Matter Power Spectra in Modified Gravity: A Comparative Study of Approximations and N𝑁Nitalic_N-Body Simulations

B. Bose1,2, A. Sen Gupta3,4 B. Fiorini4, G. Brando5, F. Hassani6, T. Baker4, L. Lombriser7, B. Li8, C. Ruan6, C. Hernández-Aguayo9,10, L. Atayde11, N. Frusciante12

1Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK
2Basic Research Community for Physics e.V., Mariannenstraße 89, Leipzig, Germany
3Astronomy Unit, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
4Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, Portsmouth PO1 3FX, UK
5Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
6Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, 0315 Oslo, Norway
7Département de Physique Théorique, Université de Genève, 24 quai Ernest Ansermet, 1211 Genève 4, Switzerland
8Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
9Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748, Garching, Germany
10Excellence Cluster ORIGINS, Boltzmannstrasse 2, D-85748 Garching, Germany
11Instituto de Astrofisíca e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Edificio C8, Campo Grande, P-1749016, Lisboa, Portugal
12Dipartimento di Fisica “E. Pancini", Università degli Studi di Napoli “Federico II", Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli, Italy
E-mail: ben.bose@ed.ac.uk
(Accepted XXX. Received YYY; in original form ZZZ)
Abstract

Testing gravity and the concordance model of cosmology, ΛΛ\Lambdaroman_ΛCDM, at large scales is a key goal of this decade’s largest galaxy surveys. Here we present a comparative study of dark matter power spectrum predictions from different numerical codes in the context of three popular theories of gravity that induce scale-independent modifications to the linear growth of structure: nDGP, Cubic Galileon and K-mouflage. In particular, we compare the predictions from full N𝑁Nitalic_N-body simulations, two N𝑁Nitalic_N-body codes with approximate time integration schemes, a parametrised modified N𝑁Nitalic_N-body implementation and the analytic halo model reaction approach. We find the modification to the ΛΛ\Lambdaroman_ΛCDM spectrum is in 2%percent22\%2 % agreement for z1𝑧1z\leq 1italic_z ≤ 1 and k1h/Mpc𝑘1Mpck\leq 1~{}h/{\rm Mpc}italic_k ≤ 1 italic_h / roman_Mpc over all gravitational models and codes, in accordance with many previous studies, indicating these modelling approaches are robust enough to be used in forthcoming survey analyses under appropriate scale cuts. We further make public the new code implementations presented, specifically the halo model reaction K-mouflage implementation and the relativistic Cubic Galileon implementation.

keywords:
cosmology: theory – large-scale structure of the Universe – methods:numerical
pubyear: 2022pagerange: Matter Power Spectra in Modified Gravity: A Comparative Study of Approximations and N𝑁Nitalic_N-Body SimulationsB.3

1 Introduction

Observations of cosmological large-scale structure (LSS) offer a unique laboratory in which to test the concordance cosmological model, ΛΛ\Lambdaroman_ΛCDM, which assumes General Relativity (GR). Such experiments are highly motivated. Indeed, the nature of the cold dark matter (CDM) and the constant dark energy (ΛΛ\Lambdaroman_Λ) components, constituting 95% of the Universe’s total energy density (see for example Riess et al., 1998; Perlmutter et al., 1999; Alam et al., 2021; Aghanim et al., 2020), remains elusive. Moreover, ΛΛ\Lambdaroman_ΛCDM’s inability to reconcile principles of GR with quantum mechanics points to the need for a more unified theory (see Bernardo et al., 2022, for a recent review on gravitational approaches to the cosmological constant problem). These gaps in our understanding motivate the investigation into alternative theories beyond ΛΛ\Lambdaroman_ΛCDM. By exploring these new frontiers, we hope to uncover a more comprehensive picture of the Universe, potentially leading to groundbreaking insights into its origin, evolution, and ultimate fate.

This decade will provide an immense opportunity for such insights through the efforts of some of the biggest scientific collaborations to date. These include the European Space Agency’s Euclid mission (Barroso et al., 2024), the Vera Rubin Observatory (LSST Dark Energy Science Collaboration, 2012; Ivezić et al., 2019) (LSST)111Vera Rubin was formerly known as the Large Synoptic Survey Telescope., the Dark Energy Survey (Albrecht et al., 2006; Abbott et al., 2016), the Nancy Grace Roman Space Telescope (Akeson et al., 2019) and the Dark Energy Spectroscopic Instrument (Levi et al., 2019). For instance, Euclid and LSST will be measuring up to order 1 billion galaxy shapes (Barroso et al., 2024; Ivezić et al., 2019), 2 orders of magnitude more than previous surveys (see for example Hildebrandt et al., 2017). This means the statistical precision of its resulting weak lensing measurements, such as cosmic shear, will be roughly the same order of magnitude better than previous observations, providing a potentially brilliant probe for new physics.

Consistency tests of ΛΛ\Lambdaroman_ΛCDM are a primary goal, but these missions are also charged with investigating if there is any statistical preference for new physics. Such beyond-consistency tests require theoretical modelling of any new physics we wish to test. In particular, a key task is to theoretically model key statistical cosmological quantities over a very wide range of physical scales. The 2-point correlation function, or its Fourier analog, the power spectrum, of the cosmological matter distribution is one such summary statistic. At small physical scales, where we have many more galaxy pairs, the measured statistics will be far more precise, potentially providing a heightened signal of any new physics. It should be kept in mind that this work only considers the matter power spectrum, which is a key ingredient for cosmic shear weak lensing analyses.

The small scale precision measurements of forthcoming surveys has forced ambitious accuracy demands on such theoretical predictions (for example 𝒪(1%)𝒪percent1\mathcal{O}(1\%)caligraphic_O ( 1 % ) accuracy on the matter power spectrum Hearin et al., 2012; Ivezić et al., 2019; Martinelli et al., 2021). This requires careful consideration of scale cuts. Most Euclid forecasts (Blanchard et al., 2020; Bonici et al., 2023; Frusciante et al., 2023; Casas et al., 2023) consider a ‘pessimistic’ and ‘optimistic’ scale cut in harmonic space, corresponding to a maximum angular multipole of =15001500\ell=1500roman_ℓ = 1500 and =50005000\ell=5000roman_ℓ = 5000, with the precise value of these cuts in Fourier mode, or k𝑘kitalic_k-space, varying with redshift. In contrast, LSST applies scale cuts in real space. While percent-level accuracy remains a desirable goal, definitive accuracy up to a specific k𝑘kitalic_k-cut is only achievable through full parameter inference. This nuanced approach is essential to fully harness the power of these surveys for an exquisite and reliable test of gravity and cosmology.

For these reasons, the community has sought to accurately model these small, nonlinear scales in the matter power spectrum, for beyond-ΛΛ\Lambdaroman_ΛCDM scenarios. To this end, many methods have been developed to provide such predictions. N𝑁Nitalic_N-body simulations provide our most accurate predictions, and have been extended to many models beyond-ΛΛ\Lambdaroman_ΛCDM (see for example Li et al., 2012, 2013a; Li et al., 2013b; Puchwein et al., 2013; Llinares et al., 2014; Ruan et al., 2022; Hernández-Aguayo et al., 2022; Hassani et al., 2019; Hassani et al., 2020; Christiansen et al., 2023). This accuracy comes at a large computational cost, making this method inappropriate for expensive data-theory comparisons where we wish to sample a large cosmological and gravitational parameter space. One can alleviate this cost to some extent through approximate methods. For example, Comoving Lagrangian Acceleration (COLA) (Tassev et al., 2013; Howlett et al., 2015) is an N𝑁Nitalic_N-body method that provides a balance between accuracy and speed by reducing the time steps in particle evolution through the perturbative modelling of large scale physics. This method has also been extended to many alternatives to ΛΛ\Lambdaroman_ΛCDM (Winther et al., 2017; Wright et al., 2023; Brando et al., 2023).

While being faster, COLA methods are still too slow to use directly in data analyses. Despite the computational cost, simulation methods are essential in bench-marking or constructing faster predictive pipelines, such as emulators (Arnold et al., 2021; Harnois-Déraps et al., 2022; Ramachandra et al., 2021; Fiorini et al., 2023; Nouri-Zonoz et al., 2024) or analytic models (Zhao, 2014; Mead et al., 2016). The halo model reaction (Cataneo et al., 2019) is one such analytic method, which can provide a high accuracy at a fraction of the time cost and is theoretically general, allowing its extension to many models of cosmology.

This paper is dedicated to assessing the consistency of these different methods for a few representative beyond-ΛΛ\Lambdaroman_ΛCDM models of cosmological relevance. The models we consider are the DGP braneworld model (Dvali et al., 2000), the Cubic Galileon model (Nicolis et al., 2009) and the K-mouflage model (Babichev et al., 2009). This work runs in a similar vein to the code comparison project of Ref. Winther et al. (2015), updating the exercise, nearly a decade later, to account for improvements in the codes and methods, as well as approximations and new theoretical models and phenomenology. Such an assessment is vital in modelling the theoretical uncertainty or delimiting the scales of validity of the method under consideration, which will play an important role in forthcoming surveys (Audren et al., 2013; Baldauf et al., 2016). We also present an extension of the halo model reaction code, ReACT, which includes the specific K-mouflage model of gravity considered in this paper.

We outline the paper as follows: In section 2 we briefly introduce the different beyond-ΛΛ\Lambdaroman_ΛCDM models we consider. In section 3 we outline the different methods we will compare, highlighting the key differences between them and the various approximations they employ. In section 4 we present matter power spectrum boost comparisons of the different methods. We present our conclusions in section 5.

1.1 Notation and conventions

In this work we will use the following definitions and conventions:

  1. 1.

    We use a metric signature of (,+,+,+)(-,+,+,+)( - , + , + , + ).

  2. 2.

    We work in units where c==1𝑐Planck-constant-over-2-pi1c=\hbar=1italic_c = roman_ℏ = 1.

  3. 3.

    Jordan frame quantities appear with a hat, e.g. q^^𝑞\hat{q}over^ start_ARG italic_q end_ARG.

  4. 4.

    The Planck mass is denoted as Mpl=(8πGN)1subscript𝑀plsuperscript8𝜋subscript𝐺N1M_{\rm pl}=(8\pi G_{\rm N})^{-1}italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT = ( 8 italic_π italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, where GNsubscript𝐺NG_{\rm N}italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT is Newton’s constant.

  5. 5.

    Overdots denote derivatives with respect to cosmic time t𝑡titalic_t.

  6. 6.

    Primes denote derivatives with respect to the natural logarithm of the scale factor, lna𝑎\ln aroman_ln italic_a, unless otherwise stated.

  7. 7.

    Quantities with a ‘00’ subscript denote their value at z=0𝑧0z=0italic_z = 0.

  8. 8.

    The canonical scalar field kinetic energy is X(ϕ)2/2𝑋superscriptitalic-ϕ22X\equiv-(\partial\phi)^{2}/2italic_X ≡ - ( ∂ italic_ϕ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 2.

2 Gravity Beyond General Relativity

The simplest, viable class of alternatives to ΛΛ\Lambdaroman_ΛCDM can be found by adding a single extra scalar degree of freedom, ϕitalic-ϕ\phiitalic_ϕ, to GR. Under some basic constraints, such as second-order equations of motion (a generic condition to avoid unbounded negative energies) and four spacetime dimensions, the well-studied Horndeski Lagrangian encompasses all possible scalar-tensor theories with minimally coupled matter (Horndeski, 1974; Deffayet et al., 2011; Kobayashi, 2019). If we accept the speed of light to be the same as gravitational wave propagation, in accordance with the observation of gamma ray burst GRB 170817A (Goldstein et al., 2017) and merger signal of GW170817 (Abbott et al., 2017), the Horndeski Lagrangian reduces to 222This condition may not hold below the frequency band of terrestrial gravitational wave detectors (de Rham & Melville, 2018; de Rham et al., 2021; Baker et al., 2022; Baker et al., 2023; Harry & Noller, 2022). (Lombriser & Taylor, 2016; Lombriser & Lima, 2017; Creminelli & Vernizzi, 2017; Ezquiaga & Zumalacárregui, 2017; Baker et al., 2017; Sakstein & Jain, 2017; Battye et al., 2018; de Rham & Melville, 2018; Creminelli et al., 2018; Quartin et al., 2023)

H=G4(ϕ)R+G2(ϕ,X)G3(ϕ,X)ϕ,subscriptHsubscript𝐺4italic-ϕ𝑅subscript𝐺2italic-ϕ𝑋subscript𝐺3italic-ϕ𝑋italic-ϕ\displaystyle\mathcal{L}_{\rm H}=G_{4}(\phi)\,R+G_{2}(\phi,X)-G_{3}(\phi,X)% \Box\phi\,,caligraphic_L start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT = italic_G start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_ϕ ) italic_R + italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ϕ , italic_X ) - italic_G start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ϕ , italic_X ) □ italic_ϕ , (1)

where R𝑅Ritalic_R is the Ricci curvature scalar, \Box is the D’Alembert operator and each Gi(ϕ,X)subscript𝐺𝑖italic-ϕ𝑋G_{i}(\phi,X)italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_ϕ , italic_X ), i=2,3,4𝑖234i=2,3,4italic_i = 2 , 3 , 4 is a free function of the scalar field ϕitalic-ϕ\phiitalic_ϕ and its canonical kinetic term X𝑋Xitalic_X. Note that the G4subscript𝐺4G_{4}italic_G start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT operator is a function of ϕitalic-ϕ\phiitalic_ϕ only.

Besides modifying the expansion history of the Universe, modified gravity theories also leave an impact on the growth of structure (see Hou et al., 2023, for a review). This is generally understood by considering linear perturbations on top of a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker background given by the following line element

ds2=(1+2Ψ)dt2+a2(t)(12Φ)δijdxidxj,dsuperscript𝑠212Ψdsuperscript𝑡2superscript𝑎2𝑡12Φsubscript𝛿𝑖𝑗dsuperscript𝑥𝑖dsuperscript𝑥𝑗\mathrm{d}s^{2}=-\left(1+2\Psi\right)\mathrm{d}t^{2}+a^{2}(t)\left(1-2\Phi% \right)\delta_{ij}\mathrm{d}x^{i}\mathrm{d}x^{j},roman_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = - ( 1 + 2 roman_Ψ ) roman_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) ( 1 - 2 roman_Φ ) italic_δ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT roman_d italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT roman_d italic_x start_POSTSUPERSCRIPT italic_j end_POSTSUPERSCRIPT , (2)

where ΦΦ\Phiroman_Φ is the usual Poisson potential in Newtonian gravity that captures perturbations in the spatial sector of the metric, while ΨΨ\Psiroman_Ψ is a gravitational potential corresponding to perturbations in the time-like sector of the line element.

