials of BS without effectively entering the cloud. Therefore, the pp𝑝𝑝ppitalic_p italic_p interactions inside the cloud are neglected and only the pp𝑝𝑝ppitalic_p italic_p interactions between the accelerated protons by BS and the outflow materials are taken into account.

Refer to caption
Refer to caption
Figure 2: Upper panel: Case 1; Bottom panel: Case 2. The blue, red, and green solid lines represent the acceleration timescales of the BS and CS, and the pγ𝑝𝛾p\gammaitalic_p italic_γ cooling timescale respectively. The dotted lines show the pp𝑝𝑝ppitalic_p italic_p cooling timescales including at the BS site and inside the cloud, and the black dashed line is the lifetime of the cloud. All parameters are listed in Table 1.

3 Hadronic process

Next, we calculate the high-energy neutrino and γ𝛾\gammaitalic_γ-ray productions by the pp𝑝𝑝ppitalic_p italic_p and pγ𝑝𝛾p\gammaitalic_p italic_γ interactions. The accelerated proton distribution is adopted as a power law with the maximum energy exponential cutoff, i.e.,

dN(Ep)dEp=AEpΓpe(EpEp,max),𝑑𝑁subscript𝐸𝑝𝑑subscript𝐸𝑝𝐴superscriptsubscript𝐸𝑝subscriptΓ𝑝superscript𝑒subscript𝐸𝑝subscript𝐸𝑝\ \frac{dN\left(E_{p}\right)}{dE_{p}}=AE_{p}^{\Gamma_{p}}e^{\left(-\frac{E_{p}% }{E_{p,\max}}\right)},divide start_ARG italic_d italic_N ( italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) end_ARG start_ARG italic_d italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG = italic_A italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT ( - divide start_ARG italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_p , roman_max end_POSTSUBSCRIPT end_ARG ) end_POSTSUPERSCRIPT , (2)

where the index Γp=2subscriptΓ𝑝2\Gamma_{p}=-2roman_Γ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = - 2 is adopted. Since the pp𝑝𝑝ppitalic_p italic_p and pγ𝑝𝛾p\gammaitalic_p italic_γ process happens around the site of outflow-cloud interaction, the normalization factor A𝐴Aitalic_A can be calculated by

Lp=αβLkin=2πR02V0EpdN(Ep)dEp𝑑Epsubscript𝐿𝑝𝛼𝛽subscript𝐿𝑘𝑖𝑛2𝜋superscriptsubscript𝑅02subscript𝑉0subscript𝐸𝑝𝑑𝑁subscript𝐸𝑝𝑑subscript𝐸𝑝differential-dsubscript𝐸𝑝\ L_{p}=\alpha\beta L_{kin}=2\pi R_{\rm 0}^{2}V_{0}\int E_{p}\frac{dN\left(E_{% p}\right)}{dE_{p}}dE_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = italic_α italic_β italic_L start_POSTSUBSCRIPT italic_k italic_i italic_n end_POSTSUBSCRIPT = 2 italic_π italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∫ italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT divide start_ARG italic_d italic_N ( italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) end_ARG start_ARG italic_d italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG italic_d italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT (3)

with the effective proton luminosity Lp=5×1043ergs1subscript𝐿𝑝5superscript1043ergsuperscripts1L_{p}=5\times 10^{43}\,\rm erg\,s^{-1}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = 5 × 10 start_POSTSUPERSCRIPT 43 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, the covering factor (fraction of coverage) of the cloud α0.3similar-to𝛼0.3\alpha\sim 0.3italic_α ∼ 0.3 and the energy transferring rate (energy fraction that can be used to accelerate particles by BS) β0.3similar-to𝛽0.3\beta\sim 0.3italic_β ∼ 0.3.

