11institutetext: Instituto de Astrofisica de Andalucia (CSIC), E18008 Granada, Spain, 22institutetext: Instituto de Astrofisica de Canarias, C/ Via Lactea s/n, Tenerife E38200, Spain 33institutetext: Facultad de Fisica, Universidad de La Laguna, Astrofisico Francisco Sanchez, s/n, La Laguna, Tenerife E38200, Spain 44institutetext: Digital Transformation Enhancement Council, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan 55institutetext: Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA

Constraining cosmological parameters using void statistics from the SDSS survey

Elena Fernández-García\orcidlink0009-0006-2125-9590 e-mail: efdez@@@@iaa.es11    Juan E. Betancort-Rijo 22 3 3    Francisco Prada\orcidlink0000-0001-7145-8674 11    Tomoaki Ishiyama\orcidlink0000-0002-5316-9171 44    Anatoly Klypin 55
(Received …, …; accepted …, …)
Abstract

Aims. Constraining the values of the amplitude of the linear spectrum of density fluctuations (σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT), the matter density parameter (ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT), the Hubble constant (H0), Γ=ΩchΓsubscriptΩc\Gamma=\Omega_{\rm c}hroman_Γ = roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT italic_h, where ΩcsubscriptΩc\Omega_{\rm c}roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT is the dark matter density parameter and hhitalic_h = H/0100{}_{0}/100start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT / 100, and S8 from the SDSS survey by studying the abundance of large voids in the large-scale structure of galaxies.

Methods. We identify voids as maximal non-overlapping spheres within the haloes of the Uchuu simulation and three smaller halo simulation boxes with smaller volume and different σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT values, and galaxies with redshift in the range 0.02<z<0.1320.02𝑧0.1320.02<z<0.1320.02 < italic_z < 0.132 and absolute magnitude in the rlimit-from𝑟r-italic_r -band Mr<20.5subscript𝑀𝑟20.5M_{r}<-20.5italic_M start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT < - 20.5 of 32 Uchuu-SDSS simulated lightcones the seventh release of The Sloan Digital Sky Survey (SDSS DR7) survey. We compute the Void Probability Function (i.e. the probability that a randomly placed sphere with radius r𝑟ritalic_r is empty of tracers) and the abundance of voids larger than r𝑟ritalic_r predicted by the theoretical framework used and improved in this work and we check that it predicts successfully both void functions for the halo simulation boxes. Next, we asses the potential of this theoretical framework to constrain cosmological parameters using Uchuu-SDSS void statistics, and we calculate the confidence levels using Monte Carlo Markov Chain techniques to infer the values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and H0 from the SDSS sample used.

Results. We have proved that using the four halo simulation boxes we successfully recover the values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and hhitalic_h from each box within 1σ1𝜎1\sigma1 italic_σ (2σ2𝜎2\sigma2 italic_σ) in real (redshift) space. We have also proved that the theoretical framework is really powerful using Uchuu-SDSS void statistics: if we fix one parameter to a constant value, the value given by Planck of the other two parameters is inside the 1σ𝜎\sigmaitalic_σ confidence level contour only if the fixed parameter is close enough to Planck’s value. Then, we have constrained these parameters from the SDSS survey sample used. The results are: σ8=1.0280.305+0.273subscript𝜎8subscriptsuperscript1.0280.2730.305\sigma_{8}=1.028^{+0.273}_{-0.305}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 1.028 start_POSTSUPERSCRIPT + 0.273 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.305 end_POSTSUBSCRIPT, Ωm=0.2960.102+0.110subscriptΩmsubscriptsuperscript0.2960.1100.102\Omega_{\rm m}=0.296^{+0.110}_{-0.102}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.296 start_POSTSUPERSCRIPT + 0.110 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.102 end_POSTSUBSCRIPT, H=083.43±27.70+29.27{}_{0}=83.43\pm^{+29.27}_{-27.70}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT = 83.43 ± start_POSTSUPERSCRIPT + 29.27 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 27.70 end_POSTSUBSCRIPT, Γ=0.19470.0516+0.0578Γsubscriptsuperscript0.19470.05780.0516\Gamma=0.1947^{+0.0578}_{-0.0516}roman_Γ = 0.1947 start_POSTSUPERSCRIPT + 0.0578 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.0516 end_POSTSUBSCRIPT and S8=1.0170.359+0.363subscriptsuperscriptabsent0.3630.359{}^{+0.363}_{-0.359}start_FLOATSUPERSCRIPT + 0.363 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.359 end_POSTSUBSCRIPT. If we combine these constraints with KiDS-1000+DESY3, we get σ8=0.8580.040+0.040subscript𝜎8subscriptsuperscript0.8580.0400.040\sigma_{8}=0.858^{+0.040}_{-0.040}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.858 start_POSTSUPERSCRIPT + 0.040 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.040 end_POSTSUBSCRIPT, Ωm=0.257±0.020+0.023subscriptΩmlimit-from0.257subscriptsuperscriptplus-or-minus0.0230.020\Omega_{\rm m}=0.257\pm^{+0.023}_{-0.020}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.257 ± start_POSTSUPERSCRIPT + 0.023 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.020 end_POSTSUBSCRIPT, H=074.174.66+4.66{}_{0}=74.17^{+4.66}_{-4.66}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT = 74.17 start_POSTSUPERSCRIPT + 4.66 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 4.66 end_POSTSUBSCRIPT and S8=0.7940.016+0.016subscriptsuperscriptabsent0.0160.016{}^{+0.016}_{-0.016}start_FLOATSUPERSCRIPT + 0.016 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.016 end_POSTSUBSCRIPT. The combined uncertainties are approximately a factor 2-3 smaller than only-Weak-Lensing uncertainties. This is a consequence of the orientation of the confidence level contours of SDSS voids and Weak Lensing in the plane σ8Ωmsubscript𝜎8subscriptΩm\sigma_{8}-\Omega_{\rm m}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, which are almost orthogonal.

Key Words.:
cosmological parameters – large-scale structure of the Universe – cosmic voids – void-statistics – simulations

1 Introduction

For over 40 years, it has been observed that the brightest galaxies are generally found in dense regions, and that most of cosmic space is devoid of this type of galaxies. This distribution is well understood as a natural evolution of density fluctuations in matter that were progressively amplified by gravitational instability (Giovanelli, 2010). In this framework, it can be demonstrated that initially low-density regions (voids) grow in size as highly dense areas collapse under their own gravity (Sheth & Van De Weygaert, 2004).

In the last century, there has been a significant focus on studying the over-dense regions of the Universe (e.g. Kiang & Saslaw, 1969; Bahcall, 1977; Kaiser, 1987; Einasto et al., 1994; Holder et al., 2001; Yang et al., 2005; Li et al., 2006; Gao & White, 2007; Zentner et al., 2019; Dong-Páez et al., 2024) , while the under-dense areas have only recently begun to receive adequate attention (e.g. Hoffman & Shaham, 1982; Zeldovich et al., 1982; Little & Weinberg, 1994; Goldwirth et al., 1995; van de Weygaert & Sheth, 2003; Li et al., 2012; Achitouv, 2019; Chan et al., 2019; Rodríguez-Medrano et al., 2024; Curtis et al., 2024). Studying these regions (voids) is very useful as they possess unique characteristics that make them important probes for cosmological studies and the physics of galaxy formation. They are useful, for example, for:

  • constraining the equation of state of dark energy (e.g. Lee & Park, 2009; Biswas et al., 2010; Sutter et al., 2014; Contarini et al., 2022),

  • studying modified gravity (e.g. Martino & Sheth, 2009; Clampitt et al., 2013; Voivodic et al., 2017; Falck et al., 2017; Perico et al., 2019; Contarini et al., 2021; Mauland et al., 2023)

  • constraining cosmological models (e.g. Ryden, 1995; Benson et al., 2003; Croton et al., 2005; Lavaux & Wandelt, 2010),

  • constraining cosmological parameters based on their statistics (e.g Betancort-Rijo et al., 2009; Nadathur, 2016; Hamaus et al., 2020; Aubert et al., 2022; Contarini et al., 2022, 2023),

  • testing the primordial non-Gaussianities (e.g. Song & Lee, 2009; Chongchitnan & Silk, 2010; Chan et al., 2019).

In fact, in principle, any cosmological parameter could be constrained from void statistics. Specifically, the abundance of voids with radius larger than r𝑟ritalic_r, Nv(r)subscript𝑁𝑣𝑟N_{v}(r)italic_N start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ), depends on the normalization of the linear spectrum of density fluctuations (σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT) and Γ=ΩcΓsubscriptΩc\Gamma=\Omega_{\rm c}roman_Γ = roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT, and the shape of this function for large values of r𝑟ritalic_r depends on Γ=ΩchΓsubscriptΩc\Gamma=\Omega_{\rm c}hroman_Γ = roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT italic_h, where hhitalic_h=H/0100{}_{0}/100start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT / 100 kms1Mpc1𝑘𝑚superscript𝑠1𝑀𝑝superscript𝑐1kms^{-1}Mpc^{-1}italic_k italic_m italic_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_M italic_p italic_c start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT) (see Betancort-Rijo et al. (2009) for details).

Constraining σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and Γ=ΩchΓsubscriptΩc\Gamma=\Omega_{\rm c}hroman_Γ = roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT italic_h is especially interesting as there exist some statistically significant tension in cosmological parameter S=8σ8Ωm/0.3{}_{8}=\sigma_{8}\sqrt{\Omega_{\rm m}/0.3}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT = italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT square-root start_ARG roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT / 0.3 end_ARG between the Planck experiment (Aghanim et al., 2020), which measures the Cosmic Microwave Background, CMB, anisotropies (S=80.834±0.0161{}_{8}=0.834\pm 0.0161start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT = 0.834 ± 0.0161), and other low-redshift cosmological probes, such as weak gravitational lensing, where a value of S=80.7760.030+0.032{}_{8}=0.776^{+0.032}_{-0.030}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT = 0.776 start_POSTSUPERSCRIPT + 0.032 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.030 end_POSTSUBSCRIPT is obtained by KiDS-1000 (Li et al., 2023). This tension is known as the S8 tension. (see Di Valentino et al. (2021) for more details).

Initial investigations into cosmic voids were constrained by the limited quantity of surveyed galaxies during that period. Nevertheless, with the emergence of more expansive redshift surveys, such as the Two-Degree Field Galaxy Redshift Survey (2dFGRS) (Colless et al., 2001, 2003), the Sloan Digital Sky Survey (SDSS) (York et al., 2000) and The SDSS’s Baryon Oscillation Spectroscopic Survey (BOSS) (Dawson et al., 2013), alongside improved resolution in cosmological simulations and enhanced analytical methodologies, we now have the capability to derive precise statistical insights concerning voids (e.g. Tikhonov, 2006; Ceccarelli et al., 2006; von Benda-Beckmann & Mueller, 2007; Tikhonov, 2007; Patiri et al., 2012; Hamaus et al., 2020; Douglass et al., 2023; Contarini et al., 2023).

However, despite the longstanding presence of the concept of cosmic voids, there exists no universally accepted definition for what constitutes a void. The term ”voids” can encompass disparate entities depending on the data employed and the objectives of the analysis. For example, voids can be defined as under-dense regions based on the smoothed dark matter (or halo/galaxy) density field (Colberg et al., 2005), as gravitationally expanding regions based on the dynamics of the dark matter density field (Hoffman et al., 2012), or as empty spatial regions among discrete tracers (El-Ad & Piran, 1997; Aikio & Mähönen, 1998; Hoyle & Vogeley, 2002).

The choice of a simple definition of voids, in particular, their definition as empty spheres, is convenient for statistical studies of galaxy voids. In this paper, we define voids as maximal non-overlapping spheres empty of objects with mass (or luminosity) above a given value. With this definition, it is clear that voids are not empty, as there can be low luminosity galaxies (or low mass haloes) inside them.

The aim of this paper is to inference the values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, H0 and ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT from SDSS redshift survey using the theoretical framework of voids statistics developed in Betancort-Rijo (1990). This has been already done in previous articles in different ways. For example, in Sahlén et al. (2016) galaxy cluster and void abundances are combined using extreme-value statistics on a large cluster and a void. This way they obtain a value of σ8=0.95±0.21subscript𝜎8plus-or-minus0.950.21\sigma_{8}=0.95\pm 0.21italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.95 ± 0.21 for a flat ΛCDMΛ𝐶𝐷𝑀\Lambda CDMroman_Λ italic_C italic_D italic_M universe. In Hamaus et al. (2016), they constrain Ωm=0.281±0.031subscriptΩmplus-or-minus0.2810.031\Omega_{\rm m}=0.281\pm 0.031roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.281 ± 0.031 studying void dynamics in SDSS. In Woodfinden et al. (2023) they also use SDSS survey to constrain Ωm=0.3910.021+0.028subscriptΩmsubscriptsuperscript0.3910.0280.021\Omega_{\rm m}=0.391^{+0.028}_{-0.021}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.391 start_POSTSUPERSCRIPT + 0.028 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.021 end_POSTSUBSCRIPT measuring the void-galaxy and galaxy-galaxy clustering. In Contarini et al. (2023) they model Void Size Function (Press & Schechter, 1974; Sheth & Van De Weygaert, 2004) by means of an extension of the popular volume-conserving model (Jennings et al., 2013), based on two additional nuisance parameters, and applying a Bayesian analysis they get a value of σ8=0.790.08+0.09subscript𝜎8subscriptsuperscript0.790.090.08\sigma_{8}=0.79^{+0.09}_{-0.08}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.79 start_POSTSUPERSCRIPT + 0.09 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.08 end_POSTSUBSCRIPT for BOSS DR12, and, in a posterior work (Contarini et al., 2024), they constrain S=80.8130.068+0.093{}_{8}=0.813^{+0.093}_{-0.068}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT = 0.813 start_POSTSUPERSCRIPT + 0.093 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.068 end_POSTSUBSCRIPT and H=067.39.1+10{}_{0}=67.3^{+10}_{-9.1}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT = 67.3 start_POSTSUPERSCRIPT + 10 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 9.1 end_POSTSUBSCRIPT for the same redshift survey.

This paper is structured as follows: in Section 2 we describe the redshift survey as well as the simulations used in this work. Next, in Section 3 we give a detail explanation of how our Void Finder works and show the relevant statistics of voids obtained for the observational catalogue and compare it with the result of Uchuu-SDSS lightcones. In Section 4 we introduce the most important concepts and equations used in the theoretical framework to calculate the abundance of voids larger than r𝑟ritalic_r and the Void Probability Function. We show that the theoretical framework predicts successfully these two void statistics for halo simulation boxes with different σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT values in real and redshift space, and show the results for SDSS and the Uchuu-SDSS lightcones. In Section 5 we explain the statistical test we use in order to infer σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and hhitalic_h. In Section 6 we show the potential of the theoretical framework using Uchuu-SDSS void statistics, i.e., we show that if we let two of the three cosmological parameters be free, the third parameter must be very close to Planck’s best-fit value in order to recover the real values of other two parameters. In this section, we also show the inferred values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, hhitalic_h, ΓΓ\Gammaroman_Γ and S8 from Uchuu-SDSS. In Section 7 we show the constrained values for the sample of SDSS redshift survey we have used in this work and we combine our results with KiDS-1000 results (Dark Energy Survey and Kilo-Degree Survey Collaboration et al., 2023). In Section 8 we compare our constrained values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and H0 with those obtained in other works where voids are also used. Finally, in Section 9 we summarize the most important results obtained in this work.

2 Data and mocks

The aim of this work is to infer σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and H0 values from The Sloan Digital Sky Survey. However, to make sure that the theoretical equations reproduce correctly the void functions of this redshift survey, we also use 4 halo simulation boxes with different σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT values (see Table 1), one simulation galaxy box and 32 lightcones. In this section we introduce the redshift survey and mocks.

2.1 SDSS

We have used the seventh release (Abazajian et al., 2009) of The Sloan Digital Sky Survey (SDSS DR7) (York et al., 2000), which includes 11663 deg2𝑑𝑒superscript𝑔2deg^{2}italic_d italic_e italic_g start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT of CCD imaging data in 5 photometric bands for 357 million distant objects. The catalogue also completed spectroscopy over 9380 deg2𝑑𝑒superscript𝑔2deg^{2}italic_d italic_e italic_g start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. In total, there are 1.6 million spectra, including 930000 galaxies, 120000 quasars, and 460000 stars.

However, in this work we use a subcatalogue of SDSS: only galaxies from the northern regions with completeness greater than 90%percent\%% are selected. Therefore, the effective area of this subcatalogue is 6511 deg2𝑑𝑒superscript𝑔2deg^{2}italic_d italic_e italic_g start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and contains around 497000 galaxies with redshifts between z(0,0.5)𝑧00.5z\in(0,0.5)italic_z ∈ ( 0 , 0.5 ). In this sample, similar-to\sim 6%percent\%% of targeted galaxies lack a spectroscopically measured redshift due to fibre collisions, so nearest neighbour correction is applied to these galaxies, assigning to them the redshift of the galaxy with which they collide (Dong-Páez et al., 2024).

Additionally, we impose further cuts on absolute magnitude and redshift, and we construct a volume-limited sample by keeping only galaxies brighter than the Milky Way-like galaxies (M<20.5𝑀20.5M<-20.5italic_M < - 20.5, where Mrsubscript𝑀𝑟M_{r}italic_M start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT is the absolute magnitude in r𝑟ritalic_r-band) and with z0.02𝑧0.02z\geq 0.02italic_z ≥ 0.02 and z0.132𝑧0.132z\leq 0.132italic_z ≤ 0.132. The physical volume of this sample is V=41.67×106h3𝑉41.67superscript106superscript3V=41.67\times 10^{6}h^{-3}italic_V = 41.67 × 10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3. There are in total 112496 galaxies which fulfil these restrictions, so the number density of the galaxies is ng=2.838×103h3subscript𝑛𝑔2.838superscript103superscript3n_{g}=2.838\times 10^{-3}h^{-3}italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 2.838 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3.

2.2 Mocks

Uchuu P18(Low) VeryLow
ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT 0.3089 0.3111 0.3111
ΩΛsubscriptΩΛ\Omega_{\Lambda}roman_Ω start_POSTSUBSCRIPT roman_Λ end_POSTSUBSCRIPT 0.6911 0.6889 0.6889
ΩbsubscriptΩb\Omega_{\rm b}roman_Ω start_POSTSUBSCRIPT roman_b end_POSTSUBSCRIPT 0.0486 0.048975 0.048975
hhitalic_h 0.6774 0.6766 0.6766
σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT 0.8159 0.8102 (0.75) 0.65
Lboxsubscript𝐿boxL_{\rm box}italic_L start_POSTSUBSCRIPT roman_box end_POSTSUBSCRIPT [h1superscript1h^{-1}italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc] 2000 1000 1000
Npartsubscript𝑁partN_{\rm part}italic_N start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT 128003superscript12800312800^{3}12800 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT 64003superscript640036400^{3}6400 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT 32003superscript320033200^{3}3200 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT
Mpartsubscript𝑀partM_{\rm part}italic_M start_POSTSUBSCRIPT roman_part end_POSTSUBSCRIPT [h1M]delimited-[]superscript1subscriptMdirect-product[h^{-1}\rm M_{\odot}][ italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT ] 3.27×1083.27superscript1083.27\times 10^{8}3.27 × 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT 3.29×1083.29superscript1083.29\times 10^{8}3.29 × 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT 2.63×1092.63superscript1092.63\times 10^{9}2.63 × 10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT
ε𝜀\varepsilonitalic_ε [h1[h^{-1}[ italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTkpc]]]] 4.27 1.0 4.0
Haloes Yes Yes Yes
Galaxies Yes No No
Lightcones Yes (32) No No
Table 1: Cosmological parameters (first five rows), the size of the simulation box (Lboxsubscript𝐿boxL_{\text{box}}italic_L start_POSTSUBSCRIPT box end_POSTSUBSCRIPT), the number of dark matter particles used in the simulation (NpartsubscriptNpart\rm N_{\text{part}}roman_N start_POSTSUBSCRIPT part end_POSTSUBSCRIPT), their mass (Mpartsubscript𝑀partM_{\text{part}}italic_M start_POSTSUBSCRIPT part end_POSTSUBSCRIPT), and the gravitational softening (ε𝜀\varepsilonitalic_ε) for Uchuu, Uchuu1000Pl18 (P18), Uchuu1000Pl18LowS8 (Low) and Uchuu1000Pl18VeryLowS8 (VeryLow) used to generate the box catalogs in this work. The last five rows provide information about whether the box catalog, galaxy box or lightcones for SDSS are available for each simulation.

We use the Uchuu simulation, which was produced using the TreePM code GreeM 111http://hpc.imit.chiba-u.jp/~ishiymtm/greem/ (Ishiyama et al., 2009, 2012) on the supercomputer ATERUI II at Center for Computational Astrophysics, CfCA, of National Astronomical Observatory of Japan. The number of dark matter particles was 128003 with a mass resolution of 3.27×108h1M3.27superscript108superscript1subscript𝑀direct-product3.27\times 10^{8}h^{-1}M_{\odot}3.27 × 10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT in a box with a side length of 2000 h1superscript1h^{-1}italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc. A total of 50 halo catalogs (snapshots) were created, covering the redshift range from 0 to 14 (Ishiyama et al., 2021). The haloes were subsequently identified using the RockStar halo/subhalo finder 222https://bitbucket.org/gfcstanford/rockstar/ (Behroozi et al., 2013a), and merger trees were generated using the consistent trees code333https://bitbucket.org/pbehroozi/consistent-trees/ (Behroozi et al., 2013b). These simulations adopted the cosmological parameters from Planck 2015 (see Table 1) (Planck Collaboration et al., 2016). All this data is publicly available and accessible in the Skies &\&& Universes database444http://www.skiesanduniverses.org/Simulations/Uchuu/, including galaxy catalogs constructed using various methods (Aung et al., 2023; Oogi et al., 2023; Gkogkou et al., 2023; Prada et al., 2023; Ereza et al., 2023; Dong-Páez et al., 2024).

Apart from Uchuu, we use three more simulations with Planck 2018 (Aghanim et al., 2020) (Uchuu1000Pl18), Planck 2018 with σ8=0.75subscript𝜎80.75\sigma_{8}=0.75italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.75 (Uchuu1000Pl18LowS8) and Planck 2018 with σ8=0.65subscript𝜎80.65\sigma_{8}=0.65italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.65 (Uchuu1000Pl18VeryLowS8). Uchuu1000Pl18 and Uchuu1000Pl18LowS8 have exactly the same simulation properties, except the value of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT. Uchuu1000Pl18VeryLowS8 has different value of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and different mass resolution. All these details can be seen in Table 1. These three simulations were produced using the TreePM code GreeM on the supercomputer Fugaku at the RIKEN Center for Computational Science. As well as the Uchuu simulation, we generated initial conditions for these three simulations with 2nd order Lagrangian perturbation theory (Crocce et al., 2006) by 2LPTIC code 555http://cosmo.nyu.edu/roman/2LPT/. The initial conditions are identical across the three simulations, enabling us to compare them without cosmic variance. The total of 70 halo catalogs were created, where the redshift list is the same with the Uchuu at z<6𝑧6z<6italic_z < 6. N-body data including the halo catalogs and the merger trees are also available in the Skies &\&& Universes database.