The linear evolution of perturbations of modified gravity theories given by Equation 1 has been thoroughly studied by many different works in the literature (see for example Hu et al., 2014; Zumalacárregui et al., 2017; Frusciante & Perenon, 2020). Within the quasi-static approximation (Sawicki & Bellini, 2015; Winther & Ferreira, 2015b; Pace et al., 2021), the effects of modified gravity on the linear growth of structure in the Universe are encoded in a time- and scale-dependent effective gravitational constant

Geff,L(k,a)=GN[1+ΔGeff,L(k,a)GN],subscript𝐺effL𝑘𝑎subscript𝐺Ndelimited-[]1Δsubscript𝐺effL𝑘𝑎subscript𝐺𝑁G_{\rm eff,L}(k,a)=G_{\rm N}\left[1+\frac{\Delta G_{\rm eff,L}(k,a)}{G_{N}}% \right],italic_G start_POSTSUBSCRIPT roman_eff , roman_L end_POSTSUBSCRIPT ( italic_k , italic_a ) = italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT [ 1 + divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT roman_eff , roman_L end_POSTSUBSCRIPT ( italic_k , italic_a ) end_ARG start_ARG italic_G start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_ARG ] , (3)

where k𝑘kitalic_k is the Fourier mode. In this work, we only consider theories where the linear modification is scale-independent and so we drop the dependency on k𝑘kitalic_k for Geff,Lsubscript𝐺effLG_{\rm eff,L}italic_G start_POSTSUBSCRIPT roman_eff , roman_L end_POSTSUBSCRIPT, where L refers to a linear theory prediction. The Poisson equation at large scales is then written in Fourier space as

k2Φ(k,a)=4πGeff,L(a)a2ρ¯m(a)δm(k,a),superscript𝑘2Φ𝑘𝑎4𝜋subscript𝐺effL𝑎superscript𝑎2subscript¯𝜌m𝑎subscript𝛿m𝑘𝑎k^{2}\Phi(k,a)=4\pi G_{\rm eff,L}(a)a^{2}\bar{\rho}_{\mathrm{m}}(a)\delta_{\rm m% }(k,a),italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ ( italic_k , italic_a ) = 4 italic_π italic_G start_POSTSUBSCRIPT roman_eff , roman_L end_POSTSUBSCRIPT ( italic_a ) italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over¯ start_ARG italic_ρ end_ARG start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT ( italic_a ) italic_δ start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT ( italic_k , italic_a ) , (4)

where ρ¯msubscript¯𝜌m\bar{\rho}_{\rm m}over¯ start_ARG italic_ρ end_ARG start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT is the background matter density, and δmsubscript𝛿m\delta_{\rm m}italic_δ start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT is the corresponding linear matter perturbation.

Another requirement for this class of theories is the inclusion of a theoretical mechanism that prevents large modifications in environments where GR-like physics has been well confirmed by experiment (see Will, 2014; Belgacem et al., 2019, for example). Such mechanisms are known as screening mechanisms (see Brax et al., 2021, for a recent review and experimental tests). The screened environments are thus small scale, dense environments. This means that the modification to Newton’s constant, more generally written as

Geff(k,a)=GN[1+ΔGeff(k,a)GN],subscript𝐺eff𝑘𝑎subscript𝐺Ndelimited-[]1Δsubscript𝐺eff𝑘𝑎subscript𝐺𝑁G_{\rm eff}(k,a)=G_{\rm N}\left[1+\frac{\Delta G_{\rm eff}(k,a)}{G_{N}}\right],italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_k , italic_a ) = italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT [ 1 + divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_k , italic_a ) end_ARG start_ARG italic_G start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_ARG ] , (5)

requires the condition that limkGeff(k,a)GNsubscript𝑘subscript𝐺eff𝑘𝑎subscript𝐺N\lim_{k\to\infty}G_{\rm eff}(k,a)\to G_{\rm N}roman_lim start_POSTSUBSCRIPT italic_k → ∞ end_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_k , italic_a ) → italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT. In this case Geff(k,a)subscript𝐺eff𝑘𝑎G_{\rm eff}(k,a)italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_k , italic_a ) is the effective gravitational constant valid at all scales - both linear and nonlinear - and it necessarily depends on scale as well as time. In this work we will meet two such screening mechanisms which satisfy this condition: the Vainshtein mechanism and K-mouflage screening.

Returning to Equation 1, we will consider three choices for the Lagrangian functions, each having very particular phenomenological features, including different screening mechanisms and cosmological backgrounds. Where a choice exists, we will give their Lagrangians in the Einstein frame where G4(ϕ)=Mpl2/2subscript𝐺4italic-ϕsuperscriptsubscript𝑀pl22G_{4}(\phi)=M_{\rm pl}^{2}/2italic_G start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_ϕ ) = italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 2, with metric gμνsubscript𝑔𝜇𝜈g_{\mu\nu}italic_g start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT. In this frame the ‘pure gravity’ part of the action resembles the Einstein-Hilbert action for GR, simplifying some computations. However, this frame choice also results in non-minimal coupling of matter to the metric, ensuring the theory behaves very differently to GR.

The Einstein frame is obtained by performing a conformal transformation of the Jordan frame. The Jordan frame prioritises use of a metric, g^μνsubscript^𝑔𝜇𝜈\hat{g}_{\mu\nu}over^ start_ARG italic_g end_ARG start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT, which couples minimally to the matter fields but contains the non-trivial G4subscript𝐺4G_{4}italic_G start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT function. In this frame the gravitational Lagrangian is modified from the the Einstein-Hilbert action. The Jordan-frame metric is related to the Einstein-frame metric, gμνsubscript𝑔𝜇𝜈g_{\mu\nu}italic_g start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT, via a conformal factor A𝐴Aitalic_A that is a function of the Horndeski scalar:

g^μν=A2(ϕ)gμν.subscript^𝑔𝜇𝜈superscript𝐴2italic-ϕsubscript𝑔𝜇𝜈\hat{g}_{\mu\nu}=A^{2}(\phi)g_{\mu\nu}\,.over^ start_ARG italic_g end_ARG start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT = italic_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_ϕ ) italic_g start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT . (6)

In what follows, specifically in the case of K-mouflage theories, we will see that some quantities differ between the Jordan and Einstein frame. Though these quantities may be ‘physical’ in nature, they are not directly observable. General coordinate invariance – a key property shared with GR by nearly all modified gravity theories – ensures that observable quantities must be independent of frame choices (see for example Catena et al., 2007; Chiba & Yamaguchi, 2013; Francfort et al., 2019).

We summarise the models considered in this paper, their associated additional parameters and some selected constraints in Table 1.

Table 1: Overview of gravity models considered in this work. Note the K-mouflage kinetic term in Equation 14 does not pass Solar System tests without running into fine-tuning issues (Barreira et al., 2015b). Note the CG has no free parameters with the tracker solution. We have included constraints for the more general GCCG (see subsection 2.2).

model screening method free parameters selected data constraints
nDGP Vainshtein {Ωrc}subscriptΩrc\{\Omega_{\rm rc}\}{ roman_Ω start_POSTSUBSCRIPT roman_rc end_POSTSUBSCRIPT } Ωrc0.235(2σ)subscriptΩrc0.2352𝜎\Omega_{\rm rc}\leq 0.235\,(2\sigma)roman_Ω start_POSTSUBSCRIPT roman_rc end_POSTSUBSCRIPT ≤ 0.235 ( 2 italic_σ ) (LSS) (Barreira et al., 2016)
CG Vainshtein {s=2,q=0.5}formulae-sequence𝑠2𝑞0.5\{s=2,q=0.5\}{ italic_s = 2 , italic_q = 0.5 } s=0.050.05+0.08𝑠subscriptsuperscript0.050.080.05s=0.05^{+0.08}_{-0.05}italic_s = 0.05 start_POSTSUPERSCRIPT + 0.08 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.05 end_POSTSUBSCRIPT, q>0.8𝑞0.8q>0.8italic_q > 0.8 (2σ)2𝜎(2\sigma)( 2 italic_σ ) (Various LSS, GCCG) (Frusciante et al., 2020)
K-mouflage K-mouflage {n,βK,K0,λ}𝑛subscript𝛽Ksubscript𝐾0𝜆\{n,\beta_{\rm K},K_{0},\lambda\}{ italic_n , italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT , italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_λ } βK0.1subscript𝛽K0.1\beta_{\rm K}\leq 0.1italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT ≤ 0.1 (Lunar laser ranging) (Barreira et al., 2015b)

2.1 nDGP

The first model we consider is the Dvali-Gabadadze-Porrati model (Dvali et al., 2000), which does not strictly fall into the Horndeski class, being a five-dimensional braneworld model. It is given by the following action

S=116πG5d5xγR5+d4xg[Mpl22R+m],𝑆116𝜋subscript𝐺5subscriptsuperscriptd5𝑥𝛾subscript𝑅5subscriptsuperscriptd4𝑥𝑔delimited-[]superscriptsubscript𝑀pl22𝑅subscriptmS=\frac{1}{16\pi G_{5}}\int_{\cal M}{\rm d}^{5}x\sqrt{-\gamma}R_{5}+\int_{% \partial{\cal M}}{\rm d}^{4}x\sqrt{-g}\left[\frac{M_{\rm pl}^{2}}{2}R+{\cal L}% _{\rm m}\right]\,,italic_S = divide start_ARG 1 end_ARG start_ARG 16 italic_π italic_G start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_ARG ∫ start_POSTSUBSCRIPT caligraphic_M end_POSTSUBSCRIPT roman_d start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT italic_x square-root start_ARG - italic_γ end_ARG italic_R start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT ∂ caligraphic_M end_POSTSUBSCRIPT roman_d start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_x square-root start_ARG - italic_g end_ARG [ divide start_ARG italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_R + caligraphic_L start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT ] , (7)

where γ𝛾\gammaitalic_γ is the five-dimensional metric and R5subscript𝑅5R_{5}italic_R start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT its Ricci curvature scalar. G5subscript𝐺5G_{5}italic_G start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT is the five-dimensional gravitational constant. The matter Lagrangian is restricted to a four-dimensional brane in a five-dimensional Minkowski spacetime. The induced gravity given by the four-dimensional Einstein-Hilbert action is responsible for the recovery of four-dimensional gravity on the brane. The parameter rc=G5/(2GN)subscript𝑟csubscript𝐺52subscript𝐺Nr_{\rm c}=G_{5}/(2G_{\rm N})italic_r start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT = italic_G start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT / ( 2 italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT ) is called the cross-over scale and is the only free parameter of the model, with its GR limit being rcsubscript𝑟cr_{\rm c}\to\inftyitalic_r start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT → ∞.

DGP also exhibits screening coming from higher order derivative terms in the effective 4-dimensional action. Such screening is known as Vainshtein screening (Vainshtein, 1972; Babichev & Deffayet, 2013). The so-called decoupling limit of DGP has the effective action given by (Luty et al., 2003; Gabadadze & Iglesias, 2006)

DGP=Mpl22R+(3ϕ1ΛDGP3(ϕ)2)ϕ+12Mpl2ϕT,subscriptDGPsuperscriptsubscript𝑀pl22𝑅3italic-ϕ1subscriptsuperscriptΛ3DGPsuperscriptitalic-ϕ2italic-ϕ12superscriptsubscript𝑀pl2italic-ϕ𝑇\mathcal{L}_{\rm DGP}=\frac{M_{\rm pl}^{2}}{2}R+\left(3\phi-\frac{1}{\Lambda^{% 3}_{\rm DGP}}(\partial\phi)^{2}\right)\Box\phi+\frac{1}{2M_{\rm pl}^{2}}\phi T\,,caligraphic_L start_POSTSUBSCRIPT roman_DGP end_POSTSUBSCRIPT = divide start_ARG italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG italic_R + ( 3 italic_ϕ - divide start_ARG 1 end_ARG start_ARG roman_Λ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_DGP end_POSTSUBSCRIPT end_ARG ( ∂ italic_ϕ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) □ italic_ϕ + divide start_ARG 1 end_ARG start_ARG 2 italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_ϕ italic_T , (8)

where T𝑇Titalic_T is the trace of the energy momentum tensor and ΛDGP3=Mpl2/rc2subscriptsuperscriptΛ3DGPsuperscriptsubscript𝑀pl2superscriptsubscript𝑟𝑐2\Lambda^{3}_{\rm DGP}=M_{\rm pl}^{2}/r_{c}^{2}roman_Λ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_DGP end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Note that although Equation 7 is not a Horndeski Lagrangian, Equation 8 is (compare to Equation 1). In this case we have

G3(ϕ,X)=3ϕ+2ΛDGP3X,subscript𝐺3italic-ϕ𝑋3italic-ϕ2superscriptsubscriptΛDGP3𝑋G_{3}(\phi,X)=3\phi+\frac{2}{\Lambda_{\rm DGP}^{3}}X\,,italic_G start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ϕ , italic_X ) = 3 italic_ϕ + divide start_ARG 2 end_ARG start_ARG roman_Λ start_POSTSUBSCRIPT roman_DGP end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_X , (9)

with G2(ϕ,X)=0subscript𝐺2italic-ϕ𝑋0G_{2}(\phi,X)=0italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ϕ , italic_X ) = 0 and G4(ϕ)=Mpl2/2subscript𝐺4italic-ϕsuperscriptsubscript𝑀pl22G_{4}(\phi)=M_{\rm pl}^{2}/2italic_G start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_ϕ ) = italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 2.

The literature typically assumes a ΛΛ\Lambdaroman_ΛCDM background expansion, which is accommodated by introducing an appropriate dark energy contribution (see for example Schmidt, 2009b; Bag et al., 2018) on the stable ‘normal’ branch solution of the Friedmann equations. We follow this here (see Lue, 2006, for more details) and refer to this normal branch as nDGP. We also parametrize the modification to gravity using the energy density fraction Ωrc1/(4rc2H02)subscriptΩrc14superscriptsubscript𝑟c2superscriptsubscript𝐻02\Omega_{\rm rc}\equiv 1/(4r_{\rm c}^{2}H_{0}^{2})roman_Ω start_POSTSUBSCRIPT roman_rc end_POSTSUBSCRIPT ≡ 1 / ( 4 italic_r start_POSTSUBSCRIPT roman_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ), where H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is the Hubble constant. The GR-limit is then Ωrc0subscriptΩrc0\Omega_{\rm rc}\rightarrow 0roman_Ω start_POSTSUBSCRIPT roman_rc end_POSTSUBSCRIPT → 0.