By using the method in Kelner & Aharonian (2008), we get the spectrum of the γ𝛾\gammaitalic_γ-ray and neutrinos produced by the pγ𝑝𝛾p\gammaitalic_p italic_γ interaction.

dNldEl=fp(Ep)fph(ϵ)Φl(η,x)dEpEp𝑑ϵ𝑑subscript𝑁𝑙𝑑subscript𝐸𝑙subscript𝑓𝑝subscript𝐸𝑝subscript𝑓𝑝italic-ϵsubscriptΦ𝑙𝜂𝑥𝑑subscript𝐸𝑝subscript𝐸𝑝differential-ditalic-ϵ\frac{dN_{l}}{dE_{l}}=\int f_{p}(E_{p})f_{ph}(\epsilon)\Phi_{l}\left(\eta,x% \right)\frac{dE_{p}}{E_{p}}d\epsilondivide start_ARG italic_d italic_N start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_E start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT end_ARG = ∫ italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) italic_f start_POSTSUBSCRIPT italic_p italic_h end_POSTSUBSCRIPT ( italic_ϵ ) roman_Φ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ( italic_η , italic_x ) divide start_ARG italic_d italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG italic_d italic_ϵ (4)

where subscript l=ν𝑙𝜈l=\nuitalic_l = italic_ν or γ𝛾\gammaitalic_γ, ΦlsubscriptΦ𝑙\Phi_{l}roman_Φ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT is a specific function form (see Kelner & Aharonian (2008) for details), η𝜂\etaitalic_η is defined by η=4ϵEpmp2c4𝜂4italic-ϵsubscript𝐸𝑝superscriptsubscript𝑚𝑝2superscript𝑐4\eta=\frac{4\epsilon E_{p}}{m_{p}^{2}c^{4}}italic_η = divide start_ARG 4 italic_ϵ italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG start_ARG italic_m start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG, x=ElEp𝑥subscript𝐸𝑙subscript𝐸𝑝x=\frac{E_{l}}{E_{p}}italic_x = divide start_ARG italic_E start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_ARG, and fp,fphsubscript𝑓𝑝subscript𝑓𝑝f_{p},f_{ph}italic_f start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT italic_p italic_h end_POSTSUBSCRIPT are distribution functions of proton and target photon respectively. To calculate the neutrino and γ𝛾\gammaitalic_γ-ray spectrum of pp𝑝𝑝ppitalic_p italic_p interaction, we refer to the formula (62), (66) and (58) in  Kelner et al. (2006).

After putting different parameters of corona and disk into the above equations, we obtain the total flux of γ𝛾\gammaitalic_γ-rays and neutrinos for different cases (see Fig. 3). From the upper panel of Fig. 3, we can find out that the pγ𝑝𝛾p\gammaitalic_p italic_γ process in the corona contributes most of the observed neutrino flux and fits well with the IceCube data ranging from 1-30 TeV. At lower energies of neutrinos (below 1 TeV), the pp𝑝𝑝ppitalic_p italic_p interaction between the accelerated protons and the outflow materials can contribute more than that of the pγ𝑝𝛾p\gammaitalic_p italic_γ process. As shown in Case 2 (the bottom panel of Fig. 4), where the pp𝑝𝑝ppitalic_p italic_p interaction always dominates in the corona, the observed neutrino flux data could be nicely fit by the single pp𝑝𝑝ppitalic_p italic_p process. Also, the corona plays the main role in generating high-energy γ𝛾\gammaitalic_γ-rays, while the disk has little influence on that. Interestingly, the corona itself is opaque to the high-energy γ𝛾\gammaitalic_γ-ray produced inside it because of the large optical depth as presented in the next Section. In our scenario, the GeV-TeV γ𝛾\gammaitalic_γ-rays are significantly suppressed due to the quite large optical depths induced by the corona and disk emissions. Thus, the explanation of GeV-TeV γ𝛾\gammaitalic_γ-rays has to be invoked by other physical mechanisms, e.g., from the starburst region (Eichmann et al., 2022).