Refer to caption
Figure 1: Halo Mass Function multiplied by the mean halo mass within virial radius (including unbound particles) of each bin of the four box catalogs used in this work. Shaded regions represent poissonian errors.

The Halo Mass Function (HMF) of each simulation can be seen in Figure 1, where Mvir,allsubscript𝑀𝑣𝑖𝑟𝑎𝑙𝑙M_{vir,all}italic_M start_POSTSUBSCRIPT italic_v italic_i italic_r , italic_a italic_l italic_l end_POSTSUBSCRIPT is the halo mass within virial radius including unbound particles. In this figure it can be seen that VeryLow has lower mass resolution, as the HMF decreases considerably for small masses. It is also shown that, specially for large masses, the lower σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT is the lower the HMF is too. Additonally, it can be seen that there is no significant difference between P18, Low and VeryLow halo mass functions for low virial masses (Mvir,all<1012h1Msubscript𝑀𝑣𝑖𝑟𝑎𝑙𝑙superscript1012superscript1subscript𝑀direct-productM_{vir,all}<10^{12}h^{-1}M_{\odot}italic_M start_POSTSUBSCRIPT italic_v italic_i italic_r , italic_a italic_l italic_l end_POSTSUBSCRIPT < 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT), but there is a significant difference for large virial masses (Mvir,all>1012h1Msubscript𝑀𝑣𝑖𝑟𝑎𝑙𝑙superscript1012superscript1subscript𝑀direct-productM_{vir,all}>10^{12}h^{-1}M_{\odot}italic_M start_POSTSUBSCRIPT italic_v italic_i italic_r , italic_a italic_l italic_l end_POSTSUBSCRIPT > 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT).

We also use a galaxy simulation box that has been generated from Uchuu simulation using the SubHalo Abundance Matching (SHAM) method. From the galaxy boxes for different snapshots, lightcones with the properties of SDSS have been constructed. In concrete, 32 light cones are available. The Uchuu galaxy box and the 32 simulated SDSS light cones we use in this work are extensively detailed in Dong-Páez et al. (2024).

For the purpose of studying void statistics in simulation boxes, we select those snapshots corresponding to a redshift of z0.092similar-to𝑧0.092z\sim 0.092italic_z ∼ 0.092 (which is the snapshot with the closest redshift to SDSS median redshift). Moreover, we don’t use all the objects (haloes or galaxies) from this boxes, but we select a number density of n¯=3×103h3¯𝑛3superscript103superscript3\bar{n}=3\times 10^{-3}h^{-3}over¯ start_ARG italic_n end_ARG = 3 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3 for each box. This can be reached removing haloes less massive than Mvir,allsubscript𝑀𝑣𝑖𝑟𝑎𝑙𝑙M_{vir,all}italic_M start_POSTSUBSCRIPT italic_v italic_i italic_r , italic_a italic_l italic_l end_POSTSUBSCRIPT = 1.626×1012M/habsentsuperscript1012subscript𝑀direct-product\times 10^{12}M_{\odot}/h× 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT / italic_h (Uchuu), 1.642×1012M/habsentsuperscript1012subscript𝑀direct-product\times 10^{12}M_{\odot}/h× 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT / italic_h (Uchuu1000Pl18), 1.595×1012M/habsentsuperscript1012subscript𝑀direct-product\times 10^{12}M_{\odot}/h× 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT / italic_h (Uchuu1000Pl18LowS8) and 1.457×1012M/habsentsuperscript1012subscript𝑀direct-product\times 10^{12}M_{\odot}/h× 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT / italic_h (Uchuu1000Pl18VeryLowS8), and galaxies less brighter than Mrsubscript𝑀𝑟M_{r}italic_M start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT¡-20.5 for Uchuu galaxy box.

3 Statistics of voids in the SDSS

The next important step we need to take once we have well-defined the sample of halos or galaxies we are going to use is to identify voids, defined as maximum non-overlapping spheres. To do this, we perform Delaunay triangulation (with periodic conditions for simulation boxes).

The Delaunay triangulation of a set of points pisubscript𝑝𝑖{p_{i}}italic_p start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ensures that no point pisubscript𝑝𝑖p_{i}italic_p start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT lies within the circumcircle of any triangle in the triangulation. Additionally, Delaunay triangulations maximize the minimum angle among all triangle angles, aiming to reduce the occurrence of sliver triangles.

Fortunately, there is a publicly available code that uses the CGAL (The Computational Geometry Algorithms Library)666https://doc.cgal.org/4.6.3/Manual/packages.html#PkgTriangulation3Summary for 3D triangulations. This code is called Delaunay trIangulation Void findEr (DIVE777https://github.com/cheng-zhao/DIVE), which is used and explained in Zhao et al. (2016). The output of this code is a file that contains the positions in space of the centres of the spheres that satisfy the Delaunay condition, as well as their radii. However, these spheres are not voids, but candidates to be voids.

To find voids (i.e. maximal non-overlapping spheres) among these spheres, an additional code needs to be developed. This code must check if two spheres overlap and, in case they do, keep the largest one as a void.

Refer to caption
Figure 2: Voids with r>9h1𝑟9superscript1r>9h^{-1}italic_r > 9 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc (spheres) found in a region of P18 box catalog (black and red points) with number density 3×103h33superscript103superscript33\times 10^{-3}h^{-3}3 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3. Points that define the voids (i.e. those lying in their surface) are highlighted with a red circle. The volume of the box is 803h3superscript803superscript380^{3}h^{-3}80 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3.

In Figure 2 the voids larger than r>9h1𝑟9superscript1r>9h^{-1}italic_r > 9 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc found in the P18 halo simulation box with number density 3×103h33superscript103superscript33\times 10^{-3}h^{-3}3 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3 are shown in a region of the box. It can be seen that each void is defined by four galaxies laying in its surface (some voids in Figure 2 have fewer than 4 galaxies due to being outside the plotted region), and it is ensured that voids do not overlap.

However, for the galaxy lightcones, one more step is required. This step involves considering the incompleteness in stellar mass, which causes many spurious voids to appear. These spurious voids correspond to regions in the catalog with very low completeness, where galaxies could not be detected properly. Therefore, these false voids must be eliminated using an angular mask, such as the Healpix map (Gorski et al., 1999; Blanton et al., 2005; Swanson et al., 2008), characteristic of the redshift survey.

The procedure for removing these false voids is as follows: first, we generate points uniformly distributed within the volume of the void. Next, we project these points in the angular plane, calculate the completeness of each point and average the completeness of all points within the void to obtain an approximation of the completeness of the void. If this completeness is equal to or greater than 0.9, we label that void as a true void. Otherwise, we remove the false void.

Additionally, voids whose centers or part of their volume are outside the sample in the radial direction must also be removed, as the procedure explained above considers only the angular plane, but voids may extend beyond the sample in the radial direction, so this extra check is necessary.

r SDSS Uchuu-SDSS
10 797 ±plus-or-minus\pm± 12 792.2 ±plus-or-minus\pm± 2.1
11 550 ±plus-or-minus\pm± 15 550 ±plus-or-minus\pm± 3
12 381 ±plus-or-minus\pm± 13 366.3 ±plus-or-minus\pm± 2.3
13 248 ±plus-or-minus\pm± 13 233.4 ±plus-or-minus\pm± 2.2
14 150 ±plus-or-minus\pm± 11 140.6 ±plus-or-minus\pm± 1.9
15 85 ±plus-or-minus\pm± 8 78.9 ±plus-or-minus\pm± 1.4
16 51 ±plus-or-minus\pm± 7 41.4 ±plus-or-minus\pm± 1.2
17 27 ±plus-or-minus\pm± 5 21.2 ±plus-or-minus\pm± 0.8
18 15 ±plus-or-minus\pm± 3 9.3 ±plus-or-minus\pm± 0.5
19 7.0 ±plus-or-minus\pm± 1.7 3.4 ±plus-or-minus\pm± 0.3
20 1.0 ±plus-or-minus\pm± 1.0 0.97 ±plus-or-minus\pm± 0.18
Table 2: Abundance of voids larger than r𝑟ritalic_r, Nv(r)subscript𝑁𝑣𝑟N_{v}(r)italic_N start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ), obtained for voids found in the distribution of SDSS (first row) and Uchuu-SDSS (second row) galaxies with Mr<20.5subscript𝑀𝑟20.5M_{r}<-20.5italic_M start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT < - 20.5 and 0.02<z<0.1320.02𝑧0.1320.02<z<0.1320.02 < italic_z < 0.132.

In Figure 3 the number density of voids larger than r𝑟ritalic_r, nv(r)subscript𝑛𝑣𝑟n_{v}(r)italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ), obtained for voids found in the sample of SDSS and Uchuu-SDSS (the mean of the 32 lightcones) considered in this work (galaxies with Mr<20.5subscript𝑀𝑟20.5M_{r}<-20.5italic_M start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT < - 20.5 and 0.02<z<0.1320.02𝑧0.1320.02<z<0.1320.02 < italic_z < 0.132) are shown (in Table 2 the values are multiplied by the volume). It can be checked that Uchuu-SDSS statistics are compatible with observations for all radius bins, although there are big fluctuations in SDSS that appear for large voids (r>16h1𝑟16superscript1r>16h^{-1}italic_r > 16 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc) due to the small volume of the survey.

An important remark about Figure 3 is that if we want to compare the observed number density of voids larger than r𝑟ritalic_r obtained from SDSS (or Uchuu-SDSS) with that given by the theoretical framework presented in this work, we must take into account that the former suffers from incompleteness, and other effects such as border effects, and the latter doesn’t. Therefore, we have to transform SDSS (and Uchuu-SDSS) void statistics as if it didn’t suffer from these effects. One way of doing this is using Uchuu galaxy box. Then, SDSS and Uchuu-SDSS number density of voids larger than r𝑟ritalic_r must be transformed as:

nv(r)nv(r)(Uchuu)Nv(r)(SDSS)Nv(r)(UchuuSDSS)subscript𝑛𝑣𝑟subscript𝑛𝑣𝑟𝑈𝑐𝑢𝑢subscript𝑁𝑣𝑟𝑆𝐷𝑆𝑆subscript𝑁𝑣𝑟𝑈𝑐𝑢𝑢𝑆𝐷𝑆𝑆n_{v}(r)\rightarrow n_{v}(r)(Uchuu)\frac{N_{v}(r)(SDSS)}{N_{v}(r)(Uchuu-SDSS)}italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) → italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) ( italic_U italic_c italic_h italic_u italic_u ) divide start_ARG italic_N start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) ( italic_S italic_D italic_S italic_S ) end_ARG start_ARG italic_N start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) ( italic_U italic_c italic_h italic_u italic_u - italic_S italic_D italic_S italic_S ) end_ARG (1)

where Nv(r)(UchuuSDSS)subscript𝑁𝑣𝑟𝑈𝑐𝑢𝑢𝑆𝐷𝑆𝑆N_{v}(r)(Uchuu-SDSS)italic_N start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) ( italic_U italic_c italic_h italic_u italic_u - italic_S italic_D italic_S italic_S ) is the number of voids larger than r𝑟ritalic_r found in Uchuu-SDSS lightcones, and Nv(r)(Uchuu)subscript𝑁𝑣𝑟𝑈𝑐𝑢𝑢N_{v}(r)(Uchuu)italic_N start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) ( italic_U italic_c italic_h italic_u italic_u ) is the same but found in Uchuu galaxy box, and VUchuusubscript𝑉𝑈𝑐𝑢𝑢V_{Uchuu}italic_V start_POSTSUBSCRIPT italic_U italic_c italic_h italic_u italic_u end_POSTSUBSCRIPT is the volume of Uchuu simulation (V=20003h3superscript20003superscript32000^{3}h^{-3}2000 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc-3).

Refer to caption
Figure 3: Number density of voids larger than r𝑟ritalic_r, nv(r)csubscript𝑛𝑣subscript𝑟𝑐n_{v}(r)_{c}italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, obtained for voids found in the distribution of SDSS (red points) and Uchuu-SDSS galaxies (blue points) with Mr<20.5subscript𝑀𝑟20.5M_{r}<-20.5italic_M start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT < - 20.5 and 0.02<z<0.1320.02𝑧0.1320.02<z<0.1320.02 < italic_z < 0.132 and predicted by the theoretical framework described in Section 4 with Planck 2015 parameters (black continuous line). Shaded blue region delimits the standard deviation (1σ1𝜎1\sigma1 italic_σ) of the 32 Uchuu-SDSS lightcones.

Finally, in Figure 4 we can see the VPF, (i.e. the probability that a randomly placed sphere with radius r𝑟ritalic_r is empty of objects – galaxies or dark matter haloes) obtained for SDSS and Uchuu-SDSS galaxies. This function is challenging to calculate as we have to take into account the completeness of the survey when randomly placing spheres. The procedure we have followed is similar to the one followed to find real voids: first, we randomly place spheres in the angular plane and in the line-of-sight direction, then we generate points uniformly distributed within the volume of these random spheres and check if the mean completeness of all these points is above 0.9. If it is, we keep the sphere, otherwise, we generate a new one. In other words, our random spheres have to fulfill the same criteria as voids. Next, we calculate the VPF with these survivor spheres, i.e. we divide the total number of these spheres containing no galaxies in their interior by the total number of the survivor spheres.

The results of the VPF obtained for SDSS and Uchuu-SDSS can be seen in Figure 4 and Table 3. Again, we can see that the values obtained for SDSS are compatible, within 1σ1𝜎1\sigma1 italic_σ, with Uchuu-SDSS values, although the errors for large r𝑟ritalic_r are very large. This is again due to the small volume of the samples used.

Refer to caption
Figure 4: VPF predicted by theoretical framework described in Section 4 with Planck 2015 parameters (black solid line), and obtained for SDSS (red points) and Uchuu-SDSS (blue solid line) galaxies with Mr<20.5subscript𝑀𝑟20.5M_{r}<-20.5italic_M start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT < - 20.5 and 0.02<z<0.1320.02𝑧0.1320.02<z<0.1320.02 < italic_z < 0.132. The shaded blue region and red error bars are the standard deviation of the VPF for the Uchuu-SDSS 32 lightcones.
r SDSS Uchuu-SDSS
10 6.127 ±plus-or-minus\pm± 0.389 5.640 ±plus-or-minus\pm± 0.073
11 3.354 ±plus-or-minus\pm± 0.258 3.049 ±plus-or-minus\pm± 0.047
12 1.728 ±plus-or-minus\pm± 0.162 1.567 ±plus-or-minus\pm± 0.032
13 0.835 ±plus-or-minus\pm± 0.101 0.767 ±plus-or-minus\pm± 0.204
14 0.390 ±plus-or-minus\pm± 0.069 0.356 ±plus-or-minus\pm± 0.014
15 0.161 ±plus-or-minus\pm± 0.045 0.160 ±plus-or-minus\pm± 0.008
16 0.0631 ±plus-or-minus\pm± 0.0242 0.0694 ±plus-or-minus\pm± 0.0043
17 0.0216 ±plus-or-minus\pm± 0.0028 0.0270 ±plus-or-minus\pm± 0.0035
18 (8.860±plus-or-minus\pm±2.018)×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 0.0107 ±plus-or-minus\pm± 0.0025
19 (3.880±plus-or-minus\pm±9.232)×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT (4.16±plus-or-minus\pm±1.18)×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT
20 0.0000 ±plus-or-minus\pm± 0.0005 (1.556±plus-or-minus\pm±0.699)×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT
Table 3: VPF obtained for voids found in the distribution of SDSS (first row) and Uchuu-SDSS (second row) galaxies with Mr<20.5subscript𝑀𝑟20.5M_{r}<-20.5italic_M start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT < - 20.5 and 0.02<z<0.1320.02𝑧0.1320.02<z<0.1320.02 < italic_z < 0.132. All values are in units of 102superscript10210^{-2}10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT.

4 Void statistics theoretical framework

The main void statistics we will study in this work are the number density of voids larger than r𝑟ritalic_r, n¯v(r)subscript¯𝑛𝑣𝑟\bar{n}_{v}(r)over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r )888Notice that we use a bar above nv(r)subscript𝑛𝑣𝑟n_{v}(r)italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) to quantities predicted by theoretical framework, and without bar to quantities obtained directly by simulations. Additionally, quantities in lowercase letters are in units of volume., and the Void Probability Function, P0(r)subscript𝑃0𝑟P_{0}(r)italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ) (White, 1979). For n¯v(r)subscript¯𝑛𝑣𝑟\bar{n}_{v}(r)over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) we will use the (recalibrated) expression from Betancort-Rijo et al. (2009):

n¯v(r)=μ𝒦(r)Veα𝒦(r)subscript¯𝑛𝑣𝑟𝜇𝒦𝑟𝑉superscript𝑒𝛼𝒦𝑟\bar{n}_{v}(r)=\frac{\mu\mathcal{K}(r)}{V}e^{-\alpha\mathcal{K}(r)}over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) = divide start_ARG italic_μ caligraphic_K ( italic_r ) end_ARG start_ARG italic_V end_ARG italic_e start_POSTSUPERSCRIPT - italic_α caligraphic_K ( italic_r ) end_POSTSUPERSCRIPT (2)

where μ𝜇\muitalic_μ=0.588, α𝛼\alphaitalic_α=1.671, and

𝒦(r)=[13dlnP0(r)dlnr]3P0(r)𝒦𝑟superscriptdelimited-[]13𝑑𝑙𝑛subscript𝑃0𝑟𝑑𝑙𝑛𝑟3subscript𝑃0𝑟\mathcal{K}(r)=\left[-\frac{1}{3}\frac{dlnP_{0}(r)}{dlnr}\right]^{3}P_{0}(r)caligraphic_K ( italic_r ) = [ - divide start_ARG 1 end_ARG start_ARG 3 end_ARG divide start_ARG italic_d italic_l italic_n italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ) end_ARG start_ARG italic_d italic_l italic_n italic_r end_ARG ] start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ) (3)

and

V=43πr3𝑉43𝜋superscript𝑟3V=\frac{4}{3}\pi r^{3}italic_V = divide start_ARG 4 end_ARG start_ARG 3 end_ARG italic_π italic_r start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT (4)

In expression 2 it is assumed that n¯v(r)subscript¯𝑛𝑣𝑟\bar{n}_{v}(r)over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) is an universal functional of P0(r)subscript𝑃0𝑟P_{0}(r)italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ), so that, independently of the clustering process underlying P0(r)subscript𝑃0𝑟P_{0}(r)italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ), n¯v(r)subscript¯𝑛𝑣𝑟\bar{n}_{v}(r)over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) is related to it by an unique expression. However, it has been shown that for white noise it μ=0.68𝜇0.68\mu=0.68italic_μ = 0.68. So it is clear that this coefficient has a dependence on the clustering properties of the objects considered. But we have found that for the simulations that we have used the quoted values of μ𝜇\muitalic_μ and α𝛼\alphaitalic_α are valid. Therefore we shall use these values in all our considerations.

It is important to remark that equation (2) is only valid for 𝒦(r)𝒦𝑟absent\mathcal{K}(r)\leqcaligraphic_K ( italic_r ) ≤0.46. For 𝒦(r)>𝒦𝑟absent\mathcal{K}(r)>caligraphic_K ( italic_r ) > 0.46, n¯v(r)=0.313/Vsubscript¯𝑛𝑣𝑟0.313𝑉\bar{n}_{v}(r)=0.313/Vover¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) = 0.313 / italic_V. This quantity, 𝒦(r)𝒦𝑟\mathcal{K}(r)caligraphic_K ( italic_r ), measures the rareness of the voids.

Furthermore, equation (2) is only valid for σ8>0.5subscript𝜎80.5\sigma_{8}>0.5italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT > 0.5, as it has been calibrated to correctly predict the number density of voids for σ80.9similar-tosubscript𝜎80.9\sigma_{8}\sim 0.9italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ∼ 0.9, as well as for r𝑟ritalic_r large enough (i.e. large enough voids, such as r>10h1𝑟10superscript1r>10h^{-1}italic_r > 10 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc).

It can be seen that equation (2) differs from the expression of n¯v(r)subscript¯𝑛𝑣𝑟\bar{n}_{v}(r)over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) given in Betancort-Rijo et al. (2009) (i.e., they give different values of μ𝜇\muitalic_μ, α𝛼\alphaitalic_α and write an additional term in the exponential, β𝛽\betaitalic_β). Instead of writing the same values for μ𝜇\muitalic_μ, α𝛼\alphaitalic_α and β𝛽\betaitalic_β as in Betancort-Rijo et al. (2009), we have let them be variables and calibrated them with the Uchuu simulation, which has a much larger volume than the simulation used in that work. Therefore, the coefficients given in this work are more accurate.

From equations (2) and (3) we can see that if we know the VPF, we automatically know n¯v(r)subscript¯𝑛𝑣𝑟\bar{n}_{v}(r)over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ), so we first study the VPF and then calculate n¯v(r)subscript¯𝑛𝑣𝑟\bar{n}_{v}(r)over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) using equation (2).

We can define P0(r)subscript𝑃0𝑟P_{0}(r)italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ) from a more general statistic that is Pn(r)subscript𝑃𝑛𝑟P_{n}(r)italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_r ): the probability that a sphere of radius r𝑟ritalic_r, placed at random within the distribution, contains n𝑛nitalic_n objects. If we assume a Poisson process, we can then write Pn(r)subscript𝑃𝑛𝑟P_{n}(r)italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_r ) as (Layzer, 1954):

Pn(r)=0P(u)unn!eu𝑑usubscript𝑃𝑛𝑟superscriptsubscript0𝑃𝑢superscript𝑢𝑛𝑛superscript𝑒𝑢differential-d𝑢P_{n}(r)=\int_{0}^{\infty}P(u)\frac{u^{n}}{n!}e^{-u}duitalic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_r ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_P ( italic_u ) divide start_ARG italic_u start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG start_ARG italic_n ! end_ARG italic_e start_POSTSUPERSCRIPT - italic_u end_POSTSUPERSCRIPT italic_d italic_u (5)

where P(u)𝑃𝑢P(u)italic_P ( italic_u ) is the probability distribution for the integral of the probability density, u𝑢uitalic_u, within a randomly placed sphere.