Although nDGP is now quite strongly constrained by observations (see for example Lombriser et al., 2009; Barreira et al., 2016; Piga et al., 2023), its appeal as a modified gravity model stems from the simplicity of its 4D effective action relative to the new phenomenology it introduces. It is one of the simplest examples of a gravity model that produces Vainshtein screening effects, whilst maintaining scale-independent growth of matter perturbations, and having only one additional parameter relative to ΛΛ\Lambdaroman_ΛCDM. This has made it a favourite testbed for simulations (Schmidt, 2009a; Khoury & Wyman, 2009; Li et al., 2013a; Winther et al., 2017) and analyses with galaxy surveys (Barreira et al., 2016; Piga et al., 2023; Frusciante et al., 2023). We refer the reader to Refs. Koyama & Maartens (2006); Li et al. (2013a) and Appendix B for details on the modification to the Poisson equation (Equation 4) in linear and nonlinear regimes.

2.2 Cubic Galileon

The Cubic Galileon (CG) model was first derived by Nicolis et al. (2009) as a generalisation of the effective DGP action in 4-dimensions. The Lagrangian is given by (see for example Deffayet et al., 2009; Kobayashi et al., 2010)

CG=RMpl22+c2X+1Λ33c3Xϕ,subscriptCG𝑅superscriptsubscript𝑀pl22subscript𝑐2𝑋1superscriptsubscriptΛ33subscript𝑐3𝑋italic-ϕ\mathcal{L}_{\rm CG}=R\frac{M_{\rm pl}^{2}}{2}+c_{2}X+\frac{1}{\Lambda_{3}^{3}% }c_{3}X\Box\phi\,,caligraphic_L start_POSTSUBSCRIPT roman_CG end_POSTSUBSCRIPT = italic_R divide start_ARG italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_X + divide start_ARG 1 end_ARG start_ARG roman_Λ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_X □ italic_ϕ , (10)

where c2subscript𝑐2c_{2}italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and c3subscript𝑐3c_{3}italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT are dimensionless constants parametrizing the modification to gravity, and the canonical choice for Λ3subscriptΛ3\Lambda_{3}roman_Λ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT being Λ33=MplH02superscriptsubscriptΛ33subscript𝑀plsuperscriptsubscript𝐻02\Lambda_{3}^{3}=M_{\rm pl}H_{0}^{2}roman_Λ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT = italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, made to give the scalar field non-trivial dynamics on cosmological scales. Comparing with Equation 1 we have

G2(ϕ,X)=c2X,G3(ϕ,X)=1MplH02c3X.formulae-sequencesubscript𝐺2italic-ϕ𝑋subscript𝑐2𝑋subscript𝐺3italic-ϕ𝑋1subscript𝑀plsuperscriptsubscript𝐻02subscript𝑐3𝑋G_{2}(\phi,X)=c_{2}X\,,\qquad G_{3}(\phi,X)=-\frac{1}{M_{\rm pl}H_{0}^{2}}c_{3% }X\,.italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ϕ , italic_X ) = italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_X , italic_G start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ϕ , italic_X ) = - divide start_ARG 1 end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_X . (11)

This model also exhibits the Vainshtein mechanism due to the presence of the higher-order derivative terms (see Barreira et al., 2013a, for a derivation in the case of spherical symmetry). In this model, G4(ϕ)=A(ϕ)2/2=1subscript𝐺4italic-ϕ𝐴superscriptitalic-ϕ221G_{4}(\phi)=A(\phi)^{-2}/2=1italic_G start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ( italic_ϕ ) = italic_A ( italic_ϕ ) start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT / 2 = 1, and hence there is no difference between Jordan and Einstein frames (see Equation 6). We note that the absence of G4subscript𝐺4G_{4}italic_G start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT and conformal coupling allows one to interpret this model as a dark energy model with a non-trivial kinetic term.

The Cubic Galileon model is one member of a broader family, the Galileons, which added further derivative terms to Equation 10 (Deffayet et al., 2009). The Galileon family received intense interest from the theoretical physics community due to their shift symmetry properties (the actions are invariant under a shift ϕ(x)ϕ(x)+c+bμxμitalic-ϕ𝑥italic-ϕ𝑥𝑐subscript𝑏𝜇superscript𝑥𝜇\phi(x)\rightarrow\phi(x)+c+b_{\mu}x^{\mu}italic_ϕ ( italic_x ) → italic_ϕ ( italic_x ) + italic_c + italic_b start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT, c𝑐citalic_c and bμsubscript𝑏𝜇b_{\mu}italic_b start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT constants); this leads to special properties of the S-matrix. Cosmologically, their impact has been studied on the CMB (for example Barreira et al., 2014; Peirone et al., 2019; Frusciante et al., 2020; Albuquerque et al., 2022), linear matter power spectrum (for example Barreira et al., 2012) and gravitational lensing by voids (for example Baker et al., 2018). See also Refs. Renk et al. (2017); Peirone et al. (2018); Frusciante & Pace (2020) for other observational implications.

The more complex Galileon siblings have been virtually eliminated by their inability to have luminal gravitational waves, leaving behind only the Cubic Galileon (see for example Ezquiaga & Zumalacárregui, 2017; Baker et al., 2017). The Cubic Galileon model can be constrained by considering the integrated Sachs-Wolfe effect cross-correlated with a galaxy sample, as was done in Refs. Renk et al. (2017); Kable et al. (2022). The resulting cross-correlation, however, is shown to be anti-correlated with the expected ΛΛ\Lambdaroman_ΛCDM signal, which severely constrains this model. It is worth noting, nevertheless, that a broader class of cubic Horndeski theories does not show this anti-correlation (Brando et al., 2019). Similarly to nDGP, it remains a useful testbed displaying Vainshtein screening, with a larger degree of flexbility due to its additional parameters and energy scales. It is a useful starting point from which to investigate the more general model space of the Horndeski Lagrangian (Equation 1).

We also note that the non-zero G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT term makes this model phenomenologically distinct from nDGP. Further, in this paper we do not assume a ΛΛ\Lambdaroman_ΛCDM background as with nDGP, but rather the solution to the Friedmann equations which include the effects of the scalar field (see for example Barreira et al., 2013a). A cosmology with this background evolution but with no further gravitational modification (so the Poisson equation remains as in GR), will be referred to as QCDM as in Ref. Barreira et al. (2013a).

The more general Generalised Covariant Cubic Galileon (GCCG) was recently considered in Ref. Frusciante et al. (2020), which promotes the Gisubscript𝐺𝑖G_{i}italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT functions to be power law functions of X𝑋Xitalic_X, i.e. GiXpiproportional-tosubscript𝐺𝑖superscript𝑋subscript𝑝𝑖G_{i}\propto X^{p_{i}}italic_G start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∝ italic_X start_POSTSUPERSCRIPT italic_p start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT. This model permits a tracker solution at the background level which is given by (De Felice & Tsujikawa, 2012)

H2q+1ψ2q=ζH02q+1,superscript𝐻2𝑞1superscript𝜓2𝑞𝜁superscriptsubscript𝐻02𝑞1H^{2q+1}\psi^{2q}=\zeta H_{0}^{2q+1}\,,italic_H start_POSTSUPERSCRIPT 2 italic_q + 1 end_POSTSUPERSCRIPT italic_ψ start_POSTSUPERSCRIPT 2 italic_q end_POSTSUPERSCRIPT = italic_ζ italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_q + 1 end_POSTSUPERSCRIPT , (12)

where q(p3p2)+1/2𝑞subscript𝑝3subscript𝑝212q\equiv(p_{3}-p_{2})+1/2italic_q ≡ ( italic_p start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + 1 / 2 and ψ=ϕ/Mpl𝜓superscriptitalic-ϕsubscript𝑀pl\psi=\phi^{\prime}/M_{\rm pl}italic_ψ = italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT / italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT. We also have the parameter s=p2/q𝑠subscript𝑝2𝑞s=p_{2}/qitalic_s = italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT / italic_q, leaving only 2 additional degrees of freedom for this model over ΛΛ\Lambdaroman_ΛCDM. The GCCG reverts to the Cubic Galileon model when q=0.5𝑞0.5q=0.5italic_q = 0.5 and s=2𝑠2s=2italic_s = 2.

The GCCG model has not been ruled out by data, with CMB experiments giving the 2σ2𝜎2\sigma2 italic_σ bounds of q>0𝑞0q>0italic_q > 0 and s=0.60.6+1.7𝑠subscriptsuperscript0.61.70.6s=0.6^{+1.7}_{-0.6}italic_s = 0.6 start_POSTSUPERSCRIPT + 1.7 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.6 end_POSTSUBSCRIPT, with a slight preference for the model over ΛΛ\Lambdaroman_ΛCDM (Frusciante et al., 2020). When combined with SN1a and redshift space distortion data sets, the bounds improve to q>0.8𝑞0.8q>0.8italic_q > 0.8 and s=0.050.05+0.08𝑠subscriptsuperscript0.050.080.05s=0.05^{+0.08}_{-0.05}italic_s = 0.05 start_POSTSUPERSCRIPT + 0.08 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.05 end_POSTSUBSCRIPT. We note that theoretical stability conditions require both parameters to be positive.

In this paper we will only consider the CG limit of GCCG. We note that we employ the GCCG patch to the ReACT code (Atayde et al., 2024) for those specific predictions. For details on how the Poisson equation is modified in the CG limit, we refer the reader to Refs. Barreira et al. (2013a); Atayde et al. (2024).

2.3 K-mouflage

2.3.1 Lagrangian

The last model we consider is the K-mouflage model (Babichev et al., 2009). This model has the Lagrangian (in the Einstein frame)

K=RMpl22+4K(X),subscriptK𝑅superscriptsubscript𝑀pl22superscript4𝐾𝑋\mathcal{L}_{\rm K}=R\frac{M_{\rm pl}^{2}}{2}+\mathcal{M}^{4}K(X)\,,caligraphic_L start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT = italic_R divide start_ARG italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + caligraphic_M start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_K ( italic_X ) , (13)

where K(X)𝐾𝑋K(X)italic_K ( italic_X ) is a function of the canonical kinetic term, equivalent to a restricted G2(ϕ,X)subscript𝐺2italic-ϕ𝑋G_{2}(\phi,X)italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ϕ , italic_X ), and 4superscript4\mathcal{M}^{4}caligraphic_M start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT is an energy scale of the theory333Not to be confused with the manifold \mathcal{M}caligraphic_M in Equation 7.. We will set 4=λ2H02Mpl2superscript4superscript𝜆2superscriptsubscript𝐻02superscriptsubscript𝑀pl2\mathcal{M}^{4}=\lambda^{2}H_{0}^{2}M_{\rm pl}^{2}caligraphic_M start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT = italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT as in Ref. Hernández-Aguayo et al. (2022), λ𝜆\lambdaitalic_λ being an order 1111 dimensionless constant which can be tuned to give the current accelerated expansion of the Universe today. In this work we will consider a form which has been well studied in the literature (Brax & Valageas, 2014a, b; Barreira et al., 2015a, b; Hernández-Aguayo et al., 2022)

K(X)=1+1H02λ2Mpl2X+K01H02nλ2nMpl2nXn,𝐾𝑋11superscriptsubscript𝐻02superscript𝜆2superscriptsubscript𝑀pl2𝑋subscript𝐾01superscriptsubscript𝐻02𝑛superscript𝜆2𝑛superscriptsubscript𝑀pl2𝑛superscript𝑋𝑛K(X)=-1+\frac{1}{H_{0}^{2}\lambda^{2}M_{\rm pl}^{2}}X+K_{0}\frac{1}{H_{0}^{2n}% \lambda^{2n}M_{\rm pl}^{2n}}X^{n}\,,italic_K ( italic_X ) = - 1 + divide start_ARG 1 end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_X + italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT end_ARG italic_X start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , (14)

where K0subscript𝐾0K_{0}italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is another dimensionless model parameter and n2𝑛2n\geq 2italic_n ≥ 2 is an integer. For the conformal function, we assume an exponential form

A(ϕ)=exp(βKϕMpl),𝐴italic-ϕsubscript𝛽Kitalic-ϕsubscript𝑀plA(\phi)=\exp\left(\frac{\beta_{\rm K}\phi}{M_{\rm pl}}\right)\,,italic_A ( italic_ϕ ) = roman_exp ( divide start_ARG italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT italic_ϕ end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT end_ARG ) , (15)

where βKsubscript𝛽K\beta_{\rm K}italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT is another dimensionless model parameter. In total we then have 4 parameters for this particular model: {λ,K0,n,βK}𝜆subscript𝐾0𝑛subscript𝛽K\{\lambda,K_{0},n,\beta_{\rm K}\}{ italic_λ , italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_n , italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT }.

Unlike the other two models considered, the Jordan and Einstein frames are not set to be identical (A(ϕ)1𝐴italic-ϕ1A(\phi)\neq 1italic_A ( italic_ϕ ) ≠ 1) which distinguishes this model from k𝑘kitalic_k-essence theories (Armendariz-Picon et al., 1999) where a universal coupling to matter is not present. In this work we will develop predictions for both frames. We provide the transformations of key quantities in the next subsection.

This model exhibits a similar screening mechanism to Vainshtein screening, although quantitatively different due to the absence of the higher-order G3(ϕ,X)ϕsubscript𝐺3italic-ϕ𝑋italic-ϕG_{3}(\phi,X)\Box\phiitalic_G start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_ϕ , italic_X ) □ italic_ϕ term, giving it a unique phenomenology. In particular, in dense environments of mass m𝑚mitalic_m, the K-mouflage radius – the scale below which GR is recovered – goes as m1/2superscript𝑚12m^{1/2}italic_m start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT, whereas in Vainshtein theories this screening occurs at smaller scales, with a dependence of the Vainshtein radius on the environmental mass being m1/3superscript𝑚13m^{1/3}italic_m start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT (Brax & Valageas, 2014a). Vainshtein is also capable of screening large cosmological structures, while K-mouflage is not (Brax et al., 2015).