Refer to caption
Refer to caption
Figure 3: (“BA” refers to “before attenuation”). Upper panel: The red and blue dotted lines are neutrino and γ𝛾\gammaitalic_γ-ray from the pγ𝑝𝛾p\gammaitalic_p italic_γ interaction with the corona radiation, the red and blue dash-dotted lines are neutrino and γ𝛾\gammaitalic_γ-ray from the pγ𝑝𝛾p\gammaitalic_p italic_γ interaction with the disk radiation, the red and blue dashed lines are neutrino and γ𝛾\gammaitalic_γ-ray from the pp𝑝𝑝ppitalic_p italic_p interaction with the outflow gas. The blue and red solid lines are total γ𝛾\gammaitalic_γ-ray and neutrino flux from both pp𝑝𝑝ppitalic_p italic_p and pγ𝑝𝛾p\gammaitalic_p italic_γ interactions. For comparison, we also put the γ𝛾\gammaitalic_γ-ray observation data from 4FGL, 3FHL, and MAGIC in the figure. Bottom panel: This panel shows the case in which the pp interaction dominates. Note that the theoretical γ𝛾\gammaitalic_γ-rays after absorptions in our scenario are invisible in the figure, and the γ𝛾\gammaitalic_γ-rays before attenuations are plotted for reference (see more details in Sect. 4). The dark green and light green shaded regions represent the observed muon and anti-muon neutrino flux with a confidence level of 3σ𝜎\sigmaitalic_σ and 2σ𝜎\sigmaitalic_σ respectively (Aartsen et al., 2020). All adopted parameters are listed in Table 1.
Table 1: The adopted parameters for Case 1 and Case 2 fittings
Names Symbols Case 1 Case 2
Outflow velocity v0subscript𝑣0v_{0}italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT 0.3c0.3𝑐0.3c0.3 italic_c 0.2c0.2𝑐0.2c0.2 italic_c
Cloud distance r0subscript𝑟0r_{0}italic_r start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT 5×1013cm5superscript1013cm5\times 10^{13}\,\rm cm5 × 10 start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT roman_cm 5×1013cm5superscript1013cm5\times 10^{13}\,\rm cm5 × 10 start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT roman_cm
Outflow density n0subscript𝑛0n_{0}italic_n start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT 3×1010cm33superscript1010superscriptcm33\times 10^{10}\,\rm cm^{-3}3 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2×1012cm32superscript1012superscriptcm32\times 10^{12}\,\rm cm^{-3}2 × 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT
Cloud density ncsubscript𝑛𝑐n_{c}italic_n start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT 1012cm3superscript1012superscriptcm310^{12}\,\rm cm^{-3}10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 1014cm3superscript1014superscriptcm310^{14}\,\rm cm^{-3}10 start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT roman_cm start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT
Cloud radius rcsubscript𝑟𝑐r_{c}italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT 5×1010cm5superscript1010cm5\times 10^{10}\,\rm cm5 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_cm 5×1010cm5superscript1010cm5\times 10^{10}\,\rm cm5 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_cm
Magnetic strength B𝐵Bitalic_B 10G10G10\,\rm G10 roman_G 25G25G25\,\rm G25 roman_G
Proton luminosity Lpsubscript𝐿pL_{\rm p}italic_L start_POSTSUBSCRIPT roman_p end_POSTSUBSCRIPT 5×1043ergs15superscript1043ergsuperscripts15\times 10^{43}\,\rm erg\,s^{-1}5 × 10 start_POSTSUPERSCRIPT 43 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT 1045ergs1superscript1045ergsuperscripts110^{45}\,\rm erg\,s^{-1}10 start_POSTSUPERSCRIPT 45 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT
Proton maximum energy Ep,maxsubscript𝐸𝑝E_{p,\max}italic_E start_POSTSUBSCRIPT italic_p , roman_max end_POSTSUBSCRIPT 1014eVsuperscript1014eV10^{14}\,\rm eV10 start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT roman_eV 2×1014eV2superscript1014eV2\times 10^{14}\,\rm eV2 × 10 start_POSTSUPERSCRIPT 14 end_POSTSUPERSCRIPT roman_eV
Proton spectral index ΓpsubscriptΓp\Gamma_{\rm p}roman_Γ start_POSTSUBSCRIPT roman_p end_POSTSUBSCRIPT -2 -2.7
Photon spectral index ΓphsubscriptΓph\Gamma_{\rm ph}roman_Γ start_POSTSUBSCRIPT roman_ph end_POSTSUBSCRIPT -2 -2
Kinetic luminosity Lkinsubscript𝐿kinL_{\rm kin}italic_L start_POSTSUBSCRIPT roman_kin end_POSTSUBSCRIPT 5×1044ergs15superscript1044ergsuperscripts15\times 10^{44}\,\rm erg\,s^{-1}5 × 10 start_POSTSUPERSCRIPT 44 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT 1046ergs1superscript1046ergsuperscripts110^{46}\,\rm erg\,s^{-1}10 start_POSTSUPERSCRIPT 46 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT
Corona luminosity Lcorsubscript𝐿corL_{\rm cor}italic_L start_POSTSUBSCRIPT roman_cor end_POSTSUBSCRIPT 1.4×1044ergs11.4superscript1044ergsuperscripts11.4\times 10^{44}\,\rm erg\,s^{-1}1.4 × 10 start_POSTSUPERSCRIPT 44 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT 1.4×1044ergs11.4superscript1044ergsuperscripts11.4\times 10^{44}\,\rm erg\,s^{-1}1.4 × 10 start_POSTSUPERSCRIPT 44 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT
Disk luminosity Ldissubscript𝐿disL_{\rm dis}italic_L start_POSTSUBSCRIPT roman_dis end_POSTSUBSCRIPT 1045ergs1superscript1045ergsuperscripts110^{45}\,\rm erg\,s^{-1}10 start_POSTSUPERSCRIPT 45 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT 1045ergs1superscript1045ergsuperscripts110^{45}\,\rm erg\,s^{-1}10 start_POSTSUPERSCRIPT 45 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT
BLR luminosity LBLRsubscript𝐿BLRL_{\rm BLR}italic_L start_POSTSUBSCRIPT roman_BLR end_POSTSUBSCRIPT 1044ergs1superscript1044ergsuperscripts110^{44}\,\rm erg\,s^{-1}10 start_POSTSUPERSCRIPT 44 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT 1044ergs1superscript1044ergsuperscripts110^{44}\,\rm erg\,s^{-1}10 start_POSTSUPERSCRIPT 44 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT
BLR radius RBLRsubscript𝑅BLRR_{\rm BLR}italic_R start_POSTSUBSCRIPT roman_BLR end_POSTSUBSCRIPT 5×1016cm5superscript1016cm5\times 10^{16}\,\rm cm5 × 10 start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT roman_cm 5×1016cm5superscript1016cm5\times 10^{16}\,\rm cm5 × 10 start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT roman_cm
Covering factor α𝛼\alphaitalic_α 0.3 0.3
Energy transfer efficiency β𝛽\betaitalic_β 0.3 0.3