For the root mean square (rms) of the error of the estimation of the VPF we use the following expression:

rms(P0(r))2=9.2[1ωn¯v(r)]P0(r)2N(r)+P0(r)Nspheres𝑟𝑚𝑠superscriptsubscript𝑃0𝑟29.2delimited-[]1𝜔subscript¯𝑛𝑣𝑟subscript𝑃0superscript𝑟2𝑁𝑟subscript𝑃0𝑟subscript𝑁𝑠𝑝𝑒𝑟𝑒𝑠rms(P_{0}(r))^{2}=\frac{9.2\left[1-\omega\bar{n}_{v}(r)\right]P_{0}(r)^{2}}{N(% r)}+\frac{P_{0}(r)}{N_{spheres}}italic_r italic_m italic_s ( italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG 9.2 [ 1 - italic_ω over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) ] italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_N ( italic_r ) end_ARG + divide start_ARG italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ) end_ARG start_ARG italic_N start_POSTSUBSCRIPT italic_s italic_p italic_h italic_e italic_r italic_e italic_s end_POSTSUBSCRIPT end_ARG (6)

where Nspheressubscript𝑁𝑠𝑝𝑒𝑟𝑒𝑠N_{spheres}italic_N start_POSTSUBSCRIPT italic_s italic_p italic_h italic_e italic_r italic_e italic_s end_POSTSUBSCRIPT is the number of random spheres used in order to estimate P0(r)subscript𝑃0𝑟P_{0}(r)italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ) for simulations, N(r)𝑁𝑟N(r)italic_N ( italic_r ) is the number of voids larger than r𝑟ritalic_r. This equation is a modification of the expression given in Betancort-Rijo (1992) and Patiri et al. (2006b). We have added a second term, P0(r)/Nspheressubscript𝑃0𝑟subscript𝑁𝑠𝑝𝑒𝑟𝑒𝑠P_{0}(r)/N_{spheres}italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ) / italic_N start_POSTSUBSCRIPT italic_s italic_p italic_h italic_e italic_r italic_e italic_s end_POSTSUBSCRIPT to take into account the error due to the finite number of trial random spheres used to calculate the VPF. The first term of equation (6) takes into account the finite volume of the sample.

Finally ω𝜔\omegaitalic_ω in equation (6) is given by

ω=32π3R¯3𝜔32𝜋3superscript¯𝑅3\displaystyle\omega=\frac{32\pi}{3}\bar{R}^{3}italic_ω = divide start_ARG 32 italic_π end_ARG start_ARG 3 end_ARG over¯ start_ARG italic_R end_ARG start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT [1+2.73n¯v(r)32π3R¯3×\displaystyle\left[1+2.73\bar{n}_{v}(r)\frac{32\pi}{3}\bar{R}^{3}\times\right.[ 1 + 2.73 over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) divide start_ARG 32 italic_π end_ARG start_ARG 3 end_ARG over¯ start_ARG italic_R end_ARG start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ×
×(134n¯v(r)1/32R¯+18(n¯v(r)1/32R¯)2)]1\displaystyle\times\left.\left(1-\frac{3}{4}\frac{\bar{n}_{v}(r)^{-1/3}}{2\bar% {R}}+\frac{1}{8}\left(\frac{\bar{n}_{v}(r)^{1/3}}{2\bar{R}}\right)^{2}\right)% \right]^{-1}× ( 1 - divide start_ARG 3 end_ARG start_ARG 4 end_ARG divide start_ARG over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) start_POSTSUPERSCRIPT - 1 / 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 over¯ start_ARG italic_R end_ARG end_ARG + divide start_ARG 1 end_ARG start_ARG 8 end_ARG ( divide start_ARG over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 over¯ start_ARG italic_R end_ARG end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (7)

where R¯¯𝑅\bar{R}over¯ start_ARG italic_R end_ARG is the mean radius of all voids larger than the minimum voids considered.

An explicit computation of each term in Pn(r)subscript𝑃𝑛𝑟P_{n}(r)italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_r ) can be consulted in Appendix A. There, it can be seen that Pn(r)subscript𝑃𝑛𝑟P_{n}(r)italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_r ) depends on σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT (equation (33)), Γ=ΩchΓsubscriptΩc\Gamma=\Omega_{\rm c}hroman_Γ = roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT italic_h (equations (27), (35) and (36)) and ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT (equations (30) and (38)). However, the dependence on ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT is small, as we will show in Section 5.

Additionally, it can be checked that Pn(r)subscript𝑃𝑛𝑟P_{n}(r)italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_r ) (in concrete, u𝑢uitalic_u), depends on m𝑚mitalic_m, which is the mass such that the number density of distinct or central haloes with mass larger than m𝑚mitalic_m is equal to the number density of the sample, n¯samplesubscript¯𝑛𝑠𝑎𝑚𝑝𝑙𝑒\bar{n}_{sample}over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_s italic_a italic_m italic_p italic_l italic_e end_POSTSUBSCRIPT, n¯(>m)=n¯sampleannotated¯𝑛absent𝑚subscript¯𝑛𝑠𝑎𝑚𝑝𝑙𝑒\bar{n}(>m)=\bar{n}_{sample}over¯ start_ARG italic_n end_ARG ( > italic_m ) = over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_s italic_a italic_m italic_p italic_l italic_e end_POSTSUBSCRIPT (i.e. the mass such that the cumulative halo mass function equals the number density of the sample). If the simulation boxes consisted only on distinct haloes, the mass to be put in m𝑚mitalic_m would be simply the mass obtained this way. However, our simulation boxes contain subhaloes, too, and we even have a galaxy simulation box, galaxy lightcones and, more importantly, a redshift survey of galaxies, so the mass to be put in the theoretical equations is not that trivial.

If our simulation boxes consist on distinct haloes and subhaloes (or galaxies), then the mass to be used in the theoretical equations would be mgsubscript𝑚𝑔m_{g}italic_m start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT, i.e., the mass such that the cumulative total halo mass function (taking into account distinct haloes and subhalos) equals the number density of the sample. This mass mgsubscript𝑚𝑔m_{g}italic_m start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT can be approximately related to m𝑚mitalic_m through the following equation:

mg=1.058σ(m)msubscript𝑚𝑔superscript1.058𝜎𝑚𝑚m_{g}=1.058^{\sigma(m)}mitalic_m start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 1.058 start_POSTSUPERSCRIPT italic_σ ( italic_m ) end_POSTSUPERSCRIPT italic_m (8)

where σ(m)𝜎𝑚\sigma(m)italic_σ ( italic_m ) is the rms linear density fluctuation on scale m𝑚mitalic_m. It can be shown that, in the interval of masses and cosmological parameters considered in this work, σ(m)𝜎𝑚\sigma(m)italic_σ ( italic_m ) depends on m𝑚mitalic_m, ΓΓ\Gammaroman_Γ and σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT the following way:

σ(m)=2.035(m4.039)0.4753(Γ0.1754)0.27(σ80.8159)𝜎𝑚2.035superscript𝑚4.0390.4753superscriptΓ0.17540.27subscript𝜎80.8159\sigma(m)=2.035\left(\frac{m}{4.039}\right)^{-\frac{0.475}{3}}\left(\frac{% \Gamma}{0.1754}\right)^{0.27}\left(\frac{\sigma_{8}}{0.8159}\right)italic_σ ( italic_m ) = 2.035 ( divide start_ARG italic_m end_ARG start_ARG 4.039 end_ARG ) start_POSTSUPERSCRIPT - divide start_ARG 0.475 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT ( divide start_ARG roman_Γ end_ARG start_ARG 0.1754 end_ARG ) start_POSTSUPERSCRIPT 0.27 end_POSTSUPERSCRIPT ( divide start_ARG italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_ARG start_ARG 0.8159 end_ARG ) (9)

Additionally, an expression for mgsubscript𝑚𝑔m_{g}italic_m start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT depending on the n¯samplesubscript¯𝑛𝑠𝑎𝑚𝑝𝑙𝑒\bar{n}_{sample}over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_s italic_a italic_m italic_p italic_l italic_e end_POSTSUBSCRIPT, σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΓΓ\Gammaroman_Γ can be found:

mg=1.0463×4.039(σ80.8159)0.402(Γ0.1754)0.109(F(n¯sample)4.047)subscript𝑚𝑔1.04634.039superscriptsubscript𝜎80.81590.402superscriptΓ0.17540.109𝐹subscript¯𝑛𝑠𝑎𝑚𝑝𝑙𝑒4.047m_{g}=1.0463\times 4.039\left(\frac{\sigma_{8}}{0.8159}\right)^{0.402}\left(% \frac{\Gamma}{0.1754}\right)^{0.109}\left(\frac{F(\bar{n}_{sample})}{4.047}\right)italic_m start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 1.0463 × 4.039 ( divide start_ARG italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_ARG start_ARG 0.8159 end_ARG ) start_POSTSUPERSCRIPT 0.402 end_POSTSUPERSCRIPT ( divide start_ARG roman_Γ end_ARG start_ARG 0.1754 end_ARG ) start_POSTSUPERSCRIPT 0.109 end_POSTSUPERSCRIPT ( divide start_ARG italic_F ( over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_s italic_a italic_m italic_p italic_l italic_e end_POSTSUBSCRIPT ) end_ARG start_ARG 4.047 end_ARG ) (10)

where

F(n¯)=1.267×108n¯2+1.289×102n¯0.248𝐹¯𝑛1.267superscript108superscript¯𝑛21.289superscript102¯𝑛0.248F(\bar{n})=-\frac{1.267\times 10^{-8}}{\bar{n}^{2}}+\frac{1.289\times 10^{-2}}% {\bar{n}}-0.248italic_F ( over¯ start_ARG italic_n end_ARG ) = - divide start_ARG 1.267 × 10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT end_ARG start_ARG over¯ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 1.289 × 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT end_ARG start_ARG over¯ start_ARG italic_n end_ARG end_ARG - 0.248 (11)

This last function, F(n¯)𝐹¯𝑛F(\bar{n})italic_F ( over¯ start_ARG italic_n end_ARG ) defines the dependence of the mass m𝑚mitalic_m with the number density of the sample, n¯¯𝑛\bar{n}over¯ start_ARG italic_n end_ARG. It is important to remark that n¯samplesubscript¯𝑛𝑠𝑎𝑚𝑝𝑙𝑒\bar{n}_{sample}over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_s italic_a italic_m italic_p italic_l italic_e end_POSTSUBSCRIPT is the number density of galaxies corrected from completeness in the case we use redshift surveys or light-cones.

Equation (10) is a good approximation to mgsubscript𝑚𝑔m_{g}italic_m start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT (i.e. the value of m𝑚mitalic_m to be used in the theoretical framework, equations 25-28 ) as a function of cosmological parameters and n¯samplesubscript¯𝑛𝑠𝑎𝑚𝑝𝑙𝑒\bar{n}_{sample}over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_s italic_a italic_m italic_p italic_l italic_e end_POSTSUBSCRIPT, while the abundance matching provides it exact value. However, the dependence on σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΓΓ\Gammaroman_Γ is quite small and it is swamped by small error in expressions 25-28 (which have been fitted to the results of a complex procedure) that have a much stronger dependence on σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΓΓ\Gammaroman_Γ. So we have found that the best agreement between the theoretical framework and the simulations are obtained holding mgsubscript𝑚𝑔m_{g}italic_m start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT fixed for given values of n¯samplesubscript¯𝑛𝑠𝑎𝑚𝑝𝑙𝑒\bar{n}_{sample}over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_s italic_a italic_m italic_p italic_l italic_e end_POSTSUBSCRIPT.

The value of mgsubscript𝑚𝑔m_{g}italic_m start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT has been chosen taking into account the value predicted for Uchuu, but decreasing its value a little bit so the χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT value for the three small boxes, defined using the VPF, is between the range

χ2=ν±2νsuperscript𝜒2plus-or-minus𝜈2𝜈\chi^{2}=\nu\pm\sqrt{2\nu}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_ν ± square-root start_ARG 2 italic_ν end_ARG (12)

where ν𝜈\nuitalic_ν is the number of degrees of freedom. In order to calculate the chi square function, we have used the VPF predicted by the theoretical framework developed in this work, and the VPF obtained directly for each simulation box. We have used the radius bins with r14h1𝑟14superscript1r\geq 14h^{-1}italic_r ≥ 14 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc, r21h1𝑟21superscript1r\leq 21h^{-1}italic_r ≤ 21 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc and Δr=ri+1ri=1h1Δ𝑟subscript𝑟𝑖1subscript𝑟𝑖1superscript1\Delta r=r_{i+1}-r_{i}=1h^{-1}roman_Δ italic_r = italic_r start_POSTSUBSCRIPT italic_i + 1 end_POSTSUBSCRIPT - italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 1 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc (i.e., 8 bins, so ν=8𝜈8\nu=8italic_ν = 8). Therefore, χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT must be between χ2>3.3superscript𝜒23.3\chi^{2}>3.3italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT > 3.3 and χ2<12superscript𝜒212\chi^{2}<12italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT < 12. We can see that if we choose mg=4.66subscript𝑚𝑔4.66m_{g}=4.66italic_m start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = 4.66, the value of χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for Uchuu, P18, LowS8 and VeryLows8 are, respectively, 11.20, 6.37, 11.86 and 11.74. If we increase the value of mgsubscript𝑚𝑔m_{g}italic_m start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT to 4.67, then χ2>12superscript𝜒212\chi^{2}>12italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT > 12 for LowS8 and VeryLowS8 boxes, and if we decrease the value of mgsubscript𝑚𝑔m_{g}italic_m start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT to 4.65, then χ2=11.89superscript𝜒211.89\chi^{2}=11.89italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 11.89 for Uchuu, which is our high resolution simulation. Therefore, χ2=4.66superscript𝜒24.66\chi^{2}=4.66italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 4.66 is the safer choice.

We can see that so far our theoretical framework depends on 4 cosmological parameters: σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩcsubscriptΩc\Omega_{\rm c}roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT, H0 and ΩmsubscriptΩ𝑚\Omega_{m}roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT (it doesn’t depend on ΩΛsubscriptΩΛ\Omega_{\Lambda}roman_Ω start_POSTSUBSCRIPT roman_Λ end_POSTSUBSCRIPT as we impose a flat ΛΛ\Lambdaroman_ΛCDM model, and the dependence of the formalism with ΩcsubscriptΩc\Omega_{\rm c}roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT and H0 is only through Γ=ΩchΓsubscriptΩc\Gamma=\Omega_{\rm c}hroman_Γ = roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT italic_h). However, we can decrease the number of free parameters by relating ΩmsubscriptΩ𝑚\Omega_{m}roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT and Ωb=ΩmΩcsubscriptΩ𝑏subscriptΩ𝑚subscriptΩc\Omega_{b}=\Omega_{m}-\Omega_{\rm c}roman_Ω start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT = roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT, where ΩbsubscriptΩ𝑏\Omega_{b}roman_Ω start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT is the baryonic matter density parameter. From Planck 2018 (Planck Collaboration et al., 2016) we get αΩb/Ωm=0.157𝛼subscriptΩ𝑏subscriptΩ𝑚0.157\alpha\equiv\Omega_{b}/\Omega_{m}=0.157italic_α ≡ roman_Ω start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT / roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = 0.157. Therefore, Ωc=(1α)ΩmsubscriptΩc1𝛼subscriptΩ𝑚\Omega_{\rm c}=(1-\alpha)\Omega_{m}roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT = ( 1 - italic_α ) roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT and Ωb=αΩmsubscriptΩ𝑏𝛼subscriptΩ𝑚\Omega_{b}=\alpha\Omega_{m}roman_Ω start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT = italic_α roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT, and our final parameters are σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩ𝑚\Omega_{m}roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT and H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.

Before using the theoretical framework to constrain σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and H0 in the SDSS survey, it is important to check if the theoretical equations are accurate and have enough precision to recover the real values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and H0 from simulations with different values of the parameters. In order to do this, we use the halo simulation boxes that we have presented in Section 2.2, which have different values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT.

Refer to caption
Figure 5: In top panel the VPF in real space is shown for the theoretical framework (lines) and simulations (dots), while the ratio between simulations and theoretical framework is shown in bottom panels for the Uchuu, P18, Low and VeryLow box catalogs with number density n¯=3×103h3¯𝑛3superscript103superscript3\bar{n}=3\times 10^{-3}h^{-3}over¯ start_ARG italic_n end_ARG = 3 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3 . Shaded region in bottom panel indicates delimits the region between 0.9 and 1.10 for the ratio.

In the upper panel of Figure 5 the VPF values (multiplied by r10superscript𝑟10r^{10}italic_r start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT to differentiate more easily the values of each simulation for large radii) predicted by the theoretical framework (continuous lines) and obtained by simulations (points) for the four halo simulation boxes in real space are shown. The numerical values are presented in Table 7 in Appendix B. It can be seen that the dependence of the VPF predicted by the theoretical framework is the same as that shown by simulations, that is, the lower σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT is, the lower P0(r)subscript𝑃0𝑟P_{0}(r)italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ) is for each radius bin. In the bottom panel of the same Figure, the ratio between simulations and theoretical framework is shown. It can be checked that all values are within (or compatible with) 10%percent\%% of the ratio.

Refer to caption
Figure 6: In top panel the number density of voids larger than r𝑟ritalic_r in real space is shown for the theoretical framework (lines) and simulations (dots), while the ratio between simulations and theoretical framework is shown in bottom panels for the Uchuu, P18, Low and VeryLow box catalogs with number density n¯=3×103h3¯𝑛3superscript103superscript3\bar{n}=3\times 10^{-3}h^{-3}over¯ start_ARG italic_n end_ARG = 3 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3. Shaded region in bottom panel indicates delimits the region between 0.9 and 1.10 for the ratio.

In the upper panel of Figure 6 the values of the number density of voids larger than r𝑟ritalic_r predicted by the theoretical framework (continuous lines) and obtained by simulations (points) for the 4 halo simulation boxes in real space can be seen. In the bottom panel of the same Figure, the ratio between simulations and theoretical framework is shown. Again, the agreement between the theoretical framework and the simulation values is good, especially for r𝑟ritalic_r between 12 and 18 h1superscript1h^{-1}italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc.

It is important to note that the values of the VPF and nv(r)subscript𝑛𝑣𝑟n_{v}(r)italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) for the three small box catalogs (each with a different value of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT) are very similar for small values of r𝑟ritalic_r (r<13h1𝑟13superscript1r<13h^{-1}italic_r < 13 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc). The differences between the three simulations begin to become important for r>16h1𝑟16superscript1r>16h^{-1}italic_r > 16 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc, approximately. This is why these are the only voids we consider in order to constrain σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT in the next section.

The next step is to repeat this process in redshift space and compare with simulations in order to check if the theoretical framework still works in this space. This is done in Appendix B.2. In concrete, in Figures 15 and 16 the VPF and number density of voids larger than r𝑟ritalic_r in redshift space are shown for the four halo simulation boxes. The agreement is still good, so we can conclude that the theoretical framework works in redshift space, too.

Now, we can discuss the results obtained for SDSS survey and Uchuu-SDSS lightcones. In Figure 3 we have already shown the abundance of voids larger than r𝑟ritalic_r for SDSS and Uchuu-SDSS. The values given by the theoretical framework are shown in the same figure with a continuous black line. We can see that the agreement between the theoretical framework and Uchuu-SDSS is good for r>14h1𝑟14superscript1r>14h^{-1}italic_r > 14 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc.

Additionally, in Figure 4 we have already shown the VPF for SDSS and Uchuu-SDSS. The values given by the theoretical framework are shown in this Figure, too, with a continuous black line. We can see that the agreement between the theoretical framework and Uchuu-SDSS is quite good, and is compatible within 1σ1𝜎1\sigma1 italic_σ with SDSS values.

To sum up, we have checked in this section that the theoretical framework successfully predicts the void statistics studied in this work for the four halo simulation boxes and for Uchuu-SDSS lightcones, and it is compatible with SDSS survey statistics within 1σ1𝜎1\sigma1 italic_σ. Therefore, we are ready to constrain σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and H0 from the SDSS galaxy sample we have chosen.

5 Bayesian analysis for cosmological parameters inference

In order to infer σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and H0 from the number density of voids larger than r𝑟ritalic_r, we use a Bayesian analysis and Markov chain Monte Carlo (MCMC) technique in order to sample the posterior distribution of the considered parameter sets, ΘΘ\Thetaroman_Θ:

𝒫(Θ|𝒟)(𝒟|Θ)p(Θ)proportional-to𝒫conditionalΘ𝒟conditional𝒟Θ𝑝Θ\mathcal{P}(\Theta|\mathcal{D})\propto\mathcal{L}(\mathcal{D}|\Theta)p(\Theta)caligraphic_P ( roman_Θ | caligraphic_D ) ∝ caligraphic_L ( caligraphic_D | roman_Θ ) italic_p ( roman_Θ ) (13)

where p(Θ)𝑝Θp(\Theta)italic_p ( roman_Θ ) is the prior distribution, and (𝒟Θ)conditional𝒟Θ\mathcal{L}(\mathcal{D}\mid\Theta)caligraphic_L ( caligraphic_D ∣ roman_Θ ) is the likelihood, calculated as

(𝒟|Θ)=i=161σiexp((Nv,i(𝒟)N¯v,i(Θ))22σi2)conditional𝒟Θsuperscriptsubscriptproduct𝑖161subscript𝜎𝑖𝑒𝑥𝑝superscriptsubscript𝑁𝑣𝑖𝒟subscript¯𝑁𝑣𝑖Θ22superscriptsubscript𝜎𝑖2\mathcal{L}(\mathcal{D}|\Theta)=\prod_{i=1}^{6}\frac{1}{\sigma_{i}}exp\left(-% \frac{\left(N_{v,i}(\mathcal{D})-\bar{N}_{v,i}(\Theta)\right)^{2}}{2\sigma_{i}% ^{2}}\right)caligraphic_L ( caligraphic_D | roman_Θ ) = ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG italic_e italic_x italic_p ( - divide start_ARG ( italic_N start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT ( caligraphic_D ) - over¯ start_ARG italic_N end_ARG start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT ( roman_Θ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) (14)

where Nv,i(𝒟)subscript𝑁𝑣𝑖𝒟N_{v,i}(\mathcal{D})italic_N start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT ( caligraphic_D ) is the number of voids within i𝑖iitalic_ith bin from simulations or data, N¯i(Θ)subscript¯𝑁𝑖Θ\bar{N}_{i}(\Theta)over¯ start_ARG italic_N end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( roman_Θ ) is calculated from equation (2) subtracting the value in the (i+1)𝑖1(i+1)( italic_i + 1 )th bin (or r+Δr𝑟Δ𝑟r+\Delta ritalic_r + roman_Δ italic_r), and σisubscript𝜎𝑖\sigma_{i}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is the rms of N(ri)𝑁subscript𝑟𝑖N(r_{i})italic_N ( italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ):

σi=rms(N¯v,i(Θ))=N¯i(Θ)/Nrsubscript𝜎𝑖𝑟𝑚𝑠subscript¯𝑁𝑣𝑖Θsubscript¯𝑁𝑖Θsubscript𝑁𝑟\sigma_{i}=rms(\bar{N}_{v,i}(\Theta))=\sqrt{\bar{N}_{i}(\Theta)/N_{r}}italic_σ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_r italic_m italic_s ( over¯ start_ARG italic_N end_ARG start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT ( roman_Θ ) ) = square-root start_ARG over¯ start_ARG italic_N end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( roman_Θ ) / italic_N start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG (15)

where Nrsubscript𝑁𝑟N_{r}italic_N start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT represents the number of realizations for each simulation. For the simulation boxes and SDSS, Nrsubscript𝑁𝑟N_{r}italic_N start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT is equal to 1, indicating a single realization for each set of cosmological parameters and one SDSS survey. However, in the case of Uchuu-SDSS, Nrsubscript𝑁𝑟N_{r}italic_N start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT is 32, as we have 32 lightcones of this particular type.