K-mouflage has been confronted with a number of cosmological data sets in Refs. Barreira et al. (2015b); Benevento et al. (2019), with a review of current constraints given in Ref. Brax et al. (2021) and forecasts using spectroscopic and photometric primary probes by Euclid given in Ref. Frusciante et al. (2023). In particular, in Ref. Barreira et al. (2015b), the authors place a Solar System constraint on the coupling parameter βK0.1subscript𝛽K0.1\beta_{\rm K}\leq 0.1italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT ≤ 0.1, and argue that the power law form for K(X)𝐾𝑋K(X)italic_K ( italic_X ) as chosen here will necessarily require a degree of fine tuning to avoid constraints. Despite this, this model is a good test case for implementation as it has been well studied in the literature and there are available N𝑁Nitalic_N-body simulations with which to compare to (Hernández-Aguayo et al., 2022). More viable non-canonical kinetic terms can easily be implemented following the current implementations.

We alert the reader that we have made public a Mathematica notebook with some key Einstein frame quantities and derivations for the model along with this work. This contains useful expressions such as the exact solutions for the Einstein frame background H(a)𝐻𝑎H(a)italic_H ( italic_a ) in the n=2𝑛2n=2italic_n = 2 and n=3𝑛3n=3italic_n = 3 cases.

2.3.2 Transformation to Jordan Frame

In this section we provide some basic translations between Einstein and Jordan frames which will be useful for our comparisons of the K-mouflage model. We follow Ref. Francfort et al. (2019) for these expressions. We use subscripts ‘J’ and ‘E’ to denote Jordan and Einstein frame quantities respectively.

The scale factor transforms as

aJ=A¯aE,subscript𝑎J¯𝐴subscript𝑎Ea_{\rm J}=\bar{A}\,a_{\rm E}\,,italic_a start_POSTSUBSCRIPT roman_J end_POSTSUBSCRIPT = over¯ start_ARG italic_A end_ARG italic_a start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT , (16)

where A¯¯𝐴\bar{A}over¯ start_ARG italic_A end_ARG is the conformal factor evaluated at the background level (see Equation 15). The Hubble rate transforms as

HJ(a)=HEA¯[1+βKMpldϕdlnaE].subscript𝐻J𝑎subscript𝐻E¯𝐴delimited-[]1subscript𝛽Ksubscript𝑀plditalic-ϕdsubscript𝑎EH_{\rm J}(a)=\frac{H_{\rm E}}{\bar{A}}\left[1+\frac{\beta_{\rm K}}{M_{\rm pl}}% \frac{{\rm d}\phi}{{\rm d}\ln a_{\rm E}}\right]\,.italic_H start_POSTSUBSCRIPT roman_J end_POSTSUBSCRIPT ( italic_a ) = divide start_ARG italic_H start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG start_ARG over¯ start_ARG italic_A end_ARG end_ARG [ 1 + divide start_ARG italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT end_ARG divide start_ARG roman_d italic_ϕ end_ARG start_ARG roman_d roman_ln italic_a start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT end_ARG ] . (17)

The matter power spectrum transforms as (Francfort et al., 2019)

(2π)3δD(𝒌1+𝒌2)PJ(k1)superscript2𝜋3subscript𝛿Dsubscript𝒌1subscript𝒌2subscript𝑃Jsubscript𝑘1\displaystyle(2\pi)^{3}\delta_{\rm D}(\mbox{\boldmath$k$}_{1}+\mbox{\boldmath$% k$}_{2})P_{\rm J}(k_{1})( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_δ start_POSTSUBSCRIPT roman_D end_POSTSUBSCRIPT ( bold_italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + bold_italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_P start_POSTSUBSCRIPT roman_J end_POSTSUBSCRIPT ( italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) =δJ(𝒌1)δJ(𝒌2)absentdelimited-⟨⟩subscript𝛿Jsubscript𝒌1subscript𝛿Jsubscript𝒌2\displaystyle=\langle\delta_{\rm J}(\mbox{\boldmath$k$}_{1})\delta_{\rm J}(% \mbox{\boldmath$k$}_{2})\rangle= ⟨ italic_δ start_POSTSUBSCRIPT roman_J end_POSTSUBSCRIPT ( bold_italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT roman_J end_POSTSUBSCRIPT ( bold_italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ⟩
=δE(𝒌1)δE(𝒌2)absentdelimited-⟨⟩subscript𝛿Esubscript𝒌1subscript𝛿Esubscript𝒌2\displaystyle=\langle\delta_{\rm E}(\mbox{\boldmath$k$}_{1})\delta_{\rm E}(% \mbox{\boldmath$k$}_{2})\rangle= ⟨ italic_δ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ( bold_italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ( bold_italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ⟩
4A¯ϕA¯δE(𝒌1)δϕ(𝒌2)4subscript¯𝐴italic-ϕ¯𝐴delimited-⟨⟩subscript𝛿Esubscript𝒌1𝛿italic-ϕsubscript𝒌2\displaystyle-4\frac{\bar{A}_{\phi}}{\bar{A}}\langle\delta_{\rm E}(\mbox{% \boldmath$k$}_{1})\delta\phi(\mbox{\boldmath$k$}_{2})\rangle- 4 divide start_ARG over¯ start_ARG italic_A end_ARG start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_ARG start_ARG over¯ start_ARG italic_A end_ARG end_ARG ⟨ italic_δ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ( bold_italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_δ italic_ϕ ( bold_italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ⟩
4A¯ϕA¯δϕ(𝒌1)δE(𝒌2)4subscript¯𝐴italic-ϕ¯𝐴delimited-⟨⟩𝛿italic-ϕsubscript𝒌1subscript𝛿Esubscript𝒌2\displaystyle-4\frac{\bar{A}_{\phi}}{\bar{A}}\langle\delta\phi(\mbox{\boldmath% $k$}_{1})\delta_{\rm E}(\mbox{\boldmath$k$}_{2})\rangle- 4 divide start_ARG over¯ start_ARG italic_A end_ARG start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_ARG start_ARG over¯ start_ARG italic_A end_ARG end_ARG ⟨ italic_δ italic_ϕ ( bold_italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_δ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ( bold_italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ⟩
+16(A¯ϕA¯)2δϕ(𝒌1)δϕ(𝒌2),16superscriptsubscript¯𝐴italic-ϕ¯𝐴2delimited-⟨⟩𝛿italic-ϕsubscript𝒌1𝛿italic-ϕsubscript𝒌2\displaystyle+16\left(\frac{\bar{A}_{\phi}}{\bar{A}}\right)^{2}\langle\delta% \phi(\mbox{\boldmath$k$}_{1})\delta\phi(\mbox{\boldmath$k$}_{2})\rangle\,,+ 16 ( divide start_ARG over¯ start_ARG italic_A end_ARG start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_ARG start_ARG over¯ start_ARG italic_A end_ARG end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟨ italic_δ italic_ϕ ( bold_italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_δ italic_ϕ ( bold_italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ⟩ , (18)

where and we used δJ=δE4δϕA¯ϕ/A¯subscript𝛿Jsubscript𝛿E4𝛿italic-ϕsubscript¯𝐴italic-ϕ¯𝐴\delta_{\rm J}=\delta_{\rm E}-4\delta\phi\bar{A}_{\phi}/\bar{A}italic_δ start_POSTSUBSCRIPT roman_J end_POSTSUBSCRIPT = italic_δ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT - 4 italic_δ italic_ϕ over¯ start_ARG italic_A end_ARG start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT / over¯ start_ARG italic_A end_ARG, with A¯ϕ=dA¯(ϕ)/dϕsubscript¯𝐴italic-ϕd¯𝐴italic-ϕditalic-ϕ\bar{A}_{\phi}={\rm d}\bar{A}(\phi)/{\rm d}\phiover¯ start_ARG italic_A end_ARG start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT = roman_d over¯ start_ARG italic_A end_ARG ( italic_ϕ ) / roman_d italic_ϕ, δ𝛿\deltaitalic_δ is shorthand for the matter density field perturbation δmsubscript𝛿m\delta_{\rm m}italic_δ start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT, δϕ𝛿italic-ϕ\delta\phiitalic_δ italic_ϕ is the scalar field perturbation, ϕ=ϕ¯+δϕitalic-ϕ¯italic-ϕ𝛿italic-ϕ\phi=\bar{\phi}+\delta\phiitalic_ϕ = over¯ start_ARG italic_ϕ end_ARG + italic_δ italic_ϕ, and k𝑘kitalic_k is the comoving Fourier mode in h/MpcMpch/{\rm Mpc}italic_h / roman_Mpc. Angular brackets denote an ensemble average. The linear order Klein-Gordan equation for the scalar field perturbation in Fourier space under the quasi-static approximation is (Brax & Valageas, 2014b)

δϕ(𝒌)=A¯βKa2MplKXk2ρ¯mδE(𝒌),𝛿italic-ϕ𝒌¯𝐴subscript𝛽Ksuperscript𝑎2subscript𝑀plsubscript𝐾𝑋superscript𝑘2subscript¯𝜌msubscript𝛿E𝒌\delta\phi(\mbox{\boldmath$k$})=-\frac{\bar{A}\beta_{\rm K}a^{2}}{M_{\rm pl}K_% {X}k^{2}}\bar{\rho}_{\rm m}\delta_{\rm E}(\mbox{\boldmath$k$})\,,italic_δ italic_ϕ ( bold_italic_k ) = - divide start_ARG over¯ start_ARG italic_A end_ARG italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG over¯ start_ARG italic_ρ end_ARG start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT roman_E end_POSTSUBSCRIPT ( bold_italic_k ) , (19)

where KX=dK(X)/dXsubscript𝐾𝑋d𝐾𝑋d𝑋K_{X}={\rm d}\,K(X)/{\rm d}Xitalic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT = roman_d italic_K ( italic_X ) / roman_d italic_X. Substituting δϕ𝛿italic-ϕ\delta\phiitalic_δ italic_ϕ into Equation 18 gives us the following relationship between linear matter power spectra predictions

PL,J(k)=PL,E(k)[1+2𝒥(k,a)+𝒥(k,a)2],subscript𝑃LJ𝑘subscript𝑃LE𝑘delimited-[]12𝒥𝑘𝑎𝒥superscript𝑘𝑎2P_{\rm L,J}(k)=P_{\rm L,E}(k)\left[1+2\mathcal{J}(k,a)+\mathcal{J}(k,a)^{2}% \right]\,,italic_P start_POSTSUBSCRIPT roman_L , roman_J end_POSTSUBSCRIPT ( italic_k ) = italic_P start_POSTSUBSCRIPT roman_L , roman_E end_POSTSUBSCRIPT ( italic_k ) [ 1 + 2 caligraphic_J ( italic_k , italic_a ) + caligraphic_J ( italic_k , italic_a ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] , (20)

where

𝒥(k,a)=12A¯ϕβKH02MplΩm,0ak2KX,𝒥𝑘𝑎12subscript¯𝐴italic-ϕsubscript𝛽Ksuperscriptsubscript𝐻02subscript𝑀plsubscriptΩm0𝑎superscript𝑘2subscript𝐾𝑋\mathcal{J}(k,a)=\frac{12\bar{A}_{\phi}\beta_{\rm K}H_{0}^{2}M_{\rm pl}\Omega_% {\rm m,0}}{ak^{2}K_{X}}\,,caligraphic_J ( italic_k , italic_a ) = divide start_ARG 12 over¯ start_ARG italic_A end_ARG start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_a italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG , (21)

where we have used the relation ρ¯m=3H02Mpl2Ωm,0a3subscript¯𝜌m3superscriptsubscript𝐻02superscriptsubscript𝑀pl2subscriptΩm0superscript𝑎3\bar{\rho}_{\rm m}=3H_{0}^{2}M_{\rm pl}^{2}\Omega_{\rm m,0}a^{-3}over¯ start_ARG italic_ρ end_ARG start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT = 3 italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT. We see that the linear matter power spectra in both frames are identical up to corrections that are suppressed by powers of H02/k2similar-toabsentsuperscriptsubscript𝐻02superscript𝑘2\sim H_{0}^{2}/k^{2}∼ italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.

It was argued in Ref. Francfort et al. (2019) that this correction to the matter power spectrum at nonlinear scales continues to go as H4/k4similar-toabsentsuperscript𝐻4superscript𝑘4\sim H^{4}/k^{4}∼ italic_H start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT / italic_k start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT, and so becomes negligible on all sub-horizon scales. This argument hinged on a number of assumptions, including AϕA(ϕ)/(2ϕ)similar-tosubscript𝐴italic-ϕ𝐴italic-ϕ2italic-ϕA_{\phi}\sim-A(\phi)/(2\phi)italic_A start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ∼ - italic_A ( italic_ϕ ) / ( 2 italic_ϕ ). We will show in section 4 that the corrections are indeed small at nonlinear scales for the K-mouflage model, using a conformal factor given in Equation 15.

3 Tools & Methods

In this section we give an overview of the methods developed to give predictions for the large-scale structure in all modified gravity scenarios considered. After explaining details of how we compute matter power spectra, we describe the methods we will compare in this work. Most of these are N𝑁Nitalic_N-body simulation-based approaches with various degrees of approximation. The halo model reaction (Cataneo et al., 2019) is also considered, which is an analytic method based on the halo model and perturbation theory. Table 2 gives an overview of these methods.