4 Attenuation of gamma rays

Since the absorption by the background photon fields of the corona, disk, and broad line region (BLR) will affect the γ𝛾\gammaitalic_γ-ray produced in the central region, we also calculate the optical depths of different regions as shown in Fig. 4.

In our calculations, the cross-section of γγ𝛾𝛾\gamma\gammaitalic_γ italic_γ attenuation is adopted as (Mou & Wang, 2021)

σγγ(Eγ,ν,α)=3σT16(1β2)[2β(β22)+(3β4)ln1+β1β],subscript𝜎𝛾𝛾subscript𝐸𝛾𝜈𝛼3subscript𝜎𝑇161superscript𝛽2delimited-[]2𝛽superscript𝛽223superscript𝛽41𝛽1𝛽\sigma_{\gamma\gamma}\left(E_{\gamma},\nu,\alpha\right)=\frac{3\sigma_{T}}{16}% \left(1-\beta^{2}\right)\left[2\beta\left(\beta^{2}-2\right)+\left(3-\beta^{4}% \right)\ln\frac{1+\beta}{1-\beta}\right],italic_σ start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT , italic_ν , italic_α ) = divide start_ARG 3 italic_σ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT end_ARG start_ARG 16 end_ARG ( 1 - italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) [ 2 italic_β ( italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 ) + ( 3 - italic_β start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) roman_ln divide start_ARG 1 + italic_β end_ARG start_ARG 1 - italic_β end_ARG ] , (5)