In this work, we use voids larger than r=16h1𝑟16superscript1r=16h^{-1}italic_r = 16 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc to constrain the cosmological parameters of interest, so in equation (14) we consider the radius bins starting from r=16h1𝑟16superscript1r=16h^{-1}italic_r = 16 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc to r=21h1𝑟21superscript1r=21h^{-1}italic_r = 21 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc (i.e. 6 bins with width ΔrΔ𝑟\Delta rroman_Δ italic_r= 1h1superscript1h^{-1}italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc).

With equation (13) the best estimate of the parameters ΘΘ\Thetaroman_Θ may be obtained by maximising 𝒫(Θ|𝒟)𝒫conditionalΘ𝒟\mathcal{P}(\Theta|\mathcal{D})caligraphic_P ( roman_Θ | caligraphic_D ) with respect to the parameters ΘΘ\Thetaroman_Θ. In order to do this, we assign to all the parameters (σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and H0) wide enough priors (see first column of Table 4).

Voids-Only Voids+KiDS Voids+DES
σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT [0.5-1.4] [0.5-2.2] [0.5-2.5]
ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT [0.15-0.5] [0.15-0.686] [0.15-0.9]
H0 [40-140] [64-82] [55-91]
Table 4: Range of each parameter used in order to constrain these parameters considering only the void statistics developed in this work (first column), and in order to compare our confidence level contours with KiDS-1000, KiDS-1000+DESY3 (second column) and DESY3 (third column) in Figure 11.

Additionally, we may want to combine our results with other works. To do this, we multiply our likelihood by the likelihood of the work we want to combine our results with. In this work, we combine our results with Planck 2018 (Aghanim et al., 2020) and some Weak Lensing works, such as KiDS-1000 and DESY3 (Dark Energy Survey and Kilo-Degree Survey Collaboration et al., 2023). We use Cobaya (Torrado & Lewis, 2019, 2021) in order to run MCMC sampler for SDSS voids, so Planck’s likelihood can easily be combined with SDSS voids likelihood. However, the likelihoods of the weak lensing works used in this study are not incorporated in Cobaya, and CosmoSIS (Zuntz et al., 2015) must be used instead. However, CosmoSIS is very slow for our purpose, so we have used a brand new code called CombineHarvesterFlow 111https://github.com/pltaylor16/CombineHarvesterFlow which allows one to efficiently sample the joint posterior of two non-covariant experiments with a large set of nuisance parameters (Taylor et al., 2024). In concrete, CombineHarvesterFlow trains noralizing flows on posterior samples to learn the marginal density of the shared parameters. Then by weighting one chain by the density of the second flow, one can find joint constraints.

The confidence level contours in the plane σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-H0 (fixing ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT in each case to its real value, see Table 1) obtained for the four halo simulation boxes can be seen in the Appendix B. There, we can check that we recover the values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and H0 of the simulations within 1σ1𝜎1\sigma1 italic_σ (2σ2𝜎2\sigma2 italic_σ) in real (redshift) space. Therefore, we can infer these cosmological parameters in Uchuu-SDSS lightcones.

6 Assesing the potential of voids statistics to constrain cosmological parameters (using Uchuu-SDSS)

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 7: Confidence level contours in ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT-H0 (first row), σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-H0 (second row), σ8Ωmsubscript𝜎8subscriptΩm\sigma_{8}-\Omega_{\rm m}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT (third row) and σ8Γsubscript𝜎8Γ\sigma_{8}-\Gammaitalic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Γ (fourth row) planes obtained for Uchuu-SDSS lightcones using the Maximum Likelihood test with Bayesian approach with the theoretical framework developed in this work. For each plane, the value of the remaining parameter has been fixed to the value indicated in the box inside each subplot. The contours indicate the 68%percent\%% (1σ𝜎\sigmaitalic_σ) and 95%percent\%% (2σ𝜎\sigmaitalic_σ) confidence levels. The black star is the value from Planck 2015 (Planck Collaboration et al., 2016). The last row panels show a small dependence on ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT.

Before constraining any cosmological parameter, we will see how does the theoretical framework behave when we fix one of the three cosmological parameters on which the theoretical framework depends on and we let the other two parameters vary in a large range. We will do this for Uchuu-SDSS lightcones in order to check if the theoretical framework is able to recover successfully the cosmological parameters of Planck 2015 (Planck Collaboration et al., 2016), which are the real values of Uchuu-SDSS cosmological parameters.

In order to do this, we will plot the confidence level contours obtained as explained above in each of the three possible planes (σ8Ωmsubscript𝜎8subscriptΩ𝑚\sigma_{8}-\Omega_{m}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT, σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-H0 and ΩmsubscriptΩ𝑚\Omega_{m}roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT-H0) fixing the remaining parameter to three different constant values to check if the formalism is sensitive to this parameter.

Refer to caption
Figure 8: Confidence level contours in S8Ωmsubscript𝑆8subscriptΩmS_{8}-\Omega_{\rm m}italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT plane obtained for Uchuu-SDSS lightcones using the Maximum Likelihood test with Bayesian approach with the theoretical framework developed in this work. The value of H0 has been fixed at a value which is indicated in the box inside each subplot. The contours indicate the 68%percent\%% (1σ𝜎\sigmaitalic_σ) and 95%percent\%% (2σ𝜎\sigmaitalic_σ) confidence levels. The black star is the value from Planck 2015 (Planck Collaboration et al., 2016).

Figure 7 shows the contours of 68%percent\%% and 95%percent\%% confidence level in the planes σ8Ωmsubscript𝜎8subscriptΩm\sigma_{8}-\Omega_{\rm m}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT (first row), σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-H0 (second row) and ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT-H0 (third row) planes. For each plane, the value of the remaining parameter (H0, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT for first, second and third row, respectively) has been fixed at different values which are indicated in the boxes inside each subplot. It can be seen that Planck 2015 values are inside the 68%percent\%% confidence level region only when the remaining parameter is fixed to a value close to Planck 2015 parameter. For example, if we focus on σ8Ωmsubscript𝜎8subscriptΩm\sigma_{8}-\Omega_{\rm m}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT contour, we can see that the Planck values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT are not compatible with Uchuu-SDSS statistics predicted by our theoretical framework if H=00.6{}_{0}=0.6start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT = 0.6 or H=00.8{}_{0}=0.8start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT = 0.8, but it is compatible with these statistics if H=00.7{}_{0}=0.7start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT = 0.7, which is the closest value to the one of Planck 2015 (see Table 1). The same effect can be seen in the rest of the planes.

As we mentioned in Section 4, the theoretical framework mainly depends on σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and Γ=ΩchΓsubscriptΩc\Gamma=\Omega_{\rm c}hroman_Γ = roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT italic_h, although it also depends on ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, but this dependence is small. We can see this in the last row of Figure 7, where the contours obtained for σ8Γsubscript𝜎8Γ\sigma_{8}-\Gammaitalic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Γ plane are shown for different values of ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT which are indicated inside the box of each figure. It can be seen that the contours slightly displaces with different values of ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, but this displacement is not as noticeable as it is in σ8Ωmsubscript𝜎8subscriptΩm\sigma_{8}-\Omega_{\rm m}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-H0 planes. Therefore, we can conclude that the theoretical framework depends mainly on σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and Γ=ΩchΓsubscriptΩc\Gamma=\Omega_{\rm c}hroman_Γ = roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT italic_h parameters.

The last important the contour to study is the one obtained in S8Ωm{}_{8}-\Omega_{\rm m}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT plane. This contour is shown in Figure 8 for different values of H0. It can be seen that H=070{}_{0}=70start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT = 70 (which is the closest value to the real one of Uchuu simulations) is compatible with Uchuu-SDSS within 1σ𝜎\sigmaitalic_σ, but H=060{}_{0}=60start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT = 60 and H=080{}_{0}=80start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT = 80 are not.

The last step we can take in order to asses the potential of the theoretical framework to constrain cosmological parameters is inferring σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and H0 values. In order to do this, we use Cobaya and the priors indicated in the first column of Table 4. The inferred values of these cosmological parameters provided by Cobaya are: σ8=0.7820.183+0.166subscript𝜎8subscriptsuperscript0.7820.1660.183\sigma_{8}=0.782^{+0.166}_{-0.183}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.782 start_POSTSUPERSCRIPT + 0.166 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.183 end_POSTSUBSCRIPT, Ωm=0.3020.099+0.106subscriptΩmsubscriptsuperscript0.3020.1060.099\Omega_{\rm m}=0.302^{+0.106}_{-0.099}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.302 start_POSTSUPERSCRIPT + 0.106 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.099 end_POSTSUBSCRIPT, H=075.4223.29+25.94{}_{0}=75.42^{+25.94}_{-23.29}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT = 75.42 start_POSTSUPERSCRIPT + 25.94 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 23.29 end_POSTSUBSCRIPT, Γ=0.17690.0208+0.0228Γsubscriptsuperscript0.17690.02280.0208\Gamma=0.1769^{+0.0228}_{-0.0208}roman_Γ = 0.1769 start_POSTSUPERSCRIPT + 0.0228 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.0208 end_POSTSUBSCRIPT and S=80.7760.208+0.205{}_{8}=0.776^{+0.205}_{-0.208}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT = 0.776 start_POSTSUPERSCRIPT + 0.205 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.208 end_POSTSUBSCRIPT. Our uncertainties are very wide (in comparison of Planck’s uncertainties), specially the uncertainty of H0. With these wide uncertainties, we can check that our constrained values are compatible with Planck values within 1σ𝜎\sigmaitalic_σ.

The confidence level contours for Uchuu-SDSS can be seen in the right part of Figure 9. We can see that the 68%percent\%% confidence level contour closes for high values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT , although it doesn’t for low values as we haven’t explored regions with σ8<0.5subscript𝜎80.5\sigma_{8}<0.5italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT < 0.5 because, as mentioned before, many of the equations of the formalism are not valid for σ8<0.5subscript𝜎80.5\sigma_{8}<0.5italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT < 0.5.

Refer to caption
Refer to caption
Figure 9: Confidence level contours in ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT-H0, σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-H0 and σ8Ωmsubscript𝜎8subscriptΩm\sigma_{8}-\Omega_{\rm m}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT planes obtained for SDSS redshift survey (left) and Uchuu-SDSS lightcones (right) using the Maximum Likelihood test with Bayesian approach with the theoretical framework developed in this work. The contours indicate the 68%percent\%% (1σ𝜎\sigmaitalic_σ) and 95%percent\%% (2σ𝜎\sigmaitalic_σ) confidence levels.

7 Cosmological Constraints from SDSS survey

In this part of the work, we show the constraints obtained for SDSS redshift survey. Firstly, we show the constraints we obtain directly from the theoretical framework developed in this work. Next, we combine our results with Planck 2018 and, finally, we do it with Weak Lensing works such as KiDS-1000, DESY3 and the combination of both works, KiDS-1000+DESY3.

7.1 SDSS voids-only constraints

Refer to caption
Figure 10: Confidence level contours in σ8Γsubscript𝜎8Γ\sigma_{8}-\Gammaitalic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Γ plane obtained for Uchuu-SDSS voids and SDSS voids voids using the Maximum Likelihood test with Bayesian approach with the theoretical framework developed in this work. We also show the confidence level contour for Planck 2018. The contours indicate the 68%percent\%% (1σ𝜎\sigmaitalic_σ) and 95%percent\%% (2σ𝜎\sigmaitalic_σ) confidence levels.

The initial contour we examine lies within the plane showcasing the core parameters of our theoretical framework: the σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-ΓΓ\Gammaroman_Γ plane, as depicted in Figure 10. In this illustration, we have also included the confidence level contours for Uchuu-SDSS and Planck 2018. We can see that Planck’s contour is completely inside Uchuu-SDSS and SDSS voids contours, so we don’t except to get a big improvement in the constrained values of the parameters when combining. Therefore, in order not to waste computational resources, we have not made such a combination.

From Figure 10 it can be seen that the confidence level region for Planck 2018 is entirely encapsulated within the SDSS contour at the region of 2σ𝜎\sigmaitalic_σ, indicating that the constraints from both samples are statistically compatible in this limit.

In the left part of Figure 9 we can observe the confidence level contours obtained in the rest of the planes: ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT-H0, σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-H0 and σ8Ωmsubscript𝜎8subscriptΩm\sigma_{8}-\Omega_{\rm m}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT.

In the first column of Table 5 we can observe the constrained values directly obtained from our theoretical framework of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, H0, ΓΓ\Gammaroman_Γ and S8 for SDSS survey. From this Table, it can be seen that the uncertainties of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΓΓ\Gammaroman_Γ are much larger for SDSS than for Uchuu-SDSS because of the huge difference in the volumes between them. However, this is not the case for ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and H0. This is because σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΓΓ\Gammaroman_Γ are the fundamental parameters of the theoretical framework (and S8 depends strongly on σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT). With these large errors, our constraints from SDSS are compatible with Planck’s within 1σ𝜎\sigmaitalic_σ.

As we have already mentioned, we are not going to combine our results with Planck 2018, however we can show the behaviour of the theoretical framework for SDSS when two of the three cosmological parameters adopt a value close enough (or a range centered in the best-fit value of Planck 2018 and with an amplitude of 3σ𝜎\sigmaitalic_σ, for example) to Planck values. These constraints can be seen in the second column of Table 5. We can see that the uncertainties decrease considerably for all parameters but S8. However, any parameter obtained this way is compatible within 1σ1𝜎1\sigma1 italic_σ with Planck 2018. Nevertheless, it is important to remark the low mean values we get for ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and H0 the formalism predicts even if we restrict to an interval of 3σsuperscript𝜎\sigma^{\prime}italic_σ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPTs of Planck for the other two parameters.

SDSS voids SDSS voids (3σlimit-from𝜎\sigma-italic_σ -P) Planck
σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT 1.0280.305+0.273subscriptsuperscriptabsent0.2730.305{}^{+0.273}_{-0.305}start_FLOATSUPERSCRIPT + 0.273 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.305 end_POSTSUBSCRIPT 1.0030.125+0.118subscriptsuperscriptabsent0.1180.125{}^{+0.118}_{-0.125}start_FLOATSUPERSCRIPT + 0.118 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.125 end_POSTSUBSCRIPT 0.8111±plus-or-minus\pm±0.0060
ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT 0.2960.102+0.110subscriptsuperscriptabsent0.1100.102{}^{+0.110}_{-0.102}start_FLOATSUPERSCRIPT + 0.110 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.102 end_POSTSUBSCRIPT 0.2650.033+0.033subscriptsuperscriptabsent0.0330.033{}^{+0.033}_{-0.033}start_FLOATSUPERSCRIPT + 0.033 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.033 end_POSTSUBSCRIPT 0.3153±plus-or-minus\pm±0.0073
H0 83.4327.70+29.27subscriptsuperscriptabsent29.2727.70{}^{+29.27}_{-27.70}start_FLOATSUPERSCRIPT + 29.27 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 27.70 end_POSTSUBSCRIPT 58.866.95+7.34subscriptsuperscriptabsent7.346.95{}^{+7.34}_{-6.95}start_FLOATSUPERSCRIPT + 7.34 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 6.95 end_POSTSUBSCRIPT 67.36±plus-or-minus\pm±0.54
ΓΓ\Gammaroman_Γ 0.19470.0516+0.0578subscriptsuperscriptabsent0.05780.0516{}^{+0.0578}_{-0.0516}start_FLOATSUPERSCRIPT + 0.0578 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.0516 end_POSTSUBSCRIPT 0.15240.016+0.017subscriptsuperscriptabsent0.0170.016{}^{+0.017}_{-0.016}start_FLOATSUPERSCRIPT + 0.017 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.016 end_POSTSUBSCRIPT 0.1772±plus-or-minus\pm±0.0027
S8 1.0170.359+0.363subscriptsuperscriptabsent0.3630.359{}^{+0.363}_{-0.359}start_FLOATSUPERSCRIPT + 0.363 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.359 end_POSTSUBSCRIPT 1.0610.415+0.406subscriptsuperscriptabsent0.4060.415{}^{+0.406}_{-0.415}start_FLOATSUPERSCRIPT + 0.406 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.415 end_POSTSUBSCRIPT 0.832±plus-or-minus\pm±0.013
Table 5: Constraints of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, H0 (in units of kms-1Mpc-1), S=8σ8Ωm/0.3{}_{8}=\sigma_{8}\sqrt{\Omega_{\rm m}/0.3}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT = italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT square-root start_ARG roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT / 0.3 end_ARG and Γ=ΩchΓsubscriptΩc\Gamma=\Omega_{\rm c}hroman_Γ = roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT italic_h for SDSS voids (first column), SDSS voids considering uniform priors centered in Planck 2018 best-fit values and with an amplitude of 3σ𝜎\sigmaitalic_σ the 68%percent\%% given by Planck 2018 (second column) and Planck 2018 best-fit values (Aghanim et al., 2020) (third column), with errors calculated as the 68%percent\%% uncertainties.

7.2 SDSS voids + Weak Lensing

SDSS voids KiDS-1000 DESY3 SDSS+KiDS SDSS+DESY3 SDSS+KiDS+DESY3 Planck
σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT 1.0280.305+0.273subscriptsuperscriptabsent0.2730.305{}^{+0.273}_{-0.305}start_FLOATSUPERSCRIPT + 0.273 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.305 end_POSTSUBSCRIPT 0.8330.146+0.133subscriptsuperscriptabsent0.1330.146{}^{+0.133}_{-0.146}start_FLOATSUPERSCRIPT + 0.133 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.146 end_POSTSUBSCRIPT 0.8160.065+0.076subscriptsuperscriptabsent0.0760.065{}^{+0.076}_{-0.065}start_FLOATSUPERSCRIPT + 0.076 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.065 end_POSTSUBSCRIPT 0.8590.051+0.050subscriptsuperscriptabsent0.0500.051{}^{+0.050}_{-0.051}start_FLOATSUPERSCRIPT + 0.050 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.051 end_POSTSUBSCRIPT 0.8810.047+0.049subscriptsuperscriptabsent0.0490.047{}^{+0.049}_{-0.047}start_FLOATSUPERSCRIPT + 0.049 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.047 end_POSTSUBSCRIPT 0.8580.040+0.040subscriptsuperscriptabsent0.0400.040{}^{+0.040}_{-0.040}start_FLOATSUPERSCRIPT + 0.040 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.040 end_POSTSUBSCRIPT 0.8111±plus-or-minus\pm±0.0060
ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT 0.2960.102+0.110subscriptsuperscriptabsent0.1100.102{}^{+0.110}_{-0.102}start_FLOATSUPERSCRIPT + 0.110 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.102 end_POSTSUBSCRIPT 0.2700.102+0.056subscriptsuperscriptabsent0.0560.102{}^{+0.056}_{-0.102}start_FLOATSUPERSCRIPT + 0.056 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.102 end_POSTSUBSCRIPT 0.2970.060+0.040subscriptsuperscriptabsent0.0400.060{}^{+0.040}_{-0.060}start_FLOATSUPERSCRIPT + 0.040 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.060 end_POSTSUBSCRIPT 0.2470.026+0.027subscriptsuperscriptabsent0.0270.026{}^{+0.027}_{-0.026}start_FLOATSUPERSCRIPT + 0.027 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.026 end_POSTSUBSCRIPT 0.2560.023+0.024subscriptsuperscriptabsent0.0240.023{}^{+0.024}_{-0.023}start_FLOATSUPERSCRIPT + 0.024 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.023 end_POSTSUBSCRIPT 0.2570.020+0.023subscriptsuperscriptabsent0.0230.020{}^{+0.023}_{-0.020}start_FLOATSUPERSCRIPT + 0.023 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.020 end_POSTSUBSCRIPT 0.3153±plus-or-minus\pm±0.0073
H0 83.4327.70+29.27subscriptsuperscriptabsent29.2727.70{}^{+29.27}_{-27.70}start_FLOATSUPERSCRIPT + 29.27 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 27.70 end_POSTSUBSCRIPT 75.422.13+1.70subscriptsuperscriptabsent1.702.13{}^{+1.70}_{-2.13}start_FLOATSUPERSCRIPT + 1.70 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 2.13 end_POSTSUBSCRIPT 73.83±plus-or-minus\pm±4.98 74.205.18+5.05subscriptsuperscriptabsent5.055.18{}^{+5.05}_{-5.18}start_FLOATSUPERSCRIPT + 5.05 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 5.18 end_POSTSUBSCRIPT 74.725.56+5.36subscriptsuperscriptabsent5.365.56{}^{+5.36}_{-5.56}start_FLOATSUPERSCRIPT + 5.36 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 5.56 end_POSTSUBSCRIPT 74.174.66+4.66subscriptsuperscriptabsent4.664.66{}^{+4.66}_{-4.66}start_FLOATSUPERSCRIPT + 4.66 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 4.66 end_POSTSUBSCRIPT 67.36±plus-or-minus\pm±0.54
S8 1.0170.359+0.363subscriptsuperscriptabsent0.3630.359{}^{+0.363}_{-0.359}start_FLOATSUPERSCRIPT + 0.363 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.359 end_POSTSUBSCRIPT 0.7640.023+0.031subscriptsuperscriptabsent0.0310.023{}^{+0.031}_{-0.023}start_FLOATSUPERSCRIPT + 0.031 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.023 end_POSTSUBSCRIPT 0.8020.019+0.023subscriptsuperscriptabsent0.0230.019{}^{+0.023}_{-0.019}start_FLOATSUPERSCRIPT + 0.023 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.019 end_POSTSUBSCRIPT 0.7750.019+0.020subscriptsuperscriptabsent0.0200.019{}^{+0.020}_{-0.019}start_FLOATSUPERSCRIPT + 0.020 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.019 end_POSTSUBSCRIPT 0.8110.017+0.019subscriptsuperscriptabsent0.0190.017{}^{+0.019}_{-0.017}start_FLOATSUPERSCRIPT + 0.019 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.017 end_POSTSUBSCRIPT 0.7940.016+0.016subscriptsuperscriptabsent0.0160.016{}^{+0.016}_{-0.016}start_FLOATSUPERSCRIPT + 0.016 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.016 end_POSTSUBSCRIPT 0.832±plus-or-minus\pm±0.013
Table 6: Constraints of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, H0 (in units of kms-1Mpc-1) and S=8σ8Ωm/0.3{}_{8}=\sigma_{8}\sqrt{\Omega_{\rm m}/0.3}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT = italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT square-root start_ARG roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT / 0.3 end_ARG for SDSS voids (first column), KiDS-1000 (second column), DESY3 (third column) (Dark Energy Survey and Kilo-Degree Survey Collaboration et al., 2023), SDSS voids+KiDS-1000 (fourth column), SDSS+DESY3 (fifth column), SDSS+KiDS-1000+DESY3 (sixth column) and Planck 2018 (Aghanim et al., 2020) (last column), with errors calculated as the 68%percent\%% uncertainties.