Table 2: Overview of the numerical codes employed in this comparison. For more information on screening approximations see main text. PPF: parametrised post-Friedmannian; PM: particle mesh; AMR: adaptive mesh refinement; 2LPT: 2nd order Lagrangian perturbation theory; K-G: Klein-Gordon.

code type screening approximation reference(s)
ECOSMOG N𝑁Nitalic_N-body (AMR) full K-G solution Li et al. (2012)
MG-GLAM N𝑁Nitalic_N-body (uniform PM) full K-G solution Hernández-Aguayo et al. (2022)
MG-evolution N𝑁Nitalic_N-body (uniform PM) PPF with free parameter ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT Hassani & Lombriser (2020); Adamek et al. (2016b, a)
Hi-COLA N𝑁Nitalic_N-body (PM in the 2LPT frame) screening factor Wright et al. (2023), Sen Gupta et al. (in prep.)
COLA-FML N𝑁Nitalic_N-body (PM in the 2LPT frame) linear K-G equation in Fourier space Winther et al. (2017); Brando et al. (2023); Scoccimarro (2009)
ReACT Halo model and perturbation theory spherical collapse Bose et al. (2022); Atayde et al. (2024)

3.1 P(k)𝑃𝑘P(k)italic_P ( italic_k ) estimation

N𝑁Nitalic_N-body simulations track the time-evolution of the matter distribution in the simulation box (of side Lboxsubscript𝐿boxL_{\rm box}italic_L start_POSTSUBSCRIPT roman_box end_POSTSUBSCRIPT) by means of a number of N𝑁Nitalic_N-body particles (NPsubscript𝑁PN_{\rm P}italic_N start_POSTSUBSCRIPT roman_P end_POSTSUBSCRIPT). To estimate the matter power spectrum from these sort of discrete distributions it is necessary to deal with some subtleties. The number of particles used in N𝑁Nitalic_N-body simulations is often large (i.e. 1081012superscript108superscript101210^{8}-10^{12}10 start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT - 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT) so that it would be computationally impractical to estimate the matter power spectrum by computing the distances between each pair of particles. Hence, the particles are normally interpolated on a regular grid using mass assignment schemes (MAS). Then the matter power spectrum is estimated exploiting the Fast Fourier Transform (FFT) algorithm. However, the modes close to the Nyquist frequency of the FFT grid can be significantly affected by aliasing (Jing, 2005; Sefusatti et al., 2016). To avoid this problem we use the interlacing technique with the triangular-shaped-cloud MAS (Sefusatti et al., 2016) to compute the matter power spectra from the simulations. Aiming to compare our matter power spectra deep in the nonlinear regime but mindful of the limited mass-resolution of our simulations, we use a FFT grid of size Nmesh,1D=Lbox/(dx)subscript𝑁mesh1Dsubscript𝐿boxd𝑥N_{\rm mesh,1D}=L_{\rm box}/({\rm d}x)italic_N start_POSTSUBSCRIPT roman_mesh , 1 roman_D end_POSTSUBSCRIPT = italic_L start_POSTSUBSCRIPT roman_box end_POSTSUBSCRIPT / ( roman_d italic_x ) where dxd𝑥{\rm d}xroman_d italic_x is the domain grid resolution of the simulation, and use a simple linear binning with kmin=kf/2subscript𝑘minsubscript𝑘f2k_{\rm min}=k_{\rm f}/2italic_k start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT = italic_k start_POSTSUBSCRIPT roman_f end_POSTSUBSCRIPT / 2 and Δk=kfΔ𝑘subscript𝑘f\Delta k=k_{\rm f}roman_Δ italic_k = italic_k start_POSTSUBSCRIPT roman_f end_POSTSUBSCRIPT, where kf2πLboxsubscript𝑘f2𝜋subscript𝐿boxk_{\rm f}\equiv\frac{2\pi}{L_{\rm box}}italic_k start_POSTSUBSCRIPT roman_f end_POSTSUBSCRIPT ≡ divide start_ARG 2 italic_π end_ARG start_ARG italic_L start_POSTSUBSCRIPT roman_box end_POSTSUBSCRIPT end_ARG is the fundamental frequency of the box.

3.2 Full N𝑁Nitalic_N-body

Our reference predictions will come from numerical simulations that solve the nonlinear Klein-Gordon equation with multi-grid relaxation to get the precise modified force law. They also employ a large number of time steps over which the particles are evolved, ensuring the accuracy of the resulting predictions. We consider two variants of these codes.

3.2.1 ECOSMOG

The ECOSMOG simulation code (Li et al., 2012, 2013a) is a modified gravity extension of the adaptive mesh refinement (AMR) code Ramses (Teyssier, 2002). ECOSMOG relies on multigrid relaxation techniques to solve the nonlinear Klein-Gordon equations for the additional scalar fields that appear in some modified gravity theories (such as those considered here). This code was used to simulate several gravity models in the literature:

  • f(R) (Li et al., 2012);

  • nDGP (Li et al., 2013a);

  • symmetron (Davis et al., 2012; Brax et al., 2013);

  • dilaton (Brax et al., 2011);

  • galileon (cubic, quartic, cubic vector) (Barreira et al., 2013b; Barreira et al., 2013a; Becker et al., 2020).

The accuracy of this code for predictions of f(R)𝑓𝑅f(R)italic_f ( italic_R ) (Hu & Sawicki, 2007) effects on the matter power spectrum has been estimated to be of 1%similar-toabsentpercent1\sim 1\%∼ 1 % up to k7h/Mpcsimilar-to𝑘7Mpck\sim 7h/{\rm Mpc}italic_k ∼ 7 italic_h / roman_Mpc in the code comparison paper Ref. Winther et al. (2015). This code constitutes the highest precision predictive tool to be considered in this work.

3.2.2 MG-GLAM

MG-GLAM (Hernández-Aguayo et al., 2022; Ruan et al., 2022) extends the Particle Mesh (PM) code GLAM (Klypin & Prada, 2018) to a general class of modified gravity theories (including the K-mouflage model) by adding extra modules for solving the Klein-Gordon equations, using the multigrid relaxation algorithm. It uses a regularly spaced 3D mesh covering the cubic simulation box, solves the Poisson equation for the Newtonian potential using the Fast Fourier Transform (FFT) algorithm, and adopts the Cloud-In-Cell (CIC) scheme to implement the matter density assignment and force interpolation.

MG-GLAM has been tested with the results from other high-precision modified gravity codes, such as ECOSMOG (Li et al., 2012, 2013a), MG-GADGET (Puchwein et al., 2013), and MG-AREPO (Arnold et al., 2019; Hernández-Aguayo et al., 2021). For example, using 10243superscript102431024^{3}1024 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT particles in a box of size 512Mpc/h512Mpc512\,\mathrm{Mpc}/h512 roman_Mpc / italic_h, MG-GLAM simulations can accurately predict the matter power boost, PMG/PΛCDMsubscript𝑃MGsubscript𝑃ΛCDMP_{\mathrm{MG}}/P_{\mathrm{\Lambda CDM}}italic_P start_POSTSUBSCRIPT roman_MG end_POSTSUBSCRIPT / italic_P start_POSTSUBSCRIPT roman_Λ roman_CDM end_POSTSUBSCRIPT at k3h/Mpcless-than-or-similar-to𝑘3Mpck\lesssim 3\,h/\mathrm{Mpc}italic_k ≲ 3 italic_h / roman_Mpc, with about 1%percent11\%1 % of the computational costs of the high-fidelity code ECOSMOG. Being the only code that has been used in the literature to simulate K-mouflage cosmologies, an estimate of its accuracy for the K-mouflage boost factor is not available. However it has been compared to the tree-PM code MG-Arepo for another derivative coupling model (nDGP) where it showed an agreement of 2%similar-toabsentpercent2\sim 2\%∼ 2 % up to k=3h/Mpc𝑘3Mpck=3\,h/\mathrm{Mpc}italic_k = 3 italic_h / roman_Mpc, with deviations of 1%similar-toabsentpercent1\sim 1\%∼ 1 % from MG-Arepo (and theory predictions) already present on linear scales.

3.3 MG-evolution

We further consider the relativistic N𝑁Nitalic_N-body code, MG-evolution (\faicongithub Hassani & Lombriser, 2020). This code is based on gevolution (Adamek et al., 2016b), integrating parametrised modifications of gravity for various dark energy scenarios. MG-evolution is implemented based on a parametrisation framework that includes both linear and deeply nonlinear scales, where the nonlinear parametrisation is based on modified spherical collapse computations and a parametrised post-Friedmannian expression.

MG-evolution has been tested for a number of well-studied modified gravity models encompassing f(R)𝑓𝑅f(R)italic_f ( italic_R ) and nDGP gravity that include large-field value and derivative screening effects (Hassani & Lombriser, 2020). Unlike most modified gravity N𝑁Nitalic_N-body implementations, MG-evolution is as fast as the ΛΛ\Lambdaroman_ΛCDM simulations as it does not need to deal with solving computationally expensive scalar field equations.

In Appendix B we discuss the nDGP and CG implementations in MG-evolution through a parametrisation with one screening transition, ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, which is treated as a free parameter (see Appendix B). The effective gravitational constant is expressed as

ΔGeff (k,a)GN=ΔGeff, L(a)GN×ΔGeff, NL(k,a)GN,Δsubscript𝐺eff 𝑘𝑎subscript𝐺NΔsubscript𝐺eff, L𝑎subscript𝐺NΔsubscript𝐺eff, NL𝑘𝑎subscript𝐺N\frac{\Delta{G}_{\text{eff }}(k,a)}{G_{\rm N}}=\frac{\Delta G_{\text{eff, L}}(% a)}{G_{\rm N}}\times\frac{\Delta G_{\text{eff, NL}}(k,a)}{G_{\rm N}}\,,divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT eff end_POSTSUBSCRIPT ( italic_k , italic_a ) end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG = divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT eff, L end_POSTSUBSCRIPT ( italic_a ) end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG × divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT eff, NL end_POSTSUBSCRIPT ( italic_k , italic_a ) end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG , (22)

where we recall Geff(k,a)=GN[1+ΔGeff(k,a)/GN]subscript𝐺eff𝑘𝑎subscript𝐺Ndelimited-[]1Δsubscript𝐺eff𝑘𝑎subscript𝐺NG_{\rm eff}(k,a)=G_{\rm N}[1+\Delta G_{\rm eff}(k,a)/G_{\rm N}]italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_k , italic_a ) = italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT [ 1 + roman_Δ italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_k , italic_a ) / italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT ], Geff, Lsubscript𝐺eff, LG_{\text{eff, L}}italic_G start_POSTSUBSCRIPT eff, L end_POSTSUBSCRIPT denoting the linear regime parametrisation and Geff, NLsubscript𝐺eff, NLG_{\text{eff, NL}}italic_G start_POSTSUBSCRIPT eff, NL end_POSTSUBSCRIPT refers to the parametrisation of the nonlinear regime that includes the screening or other suppression effects. The expressions for Geff, NLsubscript𝐺eff, NLG_{\text{eff, NL}}italic_G start_POSTSUBSCRIPT eff, NL end_POSTSUBSCRIPT are given in Appendix B. MG-evolution then solves the modified Poisson equation (Equation 4) based on Geffsubscript𝐺effG_{\rm eff}italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT obtained from Equation 22. It is worth noting that this parametrization of gravitational modification is done in Fourier space. As detailed in Ref. Hassani & Lombriser (2020), this transformation yields an effective screening wavenumber ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, which can be modeled (Lombriser, 2016) for different screening types. Currently, as mentioned, we treat ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT as a free parameter to be set by the user. In this work we tune the values of ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT in order to optimize the agreement with the reference predictions in each model and at each redshift considered. The resulting values of ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT are presented in section 4.

3.4 COmoving Lagrangian Acceleration

The COmoving Lagrangian Acceleration (COLA) method (Tassev et al., 2013) is a hybrid N𝑁Nitalic_N-body approach to performing dark matter simulations to study the effects of gravity on the formation of large-scale structure. It leverages the fact that the growth of structure on large scales can be computed analytically through Lagrangian Perturbation Theory (LPT). This informs the small-scale N𝑁Nitalic_N-body part of COLA codes, thereby allowing for a significant speedup in the production of results at the cost of a modest loss of accuracy at small scales. In short, the COLA approach is a method well-suited for producing large-scale structure results on mildly nonlinear scales much faster than traditional N𝑁Nitalic_N-body codes.

The COLA method introduced by Tassev et al. (2013) was originally developed for use with GR N𝑁Nitalic_N-body codes. However, being able to probe nonlinear scales is particularly useful in the study of modified gravity theories, as key phenomenology, such as the effects of screening mechanisms, become apparent on these scales. Since Tassev et al., implementations of COLA codes for modified gravity theories have followed for specific theories, such as f(f(italic_f (R) and nDGP (Winther et al., 2017; Valogiannis & Bean, 2017). Below we describe two branches of work that extend the COLA method to more general families of gravity models.

3.4.1 Hi-COLA

Horndeski-in-COLA (Hi-COLA) (\faicongithub Wright et al., 2023) is an implementation of the COLA methodology for a broad Horndeski class of scalar-tensor theories. Hi-COLA aims not to carry hard-coded theory-specific implementations, but instead receives as input the Lagrangian functions for a given theory of interest, making it generic. The action of the new scalar degree of freedom, ϕitalic-ϕ\phiitalic_ϕ, is included as a fifth force in the COLA simulation. The class of theories Hi-COLA is designed to work with are reduced-Horndeski theories, where gravitational waves travel at the speed of light. Such theories are described by Equation 1. This restriction follows the constraints on the theory space suggested by the analysis of GW170817444Though it should be noted that Equation 1 is not the most general action describing theories that do not violate the results of GW170817. Some Gauss-Bonet theories are excluded, for example; see Ref. Clifton et al. (2020)..

After receiving inputs for the forms of the Horndeski functions, G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, G3subscript𝐺3G_{3}italic_G start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT and G4subscript𝐺4G_{4}italic_G start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT, the symbolic manipulation modules of Hi-COLA construct the appropriate background equations of motion and background-dependent fifth force expressions and solves them. These are used to handle the expansion of the simulation box, compute 2nd-order LPT factors (2LPT) and construct the total force experienced by dark matter particles. This force can be schematically written as

Ftotal=GeffFN,subscript𝐹totalsubscript𝐺effsubscript𝐹N\displaystyle F_{\textrm{total}}=G_{\rm eff}F_{\rm N}\,,italic_F start_POSTSUBSCRIPT total end_POSTSUBSCRIPT = italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT italic_F start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT , (23)

where

Geff=GG4GN{1+βHC(z)SHC(z,δm)}.subscript𝐺effsubscript𝐺G4subscript𝐺N1subscript𝛽HC𝑧subscript𝑆HC𝑧subscript𝛿𝑚G_{\textrm{eff}}=\frac{G_{\rm G4}}{G_{\rm N}}\big{\{}1+\beta_{\rm HC}(z)S_{% \textrm{HC}}(z,\delta_{m})\big{\}}.italic_G start_POSTSUBSCRIPT eff end_POSTSUBSCRIPT = divide start_ARG italic_G start_POSTSUBSCRIPT G4 end_POSTSUBSCRIPT end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG { 1 + italic_β start_POSTSUBSCRIPT roman_HC end_POSTSUBSCRIPT ( italic_z ) italic_S start_POSTSUBSCRIPT HC end_POSTSUBSCRIPT ( italic_z , italic_δ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) } . (24)

FNsubscript𝐹NF_{\rm N}italic_F start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT is the regular Newtonian force which is present in GR, and the multiplicative factor in braces represents the extra force contributions from ϕitalic-ϕ\phiitalic_ϕ. GG4subscript𝐺𝐺4G_{G4}italic_G start_POSTSUBSCRIPT italic_G 4 end_POSTSUBSCRIPT is the effective gravitational constant, which can differ from GNsubscript𝐺NG_{\rm N}italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT in a time-dependent manner if G4subscript𝐺4G_{4}italic_G start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT in Equation 1 is non-trivial. This term will play a role in the results of subsubsection 4.2.3.