where β=12me2c4hνEγ(1cosα)𝛽12superscriptsubscript𝑚𝑒2superscript𝑐4𝜈subscript𝐸𝛾1𝛼\beta=\sqrt{1-\frac{2m_{e}^{2}c^{4}}{h\nu E_{\gamma}\left(1-\cos\alpha\right)}}italic_β = square-root start_ARG 1 - divide start_ARG 2 italic_m start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_c start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_h italic_ν italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT ( 1 - roman_cos italic_α ) end_ARG end_ARG and α𝛼\alphaitalic_α is the colliding angle of two photons (Eγsubscript𝐸𝛾E_{\gamma}italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT and hν𝜈h\nuitalic_h italic_ν) in the lab frame. σTsubscript𝜎𝑇\sigma_{T}italic_σ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT is the Thomson scattering section. Notice that we treat the background photon field of corona, disk, and BLR as anisotropic, and assume that it is spherically symmetric for the SMBH. Thus, it is convenient to establish a spherical coordinate and make cosα=(r2+R2rt2)2rR𝛼superscript𝑟2superscript𝑅2superscriptsubscript𝑟𝑡22𝑟𝑅\cos\alpha=\frac{\left(r^{2}+R^{2}-r_{t}^{2}\right)}{2rR}roman_cos italic_α = divide start_ARG ( italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG start_ARG 2 italic_r italic_R end_ARG, where R=r2+rt2+2rrtcosθ𝑅superscript𝑟2superscriptsubscript𝑟𝑡22𝑟subscript𝑟𝑡𝜃R=\sqrt{r^{2}+r_{t}^{2}+2rr_{t}\cos\theta}italic_R = square-root start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_r italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_cos italic_θ end_ARG with rtsubscript𝑟𝑡r_{t}italic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT the distance from the SMBH to where the γ𝛾\gammaitalic_γ-ray is generated, θ𝜃\thetaitalic_θ the angle between the momentum of γ𝛾\gammaitalic_γ-ray and the vector pointing from SMBH to the place where the γ𝛾\gammaitalic_γ-ray is generated and r𝑟ritalic_r the distance a γ𝛾\gammaitalic_γ-ray photon travels until it annihilate with other photons. The high-energy γ𝛾\gammaitalic_γ-rays produced by the pγ𝑝𝛾p\gammaitalic_p italic_γ or pp𝑝𝑝ppitalic_p italic_p interactions are supposed at rt=5×1013cmsubscript𝑟𝑡5superscript1013cmr_{t}=5\times 10^{13}\,\rm cmitalic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = 5 × 10 start_POSTSUPERSCRIPT 13 end_POSTSUPERSCRIPT roman_cm, namely, the position of outflow-cloud interaction, since the typical timescales of hadronic interactions shown in Fig. 2 are faster than rt/csubscript𝑟𝑡𝑐r_{t}/citalic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT / italic_c. For the low-energy photon fields, the disk and corona emissions are treated as filling the whole space and scaled by the actual radius R𝑅Ritalic_R and their luminosities. We also consider the low-energy BLR photon field. For the BLR radiation field, we assume its luminosity to be LBLR=1044ergs1subscript𝐿BLRsuperscript1044ergsuperscripts1L_{\rm BLR}=10^{44}\,\rm erg\,s^{-1}italic_L start_POSTSUBSCRIPT roman_BLR end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT 44 end_POSTSUPERSCRIPT roman_erg roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (Müller & Romero, 2020) and the typical radius RBLRsubscript𝑅BLRR_{\rm BLR}italic_R start_POSTSUBSCRIPT roman_BLR end_POSTSUBSCRIPT to be 5×1016cm5superscript1016cm5\times 10^{16}\,\rm cm5 × 10 start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT roman_cm, with a diluted black body spectrum and a typical energy of 10 eV (Abolmasov & Poutanen, 2017). The BLR emission is assumed to attenuate the high-energy γ𝛾\gammaitalic_γ-rays from its typical radius, so one has rt=5×1016cmsubscript𝑟𝑡5superscript1016cmr_{t}=5\times 10^{16}\,\rm cmitalic_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = 5 × 10 start_POSTSUPERSCRIPT 16 end_POSTSUPERSCRIPT roman_cm.

Finally, we can derive the optical depth in the form of

τγγ=σγγ(Eγ,ν,α)nph(ν,r,θ)sinθ2𝑑ν𝑑r𝑑θ.subscript𝜏𝛾𝛾triple-integralsubscript𝜎𝛾𝛾subscript𝐸𝛾𝜈𝛼subscript𝑛𝑝𝜈𝑟𝜃𝜃2differential-d𝜈differential-d𝑟differential-d𝜃\tau_{\gamma\gamma}=\iiint\sigma_{\gamma\gamma}\left(E_{\gamma},\nu,\alpha% \right)n_{ph}\left(\nu,r,\theta\right)\frac{\sin\theta}{2}d\nu drd\theta.italic_τ start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT = ∭ italic_σ start_POSTSUBSCRIPT italic_γ italic_γ end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT , italic_ν , italic_α ) italic_n start_POSTSUBSCRIPT italic_p italic_h end_POSTSUBSCRIPT ( italic_ν , italic_r , italic_θ ) divide start_ARG roman_sin italic_θ end_ARG start_ARG 2 end_ARG italic_d italic_ν italic_d italic_r italic_d italic_θ . (6)

By putting the corresponding background photon field (nphsubscript𝑛𝑝n_{ph}italic_n start_POSTSUBSCRIPT italic_p italic_h end_POSTSUBSCRIPT) of the different regions (BLR, corona, disk) into the above equation, one can get the optical depths, and the results are plotted in Fig. 4. One can see from Fig. 4 that corona and disk photon fields dominate in the absorption of produced γ𝛾\gammaitalic_γ-rays, while the BLR can be ignored in comparison. The γγ𝛾𝛾\gamma\gammaitalic_γ italic_γ absorption is so significant that the corona and disk are opaque to photons with energies higher than 10 MeV and 1 GeV, respectively.