Finally, we can combine our results with KiDS-1000 and DESY3. These results are presented in Dark Energy Survey and Kilo-Degree Survey Collaboration et al. (2023).

When combining our results with other studies, such as those mentioned above, caution must be taken, as the same range for all the parameters must be considered if we want to visually compare the confidence level contours obtained in each case and combine the chains using CombineHarvesterFlow. This allow us to make a fair comparison of our confidence level contours with those of Weak Lensing. However, as we have seen previously, the theoretical framework used in this work depends on the parameters sigma8, omegamatter, and H0. In Weak Lensing studies, As (DESY3) or S8 (KiDS and KiDS-1000+DESY3) are sampled instead of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, and ωcsubscript𝜔𝑐\omega_{c}italic_ω start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT and ωbsubscript𝜔𝑏\omega_{b}italic_ω start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT instead of ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT (KiDS and KiDS-1000+DESY3). Therefore, what we have done is to determine which priors on σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT correspond to the aforementioned priors, ensuring compatibility across these parameters. Nevertheless, it’s important to consider a significant limitation: our formalism is not valid for σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT values less than 0.5, as mentioned earlier, nor for ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT values less than 0.15. Thus, we have added this additional condition in the priors. This may slightly affect the process of combining chains using CombineHarvesterFlow, but, as we will see later, the effect will be very small because of the relative orientation and size of SDSS voids and Weak Lensing confidence level contours.

The ranges we have used for our chains when combining with KiDS-1000 and DESY3 can be seen in the second and third columns, respectively, of Table 4. We can see that the range of H0 used in these works is very narrow.

The confidence level contour in the plane σ8Ωmsubscript𝜎8subscriptΩm\sigma_{8}-\Omega_{\rm m}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT using these ranges can be seen in Figure 11. In this Figure, the confidence level contour for SDSS voids with the same ranges as the different weak lensing works considered are shown, as well as each weak lensing work confidence level contour and the combination of SDSS voids with these three contours. We can see that SDSS voids contour is almost orthogonal to the three Weak Lensing contours (as expected, see Contarini et al. (2023) for more details), so we can anticipate that our constrained values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT will have smaller uncertainties than the values of the original work.

The best-fit values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, H0 and S8 obtained from SDSS voids, KiDS-1000 and DESY3 can be seen in the first three columns of the Table 6. The combination of SDSS voids with KiDS-1000, DESY3 and KiDS-1000+DESY3 can be seen in the fourth, fifth and sixth columns, respectively, of the same Table.222It is important to remark that CombineHarvesterFlow gives the inferred parameters obtained from the combination for two chains in two different ways: weighting SDSS voids chains or weighting Weak Lensing chains. The results we have presented correspond to weighting SDSS void chains, but we have checked that weighting Weak Lensing chains we obtain compatible results. We can see that the effect of combining these three Weak Lensing works with SDSS voids is increasing the value of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, as the best-fit value of SDSS voids is very high, which means implies a decrease in the best-fit value of ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT (from Figure 11 we can see that the three Weak Lensing works predicts a strong correlation between σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, and that if one increases, the other decreases. This correlation is kept also when combining Weak Lensing works with SDSS voids).

We can also see from table 6 that there is an increase in the uncertainties of H0 when combining Weak Lensing with SDSS voids, which is caused by our huge uncertainties in this parameter. However, the uncertainties of the rest of the parameters are decreased by a factor 2-3, approximately, with respect to the original errors of each Weak Lensing work.

As a final remark, we can see from table 6 that any value of H0 or ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT obtained when combining SDSS voids with the three Weak Lensing works are compatible with Planck 2018 within 1σ𝜎\sigmaitalic_σ (for ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, they are within 2.3σ𝜎\sigmaitalic_σ, approximately). We can also see that S8 value from SDSS voids + DESY3 is compatible with Planck 2018 within 1σ𝜎\sigmaitalic_σ, but SDSS voids + KiDS-1000 and SDSS voids + KiDS-1000+DESY3 aren’t (they are compatible with Planck 2018 considering the uncertainty as 1.8σ𝜎\sigmaitalic_σ and 1.6σ𝜎\sigmaitalic_σ, respectively).

Refer to caption
Refer to caption
Refer to caption
Figure 11: In the left, middle and right panels we have presented KiDS-1000, DESY3 and KiDS-1000+DESY3 contours, respectively, with SDSS voids contours in the plane σ8Ωmsubscript𝜎8subscriptΩm\sigma_{8}-\Omega_{\rm m}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT using the same parameter ranges in order to make a fair comparison, and the combination of SDSS voids with each weak lensing work. In table 4 the parameter ranges of each work are indicated.

8 Comparison with other works about voids

In this part of the work we compare our constraints in σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, H0 and S=8σ8Ωm/0.3{}_{8}=\sigma_{8}\sqrt{\Omega_{\rm m}/0.3}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT = italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT square-root start_ARG roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT / 0.3 end_ARG with those obtained in other works that also use voids statistics to constrain these same parameters.

The first work we can compare our results with is Contarini et al. (2024), where the values of S8 and H0 are constrained using the void size function (abundance of voids with radius r𝑟ritalic_r) predicted by the excursion set theoretical framework (Press & Schechter, 1974; Sheth & Van De Weygaert, 2004) by means of an extension of the popular volume-conserving model (Vdn model, Jennings et al., 2013). The constraints they obtain combining the voids counts with the void shapes (Hamaus et al., 2020) are σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT=0.8090.068+0.072subscriptsuperscriptabsent0.0720.068{}^{+0.072}_{-0.068}start_FLOATSUPERSCRIPT + 0.072 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.068 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT=0.3080.018+0.021subscriptsuperscriptabsent0.0210.018{}^{+0.021}_{-0.018}start_FLOATSUPERSCRIPT + 0.021 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.018 end_POSTSUBSCRIPT, H0=67.39.1+10.0subscriptsuperscriptabsent10.09.1{}^{+10.0}_{-9.1}start_FLOATSUPERSCRIPT + 10.0 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 9.1 end_POSTSUBSCRIPT and S8=0.8130.068+0.093subscriptsuperscriptabsent0.0930.068{}^{+0.093}_{-0.068}start_FLOATSUPERSCRIPT + 0.093 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.068 end_POSTSUBSCRIPT. The redshift survey they use in order to constrain these cosmological parameters is BOSS DR12 (Dawson et al., 2013). In concrete, they use LOWZ and CMASS target selections, and divide the catalogs into two redshift bins: 0.2<z0.450.2𝑧0.450.2<z\leq 0.450.2 < italic_z ≤ 0.45 and 0.45<z<0.650.45𝑧0.650.45<z<0.650.45 < italic_z < 0.65. This sample has a physical volume approximately 60 times larger than the volume of the sample used in this work (according to Reid et al. (2015) the volume of CMASS is 5.1Gpc3 and the one of LOWZ is 2.3Gpc3, which translates into a total volume of 2.3×\times×109 h3superscript3h^{-3}italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3). If we take into account that errors (using only void statistics, without combining with Weak Lensing or other works) scales as V1/4superscript𝑉14V^{-1/4}italic_V start_POSTSUPERSCRIPT - 1 / 4 end_POSTSUPERSCRIPT with volume (see appendix C), we can calculate how much errors would decrease if we would use a redshift survey like BOSS DR12 with our theoretical framework: 601/40.36similar-tosuperscript60140.3660^{-1/4}\sim 0.3660 start_POSTSUPERSCRIPT - 1 / 4 end_POSTSUPERSCRIPT ∼ 0.36, i.e. our errors (calculated as 68%percent\%% uncertainties) would decrease approximately 3 times, so we would have similar constraints with our theoretical framework (without combining with any other work) than with Vdn model+Void Shapes if we used a sample with BOSS DR12 volume.

The other work we can compare our results with is Sahlén et al. (2016). In this work, galaxy cluster and void abundances are combined using extreme-value statistics on a large cluster and a void aligned with the Cold Spot (CS) in the CMB (CS void) (Finelli et al., 2016). This way they obtain a value of σ8=0.95±0.21subscript𝜎8plus-or-minus0.950.21\sigma_{8}=0.95\pm 0.21italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.95 ± 0.21 for a flat ΛCDMΛ𝐶𝐷𝑀\Lambda CDMroman_Λ italic_C italic_D italic_M universe. This constraint is also compatible with CMB value as well as Weak Lensing values.

Refer to caption
Refer to caption
Figure 12: Comparison between recent constraints on the parameters σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT (left panel) and H0 (right panel) from different cosmological probes. The error bars represent 68%percent\%% confidence intervals. The black error bars represent the values constrained in this work. The references of the rest of the works, from top to bottom in left panel are: Dark Energy Survey and Kilo-Degree Survey Collaboration et al. (2023), Heymans, Catherine et al. (2021) and Aghanim et al. (2020), and for the right panel: Freedman et al. (2020), Riess et al. (2022), Brout et al. (2022a, b) and Aghanim et al. (2020).
Refer to caption
Figure 13: Comparison between recent constraints on S8 from different cosmological probes. The error bars represent 68%percent\%% confidence intervals. The black error bars represent the values constrained in this work. The references of the rest of the works, from top to bottom are: Dark Energy Survey and Kilo-Degree Survey Collaboration et al. (2023), Li et al. (2023), and Aghanim et al. (2020).

9 Summary

In this work, we have made use of the theoretical framework developed in Betancort-Rijo et al. (2009) and recalibrated the expression for the number density of voids larger than r𝑟ritalic_r (see equation (2)) using the Uchuu halo simulation box with a number density of haloes equal to 3×103h33superscript103superscript33\times 10^{-3}h^{-3}3 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3, which has a larger volume than the simulation used in the aforementioned work (V=20003h3𝑉superscript20003superscript3V=2000^{3}h^{-3}italic_V = 2000 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3). The most important results obtained in this work are the following:

  • we have proved that the number density of voids larger than r𝑟ritalic_r and the Void Probability Function (VPF, i.e., the probability that a randomly placed sphere with radius r𝑟ritalic_r is empty of galaxies or haloes) of SDSS galaxies with Mr<20.5subscript𝑀𝑟20.5M_{r}<-20.5italic_M start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT < - 20.5 (where Mrsubscript𝑀𝑟M_{r}italic_M start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT is the absolute magnitude in rlimit-from𝑟r-italic_r -band), zmin=0.02subscript𝑧𝑚𝑖𝑛0.02z_{min}=0.02italic_z start_POSTSUBSCRIPT italic_m italic_i italic_n end_POSTSUBSCRIPT = 0.02 and zmax=0.132subscript𝑧𝑚𝑎𝑥0.132z_{max}=0.132italic_z start_POSTSUBSCRIPT italic_m italic_a italic_x end_POSTSUBSCRIPT = 0.132, and Uchuu-SDSS galaxies with the same characteristics, are compatible within 1σ1𝜎1\sigma1 italic_σ,

  • we have demonstrated that our theoretical framework predicts successfully the Void Probability Function and the abundance of large voids for the four halo simulation boxes with different values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT (σ8={0.8159,0.8102,0.75,0.65}subscript𝜎80.81590.81020.750.65\sigma_{8}=\{0.8159,0.8102,0.75,0.65\}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = { 0.8159 , 0.8102 , 0.75 , 0.65 }) and Uchuu-SDSS lightcones used in this work, again within 1σ1𝜎1\sigma1 italic_σ,

  • we have used a bayesian analysis for all halo simulation boxes and we have calculated the contours for 68%percent\%% (1σ1𝜎1\sigma1 italic_σ) and 95%percent\%% (2σ2𝜎2\sigma2 italic_σ) confidence levels in σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-H0 plane (fixing ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT in each case to its real value, see Table 1), and proved that we recover the real values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and H0 of each halo simulation box within 1σ1𝜎1\sigma1 italic_σ in real space, and 2σ2𝜎2\sigma2 italic_σ in redshift space,

  • supposing that the ratio of Ωb/ΩmsubscriptΩ𝑏subscriptΩm\Omega_{b}/\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT / roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT is constant and given by Planck 2018, we have studied, how much Uchuu-SDSS contours change in each plane mentioned above if we fix the values of the remaining parameter to three sufficiently different values. We have seen that these contours are very sensitive to these changes, so if we considered a survey with the same volume as Uchuu-SDSS we could constrain with high precision each parameter.

  • we have also shown that the dependency of the theoretical framework on ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT is small and that the main dependence of is through Γ=ΩchΓsubscriptΩc\Gamma=\Omega_{\rm c}hroman_Γ = roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT italic_h and σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT. We have don this studying how does the contour change in the plane σ8Γsubscript𝜎8Γ\sigma_{8}-\Gammaitalic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Γ if we fix ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT to three different values, and we have seen that the contour does not change much.

  • we have checked that using MCMC sampler from Cobaya, we successfully recover the values of these parameters for Uchuu-SDSS lightcones. The recovered values are σ8=0.7820.183+0.166subscript𝜎8subscriptsuperscript0.7820.1660.183\sigma_{8}=0.782^{+0.166}_{-0.183}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.782 start_POSTSUPERSCRIPT + 0.166 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.183 end_POSTSUBSCRIPT, Ωm=0.3020.099+0.106subscriptΩmsubscriptsuperscript0.3020.1060.099\Omega_{\rm m}=0.302^{+0.106}_{-0.099}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.302 start_POSTSUPERSCRIPT + 0.106 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.099 end_POSTSUBSCRIPT, H=075.4223.29+25.94{}_{0}=75.42^{+25.94}_{-23.29}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT = 75.42 start_POSTSUPERSCRIPT + 25.94 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 23.29 end_POSTSUBSCRIPT, Γ=0.17690.0208+0.0228Γsubscriptsuperscript0.17690.02280.0208\Gamma=0.1769^{+0.0228}_{-0.0208}roman_Γ = 0.1769 start_POSTSUPERSCRIPT + 0.0228 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.0208 end_POSTSUBSCRIPT and S=80.7760.208+0.205{}_{8}=0.776^{+0.205}_{-0.208}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT = 0.776 start_POSTSUPERSCRIPT + 0.205 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.208 end_POSTSUBSCRIPT.

  • We have calculated, then, the contours in σ8Ωmsubscript𝜎8subscriptΩm\sigma_{8}-\Omega_{\rm m}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-H0 and H0Ωm{}_{0}-\Omega_{\rm m}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT planes for the same confidence levels as mentioned above for SDSS void statistics. The contours obtained for SDSS are much wider than the ones obtained for halo simulation boxes (and Uchuu-SDSS lightcones) because of the huge difference of volume (SDSS volume is approximately 25 times smaller than the three small simulation boxes and 200 times smaller than Uchuu box volume), which means that there are far fewer voids in SDSS than in the boxes and much higher errors. The constrained values we get in this work for SDSS are σ8=1.0280.305+0.273subscript𝜎8subscriptsuperscript1.0280.2730.305\sigma_{8}=1.028^{+0.273}_{-0.305}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 1.028 start_POSTSUPERSCRIPT + 0.273 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.305 end_POSTSUBSCRIPT, Ωm=0.2960.102+0.110subscriptΩmsubscriptsuperscript0.2960.1100.102\Omega_{\rm m}=0.296^{+0.110}_{-0.102}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.296 start_POSTSUPERSCRIPT + 0.110 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.102 end_POSTSUBSCRIPT, H=083.43±27.20+29.27{}_{0}=83.43\pm^{+29.27}_{-27.20}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT = 83.43 ± start_POSTSUPERSCRIPT + 29.27 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 27.20 end_POSTSUBSCRIPT, Γ=0.19470.0516+0.0578Γsubscriptsuperscript0.19470.05780.0516\Gamma=0.1947^{+0.0578}_{-0.0516}roman_Γ = 0.1947 start_POSTSUPERSCRIPT + 0.0578 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.0516 end_POSTSUBSCRIPT and S8=1.0170.359+0.363subscriptsuperscriptabsent0.3630.359{}^{+0.363}_{-0.359}start_FLOATSUPERSCRIPT + 0.363 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.359 end_POSTSUBSCRIPT. It is important to remark that these constrained values have been obtained supposing that the ratio of Ωb/ΩmsubscriptΩ𝑏subscriptΩm\Omega_{b}/\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT / roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT is constant and given by Planck 2018,

  • Next, we have combined our SDSS voids constraints with KiDS-1000, DESY3 and KiDS-1000+DESY3 (Dark Energy Survey and Kilo-Degree Survey Collaboration et al., 2023). The results obtained when combining SDSS voids with KiDS-1000+DESY3 are: σ8=0.8580.040+0.040subscript𝜎8subscriptsuperscript0.8580.0400.040\sigma_{8}=0.858^{+0.040}_{-0.040}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.858 start_POSTSUPERSCRIPT + 0.040 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.040 end_POSTSUBSCRIPT, Ωm=0.257±0.020+0.023subscriptΩmlimit-from0.257subscriptsuperscriptplus-or-minus0.0230.020\Omega_{\rm m}=0.257\pm^{+0.023}_{-0.020}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 0.257 ± start_POSTSUPERSCRIPT + 0.023 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.020 end_POSTSUBSCRIPT, H=074.174.66+4.66{}_{0}=74.17^{+4.66}_{-4.66}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT = 74.17 start_POSTSUPERSCRIPT + 4.66 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 4.66 end_POSTSUBSCRIPT and S8=0.7940.016+0.016subscriptsuperscriptabsent0.0160.016{}^{+0.016}_{-0.016}start_FLOATSUPERSCRIPT + 0.016 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.016 end_POSTSUBSCRIPT. We can see that when we combine our results with Weak Lensing works, we improve considerably the uncertainties of all the parameters, but H0 with respect to the uncertainties of only KiDs-1000+DESY3. This is because the confidence level contours in the plane σ8Ωmsubscript𝜎8subscriptΩm\sigma_{8}-\Omega_{\rm m}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT obtained in this work and the one from KiDS-1000 are almost orthogonal.

  • We have seen that any value of H0 or ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT obtained when combining SDSS voids with the three Weak Lensing works are comaptibel with Planck 2018 within 1σ𝜎\sigmaitalic_σ (for ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, they are within 2σ𝜎\sigmaitalic_σ, approximately). We have also seen that S8 value from SDSS voids + DESY3 is compatibel with Planck within 1σ𝜎\sigmaitalic_σ, but SDSS voids + KiDS-1000 and SDSS voids + KiDS-1000 + DESY3 aren’t (the former is compatible within 2.7σ𝜎\sigmaitalic_σ and the latter within 2σ𝜎\sigmaitalic_σ).

  • Finally, we have compared our results with those obtained in other works where voids are also used in order to constrain the same cosmological parameters that we have constrained in this work, and with parameter constrained via CMB, galaxy clustering, weak lensing and Type Ia Supernova measures. We can check that when combining with Weak Lensing works, we obtain slightly smaller uncertainties than in other works where voids are also used, and when combining with Planck, we obtain much smaller uncertainties. However, if we don’t combine our results with any work, our uncertainties are very large because the volume of the samples of Uchuu-SDSS and SDSS used in this work is relatively small in comparison of the volumes of redshift surveys used in other works of voids. For example, in Contarini et al. (2024) BOSS redshift survey is used. If we used this redshift survey, we have predicted that our uncertainties without combining with any work would be very similar to the ones given in Contarini et al. (2024).

Therefore, the most important limitation we face when constraining the cosmological parameters considered in this study is the small volume of the redshift survey sample we have used, which is approximately 40×106h3similar-toabsent40superscript106superscript3\sim 40\times 10^{6}h^{-3}∼ 40 × 10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3. This limitation is expected to be significantly reduced when the Dark Energy Spectroscopic Instrument (DESI) experiment (DESI Collaboration et al., 2016a, b) is fully available. During its 5 years of operations, DESI will conduct the Bright Galaxy Survey (BGS) of more than 10 million galaxies over the redshift range 0<z<0.60𝑧0.60<z<0.60 < italic_z < 0.6, along with a dark-time redshift survey of 20 million luminous red galaxies (LRGs), emission-line galaxies (ELGs), and quasars (Hahn et al., 2023). With an expected footprint of 14000 deg2𝑑𝑒superscript𝑔2deg^{2}italic_d italic_e italic_g start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and a longer redshift baseline, DESI will achieve a precision 1–2 orders of magnitude better than that of existing surveys, such as SDSS, BOSS.

In fact, we can estimate how much the errors, considering only void statistics, can decrease with DESI Y1 calculating ratio between the volumes of SDSS and DESI (see Appendix C):

Δ(VSDSSVBGS,Y1)1/4(40×106h3Mpc31.2×109h3Mpc3)1/40.43Δsuperscriptsubscript𝑉𝑆𝐷𝑆𝑆subscript𝑉𝐵𝐺𝑆𝑌114similar-tosuperscript40superscript106superscript3superscriptMpc31.2superscript109superscript3superscriptMpc314similar-to0.43\Delta\approx\left(\frac{V_{SDSS}}{V_{BGS,Y1}}\right)^{1/4}\sim\left(\frac{40% \times 10^{6}h^{-3}{\rm Mpc}^{3}}{1.2\times 10^{9}h^{-3}{\rm Mpc}^{3}}\right)^% {1/4}\sim 0.43roman_Δ ≈ ( divide start_ARG italic_V start_POSTSUBSCRIPT italic_S italic_D italic_S italic_S end_POSTSUBSCRIPT end_ARG start_ARG italic_V start_POSTSUBSCRIPT italic_B italic_G italic_S , italic_Y 1 end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT ∼ ( divide start_ARG 40 × 10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT roman_Mpc start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 1.2 × 10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT roman_Mpc start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT ∼ 0.43 (16)

In other words, the uncertainties obtained with the Bright Galaxy Survey from DESI Y1 will be approximately a factor 2 lower than those obtained in this work with the SDSS sample used, and even lower when the full DESI survey is complete. If we additionally combine with other works, then decrease of errors would be larger when increasing the volume of the sample of galaxies used.