βHCsubscript𝛽HC\beta_{\textrm{HC}}italic_β start_POSTSUBSCRIPT HC end_POSTSUBSCRIPT is a background-dependent function known as the coupling factor; it controls the total possible strength of the fifth force at a given point in time. SHCsubscript𝑆HCS_{\textrm{HC}}italic_S start_POSTSUBSCRIPT HC end_POSTSUBSCRIPT is a background and density-dependent function called the screening factor. On linear scales SHC1subscript𝑆HC1S_{\textrm{HC}}\rightarrow 1italic_S start_POSTSUBSCRIPT HC end_POSTSUBSCRIPT → 1, whilst in screened regimes SHC0subscript𝑆HC0S_{\textrm{HC}}\rightarrow 0italic_S start_POSTSUBSCRIPT HC end_POSTSUBSCRIPT → 0. Hence this factor is responsible for the suppression of the fifth force in on small scales, returning the theory’s behaviour to GR.

SHCsubscript𝑆HCS_{\textrm{HC}}italic_S start_POSTSUBSCRIPT HC end_POSTSUBSCRIPT is derived under a quasi-linear perturbative treatment, where the metric perturbations are considered to first order, whilst the scalar field derivative perturbations are kept up to third order, following Ref. Kimura et al. (2012). Combined with the assumptions that the quasi-static approximation holds and that the matter over-density is distributed spherically in space leads to the analytic form of SHCsubscript𝑆HCS_{\textrm{HC}}italic_S start_POSTSUBSCRIPT HC end_POSTSUBSCRIPT (see Equation 3.15 in Wright et al., 2023). These assumptions in the derivation of SHCsubscript𝑆HCS_{\textrm{HC}}italic_S start_POSTSUBSCRIPT HC end_POSTSUBSCRIPT lead to a caveat: that in its current public state, Hi-COLA is designed to work with theories that exhibit Vainshtein screening. However, recent development of Hi-COLA has focused on extending the formalism to other screening mechanisms like K-mouflage, and these results are presented in subsubsection 4.2.3. The full details of K-mouflage in Hi-COLA will be the subject of an upcoming publication, Sen Gupta et al. (in prep.).

3.4.2 COLA-FML

In this subsection we describe another approximate simulation method to modified gravity theories endowed with the Vainshtein mechanism, such as nDGP and the Galileon theory family. This method was initially proposed in Ref. Scoccimarro (2009), and later revisited in Ref. Brando et al. (2023). It consists of linearizing the Klein-Gordon equation in Fourier space, and implementing a resummation scheme to find a function, Geff(k,a)subscript𝐺eff𝑘𝑎G_{\rm eff}(k,a)italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_k , italic_a ), defined in the same way as Equation 22, that approximately captures the nonlinear corrections introduced by the Vainshtein mechanism on small scales. Specifically, this function transitions between an unscreened regime at large scales, where Geff(k,a)Geff,L(a)subscript𝐺eff𝑘𝑎subscript𝐺effL𝑎G_{\rm eff}(k,a)\to G_{\rm eff,L}(a)italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_k , italic_a ) → italic_G start_POSTSUBSCRIPT roman_eff , roman_L end_POSTSUBSCRIPT ( italic_a ), to the small scale regime where GR is recovered, Geff(k,a)GNsubscript𝐺eff𝑘𝑎subscript𝐺NG_{\rm eff}(k,a)\to G_{\rm N}italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_k , italic_a ) → italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT.

Consequently, in order to do so, in Refs. Scoccimarro (2009); Brando et al. (2023) the authors require the nonlinear function, ΔGeff, NL(k,a)/GNΔsubscript𝐺eff, NL𝑘𝑎subscript𝐺N\Delta G_{\text{eff, NL}}(k,a)/G_{\rm N}roman_Δ italic_G start_POSTSUBSCRIPT eff, NL end_POSTSUBSCRIPT ( italic_k , italic_a ) / italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT555We note that in Ref. Brando et al. (2023) this function is called M(k,a)𝑀𝑘𝑎M(k,a)italic_M ( italic_k , italic_a )., has the screening property, i.e.

ΔGeff, NL(k,a)GN(k/k1)Δsubscript𝐺eff, NL𝑘𝑎subscript𝐺Nmuch-less-than𝑘subscript𝑘1\displaystyle\frac{\Delta G_{\text{eff, NL}}(k,a)}{G_{\rm N}}\left(k/k_{*}\ll 1\right)divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT eff, NL end_POSTSUBSCRIPT ( italic_k , italic_a ) end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG ( italic_k / italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≪ 1 ) 1,absent1\displaystyle\to 1,→ 1 ,
ΔGeff, NL(k,a)GN(k/k1)Δsubscript𝐺eff, NL𝑘𝑎subscript𝐺Nmuch-greater-than𝑘subscript𝑘1\displaystyle\frac{\Delta G_{\text{eff, NL}}(k,a)}{G_{\rm N}}\left(k/k_{*}\gg 1\right)divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT eff, NL end_POSTSUBSCRIPT ( italic_k , italic_a ) end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG ( italic_k / italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ≫ 1 ) 0,absent0\displaystyle\to 0\,,→ 0 , (25)

where ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT is the wavenumber associated with the Vainshtein radius, defined in Eq. 53. The specifics behind the computation of the function ΔGeff, NL(k,a)/GNΔsubscript𝐺eff, NL𝑘𝑎subscript𝐺N\Delta G_{\text{eff, NL}}(k,a)/G_{\rm N}roman_Δ italic_G start_POSTSUBSCRIPT eff, NL end_POSTSUBSCRIPT ( italic_k , italic_a ) / italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT is explicitly shown in Ref. Brando et al. (2023). This screening approximation scheme has the advantage of not introducing additional screening parameters used to tune the approximate results with results from N-body simulations that consistently solve the full Klein-Gordon equation at each timestep of the simulation. The whole dependence of the gravity theory is encoded in the ΔGeff, NL(k,a)/GNΔsubscript𝐺eff, NL𝑘𝑎subscript𝐺N\Delta G_{\text{eff, NL}}(k,a)/G_{\rm N}roman_Δ italic_G start_POSTSUBSCRIPT eff, NL end_POSTSUBSCRIPT ( italic_k , italic_a ) / italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT function.

The methodology of this approximate method for Vainshtein screening is computed using an external Python notebook, where one can follow the steps outlined in Ref. Brando et al. (2023) to compute Geff(k,a)subscript𝐺eff𝑘𝑎G_{\rm eff}(k,a)italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_k , italic_a ) externally. With the tabulated function computed, the results are then implemented in the COLA-FML (\faicongithub) N-body solver, that implements the COLA method in a parallelised manner, ideal for fast and approximate simulations. The COLA-FML library also has different screening approximations for theories other than the ones considered here, and are presented in Ref. Winther & Ferreira (2015a). Importantly for this paper, our results for the Geff(k,a)subscript𝐺eff𝑘𝑎G_{\rm eff}(k,a)italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_k , italic_a ) screening case will be different than the ones of Hi-COLA at nonlinear scales, however, at linear scales the two codes are identical.

3.5 Halo Model Reaction

The halo model reaction (Cataneo et al., 2019) is a flexible, accurate and fast means to model the nonlinear matter power spectrum. This model has been demonstrated to align with N𝑁Nitalic_N-body simulations at the 2% level down to k=3h/Mpc𝑘3Mpck=3~{}h/{\rm Mpc}italic_k = 3 italic_h / roman_Mpc, with minor variations depending on redshift, the extent of modification to GR, and the mass of neutrinos (Cataneo et al., 2020; Bose et al., 2021). The method aims to model nonlinear corrections to the matter power spectrum resulting from modified gravity through the reaction (k,z)𝑘𝑧\mathcal{R}(k,z)caligraphic_R ( italic_k , italic_z ), which incorporates both 1-loop perturbation theory and the halo model (see Bernardeau et al., 2002; Cooray & Sheth, 2002, for reviews). In this framework, the nonlinear matter power spectrum is expressed as the product

PNL(k,z)=(k,z)PNLpseudo(k,z),subscript𝑃NL𝑘𝑧𝑘𝑧subscriptsuperscript𝑃pseudoNL𝑘𝑧P_{\rm NL}(k,z)=\mathcal{R}(k,z)\,P^{\rm pseudo}_{\rm NL}(k,z)\,,italic_P start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ( italic_k , italic_z ) = caligraphic_R ( italic_k , italic_z ) italic_P start_POSTSUPERSCRIPT roman_pseudo end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ( italic_k , italic_z ) , (26)

where the pseudo power spectrum is defined such that all nonlinear physics are modeled using GR but the initial conditions are adjusted to mimic the modified linear clustering at the target redshift.

The halo model reaction without massive neutrinos, (k,z)𝑘𝑧\mathcal{R}(k,z)caligraphic_R ( italic_k , italic_z ), is given as a corrected ratio of target-to-pseudo halo model spectra

(k,z)={[1(z)]ek/k(z)+(z)}P2H(k,z)+P1H(k,z)Phmpseudo(k,z).𝑘𝑧delimited-[]1𝑧superscript𝑒𝑘subscript𝑘𝑧𝑧subscript𝑃2H𝑘𝑧subscript𝑃1H𝑘𝑧superscriptsubscript𝑃hmpseudo𝑘𝑧\mathcal{R}(k,z)=\frac{\{[1-\mathcal{E}(z)]\,e^{-k/k_{\star}(z)}+\mathcal{E}(z% )\}\,P_{\rm 2H}(k,z)+P_{\rm 1H}(k,z)}{P_{\rm hm}^{\rm pseudo}(k,z)}\,.caligraphic_R ( italic_k , italic_z ) = divide start_ARG { [ 1 - caligraphic_E ( italic_z ) ] italic_e start_POSTSUPERSCRIPT - italic_k / italic_k start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT ( italic_z ) end_POSTSUPERSCRIPT + caligraphic_E ( italic_z ) } italic_P start_POSTSUBSCRIPT 2 roman_H end_POSTSUBSCRIPT ( italic_k , italic_z ) + italic_P start_POSTSUBSCRIPT 1 roman_H end_POSTSUBSCRIPT ( italic_k , italic_z ) end_ARG start_ARG italic_P start_POSTSUBSCRIPT roman_hm end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_pseudo end_POSTSUPERSCRIPT ( italic_k , italic_z ) end_ARG . (27)

The components are explicitly given as

Phmpseudo(k,z)=superscriptsubscript𝑃hmpseudo𝑘𝑧absent\displaystyle P_{\rm hm}^{\rm pseudo}(k,z)=italic_P start_POSTSUBSCRIPT roman_hm end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_pseudo end_POSTSUPERSCRIPT ( italic_k , italic_z ) = P2H(k,z)+P1Hpseudo(k,z),subscript𝑃2H𝑘𝑧superscriptsubscript𝑃1Hpseudo𝑘𝑧\displaystyle P_{\rm 2H}(k,z)+P_{\rm 1H}^{\rm pseudo}(k,z),italic_P start_POSTSUBSCRIPT 2 roman_H end_POSTSUBSCRIPT ( italic_k , italic_z ) + italic_P start_POSTSUBSCRIPT 1 roman_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_pseudo end_POSTSUPERSCRIPT ( italic_k , italic_z ) , (28)
(z)=𝑧absent\displaystyle\mathcal{E}(z)=caligraphic_E ( italic_z ) = limk0P1H(k,z)P1Hpseudo(k,z),subscript𝑘0subscript𝑃1H𝑘𝑧superscriptsubscript𝑃1Hpseudo𝑘𝑧\displaystyle\lim_{k\rightarrow 0}\frac{P_{\rm 1H}(k,z)}{P_{\rm 1H}^{\rm pseudo% }(k,z)},roman_lim start_POSTSUBSCRIPT italic_k → 0 end_POSTSUBSCRIPT divide start_ARG italic_P start_POSTSUBSCRIPT 1 roman_H end_POSTSUBSCRIPT ( italic_k , italic_z ) end_ARG start_ARG italic_P start_POSTSUBSCRIPT 1 roman_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_pseudo end_POSTSUPERSCRIPT ( italic_k , italic_z ) end_ARG , (29)
k(z)=subscript𝑘𝑧absent\displaystyle k_{\rm\star}(z)=italic_k start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT ( italic_z ) = k¯{ln[A(k¯,z)P2H(k¯,z)(z)]ln[1(z)]}1,¯𝑘superscript𝐴¯𝑘𝑧subscript𝑃2H¯𝑘𝑧𝑧1𝑧1\displaystyle-\bar{k}\left\{\ln\left[\frac{A(\bar{k},z)}{P_{\rm 2H}(\bar{k},z)% }-\mathcal{E}(z)\right]-\ln\left[1-\mathcal{E}(z)\right]\right\}^{-1}\,,- over¯ start_ARG italic_k end_ARG { roman_ln [ divide start_ARG italic_A ( over¯ start_ARG italic_k end_ARG , italic_z ) end_ARG start_ARG italic_P start_POSTSUBSCRIPT 2 roman_H end_POSTSUBSCRIPT ( over¯ start_ARG italic_k end_ARG , italic_z ) end_ARG - caligraphic_E ( italic_z ) ] - roman_ln [ 1 - caligraphic_E ( italic_z ) ] } start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , (30)

with

A(k,z)=P1loop(k,z)+P1H(k,z)P1looppseudo(k,z)+P1Hpseudo(k,z)Phmpseudo(k,z)P1H(k,z).𝐴𝑘𝑧subscript𝑃1loop𝑘𝑧subscript𝑃1H𝑘𝑧subscriptsuperscript𝑃pseudo1loop𝑘𝑧superscriptsubscript𝑃1Hpseudo𝑘𝑧superscriptsubscript𝑃hmpseudo𝑘𝑧subscript𝑃1H𝑘𝑧A(k,z)=\frac{P_{\rm 1-loop}(k,z)+P_{\rm 1H}(k,z)}{P^{\rm pseudo}_{\rm 1-loop}(% k,z)+P_{\rm 1H}^{\rm pseudo}(k,z)}P_{\rm hm}^{\rm pseudo}(k,z)-P_{\rm 1H}(k,z)\,.italic_A ( italic_k , italic_z ) = divide start_ARG italic_P start_POSTSUBSCRIPT 1 - roman_loop end_POSTSUBSCRIPT ( italic_k , italic_z ) + italic_P start_POSTSUBSCRIPT 1 roman_H end_POSTSUBSCRIPT ( italic_k , italic_z ) end_ARG start_ARG italic_P start_POSTSUPERSCRIPT roman_pseudo end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 - roman_loop end_POSTSUBSCRIPT ( italic_k , italic_z ) + italic_P start_POSTSUBSCRIPT 1 roman_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_pseudo end_POSTSUPERSCRIPT ( italic_k , italic_z ) end_ARG italic_P start_POSTSUBSCRIPT roman_hm end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_pseudo end_POSTSUPERSCRIPT ( italic_k , italic_z ) - italic_P start_POSTSUBSCRIPT 1 roman_H end_POSTSUBSCRIPT ( italic_k , italic_z ) . (31)