Refer to caption
Figure 4: The blue, green, and red lines show the optical depths of the corona, disk, and BLR, respectively, for Case 1.

5 conclusion and discussion

In this letter, we construct an outflow-cloud interaction model to explain the observed 1-30 TeV neutrino data for NGC 1068 and explore the potential suppression of the γ𝛾\gammaitalic_γ-ray flux. Protons in outflows that originated from SMBH are going to be accelerated to a maximum energy of 100 TeV by the BS formed outside the cloud. Then those protons will have pγ𝑝𝛾p\gammaitalic_p italic_γ interactions with background photon fields of corona and disk, and have pp𝑝𝑝ppitalic_p italic_p interactions with the outflow gas, generating a series of products, including γ𝛾\gammaitalic_γ-rays and neutrinos. We find two cases that may explain the observed neutrino data. In Case 1, even though both the pγ𝑝𝛾p\gammaitalic_p italic_γ and pp𝑝𝑝ppitalic_p italic_p interactions have contributions to the total neutrino flux, we find that the pγ𝑝𝛾p\gammaitalic_p italic_γ process has the main contribution to the TeV neutrino flux. In Case 2, the pγ𝑝𝛾p\gammaitalic_p italic_γ interaction is no longer important to the neutrino flux, while the pp𝑝𝑝ppitalic_p italic_p interaction dominates and can explain the data nicely. As for γ𝛾\gammaitalic_γ-rays, due to the high-density photon filed in the corona and disk, the produced γ𝛾\gammaitalic_γ-rays will soon be absorbed by the γγ𝛾𝛾\gamma\gammaitalic_γ italic_γ attenuation. Therefore, the observed TeV γ𝛾\gammaitalic_γ-ray flux is much lower than the neutrino one.

In the outflow-cloud interaction model, whether pγ𝑝𝛾p\gammaitalic_p italic_γ or pp𝑝𝑝ppitalic_p italic_p dominates depends on the outflow density. For a specific corona photon field, the outflow density directly determines the pp𝑝𝑝ppitalic_p italic_p interaction efficiency exceeding the pγ𝑝𝛾p\gammaitalic_p italic_γ efficiency or not. Therefore, for the pp𝑝𝑝ppitalic_p italic_p interaction dominant case, a larger kinetic luminosity of outflow is generally required, which may challenge the total energy budget of the SMBH-disk system. It can be checked based on the future better constraint on the total energy budget of NGC 1068. In addition, some parameters, such as cloud density ncsubscript𝑛𝑐n_{c}italic_n start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, magnetic field strength, and proton spectral index, are still unknown. Thus, further information and limitations are still needed to constrain our parameter space.

Inoue et al. (2021) also considered the surrounding clouds to contribute the neutrino production through the pp𝑝𝑝ppitalic_p italic_p interactions. The difference is that high-energy protons are accelerated by the individual outflow and then enter the cloud to interact with the cloud gas. In our scenario, the outflow will inevitably collide with the clouds, forming the BS and CS. Protons can be effectively accelerated by the BS and advected away with the downstream shocked materials.

Recently, other nearby Seyfert galaxies have been found with characteristics similar to NGC 1068, e.g., NGC 4151, showing a much lower γ𝛾\gammaitalic_γ-ray flux than the neutrino flux (Murase et al., 2024; Abbasi et al., 2024). This may imply that high-energy neutrinos tend to be produced in the environment where γ𝛾\gammaitalic_γ -rays can be suppressed (Murase et al., 2020). The central region of AGN is definitely an ideal place. Future deeper observations of these sources with next-generation neutrino telescopes, such as IceCube-Gen2 and Huge Underwater high-energy Neutrino Telescope (HUNT) (Huang et al., 2023), are crucial for discriminating the diverse models.