Acknowledgements.
E. Fernández-García acknowledges financial support from the Severo Ochoa grant CEX2021-001131-S funded by MCIN/AEI/ 10.13039/501100011033. EFG, FP and AK thanks support from the Spanish MICINN PID2021-126086NB-I00 funding grant. T.I has been supported by IAAR Research Support Program in Chiba University Japan, MEXT/JSPS KAKENHI (Grant Number JP19KK0344, JP21H01122, and JP23H04002), MEXT as “Program for Promoting Researches on the Supercomputer Fugaku” (JPMXP1020200109 and JPMXP1020230406), and JICFuS. We thank Instituto de Astrofisica de Andalucia (IAA-CSIC), Centro de Supercomputacion de Galicia (CESGA) and the Spanish academic and research network (RedIRIS) in Spain for hosting Uchuu DR1, DR2 and DR3 in the Skies &\&& Universes site for cosmological simulations. The Uchuu simulations were carried out on Aterui II supercomputer at Center for Computational Astrophysics, CfCA, of National Astronomical Observatory of Japan, and the K computer at the RIKEN Advanced Institute for Computational Science. The Uchuu Data Releases efforts have made use of the skun@@@@IAA__\__RedIRIS and skun6@@@@IAA computer facilities managed by the IAA-CSIC in Spain (MICINN EU-Feder grant EQC2018-004366-P). The other cosmological simulations were carried out on the supercomputer Fugaku provided by the RIKEN Center for Computational Science (Project ID: hp220173, hp230173, and hp230204). We also thank Joe Zuntz and Anna Porredon for their feedback on our cosmological results. Finally, we are thankful to Peter Taylor for instructing us on the the use of CombineHarvesterFlow, for verifying our results and for giving us feedback on the paper.

Data Availability

The Uchuu halo and galaxy boxes and the 4 box catalogs at redshift z=0.092, as well as the 32 Uchuu-SDSS galaxy light cones, the SDSS catalogue and the void catalogues from all the previous galaxy and haloes catalogues used in this work are available at: http://www.skiesanduniverses.org/Simulations/Uchuu/, together with information on how to read the data and column description. For a list and brief description of the available halo, Uchuu-SDSS and SDSS void catalogues columns, see Appendix E.

References

  • Abazajian et al. (2009) Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543
  • Achitouv (2019) Achitouv, I. 2019, Physical Review D, 100
  • Aghanim et al. (2020) Aghanim, N., Akrami, Y., Ashdown, M., et al. 2020, A&A, 641, A6
  • Aikio & Mähönen (1998) Aikio, J. & Mähönen, P. 1998, ApJ, 497, 534
  • Aubert et al. (2022) Aubert, M., Cousinou, M.-C., Escoffier, S., et al. 2022, MNRAS, 513, 186
  • Aung et al. (2023) Aung, H., Nagai, D., Klypin, A., et al. 2023, MNRAS, 519, 1648
  • Bahcall (1977) Bahcall, N. A. 1977, ARA&A, 15, 505
  • Behroozi et al. (2013a) Behroozi, P. S., Wechsler, R. H., & Wu, H.-Y. 2013a, ApJ, 762, 109
  • Behroozi et al. (2013b) Behroozi, P. S., Wechsler, R. H., Wu, H.-Y., et al. 2013b, ApJ, 763, 18
  • Benson et al. (2003) Benson, A. J., Hoyle, F., Torres, F., & Vogeley, M. S. 2003, MNRAS, 340, 160
  • Betancort-Rijo (1990) Betancort-Rijo, J. 1990, MNRAS, 246, 608
  • Betancort-Rijo (1992) Betancort-Rijo, J. 1992, Phys. Rev. A, 45, 3447
  • Betancort-Rijo & López-Corredoira (2002) Betancort-Rijo, J. & López-Corredoira, M. 2002, ApJ, 566, 623
  • Betancort-Rijo et al. (2009) Betancort-Rijo, J., Patiri, S. G., Prada, F., & Romano, A. E. 2009, MNRAS, 400, 1835
  • Betancort-Rijo et al. (2006) Betancort-Rijo, J. E., Sanchez-Conde, M. A., Prada, F., & Patiri, S. G. 2006, ApJ, 649, 579
  • Biswas et al. (2010) Biswas, R., Alizadeh, E., & Wandelt, B. D. 2010, Phys. Rev. D, 82, 023002
  • Blanton et al. (2005) Blanton, M. R., Schlegel, D. J., Strauss, M. A., et al. 2005, AJ, 129, 2562
  • Brout et al. (2022a) Brout, D., Scolnic, D., Popovic, B., et al. 2022a, ApJ, 938, 110
  • Brout et al. (2022b) Brout, D., Taylor, G., Scolnic, D., et al. 2022b, ApJ, 938, 111
  • Ceccarelli et al. (2006) Ceccarelli, L., Padilla, N. D., Valotto, C., & Lambas, D. G. 2006, MNRAS, 373, 1440–1450
  • Chan et al. (2019) Chan, H. Y. J., Chiba, M., & Ishiyama, T. 2019, MNRAS, 490, 2405
  • Chan et al. (2019) Chan, K. C., Hamaus, N., & Biagetti, M. 2019, Physical Review D, 99
  • Chongchitnan & Silk (2010) Chongchitnan, S. & Silk, J. 2010, ApJ, 724, 285
  • Clampitt et al. (2013) Clampitt, J., Cai, Y.-C., & Li, B. 2013, MNRAS, 431, 749–766
  • Colberg et al. (2005) Colberg, J. M., Sheth, R. K., Diaferio, A., Gao, L., & Yoshida, N. 2005, MNRAS, 360, 216
  • Colless et al. (2001) Colless, M., Dalton, G., Maddox, S., et al. 2001, MNRAS, 328, 1039
  • Colless et al. (2003) Colless, M., Peterson, B. A., Jackson, C., et al. 2003, arXiv e-prints, astro
  • Contarini et al. (2021) Contarini, S., Marulli, F., Moscardini, L., et al. 2021, MNRAS, 504, 5021
  • Contarini et al. (2023) Contarini, S., Pisani, A., Hamaus, N., et al. 2023, ApJ, 953, 46
  • Contarini et al. (2024) Contarini, S., Pisani, A., Hamaus, N., et al. 2024, A&A, 682, A20
  • Contarini et al. (2022) Contarini, S., Verza, G., Pisani, A., et al. 2022, A&A, 667, A162
  • Crocce et al. (2006) Crocce, M., Pueblas, S., & Scoccimarro, R. 2006, MNRAS, 373, 369
  • Croton et al. (2005) Croton, D. J., Farrar, G. R., Norberg, P., et al. 2005, MNRAS, 356, 1155
  • Curtis et al. (2024) Curtis, O., McDonough, B., & Brainerd, T. G. 2024, ApJ, 962, 58
  • Dark Energy Survey and Kilo-Degree Survey Collaboration et al. (2023) Dark Energy Survey and Kilo-Degree Survey Collaboration, Abbott, T. M. C., Aguena, M., et al. 2023, The Open Journal of Astrophysics, 6, 36
  • Dawson et al. (2013) Dawson, K. S., Schlegel, D. J., Ahn, C. P., et al. 2013, AJ, 145, 10
  • DESI Collaboration et al. (2016a) DESI Collaboration, Aghamousa, A., Aguilar, J., et al. 2016a, arXiv e-prints, arXiv:1611.00036
  • DESI Collaboration et al. (2016b) DESI Collaboration, Aghamousa, A., Aguilar, J., et al. 2016b, arXiv e-prints, arXiv:1611.00037
  • Di Valentino et al. (2021) Di Valentino, E., Anchordoqui, L. A., Akarsu, O., et al. 2021, Astroparticle Physics, 131, 102604
  • Dong-Páez et al. (2024) Dong-Páez, C. A., Smith, A., Szewciw, A. O., et al. 2024, MNRAS[arXiv:2208.00540]
  • Douglass et al. (2023) Douglass, K. A., Veyrat, D., & BenZvi, S. 2023, ApJSupplement Series, 265, 7
  • Einasto et al. (1994) Einasto, M., Einasto, J., Tago, E., Dalton, G. B., & Andernach, H. 1994, MNRAS, 269, 301
  • El-Ad & Piran (1997) El-Ad, H. & Piran, T. 1997, ApJ, 491, 421
  • Ereza et al. (2023) Ereza, J., Prada, F., Klypin, A., et al. 2023, arXiv e-prints, arXiv:2311.14456
  • Falck et al. (2017) Falck, B., Koyama, K., Zhao, G.-B., & Cautun, M. 2017, MNRAS, 475, 3262–3272
  • Finelli et al. (2016) Finelli, F., García-Bellido, J., Kovács, A., Paci, F., & Szapudi, I. 2016, MNRAS, 455, 1246
  • Freedman et al. (2020) Freedman, W. L., Madore, B. F., Hoyt, T., et al. 2020, ApJ, 891, 57
  • Gao & White (2007) Gao, L. & White, S. D. M. 2007, MNRAS, 377, L5
  • Giovanelli (2010) Giovanelli, R. 2010, in Astronomical Society of the Pacific Conference Series, Vol. 421, Galaxies in Isolation: Exploring Nature Versus Nurture, ed. L. Verdes-Montenegro, A. Del Olmo, & J. Sulentic, 89
  • Gkogkou et al. (2023) Gkogkou, A., Béthermin, M., Lagache, G., et al. 2023, A&A, 670, A16
  • Goldwirth et al. (1995) Goldwirth, D. S., da Costa, L. N., & van de Weygaert, R. 1995, MNRAS, 275, 1185–1194
  • Gorski et al. (1999) Gorski, K. M., Wandelt, B. D., Hansen, F. K., Hivon, E., & Banday, A. J. 1999, arXiv e-prints, astro
  • Hahn et al. (2023) Hahn, C., Wilson, M. J., Ruiz-Macias, O., et al. 2023, The Astronomical Journal, 165, 253
  • Hamaus et al. (2020) Hamaus, N., Pisani, A., Choi, J.-A., et al. 2020, J. Cosmology Astropart. Phys., 2020, 023
  • Hamaus et al. (2016) Hamaus, N., Pisani, A., Sutter, P. M., et al. 2016, Phys. Rev. Lett., 117, 091302
  • Hamilton (1998) Hamilton, A. J. S. 1998, in Astrophysics and Space Science Library (Springer Netherlands), 185–275
  • Heymans, Catherine et al. (2021) Heymans, Catherine, Tröster, Tilman, Asgari, Marika, et al. 2021, A&A, 646, A140
  • Hoffman et al. (2012) Hoffman, Y., Metuki, O., Yepes, G., et al. 2012, MNRAS, 425, 2049
  • Hoffman & Shaham (1982) Hoffman, Y. & Shaham, J. 1982, ApJ, 262, L23
  • Holder et al. (2001) Holder, G., Haiman, Z., & Mohr, J. J. 2001, ApJ, 560, L111
  • Hoyle & Vogeley (2002) Hoyle, F. & Vogeley, M. S. 2002, ApJ, 566, 641
  • Ishiyama et al. (2009) Ishiyama, T., Fukushige, T., & Makino, J. 2009, Publications of the Astronomical Society of Japan, 61, 1319
  • Ishiyama et al. (2012) Ishiyama, T., Nitadori, K., & Makino, J. 2012
  • Ishiyama et al. (2021) Ishiyama, T., Prada, F., Klypin, A. A., et al. 2021, MNRAS, 506, 4210
  • Jennings et al. (2013) Jennings, E., Li, Y., & Hu, W. 2013, MNRAS, 434, 2167
  • Kaiser (1987) Kaiser, N. 1987, MNRAS, 227, 1
  • Kiang & Saslaw (1969) Kiang, T. & Saslaw, W. C. 1969, MNRAS, 143, 129
  • Lavaux & Wandelt (2010) Lavaux, G. & Wandelt, B. D. 2010, MNRAS, 403, 1392
  • Layzer (1954) Layzer, D. 1954, AJ, 59, 268
  • Lee & Park (2009) Lee, J. & Park, D. 2009, ApJ, 696, L10
  • Li et al. (2012) Li, B., Zhao, G.-B., & Koyama, K. 2012, MNRAS, 421, 3481
  • Li et al. (2006) Li, C., Kauffmann, G., Jing, Y. P., et al. 2006, MNRAS, 368, 21
  • Li et al. (2023) Li, S.-S., Hoekstra, H., Kuijken, K., et al. 2023, A&A, 679, A133
  • Little & Weinberg (1994) Little, B. & Weinberg, D. H. 1994, MNRAS, 267, 605–628
  • Martino & Sheth (2009) Martino, M. C. & Sheth, R. K. 2009, arXiv e-prints, arXiv:0911.1829
  • Mauland et al. (2023) Mauland, R., Elgarøy, O., Mota, D. F., & Winther, H. A. 2023, A&A, 674, A185
  • Mo & White (1996) Mo, H. J. & White, S. D. M. 1996, MNRAS, 282, 347
  • Nadathur (2016) Nadathur, S. 2016, MNRAS, 461, 358
  • Oogi et al. (2023) Oogi, T., Ishiyama, T., Prada, F., et al. 2023, MNRAS, 525, 3879
  • Patiri et al. (2006a) Patiri, S. G., Betancort-Rijo, J., & Prada, F. 2006a, MNRAS, 368, 1132
  • Patiri et al. (2012) Patiri, S. G., Betancort-Rijo, J., & Prada, F. 2012, A&A, 541, L4
  • Patiri et al. (2006b) Patiri, S. G., Betancort-Rijo, J. E., Prada, F., Klypin, A., & Gottlöber, S. 2006b, MNRAS, 369, 335
  • Perico et al. (2019) Perico, E. L. D., Voivodic, R., Lima, M., & Mota, D. F. 2019, A&A, 632, A52
  • Planck Collaboration et al. (2016) Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, A&A, 594, A13
  • Prada et al. (2023) Prada, F., Behroozi, P., Ishiyama, T., Klypin, A., & Pérez, E. 2023, arXiv e-prints, arXiv:2304.11911
  • Press & Schechter (1974) Press, W. H. & Schechter, P. 1974, ApJ, 187, 425
  • Reid et al. (2015) Reid, B., Ho, S., Padmanabhan, N., et al. 2015, MNRAS, 455, 1553
  • Riess et al. (2022) Riess, A. G., Yuan, W., Macri, L. M., et al. 2022, ApJ, 934, L7
  • Rodríguez-Medrano et al. (2024) Rodríguez-Medrano, A. M., Springel, V., Stasyszyn, F. A., & Paz, D. J. 2024, MNRAS, 528, 2822
  • Rubiño-Martín et al. (2008) Rubiño-Martín, J. A., Betancort-Rijo, J., & Patiri, S. G. 2008, MNRAS, 386, 2181
  • Ryden (1995) Ryden, B. S. 1995, ApJ, 452, 25
  • Sahlén et al. (2016) Sahlén, M., Zubeldía, I., & Silk, J. 2016, ApJLetters, 820, L7
  • Sheth & Tormen (2002) Sheth, R. K. & Tormen, G. 2002, MNRAS, 329, 61
  • Sheth & Van De Weygaert (2004) Sheth, R. K. & Van De Weygaert, R. 2004, MNRAS, 350, 517
  • Song & Lee (2009) Song, H. & Lee, J. 2009, ApJ, 701, L25
  • Sutter et al. (2014) Sutter, P. M., Lavaux, G., Hamaus, N., et al. 2014, MNRAS, 442, 462
  • Swanson et al. (2008) Swanson, M. E. C., Tegmark, M., Hamilton, A. J. S., & Hill, J. C. 2008, MNRAS, 387, 1391
  • Taylor et al. (2024) Taylor, P. L., Cuceu, A., To, C.-H., & Zaborowski, E. A. 2024, arXiv e-prints, arXiv:2406.06687
  • Tikhonov (2006) Tikhonov, A. V. 2006, Astronomy Letters, 32, 727–733
  • Tikhonov (2007) Tikhonov, A. V. 2007, Astronomy Letters, 33, 499–511
  • Torrado & Lewis (2019) Torrado, J. & Lewis, A. 2019, Cobaya: Bayesian analysis in cosmology, Astrophysics Source Code Library, record ascl:1910.019
  • Torrado & Lewis (2021) Torrado, J. & Lewis, A. 2021, J. Cosmology Astropart. Phys., 2021, 057
  • van de Weygaert & Sheth (2003) van de Weygaert, R. & Sheth, R. 2003, arXiv e-prints, astro
  • Voivodic et al. (2017) Voivodic, R., Lima, M., Llinares, C., & Mota, D. F. 2017, Physical Review D, 95
  • von Benda-Beckmann & Mueller (2007) von Benda-Beckmann, A. M. & Mueller, V. 2007, arXiv e-prints, arXiv:0710.2783
  • White (1979) White, S. D. M. 1979, MNRAS, 186, 145
  • Woodfinden et al. (2023) Woodfinden, A., Percival, W. J., Nadathur, S., et al. 2023, MNRAS, 523, 6360
  • Yang et al. (2005) Yang, X., Mo, H. J., van den Bosch, F. C., & Jing, Y. P. 2005, MNRAS, 357, 608
  • York et al. (2000) York, D. G., Adelman, J., Anderson, John E., J., et al. 2000, AJ, 120, 1579
  • Zeldovich et al. (1982) Zeldovich, I. B., Einasto, J., & Shandarin, S. F. 1982, Nature, 300, 407
  • Zentner et al. (2019) Zentner, A. R., Hearin, A., van den Bosch, F. C., Lange, J. U., & Villarreal, A. S. 2019, MNRAS, 485, 1196
  • Zhao et al. (2016) Zhao, C., Tao, C., Liang, Y., Kitaura, F.-S., & Chuang, C.-H. 2016, MNRAS, 459, 2670
  • Zuntz et al. (2015) Zuntz, J., Paterno, M., Jennings, E., et al. 2015, Astronomy and Computing, 12, 45–59

Appendix A Void statistics theoretical framework in detail

In this Appendix we explicitly write all necessary quantities in order to calculate P0(r)subscript𝑃0𝑟P_{0}(r)italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ) (VPF) and n¯v(r)subscript¯𝑛𝑣𝑟\bar{n}_{v}(r)over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) in real and redshift space. This theoretical framework can also be consulted in Betancort-Rijo et al. (2009).

Real space

The first step to calculate all the terms that appear in equation (2) is to develop equation (5). In Patiri et al. (2006a), it is shown that for dark matter haloes, u𝑢uitalic_u can be written as

u=[n¯V(1+δ)][1+δns]𝑢delimited-[]¯𝑛𝑉1𝛿delimited-[]1subscript𝛿𝑛𝑠u=\left[\bar{n}V(1+\delta)\right]\left[1+\delta_{ns}\right]italic_u = [ over¯ start_ARG italic_n end_ARG italic_V ( 1 + italic_δ ) ] [ 1 + italic_δ start_POSTSUBSCRIPT italic_n italic_s end_POSTSUBSCRIPT ] (17)

where n¯¯𝑛\bar{n}over¯ start_ARG italic_n end_ARG denotes the mean number density of those haloes in the sample (usually haloes larger than some given mass), V𝑉Vitalic_V is the volume of the sphere and δ𝛿\deltaitalic_δ the actual enclosed density contrast within the sphere. The first factor on the right-hand side of the equation is the integral of the probability density within the sphere for haloes tracing the mass (i.e. no bias, which is true in the very low mass limit). In general, haloes are biased tracers of the underlying mass distribution, due to the initial clustering of the protohaloes before they move along with mass (i.e., statistical clustering). The second term of the equation accounts for this biasing. In Patiri et al. (2006a) an approximation for this bias is obtained as a function of the linear enclosed density contrast within the sphere (δlsubscript𝛿𝑙\delta_{l}italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT):

1+δns(δl)=A(m)eb(m)δl2δl1formulae-sequence1subscript𝛿𝑛𝑠subscript𝛿𝑙𝐴𝑚superscript𝑒𝑏𝑚superscriptsubscript𝛿𝑙2for-allsubscript𝛿𝑙11+\delta_{ns}(\delta_{l})=A(m)e^{-b(m)\delta_{l}^{2}}\hskip 10.0pt\forall% \hskip 10.0pt\delta_{l}\leq-11 + italic_δ start_POSTSUBSCRIPT italic_n italic_s end_POSTSUBSCRIPT ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) = italic_A ( italic_m ) italic_e start_POSTSUPERSCRIPT - italic_b ( italic_m ) italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ∀ italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ≤ - 1 (18)

where A(m)𝐴𝑚A(m)italic_A ( italic_m ), b(m)𝑏𝑚b(m)italic_b ( italic_m ) are coefficients mainly depending on the halo mass. In Patiri et al. (2006a) is demonstrated that, using Zeldovich approximation, Pn(r)subscript𝑃𝑛𝑟P_{n}(r)italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_r ) can be rewritten as

Pn(r)=1.6P(δl,r)[u(δl)]nn!e[u(δl)]𝑑δlsubscript𝑃𝑛𝑟superscriptsubscript1.6𝑃subscript𝛿𝑙𝑟superscriptdelimited-[]𝑢subscript𝛿𝑙𝑛𝑛superscript𝑒delimited-[]𝑢subscript𝛿𝑙differential-dsubscript𝛿𝑙P_{n}(r)=\int_{-\infty}^{1.6}P(\delta_{l},r)\frac{\left[u(\delta_{l})\right]^{% n}}{n!}e^{[-u(\delta_{l})]}d\delta_{l}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_r ) = ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1.6 end_POSTSUPERSCRIPT italic_P ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_r ) divide start_ARG [ italic_u ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG start_ARG italic_n ! end_ARG italic_e start_POSTSUPERSCRIPT [ - italic_u ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) ] end_POSTSUPERSCRIPT italic_d italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT (19)

where u(δl)𝑢subscript𝛿𝑙u(\delta_{l})italic_u ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) is now a function of δlsubscript𝛿𝑙\delta_{l}italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT through the dependence of the actual density contrast, δ𝛿\deltaitalic_δ, on its linear counterpart, δlsubscript𝛿𝑙\delta_{l}italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT:

u(δl)=(n¯V[1+δ(δl,r)])[1+δns(δl)]𝑢subscript𝛿𝑙¯𝑛𝑉delimited-[]1𝛿subscript𝛿𝑙𝑟delimited-[]1subscript𝛿𝑛𝑠subscript𝛿𝑙u(\delta_{l})=(\bar{n}V[1+\delta(\delta_{l},r)])[1+\delta_{ns}(\delta_{l})]italic_u ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) = ( over¯ start_ARG italic_n end_ARG italic_V [ 1 + italic_δ ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_r ) ] ) [ 1 + italic_δ start_POSTSUBSCRIPT italic_n italic_s end_POSTSUBSCRIPT ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) ] (20)

δ(δl,r)𝛿subscript𝛿𝑙𝑟\delta(\delta_{l},r)italic_δ ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_r ) is basically the relationship between the actual and the linear density contrast within a sphere as given by the standard spherical collapse model, except for a small correcting term depending on r𝑟ritalic_r.