P2H(k,z)subscript𝑃2H𝑘𝑧P_{\rm 2H}(k,z)italic_P start_POSTSUBSCRIPT 2 roman_H end_POSTSUBSCRIPT ( italic_k , italic_z ) is the 2-halo term which we approximate with the linear matter power spectrum, PL(k,z)subscript𝑃L𝑘𝑧P_{\rm L}(k,z)italic_P start_POSTSUBSCRIPT roman_L end_POSTSUBSCRIPT ( italic_k , italic_z ). P1H(k,z)subscript𝑃1H𝑘𝑧P_{\rm 1H}(k,z)italic_P start_POSTSUBSCRIPT 1 roman_H end_POSTSUBSCRIPT ( italic_k , italic_z ) and P1Hpseudo(k,z)superscriptsubscript𝑃1Hpseudo𝑘𝑧P_{\rm 1H}^{\rm pseudo}(k,z)italic_P start_POSTSUBSCRIPT 1 roman_H end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_pseudo end_POSTSUPERSCRIPT ( italic_k , italic_z ) are the 1-halo terms as predicted by the halo model, with and without modifications to the standard spherical collapse equations, respectively. Recall that by definition, the pseudo cosmology has no nonlinear beyond-ΛΛ\Lambdaroman_ΛCDM modifications. Similarly, P1loop(k,z)subscript𝑃1loop𝑘𝑧P_{\rm 1-loop}(k,z)italic_P start_POSTSUBSCRIPT 1 - roman_loop end_POSTSUBSCRIPT ( italic_k , italic_z ) and P1looppseudo(k,z)superscriptsubscript𝑃1looppseudo𝑘𝑧P_{\rm 1-loop}^{\rm pseudo}(k,z)italic_P start_POSTSUBSCRIPT 1 - roman_loop end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_pseudo end_POSTSUPERSCRIPT ( italic_k , italic_z ) are the standard perturbation theory 1-loop matter power spectra with and without nonlinear modifications to ΛΛ\Lambdaroman_ΛCDM, respectively. As in the literature, Equation 29’s limit is taken to be at k=0.01h/Mpc𝑘0.01Mpck=0.01\,h/{\rm Mpc}italic_k = 0.01 italic_h / roman_Mpc and ksubscript𝑘k_{\star}italic_k start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT is computed using k¯=0.06h/Mpc¯𝑘0.06Mpc\bar{k}=0.06\,h/{\rm Mpc}over¯ start_ARG italic_k end_ARG = 0.06 italic_h / roman_Mpc.

The nDGP model was part of the initial release of the publicly available halo model reaction code, ReACT (Bose et al., 2020). This code has been updated to include massive neutrinos in Ref. Bose et al. (2021) and model independent parametrisations in Ref. Bose et al. (2022), which constituted version 2 of the code (\faicongithub). The GCCG model was recently implemented in this version of ReACT (Atayde et al., 2024), which is employed in section 4 in the CG limit. The K-mouflage patch is being made public with this work and we give all the relevant expressions in Appendix A.

For the pseudo spectrum appearing in Equation 26 we use HMCode2020 (Mead et al., 2020). This is currently the most accurate and flexible prescription for the pseudo spectrum and has been tested in a number of works (see for example Cataneo et al., 2019; Bose et al., 2021; Bose et al., 2022). It is more accurate than the halofit prescription of Ref. Takahashi et al. (2012), quoting a 2.55%2.5percent52.5-5\%2.5 - 5 % accuracy for k1h/Mpc𝑘1Mpck\leq 1~{}h/{\rm Mpc}italic_k ≤ 1 italic_h / roman_Mpc. It can also accommodate modifications that induce an additional scale dependence in the linear matter power spectrum. For modifications that only introduce a scale-independent shift in the linear spectrum amplitude, more accurate emulators can be used, such as the EuclidEmulator2 (Knabenhans et al., 2019), which are quoted to be 1%percent11\%1 % accurate when compared to high fidelity N𝑁Nitalic_N-body simulations down to k10h/Mpc𝑘10Mpck\leq 10~{}h/{\rm Mpc}italic_k ≤ 10 italic_h / roman_Mpc. Despite this, the reaction function R(k,z)𝑅𝑘𝑧R(k,z)italic_R ( italic_k , italic_z ) is only expected to be 1%percent11\%1 % accurate for k1h/Mpc𝑘1Mpck\leq 1~{}h/{\rm Mpc}italic_k ≤ 1 italic_h / roman_Mpc (Cataneo et al., 2019).

It is also worth noting that EuclidEmulator2’s internal accuracy is restricted to a hyperspheroidal region of their parameter space. Points outside this region might have considerable degradation in accuracy. This is considerably important in the context of beyond-ΛΛ\Lambdaroman_ΛCDM scenarios as we need tools that work in extreme regions of the parameter space. For these reasons, work is currently being undertaken to build a pseudo spectrum emulator based on appropriate numerical simulations (Giblin et al., 2019).

The choice of HMCode2020 keeps in line with the halo model reaction’s claim of generality, while maintaining competitive accuracy within the reaction’s percent-level accuracy range, especially when taking the ratio of modified to unmodified spectra, i.e. the matter power spectrum boost (see Equation 32).

4 Results

Our main results are the comparisons of the nonlinear matter power spectrum between the different codes. Specifically, we consider the models described in Table 3 for which we have full N𝑁Nitalic_N-body simulations available to use as benchmarks. We list the specifications of each simulation ran for these comparisons below. These include: box size (Lboxsubscript𝐿boxL_{\rm box}italic_L start_POSTSUBSCRIPT roman_box end_POSTSUBSCRIPT), number of particles (NPsubscript𝑁PN_{\rm P}italic_N start_POSTSUBSCRIPT roman_P end_POSTSUBSCRIPT), particle mass (mPsubscript𝑚Pm_{\rm P}italic_m start_POSTSUBSCRIPT roman_P end_POSTSUBSCRIPT), grid cells (Ngsubscript𝑁gN_{\rm g}italic_N start_POSTSUBSCRIPT roman_g end_POSTSUBSCRIPT), initial redshift (zinisubscript𝑧iniz_{\rm ini}italic_z start_POSTSUBSCRIPT roman_ini end_POSTSUBSCRIPT) and force resolution.

  • ECOSMOG runs: Lbox=1024Mpc/hsubscript𝐿box1024MpcL_{\rm box}=1024~{}\textrm{Mpc}/hitalic_L start_POSTSUBSCRIPT roman_box end_POSTSUBSCRIPT = 1024 Mpc / italic_h,   NP=10243subscript𝑁Psuperscript10243N_{\rm P}=1024^{3}italic_N start_POSTSUBSCRIPT roman_P end_POSTSUBSCRIPT = 1024 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT,   mP7.8×1010M/hsimilar-to-or-equalssubscript𝑚P7.8superscript1010subscript𝑀direct-productm_{\rm P}\simeq 7.8\times 10^{10}~{}M_{\odot}/hitalic_m start_POSTSUBSCRIPT roman_P end_POSTSUBSCRIPT ≃ 7.8 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT / italic_h. The initial conditions are generated at zini=49subscript𝑧ini49z_{\rm ini}=49italic_z start_POSTSUBSCRIPT roman_ini end_POSTSUBSCRIPT = 49 by MPGrafic (Prunet et al., 2008) using the Zel’dovich approximation. It uses a force resolution of 15.6kpc/hsimilar-toabsent15.6kpc\sim 15.6\textrm{kpc}/h∼ 15.6 kpc / italic_h.

  • MG-GLAM runs: Lbox=512Mpc/h,NP=10243,Ng=20483,mP=1.07×1010M,/hL_{\rm box}=512\,\mathrm{Mpc}/h,\,N_{\rm P}=1024^{3},\,N_{\rm g}=2048^{3},\,m_% {\rm P}=1.07\times 10^{10}\,M_{\odot},/hitalic_L start_POSTSUBSCRIPT roman_box end_POSTSUBSCRIPT = 512 roman_Mpc / italic_h , italic_N start_POSTSUBSCRIPT roman_P end_POSTSUBSCRIPT = 1024 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , italic_N start_POSTSUBSCRIPT roman_g end_POSTSUBSCRIPT = 2048 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , italic_m start_POSTSUBSCRIPT roman_P end_POSTSUBSCRIPT = 1.07 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT , / italic_h, where Ngsubscript𝑁gN_{\rm g}italic_N start_POSTSUBSCRIPT roman_g end_POSTSUBSCRIPT is the number of grid cells. Initial conditions are generated at zini=100subscript𝑧ini100z_{\rm ini}=100italic_z start_POSTSUBSCRIPT roman_ini end_POSTSUBSCRIPT = 100 using GLAM’s own initial condition generator. It uses a fixed force resolution of 250kpc/h250kpc250\,\mathrm{kpc}/h250 roman_kpc / italic_h with an adaptive time-stepping described in the original GLAM paper (Klypin & Prada, 2018).

  • MG-evolution runs: The nDGP simulation runs use Lbox=1000Mpc/hsubscript𝐿box1000MpcL_{\rm box}=1000~{}{\rm Mpc}/hitalic_L start_POSTSUBSCRIPT roman_box end_POSTSUBSCRIPT = 1000 roman_Mpc / italic_h with Ng=Np=10243subscript𝑁gsubscript𝑁psuperscript10243N_{\rm g}=N_{\rm p}=1024^{3}italic_N start_POSTSUBSCRIPT roman_g end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT roman_p end_POSTSUBSCRIPT = 1024 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. The initial conditions are generated at zini=49subscript𝑧ini49z_{\rm ini}=49italic_z start_POSTSUBSCRIPT roman_ini end_POSTSUBSCRIPT = 49. For the CG case, the initial conditions are the same as in the COLA runs. These runs use Lbox=400Mpc/hsubscript𝐿box400MpcL_{\rm box}=400~{}{\rm Mpc}/hitalic_L start_POSTSUBSCRIPT roman_box end_POSTSUBSCRIPT = 400 roman_Mpc / italic_h, NP=Ng=5123subscript𝑁Psubscript𝑁gsuperscript5123N_{\rm P}=N_{\rm g}=512^{3}italic_N start_POSTSUBSCRIPT roman_P end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT roman_g end_POSTSUBSCRIPT = 512 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.

  • COLA runs: Lbox=400Mpc/hsubscript𝐿box400MpcL_{\rm box}=400~{}\textrm{Mpc}/hitalic_L start_POSTSUBSCRIPT roman_box end_POSTSUBSCRIPT = 400 Mpc / italic_h and NP=5123subscript𝑁Psuperscript5123N_{\rm P}=512^{3}italic_N start_POSTSUBSCRIPT roman_P end_POSTSUBSCRIPT = 512 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT with initial conditions generated using 2LPT for all simulations. For K-mouflage: mP4.1×1010M/hsimilar-to-or-equalssubscript𝑚P4.1superscript1010subscriptMdirect-productm_{\rm P}\simeq 4.1\times 10^{10}~{}{\rm M_{\odot}}/hitalic_m start_POSTSUBSCRIPT roman_P end_POSTSUBSCRIPT ≃ 4.1 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT / italic_h. Initial conditions are generated at zini=19subscript𝑧ini19z_{\rm ini}=19italic_z start_POSTSUBSCRIPT roman_ini end_POSTSUBSCRIPT = 19. For nDGP: mP3.7×1010M/hsimilar-to-or-equalssubscript𝑚P3.7superscript1010subscript𝑀direct-productm_{\rm P}\simeq 3.7\times 10^{10}~{}M_{\odot}/hitalic_m start_POSTSUBSCRIPT roman_P end_POSTSUBSCRIPT ≃ 3.7 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT / italic_h. Initial conditions are generated at zini=49subscript𝑧ini49z_{\rm ini}=49italic_z start_POSTSUBSCRIPT roman_ini end_POSTSUBSCRIPT = 49. For CG and QCDM: mP4.1×1010M/hsimilar-to-or-equalssubscript𝑚P4.1superscript1010subscriptMdirect-productm_{\rm P}\simeq 4.1\times 10^{10}~{}{\rm M_{\odot}}/hitalic_m start_POSTSUBSCRIPT roman_P end_POSTSUBSCRIPT ≃ 4.1 × 10 start_POSTSUPERSCRIPT 10 end_POSTSUPERSCRIPT roman_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT / italic_h. Initial conditions are generated at zini=49subscript𝑧ini49z_{\rm ini}=49italic_z start_POSTSUBSCRIPT roman_ini end_POSTSUBSCRIPT = 49.

Before presenting the spectra comparisons, we take a look at how each model presented in section 2 modifies the standard ΛΛ\Lambdaroman_ΛCDM background evolution. This background evolution is adopted for each of the different codes and so differences seen in the following section only arise from how the perturbations are treated.