We acknowledge support from the National Natural Science Foundation of China under grant No.12003007 and the Fundamental Research Funds for the Central Universities (No. 2020kfyXJJS039).

References

  • Aartsen et al. (2020) Aartsen, M., Ackermann, M., Adams, J., et al. 2020, Physical review letters, 124, 051103
  • Abbasi et al. (2024) Abbasi, R., Ackermann, M., Adams, J., et al. 2024, arXiv e-prints, arXiv:2406.06684, doi: 10.48550/arXiv.2406.06684
  • Abolmasov & Poutanen (2017) Abolmasov, P., & Poutanen, J. 2017, Monthly Notices of the Royal Astronomical Society, 464, 152
  • Anchordoqui et al. (2021) Anchordoqui, L. A., Krizmanic, J., & Stecker, F. 2021, PoS, ICRC2021, 993, doi: 10.22323/1.395.0993
  • Bauer et al. (2015a) Bauer, F. E., Arévalo, P., Walton, D. J., et al. 2015a, The Astrophysical Journal, 812, 116, doi: 10.1088/0004-637X/812/2/116
  • Bauer et al. (2015b) Bauer, F. E., Arévalo, P., Walton, D. J., et al. 2015b, The Astrophysical Journal, 812, 116
  • Bland-Hawthorn et al. (1997) Bland-Hawthorn, J., Gallimore, J. F., Tacconi, L. J., et al. 1997, Ap&SS, 248, 9, doi: 10.1023/A:1000567831370
  • Braito et al. (2007) Braito, V., Reeves, J., Dewangan, G., et al. 2007, The Astrophysical Journal, 670, 978
  • Cappi et al. (2009) Cappi, M., Tombesi, F., Bianchi, S., et al. 2009, Astronomy & Astrophysics, 504, 401
  • Chartas et al. (2003) Chartas, G., Brandt, W., & Gallagher, S. 2003, The Astrophysical Journal, 595, 85
  • Chartas et al. (2002) Chartas, G., Brandt, W., Gallagher, S., & Garmire, G. 2002, The Astrophysical Journal, 579, 169
  • Chartas et al. (2009) Chartas, G., Saez, C., Brandt, W., Giustini, M., & Garmire, G. 2009, The Astrophysical Journal, 706, 644
  • Collaboration*† et al. (2022) Collaboration*†, I., Abbasi, R., Ackermann, M., et al. 2022, Science, 378, 538
  • Dadina et al. (2005) Dadina, M., Cappi, M., Malaguti, G., Ponti, G., & De Rosa, A. 2005, Astronomy & Astrophysics, 442, 461
  • Dauser et al. (2012) Dauser, T., Svoboda, J., Schartel, N., et al. 2012, Monthly Notices of the Royal Astronomical Society, 422, 1914
  • Drury (1983) Drury, L. O. 1983, Reports on Progress in Physics, 46, 973
  • Eichmann et al. (2022) Eichmann, B., Oikonomou, F., Salvatore, S., Dettmar, R.-J., & Tjus, J. B. 2022, ApJ, 939, 43, doi: 10.3847/1538-4357/ac9588
  • Fang et al. (2023) Fang, K., Rodriguez, E. L., Halzen, F., & Gallagher, J. S. 2023, The Astrophysical Journal, 956, 8
  • Gámez Rosas et al. (2022) Gámez Rosas, V., Isbell, J. W., Jaffe, W., et al. 2022, Nature, 602, 403
  • García-Burillo et al. (2016) García-Burillo, S., Combes, F., Almeida, C. R., et al. 2016, The Astrophysical Journal Letters, 823, L12
  • Giustini et al. (2011) Giustini, M., Cappi, M., Chartas, G., et al. 2011, Astronomy & Astrophysics, 536, A49
  • Gofford et al. (2011) Gofford, J., Reeves, J., Turner, T., et al. 2011, Monthly Notices of the Royal Astronomical Society, 414, 3307
  • Huang et al. (2023) Huang, T.-Q., Cao, Z., Chen, M., et al. 2023, PoS, ICRC2023, 1080
  • Inoue et al. (2021) Inoue, S., Cerruti, M., Murase, K., & Liu, R.-Y. 2021, in 37th International Cosmic Ray Conference, Vol. ICRC2021, Berlin, Germany, 1013, doi: 10.22323/1.395.1013