Doing some manipulation, Pn(r)subscript𝑃𝑛𝑟P_{n}(r)italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_r ) can be rewritten as

Pn(r)=1n!70P(δl,r)[u(δl)]ne[u(δl)]𝑑δlsubscript𝑃𝑛𝑟1𝑛superscriptsubscript70𝑃subscript𝛿𝑙𝑟superscriptdelimited-[]𝑢subscript𝛿𝑙𝑛superscript𝑒delimited-[]𝑢subscript𝛿𝑙differential-dsubscript𝛿𝑙P_{n}(r)=\frac{1}{n!}\int_{-7}^{0}P(\delta_{l},r)\left[u(\delta_{l})\right]^{n% }e^{[-u(\delta_{l})]}d\delta_{l}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_r ) = divide start_ARG 1 end_ARG start_ARG italic_n ! end_ARG ∫ start_POSTSUBSCRIPT - 7 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_P ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_r ) [ italic_u ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) ] start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT [ - italic_u ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) ] end_POSTSUPERSCRIPT italic_d italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT (21)

where u(δl)𝑢subscript𝛿𝑙u(\delta_{l})italic_u ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) is now

u(δl)=n¯V[1+DELF(δl,r)]Aebδl2𝑢subscript𝛿𝑙¯𝑛𝑉delimited-[]1𝐷𝐸𝐿𝐹subscript𝛿𝑙𝑟𝐴superscript𝑒𝑏superscriptsubscript𝛿𝑙2u(\delta_{l})=\bar{n}V[1+DELF(\delta_{l},r)]Ae^{-b\delta_{l}^{2}}italic_u ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) = over¯ start_ARG italic_n end_ARG italic_V [ 1 + italic_D italic_E italic_L italic_F ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_r ) ] italic_A italic_e start_POSTSUPERSCRIPT - italic_b italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT (22)

DELF is a function of δlsubscript𝛿𝑙\delta_{l}italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT and r𝑟ritalic_r that gives the mean actual density contrast within a sphere with radius r𝑟ritalic_r with enclosed linear density contrast δlsubscript𝛿𝑙\delta_{l}italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT:

DELF(δl,r)𝐷𝐸𝐿𝐹subscript𝛿𝑙𝑟\displaystyle DELF(\delta_{l},r)italic_D italic_E italic_L italic_F ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_r ) =\displaystyle== (23)
1+DELT(δl)|1(4/21)[1+DELT(δl)]2/3[σ(r[1+DELT(δl)]1/3)]2|1𝐷𝐸𝐿𝑇subscript𝛿𝑙1421superscriptdelimited-[]1𝐷𝐸𝐿𝑇subscript𝛿𝑙23superscriptdelimited-[]𝜎𝑟superscriptdelimited-[]1𝐷𝐸𝐿𝑇subscript𝛿𝑙132\displaystyle\frac{1+DELT(\delta_{l})}{|1-(4/21)[1+DELT(\delta_{l})]^{2/3}[% \sigma(r[1+DELT(\delta_{l})]^{1/3})]^{2}|}divide start_ARG 1 + italic_D italic_E italic_L italic_T ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) end_ARG start_ARG | 1 - ( 4 / 21 ) [ 1 + italic_D italic_E italic_L italic_T ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) ] start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT [ italic_σ ( italic_r [ 1 + italic_D italic_E italic_L italic_T ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) ] start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT ) ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | end_ARG

where DELT(δl)𝐷𝐸𝐿𝑇subscript𝛿𝑙DELT(\delta_{l})italic_D italic_E italic_L italic_T ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) denotes the relationship between the actual and linear enclosed density contrasts in the spherical collapse model (Patiri et al. 2006a):

1+DELT(δl)(10.607δl)1.661𝐷𝐸𝐿𝑇subscript𝛿𝑙superscript10.607subscript𝛿𝑙1.661+DELT(\delta_{l})\approx(1-0.607\delta_{l})^{-1.66}1 + italic_D italic_E italic_L italic_T ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) ≈ ( 1 - 0.607 italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1.66 end_POSTSUPERSCRIPT (24)

σ(Q)𝜎𝑄\sigma(Q)italic_σ ( italic_Q ) is the rms of the linear density contrast on a sphere with Lagrangian radius Q𝑄Qitalic_Q. In this equation, σ(Q)𝜎𝑄\sigma(Q)italic_σ ( italic_Q ) is evaluated at Q=r[1+DELT(δl)]1/3𝑄𝑟superscriptdelimited-[]1𝐷𝐸𝐿𝑇subscript𝛿𝑙13Q=r[1+DELT(\delta_{l})]^{1/3}italic_Q = italic_r [ 1 + italic_D italic_E italic_L italic_T ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) ] start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT. A𝐴Aitalic_A, b𝑏bitalic_b in equation (22) are also functions of δlsubscript𝛿𝑙\delta_{l}italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT given by (see Rubiño-Martín et al. 2008, for more details)

A𝐴\displaystyle Aitalic_A =A(m,Q=r[1+DELT(δl)]1/3)×\displaystyle=A(m,Q=r[1+DELT(\delta_{l})]^{1/3})\times= italic_A ( italic_m , italic_Q = italic_r [ 1 + italic_D italic_E italic_L italic_T ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) ] start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT ) × (25)
×[D(z)σ80.9]0.88(Γ0.21)0.174absentsuperscriptdelimited-[]𝐷𝑧subscript𝜎80.90.88superscriptΓ0.210.174\displaystyle\times\left[\frac{D(z)\sigma_{8}}{0.9}\right]^{0.88}\left(\frac{% \Gamma}{0.21}\right)^{0.174}× [ divide start_ARG italic_D ( italic_z ) italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_ARG start_ARG 0.9 end_ARG ] start_POSTSUPERSCRIPT 0.88 end_POSTSUPERSCRIPT ( divide start_ARG roman_Γ end_ARG start_ARG 0.21 end_ARG ) start_POSTSUPERSCRIPT 0.174 end_POSTSUPERSCRIPT
B𝐵\displaystyle Bitalic_B =B(m,Q=r[1+DELT(δl)]1/3)×\displaystyle=B(m,Q=r[1+DELT(\delta_{l})]^{1/3})\times= italic_B ( italic_m , italic_Q = italic_r [ 1 + italic_D italic_E italic_L italic_T ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) ] start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT ) × (26)
×[D(z)σ80.9]2.55(Γ0.21)0.82absentsuperscriptdelimited-[]𝐷𝑧subscript𝜎80.92.55superscriptΓ0.210.82\displaystyle\times\left[\frac{D(z)\sigma_{8}}{0.9}\right]^{-2.55}\left(\frac{% \Gamma}{0.21}\right)^{-0.82}× [ divide start_ARG italic_D ( italic_z ) italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT end_ARG start_ARG 0.9 end_ARG ] start_POSTSUPERSCRIPT - 2.55 end_POSTSUPERSCRIPT ( divide start_ARG roman_Γ end_ARG start_ARG 0.21 end_ARG ) start_POSTSUPERSCRIPT - 0.82 end_POSTSUPERSCRIPT

where A(m,Q)𝐴𝑚𝑄A(m,Q)italic_A ( italic_m , italic_Q ), b(m,Q)𝑏𝑚𝑄b(m,Q)italic_b ( italic_m , italic_Q ) are functions of the mass of the objects and the Lagragian radius of the regions being considered:

A(m,Q)𝐴𝑚𝑄\displaystyle A(m,Q)italic_A ( italic_m , italic_Q ) =[1.5770.298(Q8)]absentlimit-fromdelimited-[]1.5770.298𝑄8\displaystyle=\left[1.577-0.298\left(\frac{Q}{8}\right)\right]-= [ 1.577 - 0.298 ( divide start_ARG italic_Q end_ARG start_ARG 8 end_ARG ) ] - (27)
[0.0557+0.00447(Q8)]lnmlimit-fromdelimited-[]0.05570.00447𝑄8𝑚\displaystyle-\left[0.0557+0.00447\left(\frac{Q}{8}\right)\right]\ln{m}-- [ 0.0557 + 0.00447 ( divide start_ARG italic_Q end_ARG start_ARG 8 end_ARG ) ] roman_ln italic_m -
[0.00565+0.0018(Q8)][lnm]2delimited-[]0.005650.0018𝑄8superscriptdelimited-[]𝑚2\displaystyle-\left[0.00565+0.0018\left(\frac{Q}{8}\right)\right][\ln{m}]^{2}- [ 0.00565 + 0.0018 ( divide start_ARG italic_Q end_ARG start_ARG 8 end_ARG ) ] [ roman_ln italic_m ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
b(m,Q)𝑏𝑚𝑄\displaystyle b(m,Q)italic_b ( italic_m , italic_Q ) =[0.00250.00146(Q8)]+absentlimit-fromdelimited-[]0.00250.00146𝑄8\displaystyle=\left[0.0025-0.00146\left(\frac{Q}{8}\right)\right]+= [ 0.0025 - 0.00146 ( divide start_ARG italic_Q end_ARG start_ARG 8 end_ARG ) ] + (28)
+[0.1210.0156(Q8)]m0.335+0.019Q/8delimited-[]0.1210.0156𝑄8superscript𝑚0.3350.019𝑄8\displaystyle+\left[0.121-0.0156\left(\frac{Q}{8}\right)\right]m^{0.335+0.019Q% /8}+ [ 0.121 - 0.0156 ( divide start_ARG italic_Q end_ARG start_ARG 8 end_ARG ) ] italic_m start_POSTSUPERSCRIPT 0.335 + 0.019 italic_Q / 8 end_POSTSUPERSCRIPT
m=M3.4866×1011h1M(0.3Ωm)𝑚𝑀3.4866superscript1011superscript1subscript𝑀direct-product0.3subscriptΩmm=\frac{M}{3.4866\times 10^{11}h^{-1}M_{\odot}}\left(\frac{0.3}{\Omega_{\rm m}% }\right)italic_m = divide start_ARG italic_M end_ARG start_ARG 3.4866 × 10 start_POSTSUPERSCRIPT 11 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT end_ARG ( divide start_ARG 0.3 end_ARG start_ARG roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT end_ARG ) (29)

where D(z)𝐷𝑧D(z)italic_D ( italic_z ) is the linear growth factor normalized to be 1 at present and M𝑀Mitalic_M is the mass of the objects. M𝑀Mitalic_M is the minimum mass of distinct haloes in the sample with halo number density equal to n¯samplesubscript¯𝑛𝑠𝑎𝑚𝑝𝑙𝑒\bar{n}_{sample}over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_s italic_a italic_m italic_p italic_l italic_e end_POSTSUBSCRIPT , with this number density containing only distinct haloes. If our sample contains subhaloes, too, then the mass we have to use is Mgsubscript𝑀𝑔M_{g}italic_M start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT.

It is important to remark that equations (25) and (26) are only valid for z=0𝑧0z=0italic_z = 0. If we want to calculate this functions in a different redshfit, then we have to make the following change:

σ8σ8D(z)D(z=0)subscript𝜎8subscript𝜎8𝐷𝑧𝐷𝑧0\sigma_{8}\rightarrow\sigma_{8}\frac{D(z)}{D(z=0)}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT → italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT divide start_ARG italic_D ( italic_z ) end_ARG start_ARG italic_D ( italic_z = 0 ) end_ARG (30)

where D(z)𝐷𝑧D(z)italic_D ( italic_z ) is the linear growth factor of density fluctuations in the model under consideration.

We already have all terms in order to calculate u(δl)𝑢subscript𝛿𝑙u(\delta_{l})italic_u ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT ) from equation (21), so all we need now is to calculate P(δl,r)𝑃subscript𝛿𝑙𝑟P(\delta_{l},r)italic_P ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_r ), which is the probability function of the linear density contrast within an Eulerian space, and can be calculated as (Betancort-Rijo & López-Corredoira 2002):

P(δl,r)𝑃subscript𝛿𝑙𝑟\displaystyle P(\delta_{l},r)italic_P ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_r ) =exp[(1/2)δl2/(σ(r[1+DELF(δl,r)]1/3))2]2π×\displaystyle=\frac{exp[(-1/2)\delta_{l}^{2}/(\sigma(r[1+DELF(\delta_{l},r)]^{% 1/3}))^{2}]}{\sqrt{2\pi}}\times= divide start_ARG italic_e italic_x italic_p [ ( - 1 / 2 ) italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( italic_σ ( italic_r [ 1 + italic_D italic_E italic_L italic_F ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_r ) ] start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] end_ARG start_ARG square-root start_ARG 2 italic_π end_ARG end_ARG × (31)
×[1+DELF(δl,r)][1(α/2)]×\displaystyle\times[1+DELF(\delta_{l},r)]^{-[1-(\alpha/2)]}\times× [ 1 + italic_D italic_E italic_L italic_F ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_r ) ] start_POSTSUPERSCRIPT - [ 1 - ( italic_α / 2 ) ] end_POSTSUPERSCRIPT ×
×ddδl(δlσ(r[1+DELF(δl,r)]1/3))absent𝑑𝑑subscript𝛿𝑙subscript𝛿𝑙𝜎𝑟superscriptdelimited-[]1𝐷𝐸𝐿𝐹subscript𝛿𝑙𝑟13\displaystyle\times\frac{d}{d\delta_{l}}\left(\frac{\delta_{l}}{\sigma(r[1+% DELF(\delta_{l},r)]^{1/3})}\right)× divide start_ARG italic_d end_ARG start_ARG italic_d italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT end_ARG ( divide start_ARG italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT end_ARG start_ARG italic_σ ( italic_r [ 1 + italic_D italic_E italic_L italic_F ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_r ) ] start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT ) end_ARG )

where

α(δl,r)=0.54+0.173ln(r[1+DELF(δl,r)]1/3)10)\alpha(\delta_{l},r)=0.54+0.173ln\left(\frac{r[1+DELF(\delta_{l},r)]^{1/3})}{1% 0}\right)italic_α ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_r ) = 0.54 + 0.173 italic_l italic_n ( divide start_ARG italic_r [ 1 + italic_D italic_E italic_L italic_F ( italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT , italic_r ) ] start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT ) end_ARG start_ARG 10 end_ARG ) (32)

and

σ(Q)=σ(Q,Γ)σ8A(Γ)QB(Γ)C(Γ)Q𝜎𝑄𝜎𝑄Γsubscript𝜎8𝐴Γsuperscript𝑄𝐵Γ𝐶Γ𝑄\sigma(Q)=\sigma(Q,\Gamma)\approx\sigma_{8}A(\Gamma)Q^{-B(\Gamma)-C(\Gamma)Q}italic_σ ( italic_Q ) = italic_σ ( italic_Q , roman_Γ ) ≈ italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT italic_A ( roman_Γ ) italic_Q start_POSTSUPERSCRIPT - italic_B ( roman_Γ ) - italic_C ( roman_Γ ) italic_Q end_POSTSUPERSCRIPT (33)
A(Γ)=2.01+3.9Γ𝐴Γ2.013.9ΓA(\Gamma)=2.01+3.9\Gammaitalic_A ( roman_Γ ) = 2.01 + 3.9 roman_Γ (34)
B(Γ)=0.2206+0.361Γ1.5𝐵Γ0.22060.361superscriptΓ1.5B(\Gamma)=0.2206+0.361\Gamma^{1.5}italic_B ( roman_Γ ) = 0.2206 + 0.361 roman_Γ start_POSTSUPERSCRIPT 1.5 end_POSTSUPERSCRIPT (35)
C(Γ)=0.182+0.0411lnΓ𝐶Γ0.1820.0411ΓC(\Gamma)=0.182+0.0411\ln{\Gamma}italic_C ( roman_Γ ) = 0.182 + 0.0411 roman_ln roman_Γ (36)

This fit is valid for Q3h1𝑄3superscript1Q\geq 3h^{-1}italic_Q ≥ 3 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc and 0.1Γ0.50.1Γ0.50.1\geq\Gamma\geq 0.50.1 ≥ roman_Γ ≥ 0.5.

Redshift space

The theoretical framework developed above is only valid for voids in real space. However, if we want to constrain σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT using surveys such as SDSS, this surveys provide galaxy positions in redshift space. In this space (redshift space), the peculiar velocity of the galaxies is added to the velocity expansion of the Universe. This generates some distortions which result in elongated structures known as Fingers of God (see Hamilton (1998) for more details).

If we want to calculate n¯v(r)subscript¯𝑛𝑣𝑟\bar{n}_{v}(r)over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) and Pn(r)subscript𝑃𝑛𝑟P_{n}(r)italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_r ) in redshift space instead of real space, all we have to do is change r𝑟ritalic_r by:

r=r×{1+gVEL[δ]}1/3𝑟superscript𝑟superscript1𝑔𝑉𝐸𝐿delimited-[]𝛿13r=r^{*}\times\{1+gVEL[\delta]\}^{-1/3}italic_r = italic_r start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT × { 1 + italic_g italic_V italic_E italic_L [ italic_δ ] } start_POSTSUPERSCRIPT - 1 / 3 end_POSTSUPERSCRIPT (37)

where r𝑟ritalic_r is the radius of a sphere in real space and rsuperscript𝑟r^{*}italic_r start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is the radius of that sphere in redshift space. Additionally, it has been found comparing the average outflow around the relevant voids with that given by the spherical expansion model that the value of g𝑔gitalic_g is around 0.85. This is also the value that provide the best agreement with simulations.

VEL(δ𝛿\deltaitalic_δ) is defined so that the peculiar velocity V𝑉Vitalic_V, of mass element at distance r𝑟ritalic_r from the centre of a spherical mass concentration (or defect) enclosing actual density contrast δ𝛿\deltaitalic_δ is given by

V=HrVEL(δ)𝑉𝐻𝑟𝑉𝐸𝐿𝛿V=HrVEL(\delta)italic_V = italic_H italic_r italic_V italic_E italic_L ( italic_δ ) (38)

where H𝐻Hitalic_H is the Hubble constant at the time being considered. In Betancort-Rijo et al. (2006) it is shown that

VEL(δ)=13dlnD(a)dlnaDELK(δ)1+δ(ddδDELK(δ))1𝑉𝐸𝐿𝛿13𝑑𝑙𝑛𝐷𝑎𝑑𝑙𝑛𝑎𝐷𝐸𝐿𝐾𝛿1𝛿superscript𝑑𝑑𝛿𝐷𝐸𝐿𝐾𝛿1VEL(\delta)=-\frac{1}{3}\frac{dlnD(a)}{dlna}\frac{DELK(\delta)}{1+\delta}\left% (\frac{d}{d\delta}DELK(\delta)\right)^{-1}italic_V italic_E italic_L ( italic_δ ) = - divide start_ARG 1 end_ARG start_ARG 3 end_ARG divide start_ARG italic_d italic_l italic_n italic_D ( italic_a ) end_ARG start_ARG italic_d italic_l italic_n italic_a end_ARG divide start_ARG italic_D italic_E italic_L italic_K ( italic_δ ) end_ARG start_ARG 1 + italic_δ end_ARG ( divide start_ARG italic_d end_ARG start_ARG italic_d italic_δ end_ARG italic_D italic_E italic_L italic_K ( italic_δ ) ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (39)

where D(a)𝐷𝑎D(a)italic_D ( italic_a ) is the growth factor as a function of the expansion factor, a𝑎aitalic_a, and DELK(δ𝛿\deltaitalic_δ) is the inverse function of DELT(δlsubscript𝛿𝑙\delta_{l}italic_δ start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT) (see Mo & White 1996; Sheth & Tormen 2002):

DELK(δ)𝐷𝐸𝐿𝐾𝛿\displaystyle DELK(\delta)italic_D italic_E italic_L italic_K ( italic_δ ) =δc1.68647(1.686471.35(1+δ)2/31.12431(1+δ)1/2+\displaystyle=\frac{\delta_{c}}{1.68647}\Bigg{(}1.68647-\frac{1.35}{(1+\delta)% ^{2/3}}-\frac{1.12431}{(1+\delta)^{1/2}}+= divide start_ARG italic_δ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG start_ARG 1.68647 end_ARG ( 1.68647 - divide start_ARG 1.35 end_ARG start_ARG ( 1 + italic_δ ) start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT end_ARG - divide start_ARG 1.12431 end_ARG start_ARG ( 1 + italic_δ ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT end_ARG + (40)
+0.78785(1+δ)0.58661)\displaystyle+\frac{0.78785}{(1+\delta)^{0.58661}}\Bigg{)}+ divide start_ARG 0.78785 end_ARG start_ARG ( 1 + italic_δ ) start_POSTSUPERSCRIPT 0.58661 end_POSTSUPERSCRIPT end_ARG )

where δcsubscript𝛿𝑐\delta_{c}italic_δ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT is the linear density contrast for spherical collapse model, which for the concordance cosmology at present is 1.676.

Finally, the expression of dlnD(a)dlna𝑑𝑙𝑛𝐷𝑎𝑑𝑙𝑛𝑎{\displaystyle\frac{dlnD(a)}{dlna}}divide start_ARG italic_d italic_l italic_n italic_D ( italic_a ) end_ARG start_ARG italic_d italic_l italic_n italic_a end_ARG is:

dlnD(a)dlna1.06((1+z)3[(1+z)3+ΩΛ/Ωm])0.6𝑑𝑙𝑛𝐷𝑎𝑑𝑙𝑛𝑎1.06superscriptsuperscript1𝑧3delimited-[]superscript1𝑧3subscriptΩΛsubscriptΩm0.6\frac{dlnD(a)}{dlna}\approx 1.06\left(\frac{(1+z)^{3}}{[(1+z)^{3}+\Omega_{% \Lambda}/\Omega_{\rm m}]}\right)^{0.6}divide start_ARG italic_d italic_l italic_n italic_D ( italic_a ) end_ARG start_ARG italic_d italic_l italic_n italic_a end_ARG ≈ 1.06 ( divide start_ARG ( 1 + italic_z ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG [ ( 1 + italic_z ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + roman_Ω start_POSTSUBSCRIPT roman_Λ end_POSTSUBSCRIPT / roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT ] end_ARG ) start_POSTSUPERSCRIPT 0.6 end_POSTSUPERSCRIPT (41)

In Table 8 the values of VPF predicted by theoretical framework and obtained through the four halo simulation boxes are shown. It can be checked that theoretical framework predicts an increase of P0(r)subscript𝑃0𝑟P_{0}(r)italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ) when going from real to redshift space, as it happens in simulations.

Appendix B Comparison of voids statistics in the distribution of haloes and galaxies in mocks with theoretical framework

In this Appendix, we show the results obtained with the theoretical framework presented in Appendix A and compare it with the results of the halo and galaxy simulation boxes. We do this in real and redshift space. We also check if we recover the values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΓΓ\Gammaroman_Γ using the theoretical framework with Maximum Likelihood test with Bayesian approach.

B.1 Real Space

Statistics of voids obtained in halo simulation boxes and predicted by theoretical framework in real space have already been discussed in Section 4. Here, we briefly summarize the most important results obtained and present the constraints achieved of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΓΓ\Gammaroman_Γ. This is a crucial step to take to check that the theoretical framework works correctly, as it is essential to recover the real values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΓΓ\Gammaroman_Γ of each simulation.