  • Inoue et al. (2022) Inoue, S., Cerruti, M., Murase, K., & Liu, R.-Y. 2022, arXiv preprint arXiv:2207.02097
  • Inoue et al. (2020) Inoue, Y., Khangulyan, D., & Doi, A. 2020, ApJ, 891, L33, doi: 10.3847/2041-8213/ab7661
  • Inoue et al. (2021) —. 2021, Galaxies, 9, 36, doi: 10.3390/galaxies9020036
  • Kelner & Aharonian (2008) Kelner, S., & Aharonian, F. 2008, Physical Review D, 78, 034013
  • Kelner et al. (2006) Kelner, S. R., Aharonian, F. A., & Bugayov, V. V. 2006, Physical Review D, 74, 034018
  • Kheirandish et al. (2021) Kheirandish, A., Murase, K., & Kimura, S. S. 2021, ApJ, 922, 45, doi: 10.3847/1538-4357/ac1c77
  • Klein et al. (1994) Klein, R. I., McKee, C. F., & Colella, P. 1994, Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 420, no. 1, p. 213-236, 420, 213
  • Lobban et al. (2011) Lobban, A., Reeves, J., Miller, L., et al. 2011, Monthly Notices of the Royal Astronomical Society, 414, 1965
  • Marinucci et al. (2015a) Marinucci, A., Bianchi, S., Matt, G., et al. 2015a, Monthly Notices of the Royal Astronomical Society: Letters, 456, L94, doi: 10.1093/mnrasl/slv178
  • Marinucci et al. (2015b) —. 2015b, Monthly Notices of the Royal Astronomical Society: Letters, 456, L94
  • Markowitz et al. (2006) Markowitz, A., Reeves, J., & Braito, V. 2006, The Astrophysical Journal, 646, 783
  • Matt et al. (1997) Matt, G., Guainazzi, M., Frontera, F., et al. 1997, arXiv preprint astro-ph/9707065
  • McKee & Cowie (1975) McKee, C. F., & Cowie, L. L. 1975, Astrophysical Journal, vol. 195, Feb. 1, 1975, pt. 1, p. 715-725., 195, 715
  • Mizumoto et al. (2019) Mizumoto, M., Izumi, T., & Kohno, K. 2019, The Astrophysical Journal, 871, 156
  • Mou & Wang (2021) Mou, G., & Wang, W. 2021, Monthly Notices of the Royal Astronomical Society, 507, 1684
  • Müller & Romero (2020) Müller, A. L., & Romero, G. E. 2020, Astronomy & Astrophysics, 636, A92
  • Murase (2007) Murase, K. 2007, Physical Review D, 76, 123001
  • Murase (2022) Murase, K. 2022, ApJ, 941, L17, doi: 10.3847/2041-8213/aca53c
  • Murase et al. (2024) Murase, K., Karwin, C. M., Kimura, S. S., Ajello, M., & Buson, S. 2024, ApJ, 961, L34, doi: 10.3847/2041-8213/ad19c5
  • Murase et al. (2020) Murase, K., Kimura, S. S., & Mészáros, P. 2020, Phys. Rev. Lett., 125, 011101, doi: 10.1103/PhysRevLett.125.011101
  • Peretti et al. (2023a) Peretti, E., Lamastra, A., Saturni, F. G., et al. 2023a, arXiv preprint arXiv:2301.13689
  • Peretti et al. (2023b) Peretti, E., Peron, G., Tombesi, F., et al. 2023b, arXiv preprint arXiv:2303.03298
  • Pounds et al. (2003) Pounds, K. A., Reeves, J., Page, K. L., Wynn, G. A., & O’Brien, P. T. 2003, Monthly Notices of the Royal Astronomical Society, 342, 1147
  • Reeves et al. (2009) Reeves, J., O’Brien, P., Braito, V., et al. 2009, The Astrophysical Journal, 701, 493
  • Stecker (1968) Stecker, F. 1968, Physical Review Letters, 21, 1016
  • Woo & Urry (2002) Woo, J.-H., & Urry, C. M. 2002, The Astrophysical Journal, 579, 530
  • Wu et al. (2022) Wu, H.-J., Mou, G., Wang, K., Wang, W., & Li, Z. 2022, Monthly Notices of the Royal Astronomical Society, 514, 4406
  • Zaino et al. (2020) Zaino, A., Bianchi, S., Marinucci, A., et al. 2020, Monthly Notices of the Royal Astronomical Society, 492, 3872