In Table 7 the values of P0(r)subscript𝑃0𝑟P_{0}(r)italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_r ) obtained with theoretical framework and simulations can be seen. The results are represented in Figure 5. As we have already seen in Section 4, the dependence of the VPF predicted by theoretical framework is the same as that shown by simulations, and all values with r>12h1𝑟12superscript1r>12h^{-1}italic_r > 12 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc are within 10%percent\%% of the ratio between simulations and theoretical framework, being compatible with unity those with r>14h1𝑟14superscript1r>14h^{-1}italic_r > 14 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc.

In Figure 6, we can see the number density of voids larger than r𝑟ritalic_r for the four halo simulation boxes. As we have already seen, the agreement between theoretical framework and simulation values is good, specially for intermediate radius bins (i.e. r𝑟ritalic_r between 12 and 18 h1superscript1h^{-1}italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc).

Therefore, we are now in the position to use the theoretical framework and simulations to constrain σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and H0 (we fix in each case ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT to the real value of each simulation box) and obtain the confidence contours using maximum likelihood test and the standard Bayesian approach. This can be seen in the first column of Figure 14. In this Figure, we can see that all real values (black points) are inside the 1σ𝜎\sigmaitalic_σ contour.

Refer to caption
Figure 14: Constraints from Nv,isubscript𝑁𝑣𝑖N_{v,i}italic_N start_POSTSUBSCRIPT italic_v , italic_i end_POSTSUBSCRIPT identified in Uchuu (first row), P18 (second row), Low (third row) and VeryLow (row) halo simulation boxes in real (first column) and redshift (second column) spaces using Maximum Likelihood test. The contours indicate the 68%percent\%% (1σ𝜎\sigmaitalic_σ) and 95%percent\%% (2σ𝜎\sigmaitalic_σ) confidence levels. The black dots are the real values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and H0 of each simulation.

Therefore, we successfully recover the values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΓΓ\Gammaroman_Γ of the simulations with the theoretical framework, and we can take one more step to do this study in redshift space.

r P0,Uchuuthsuperscriptsubscript𝑃0𝑈𝑐𝑢𝑢𝑡P_{0,Uchuu}^{th}italic_P start_POSTSUBSCRIPT 0 , italic_U italic_c italic_h italic_u italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT P0,Uchuusimsuperscriptsubscript𝑃0𝑈𝑐𝑢𝑢𝑠𝑖𝑚P_{0,Uchuu}^{sim}italic_P start_POSTSUBSCRIPT 0 , italic_U italic_c italic_h italic_u italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s italic_i italic_m end_POSTSUPERSCRIPT P0,Pl18thsuperscriptsubscript𝑃0𝑃𝑙18𝑡P_{0,Pl18}^{th}italic_P start_POSTSUBSCRIPT 0 , italic_P italic_l 18 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT P0,Pl18simsuperscriptsubscript𝑃0𝑃𝑙18𝑠𝑖𝑚P_{0,Pl18}^{sim}italic_P start_POSTSUBSCRIPT 0 , italic_P italic_l 18 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s italic_i italic_m end_POSTSUPERSCRIPT P0,Lowthsuperscriptsubscript𝑃0𝐿𝑜𝑤𝑡P_{0,Low}^{th}italic_P start_POSTSUBSCRIPT 0 , italic_L italic_o italic_w end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT P0,Lowsimsuperscriptsubscript𝑃0𝐿𝑜𝑤𝑠𝑖𝑚P_{0,Low}^{sim}italic_P start_POSTSUBSCRIPT 0 , italic_L italic_o italic_w end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s italic_i italic_m end_POSTSUPERSCRIPT P0,VeryLowthsuperscriptsubscript𝑃0𝑉𝑒𝑟𝑦𝐿𝑜𝑤𝑡P_{0,VeryLow}^{th}italic_P start_POSTSUBSCRIPT 0 , italic_V italic_e italic_r italic_y italic_L italic_o italic_w end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT P0,VeryLowsimsuperscriptsubscript𝑃0𝑉𝑒𝑟𝑦𝐿𝑜𝑤𝑠𝑖𝑚P_{0,VeryLow}^{sim}italic_P start_POSTSUBSCRIPT 0 , italic_V italic_e italic_r italic_y italic_L italic_o italic_w end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s italic_i italic_m end_POSTSUPERSCRIPT
9 7.216 7.782 7.163 7.703 6.936 7.520 6.682 7.250
10 3.847 4.176 3.810 4.097 3.659 3.966 3.485 3.762
11 1.946 2.106 1.922 2.044 1.829 1.955 1.719 1.821
12 0.9340 0.9980 0.9194 0.9547 0.8659 0.9023 0.8015 0.8179
13 0.4251 0.4452 0.4169 0.4206 0.3881 0.3889 0.3530 0.3455
14 0.1833 0.1884 0.1790 0.1722 0.1645 0.1556 0.1467 0.1399
15 0.07484 0.07423 0.07277 0.06674 0.06586 0.05914 0.05743 0.04977
16 0.02891 0.02775 0.02797 0.02448 0.02489 0.02032 0.02116 0.01721
17 0.01055 9.863×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 0.01015 8.260×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 8.872×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 6.640×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 7.331×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 5.540×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT
18 3.638×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 3.421×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 3.479×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.940×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.979×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.410×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.385×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 1.800×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT
19 1.183×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 1.017×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 1.124×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 1.180×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 9.412×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 9.500×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 7.276×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 5.800×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT
20 2.628×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 2.958×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 3.422×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 4.800×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 2.796×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 3.800×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 2.080×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 1.800×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT
21 1.048×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 1.125×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 9.804×105absentsuperscript105\times 10^{-5}× 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT 1.700×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 7.801×105absentsuperscript105\times 10^{-5}× 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT 1.600×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 5.567×105absentsuperscript105\times 10^{-5}× 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT 1.100×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT
Table 7: Values of VPF for simulations (P0simsuperscriptsubscript𝑃0𝑠𝑖𝑚P_{0}^{sim}italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s italic_i italic_m end_POSTSUPERSCRIPT) and theoretical framework for the four halo simulation boxes with number (halo) density n¯=3×103¯𝑛3superscript103\bar{n}=3\times 10^{-3}over¯ start_ARG italic_n end_ARG = 3 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT h3superscript3h^{3}italic_h start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTMpc-3 and snapshot z0.1𝑧0.1z\approx 0.1italic_z ≈ 0.1 in real space. All values are in units of 102superscript10210^{-2}10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT.

B.2 Redshift Space

Now we can move to redshift space and check if our model to transform distances from real to redshift space (i.e. equation (37)) is accurate enough.

In the upper panel of Figure 15 we can observe the VPF (multiplied by r10superscript𝑟10r^{10}italic_r start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT to distinguish more easily each simulation for large radii) obtained by theoretical framework (continuous lines) and simulations (dots), and in Table 8 we can see the numerical values. In the bottom panel of the same Figure, the ratio between simulations and theoretical framework is shown. Again, taking into account the errors, the agreement between theoretical framework and simulations is good.

In the upper panel of Figure 16 we can see the n¯v(r)subscript¯𝑛𝑣𝑟\bar{n}_{v}(r)over¯ start_ARG italic_n end_ARG start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ). In the bottom panel of the same Figure, the ratio between simulations and theoretical framework is shown. The agreement between simulations and theoretical framework is good, too, although there are big oscillations for large radius r>20h1𝑟20superscript1r>20h^{-1}italic_r > 20 italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT) which make theoretical framework not to be compatible with simulations. This can be due to not having enough statistics for these radius bins.

Refer to caption
Figure 15: In top panel the VPF in redshift space is shown for the theoretical framework (lines) and simulations (dots), while the ratio between simulations and theoretical framework is shown in bottom panels for the Uchuu, P18, Low and VeryLow box catalogs with number density n¯=3×103h3¯𝑛3superscript103superscript3\bar{n}=3\times 10^{-3}h^{-3}over¯ start_ARG italic_n end_ARG = 3 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3. Shaded region in bottom panel indicates delimits the region between 0.9 and 1.10 for the ratio.
Refer to caption
Figure 16: In top panel the number density of voids larger than r𝑟ritalic_r in redshift space is shown for the theoretical framework (lines) and simulations (dots), while the ratio between simulations and theoretical framework is shown in bottom panels for the Uchuu, P18, Low and VeryLow box catalogs with number density n¯=3×103h3¯𝑛3superscript103superscript3\bar{n}=3\times 10^{-3}h^{-3}over¯ start_ARG italic_n end_ARG = 3 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3. Shaded region in bottom panel indicates delimits the region between 0.9 and 1.10 for the ratio.
r P0,Uchuuthsuperscriptsubscript𝑃0𝑈𝑐𝑢𝑢𝑡P_{0,Uchuu}^{th}italic_P start_POSTSUBSCRIPT 0 , italic_U italic_c italic_h italic_u italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT P0,Uchuusimsuperscriptsubscript𝑃0𝑈𝑐𝑢𝑢𝑠𝑖𝑚P_{0,Uchuu}^{sim}italic_P start_POSTSUBSCRIPT 0 , italic_U italic_c italic_h italic_u italic_u end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s italic_i italic_m end_POSTSUPERSCRIPT P0,Pl18thsuperscriptsubscript𝑃0𝑃𝑙18𝑡P_{0,Pl18}^{th}italic_P start_POSTSUBSCRIPT 0 , italic_P italic_l 18 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT P0,Pl18simsuperscriptsubscript𝑃0𝑃𝑙18𝑠𝑖𝑚P_{0,Pl18}^{sim}italic_P start_POSTSUBSCRIPT 0 , italic_P italic_l 18 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s italic_i italic_m end_POSTSUPERSCRIPT P0,Lowthsuperscriptsubscript𝑃0𝐿𝑜𝑤𝑡P_{0,Low}^{th}italic_P start_POSTSUBSCRIPT 0 , italic_L italic_o italic_w end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT P0,Lowsimsuperscriptsubscript𝑃0𝐿𝑜𝑤𝑠𝑖𝑚P_{0,Low}^{sim}italic_P start_POSTSUBSCRIPT 0 , italic_L italic_o italic_w end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s italic_i italic_m end_POSTSUPERSCRIPT P0,VeryLowthsuperscriptsubscript𝑃0𝑉𝑒𝑟𝑦𝐿𝑜𝑤𝑡P_{0,VeryLow}^{th}italic_P start_POSTSUBSCRIPT 0 , italic_V italic_e italic_r italic_y italic_L italic_o italic_w end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT P0,VeryLowsimsuperscriptsubscript𝑃0𝑉𝑒𝑟𝑦𝐿𝑜𝑤𝑠𝑖𝑚P_{0,VeryLow}^{sim}italic_P start_POSTSUBSCRIPT 0 , italic_V italic_e italic_r italic_y italic_L italic_o italic_w end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s italic_i italic_m end_POSTSUPERSCRIPT
9 9.059 9.440 8.999 9.333 8.643 9.151 8.181 8.842
10 5.099 5.379 5.054 5.291 4.810 5.139 4.490 4.888
11 2.737 2.901 2.707 2.832 2.550 2.718 2.344 2.535
12 1.402 1.482 1.383 1.434 1.288 1.355 1.163 1.233
13 0.6848 0.7187 0.6732 0.6817 0.6192 0.6376 0.5481 0.5635
14 0.3189 0.3310 0.3124 0.3060 0.2833 0.2820 0.2452 0.2442
15 0.1414 0.1437 0.1380 0.1205 0.1232 0.1184 0.1040 0.09690
16 0.05973 0.05862 0.05803 0.05212 0.05091 0.04628 0.04177 0.03675
17 0.02400 0.0264 0.02320 0.2025 0.01997 0.01684 0.01588 0.01320
18 9.164×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 8.300×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 8.815×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 7.33×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 7.426×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 5.970×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 5.706×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 4.400×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT
19 3.324×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.983×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 3.179×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.330×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.617×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 2.290×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 1.936×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 1.570×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT
20 1.145×103absentsuperscript103\times 10^{-3}× 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT 9.667×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 1.088×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 8.800×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 8.735×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 9.500×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 6.201×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 5.700×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT
21 3.738×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 2.625×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 3.529×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 3.700×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 2.758×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 3.200×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT 1.872×105absentsuperscript105\times 10^{-5}× 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT 2.100×104absentsuperscript104\times 10^{-4}× 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT
Table 8: Values of VPF in redshift space for simulations (P0simsuperscriptsubscript𝑃0𝑠𝑖𝑚P_{0}^{sim}italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s italic_i italic_m end_POSTSUPERSCRIPT) and theoretical framework (P0thsuperscriptsubscript𝑃0𝑡P_{0}^{th}italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT) for the four halo simulation boxes with number (halo) density n¯=3×103¯𝑛3superscript103\bar{n}=3\times 10^{-3}over¯ start_ARG italic_n end_ARG = 3 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT h3superscript3h^{3}italic_h start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTMpc-3 and snapshot z0.1𝑧0.1z\approx 0.1italic_z ≈ 0.1. All values are in units of 102superscript10210^{-2}10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT.

The contours obtained with maximum likelihood test for the halo simulation boxes in redshift space can be seen in the second column of Figure 14. In that Figure, we can see that we obtain a small contour for Uchuu in redshift space, unlike in real space. Additionally, we recover Planck 2018 values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and H0 within 1σ1𝜎1\sigma1 italic_σ for the P18 box catalog, and within 2σ2𝜎2\sigma2 italic_σ for Low and VeryLow. Therefore, in redshift space we don’t successfully recover the real values of the parameters in simulations within 1σ1𝜎1\sigma1 italic_σ as we do in real space. This can be due to the transformation we have used in order to transform the theoretical framework from real to redshift space (see equation (37)). However, we can recover the real values withing 2σ2𝜎2\sigma2 italic_σ for the four halo simulation boxes.

Appendix C Scaling of errors with volume

An important study that must be made is the scaling of errors with the volume of the samples used, i.e., how much do errors decrease when the volume of the sample is increased. From Figure 17 it is evident that the confidence level contours (and, therefore, the constrained values of each parameter) decrease considerably when we consider a sample with a larger volume. In addition, we can see that the confidence level contour size of a single random Uchuu-SDSS lightcone voids is similar to the one obtained for SDSS voids.

Refer to caption
Figure 17: Void Probability Function (left panel) and number density of voids larger than r𝑟ritalic_r (right panel) predicted by the theoretical framework developed in this work (continuous lines) and measured in Uchuu galaxy box (points) for different galaxy number densities, ngsubscript𝑛𝑔n_{g}italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT, at redshift z=0.092𝑧0.092z=0.092italic_z = 0.092.

In Table 9 we can see the constrained values for Uchuu-SDSS void and SDSS voids, and the ratio of the SDSS voids and Uchuu-SDSS voids. This ratio has been calculated as the mean value between the ratios of the upper and lower errors (for example, for the first row, 0.5[(0.264/0.167)+(0.295/0.187)]=1.580.5delimited-[]0.2640.1670.2950.1871.58\displaystyle{0.5\left[(0.264/0.167)+(0.295/0.187)\right]=1.58}0.5 [ ( 0.264 / 0.167 ) + ( 0.295 / 0.187 ) ] = 1.58. It can be seen that we obtain similar values of the ratio for ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and H0. We can also see that the ratios for σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and ΓΓ\Gammaroman_Γ (the fundamental parameters of the theoretical framework) are very far from 325.66similar-to325.66\sqrt{32}\sim 5.66square-root start_ARG 32 end_ARG ∼ 5.66, but they are closer to 321/42.38similar-tosuperscript32142.3832^{1/4}\sim 2.3832 start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT ∼ 2.38. Therefore, we can predict that the scaling of the errors with the volume of the samples is very similar to V1/4similar-toabsentsuperscript𝑉14\sim V^{-1/4}∼ italic_V start_POSTSUPERSCRIPT - 1 / 4 end_POSTSUPERSCRIPT, with V𝑉Vitalic_V being the ratio of the volumes of the two samples.

Uchuu-SDSS voids SDSS voids Ratio
σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT 0.7930.187+0.167subscriptsuperscriptabsent0.1670.187{}^{+0.167}_{-0.187}start_FLOATSUPERSCRIPT + 0.167 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.187 end_POSTSUBSCRIPT 1.0440.295+0.263subscriptsuperscriptabsent0.2630.295{}^{+0.263}_{-0.295}start_FLOATSUPERSCRIPT + 0.263 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.295 end_POSTSUBSCRIPT 1.58
ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT 0.3050.099+0.106subscriptsuperscriptabsent0.1060.099{}^{+0.106}_{-0.099}start_FLOATSUPERSCRIPT + 0.106 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.099 end_POSTSUBSCRIPT 0.2980.105+0.118subscriptsuperscriptabsent0.1180.105{}^{+0.118}_{-0.105}start_FLOATSUPERSCRIPT + 0.118 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.105 end_POSTSUBSCRIPT 1.09
H0 75.2922.57+26.92subscriptsuperscriptabsent26.9222.57{}^{+26.92}_{-22.57}start_FLOATSUPERSCRIPT + 26.92 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 22.57 end_POSTSUBSCRIPT 84.4329.06+30.52subscriptsuperscriptabsent30.5229.06{}^{+30.52}_{-29.06}start_FLOATSUPERSCRIPT + 30.52 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 29.06 end_POSTSUBSCRIPT 1.21
ΓΓ\Gammaroman_Γ 0.17870.0217+0.0237subscriptsuperscriptabsent0.02370.0217{}^{+0.0237}_{-0.0217}start_FLOATSUPERSCRIPT + 0.0237 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.0217 end_POSTSUBSCRIPT 0.19810.0567+0.0532subscriptsuperscriptabsent0.05320.0567{}^{+0.0532}_{-0.0567}start_FLOATSUPERSCRIPT + 0.0532 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.0567 end_POSTSUBSCRIPT 2.43
S8 0.7920.213+0.211subscriptsuperscriptabsent0.2110.213{}^{+0.211}_{-0.213}start_FLOATSUPERSCRIPT + 0.211 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.213 end_POSTSUBSCRIPT 1.0360.350+0.358subscriptsuperscriptabsent0.3580.350{}^{+0.358}_{-0.350}start_FLOATSUPERSCRIPT + 0.358 end_FLOATSUPERSCRIPT start_POSTSUBSCRIPT - 0.350 end_POSTSUBSCRIPT 1.67
Table 9: Constraints of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, H0 (in units of kms-1Mpc-1), S=8σ8Ωm/0.3{}_{8}=\sigma_{8}\sqrt{\Omega_{\rm m}/0.3}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT = italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT square-root start_ARG roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT / 0.3 end_ARG and Γ=ΩchΓsubscriptΩc\Gamma=\Omega_{\rm c}hroman_Γ = roman_Ω start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT italic_h for Uchuu-SDSS voids (first column), SDSS voids (second column) and the mean value of the ratio of SDSS and Uchuu-SDSS 68%percent\%% uncertainties.

Appendix D Theoretical framework with different number densities of galaxies

Refer to caption
Figure 18: Void Probability Function (left panel) and number density of voids larger than r𝑟ritalic_r (right panel) in real space predicted by the theoretical framework developed in this work (continuous lines) and measured in Uchuu galaxy box (points) for different galaxy number densities, ngsubscript𝑛𝑔n_{g}italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT, at redshift z=0.092𝑧0.092z=0.092italic_z = 0.092.

In this work, we have constrained the parameters σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, ΩmsubscriptΩm\Omega_{\rm m}roman_Ω start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT and H0 using galaxy samples with a number density of 3×103h33superscript103superscript33\times 10^{-3}h^{-3}3 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3 at a redshift of z0.1similar-to𝑧0.1z\sim 0.1italic_z ∼ 0.1. We have verified that the theoretical framework successfully predicts both the Void Probability Function and the number density of voids larger than r𝑟ritalic_r for this number density. However, it remains to be checked whether the theoretical framework continues to successfully predict these two statistics at a different number densities of galaxies.

In order to check if the theoretical framework works correctly for different number densities of galaxies we need to construct different samples (from Uchuu galaxy simulation box, for example) with different galaxy number densities, calculate the VPF and nv(r)subscript𝑛𝑣𝑟n_{v}(r)italic_n start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( italic_r ) from that sample and compare with the predicted value given by the theoretical framework with the same coefficients that we have calculated in this work. The only parameter that must be changed for each sample is the mass, mgsubscript𝑚𝑔m_{g}italic_m start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT. The number densities we use are ng={1×103,2×103,3×103,4×103,5×103,6×103}h3subscript𝑛𝑔1superscript1032superscript1033superscript1034superscript1035superscript1036superscript103superscript3n_{g}=\{1\times 10^{-3},2\times 10^{-3},3\times 10^{-3},4\times 10^{-3},5% \times 10^{-3},6\times 10^{-3}\}h^{-3}italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT = { 1 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT , 2 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT , 3 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT , 4 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT , 5 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT , 6 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT } italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3.

In Figure 18 we can observe the VPF (left panel) and number density of voids larger than r𝑟ritalic_r (right panel) predicted by theoretical framework with continuous lines and obtained in Uchuu galaxy simulation boxes for these galaxy number densities with dots and the abundance of vois larger than r𝑟ritalic_r (right panel). It can be seen that the theoretical framework predicts successfully the VPF for all galaxy number densities without any need to change the values of α𝛼\alphaitalic_α or μ𝜇\muitalic_μ, except for galaxy number densities smaller than ng2×103h3subscript𝑛𝑔2superscript103superscript3n_{g}\leq 2\times 10^{-3}h^{-3}italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ≤ 2 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3. Therefore, the theoretical framework is only valid for large galaxy number densities (ng3×103h3subscript𝑛𝑔3superscript103superscript3n_{g}\geq 3\times 10^{-3}h^{-3}italic_n start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ≥ 3 × 10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_h start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPTMpc3), and the coefficients α𝛼\alphaitalic_α and μ𝜇\muitalic_μ depend on this galaxy number density.

Appendix E Content of the void catalogues used in this work

The columns of the void catalogues of halo and galaxy simulation boxes are the following

  • X[MPC/H]: x-position of the centre of the void (comoving h1superscript1h^{-1}italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc).

  • Y[MPC/H]: y-position of the centre of the void (comoving h1superscript1h^{-1}italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc).

  • Z[MPC/H]: z-position of the centre of the void (comoving h1superscript1h^{-1}italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc).

  • RADIUS[MPC/H]: radius of the void (comoving h1superscript1h^{-1}italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPTMpc)

For Uchuu-SDSS lightcones and SDSS, there are four additional columns:

  • RA[DEG]: right ascension (degrees)

  • DEC[DEG]: declination (degrees).

  • ZOBS: observed redshift of the centre of the void (accounting for peculiar velocities. The fiducial cosmology used for SDSS voids is Planck 2015 (Planck Collaboration et al. 2016)).

  • completeness: mean completeness of the void, calculated as the mean completeness of all the points uniformly distributed in its volume.