Table 3: Models considered in this work. The ΛΛ\Lambdaroman_ΛCDM σ8(z=0)=0.851,0.805,0.815subscript𝜎8𝑧00.8510.8050.815\sigma_{8}(z=0)=0.851,0.805,0.815italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ( italic_z = 0 ) = 0.851 , 0.805 , 0.815 for nDGP, CG and K-mouflage cosmologies respectively. We remind the reader that the values for {s,q}𝑠𝑞\{s,q\}{ italic_s , italic_q } are fixed in CG, while adopting the tracker solution for the scalar field imposes the values for c2subscript𝑐2c_{2}italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and c3subscript𝑐3c_{3}italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT quoted in the table.
Parameter nDGP-N1 nDGP-N5 CG QCDM K-mouflage - A K-mouflage - B K-mouflage - C
Ωm,0subscriptΩm0\Omega_{\rm m,0}roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT 0.281 0.313 0.3089
Ωb,0subscriptΩb0\Omega_{\rm b,0}roman_Ω start_POSTSUBSCRIPT roman_b , 0 end_POSTSUBSCRIPT 0.046 0.049 0.0486
H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT 69.7 67.32 67.74
nssubscript𝑛𝑠n_{s}italic_n start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT 0.971 0.9655 0.9667
Assubscript𝐴𝑠A_{s}italic_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT 2.297×1092.297superscript1092.297\times 10^{-9}2.297 × 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT 2.010×1092.010superscript1092.010\times 10^{-9}2.010 × 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT 2.064×1092.064superscript1092.064\times 10^{-9}2.064 × 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT
σ8(z=0)subscript𝜎8𝑧0\sigma_{8}(z=0)italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ( italic_z = 0 ) 0.912 0.865 0.884 0.865 0.881 0.852 0.837
ΩrcsubscriptΩrc\Omega_{\rm rc}roman_Ω start_POSTSUBSCRIPT roman_rc end_POSTSUBSCRIPT 0.25 0.01 - - - - -
c2/c32/3subscript𝑐2superscriptsubscript𝑐323c_{2}/c_{3}^{2/3}italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT - - -5.378 - - - -
c3subscript𝑐3c_{3}italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - - 10 - - - -
s𝑠sitalic_s - - 2.0 - - - -
q𝑞qitalic_q - - 0.5 - - - -
n𝑛nitalic_n - - - - 2 2 2
λ𝜆\lambdaitalic_λ - - - - 1.475 1.460 1.452
K0subscript𝐾0K_{0}italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - - - - 1 10 1
βKsubscript𝛽K\beta_{\rm K}italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT - - - - 0.2 0.2 0.1
Refer to caption
Figure 1: The ratio of the normalised Hubble expansion rate (E(a)=H(a)/H0𝐸𝑎𝐻𝑎subscript𝐻0E(a)=H(a)/H_{0}italic_E ( italic_a ) = italic_H ( italic_a ) / italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT) between the modified gravity and GR models. The left panel shows the K-mouflage models shown in Table 3 in the Einstein frame, while the middle panel shows the same models in the Jordan frame, with a𝑎aitalic_a now being the Jordan frame scale factor. The right panel shows the QCDM model, which has the same background expansion as the CG model. The model parameters for K-mouflage are defined in subsection 2.3.

4.1 Background Evolution

In Figure 1 we show the modification to the standard ΛΛ\Lambdaroman_ΛCDM background expansion for the models described in Table 3. We remind the reader that we assume a ΛΛ\Lambdaroman_ΛCDM expansion for the nDGP models and so this is not shown. We see that the QCDM and CG cases give a much larger modification at late times than any of the K-mouflage models in the Einstein frame. In all models, we see a slower expansion rate at roughly a>0.2𝑎0.2a>0.2italic_a > 0.2 which acts to enhance structure formation. Indeed, the σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT is larger for the QCDM model than for both K-mouflage models B and C (see Table 3), despite having a lower Assubscript𝐴𝑠A_{s}italic_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT (although the QCDM cosmology has a slightly larger Ωm,0subscriptΩm0\Omega_{\rm m,0}roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT). In all cases, the maximum modification is 8%similar-toabsentpercent8\sim 8\%∼ 8 % (QCDM), with the K-mouflage models giving a maximum modification of 3%percent33\%3 % at a=0.5𝑎0.5a=0.5italic_a = 0.5.

In the same figure we also show the modification in the Jordan frame for the K-mouflage models (middle panel). We see here that relative to ΛΛ\Lambdaroman_ΛCDM, we have a significantly slower expansion at a>0.03𝑎0.03a>0.03italic_a > 0.03, with a maxmimum modification of 11%percent1111\%11 % at a0.4similar-to𝑎0.4a\sim 0.4italic_a ∼ 0.4. Further, the current day expansion is larger than the one expected from ΛΛ\Lambdaroman_ΛCDM by 5%percent55\%5 % under the strongest modification considered here. We do remind the reader that the free parameter λ𝜆\lambdaitalic_λ has been tuned to match the current day expansion rate in ΛΛ\Lambdaroman_ΛCDM in the Einstein frame. These panels show that relatively large differences can be observed at the background level when switching frames, which we will see in the next subsection are not evident at the level of the perturbations (also see subsubsection 2.3.2).

4.2 Matter power spectrum boost

Next we take a look at the perturbations, specifically how the matter power spectrum is modified over ΛΛ\Lambdaroman_ΛCDM. For this, we consider the modified gravity boost, defined as

B(k,z)PNL(k,z)PNLΛCDM(k,z).𝐵𝑘𝑧subscript𝑃NL𝑘𝑧subscriptsuperscript𝑃ΛCDMNL𝑘𝑧B(k,z)\equiv\frac{P_{\rm NL}(k,z)}{P^{\Lambda\rm CDM}_{\rm NL}(k,z)}\,.italic_B ( italic_k , italic_z ) ≡ divide start_ARG italic_P start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ( italic_k , italic_z ) end_ARG start_ARG italic_P start_POSTSUPERSCRIPT roman_Λ roman_CDM end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT ( italic_k , italic_z ) end_ARG . (32)
Refer to caption
Figure 2: Comparing boost factors for the various codes listed in Table 2 for nDGP at z=0,0.5,1𝑧00.51z=0,0.5,1italic_z = 0 , 0.5 , 1 (from left to right) with ECOSMOG as benchmark. The upper panels show the results for the nDGP-N5 (low modification) model and the lower panels for the nDGP-N1 (high modification) model (see Table 3).

4.2.1 nDGP

In Figure 2 we show how the various predictions for the boost compare, using the ECOSMOG measurements as a reference, for the nDGP cosmologies found in Table 3. Boost comparisons for nDGP amongst different codes have already been performed extensively in the literature, and so this case is shown mainly as a consistency check, but also to compare the Hi-COLA implementation which has not yet been tested before.

We find that for the low modification case, N5, all predictions remain within 1%percent11\%1 % of each other for k3h/Mpc𝑘3Mpck\leq 3~{}h/{\rm Mpc}italic_k ≤ 3 italic_h / roman_Mpc, including the linear prediction, which for z=0𝑧0z=0italic_z = 0 gives a modification of B(k0,z=0)=1.033𝐵formulae-sequence𝑘0𝑧01.033B(k\rightarrow 0,z=0)=1.033italic_B ( italic_k → 0 , italic_z = 0 ) = 1.033. For N1, B(k0,z=0)=1.149%𝐵formulae-sequence𝑘0𝑧0percent1.149B(k\rightarrow 0,z=0)=1.149\%italic_B ( italic_k → 0 , italic_z = 0 ) = 1.149 %. In this case, all predictions except the linear remain within 2%percent22\%2 % of the ECOSMOG reference for k1h/Mpc𝑘1Mpck\leq 1~{}h/{\rm Mpc}italic_k ≤ 1 italic_h / roman_Mpc. MG-evolution performs the best as expected, having an additional free parameter giving the screening transition, ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT. We have found k=2h/Mpcsubscript𝑘2Mpck_{*}=2~{}h/{\rm Mpc}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 2 italic_h / roman_Mpc and k=1h/Mpcsubscript𝑘1Mpck_{*}=1~{}h/{\rm Mpc}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 1 italic_h / roman_Mpc give a good overall agreement with the ECOSMOG simulations for the N1 and N5 models respectively. Using these values the MG-evolution boost remains within 1%percent11\%1 % up to k3h/Mpc𝑘3Mpck\leq 3~{}h/{\rm Mpc}italic_k ≤ 3 italic_h / roman_Mpc except for the largest modes at z=1𝑧1z=1italic_z = 1 where it worsens to 2%percent22\%2 %, consistent with what was found in Ref. Hassani & Lombriser (2020). Similarly, the halo model reaction remains within 2%percent22\%2 % for k3h/Mpc𝑘3Mpck\leq 3~{}h/{\rm Mpc}italic_k ≤ 3 italic_h / roman_Mpc except for the largest modes at z=1𝑧1z=1italic_z = 1, where it worsens to 3%percent33\%3 % agreement, in accordance with Ref. Cataneo et al. (2019).

The two COLA methods show similar agreement, but deviate the most on average from the reference boost measurements. COLA-FML performs slightly better at z=0𝑧0z=0italic_z = 0 while Hi-COLA does better at higher z𝑧zitalic_z, with deviations up to 4%percent44\%4 % at k=3h/Mpc𝑘3Mpck=3~{}h/{\rm Mpc}italic_k = 3 italic_h / roman_Mpc. This is very consistent with the results of Ref. Winther et al. (2017).

Refer to caption
Figure 3: Comparing boost factors for the various codes listed in Table 2 for the CG (upper) and QCDM (middle) and QCDM-based boost (bottom) at z=0,0.5,1𝑧00.51z=0,0.5,1italic_z = 0 , 0.5 , 1 (from left to right) with ECOSMOG as the benchmark. Note COLA-FML and Hi-COLA’s results for QCDM are identical and so we only show the Hi-COLA QCDM ratio in the middle panels.
Refer to caption
Figure 4: Comparing boost factors for the various codes listed in Table 2 for the K-mouflage models listed in Table 3 with {K0,βK}={1,0.2},{10,0.2},{1,0.1}subscript𝐾0subscript𝛽K10.2100.210.1\{K_{0},\beta_{\rm K}\}=\{1,0.2\},\{10,0.2\},\{1,0.1\}{ italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT } = { 1 , 0.2 } , { 10 , 0.2 } , { 1 , 0.1 } (from top to bottom) at z=0,0.5,1𝑧00.51z=0,0.5,1italic_z = 0 , 0.5 , 1 (from left to right) with MG-GLAM as the benchmark. All models assume n=2𝑛2n=2italic_n = 2.

4.2.2 Cubic Galileon (CG)

Figure 3 shows the boost comparisons between the various codes for the CG and QCDM cases, again using ECOSMOG as a reference. These ECOSMOG simulations were ran using the same code as presented in Ref. Barreira et al. (2013a). We have changed the baseline cosmology for these new runs, particularly lowering the value of Assubscript𝐴𝑠A_{s}italic_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. We also run a ΛΛ\Lambdaroman_ΛCDM counterpart with which to calculate Equation 32. Previous works have compared the boost ratio of the CG spectrum to that in QCDM (Wright et al., 2023), or have performed direct spectra comparisons (Atayde et al., 2024). Further, in Ref. Atayde et al. (2024) the authors found significant disagreement when using an HMCode2020 prescription, which was outperformed by the halofit pseudo spectrum prescription. This was being caused by the σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT-dependent damping introduced into HMCode2020 (Mead et al., 2020), which was not calibrated for particularly high values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT as that of the simulations found in Ref. Barreira et al. (2013a). The lower value of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT in our simulations was found to greatly improve the performance of HMCode2020 over halofit. For comparison with previous work, we also show the comparisons for the ratio of CG to QCDM power spectra, or QCDM-based boost, in the bottom panels of Figure 3.

The MG-evolution predictions again give the best agreement, remaining within 1%percent11\%1 % in the CG case for z0.5𝑧0.5z\geq 0.5italic_z ≥ 0.5 down to k=3h/Mpc𝑘3Mpck=3~{}h/{\rm Mpc}italic_k = 3 italic_h / roman_Mpc. For z=1𝑧1z=1italic_z = 1, the linear implementation, or equivalently ksubscript𝑘k_{*}\to\inftyitalic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT → ∞, provides the best match. However, in the figure, we have plotted the case k(z0.5)=6h/Mpcsubscript𝑘𝑧0.56Mpck_{*}(z\geq 0.5)=6~{}h/{\rm Mpc}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT ( italic_z ≥ 0.5 ) = 6 italic_h / roman_Mpc as it appears to work well given the resolution of the simulation. Adopting the value k=6h/Mpcsubscript𝑘6Mpck_{*}=6~{}h/{\rm Mpc}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 6 italic_h / roman_Mpc at z=0𝑧0z=0italic_z = 0 causes a quick divergence of the predictions as expected from the nature of ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT, amounting to a 8%percent88\%8 % disagreement at k=1h/Mpc𝑘1Mpck=1~{}h/{\rm Mpc}italic_k = 1 italic_h / roman_Mpc. Adopting k=0.4h/Mpcsubscript𝑘0.4Mpck_{*}=0.4~{}h/{\rm Mpc}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0.4 italic_h / roman_Mpc at z=0𝑧0z=0italic_z = 0 brings the predictions to within 2%percent22\%2 % agreement in the same range of scales. Interestingly, in the QCDM-based boost case we can adopt the same value of k=0.3h/Mpcsubscript𝑘0.3Mpck_{*}=0.3~{}h/{\rm Mpc}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = 0.3 italic_h / roman_Mpc for all redshifts considered while keeping a good fit to the ECOSMOG measurements. This seems to indicate that ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT is also degenerate to some extent with the background modification.

In the QCDM case, the predictions are consistent within 1%percent11\%1 % down to k=1h/Mpc𝑘1Mpck=1~{}h/{\rm Mpc}italic_k = 1 italic_h / roman_Mpc. The disagreement for k>1h/Mpc𝑘1Mpck>1~{}h/{\rm Mpc}italic_k > 1 italic_h / roman_Mpc arises from resolution effects, as evidenced by the agreement between MG-evolution and Hi-COLA. This suggests that the tuning of ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT performed to match the reference boost factor in CG is compensating for the resolution-induced loss of boost due to the background by suppressing the small-scale screening.

The halo model reaction remains within 1%percent11\%1 % for k1h/Mpc𝑘1Mpck\leq 1~{}h/{\rm Mpc}italic_k ≤ 1 italic_h / roman_Mpc for both QCDM and CG cases, with the exception of the CG at z=0𝑧0z=0italic_z = 0. Here we find up to 4%percent44\%4 % disagreement with ECOSMOG. This is an atypically large disagreement given the similarity of CG to nDGP, for which the halo model reaction performs significantly better. To investigate this, we have tested different pseudo spectra prescriptions, specifically halofit and EuclidEmulator2, neither offering significant improvement for the matter power spectrum boost. We have also tried omitting the 1-loop correction (see Equation 31) with little change to the predictions as found in Ref. Bose et al. (2022). The excellent agreement in the QCDM case at z=0𝑧0z=0italic_z = 0, with 1%percent11\%1 % agreement beyond k=3h/Mpc𝑘3Mpck=3~{}h/{\rm Mpc}italic_k = 3 italic_h / roman_Mpc, indicates no issue in the background implementation. Further, the QCDM-based boost comparisons show the same disagreement at z=0𝑧0z=0italic_z = 0, but the same or better agreement at higher redshifts, which is just a partial cancellation of inaccuracies in the QCDM and CG ΛΛ\Lambdaroman_ΛCDM-based boost cases.

Lastly, we also checked the behaviour of the reaction function \mathcal{R}caligraphic_R for varying GCCG modification strengths by changing the value of s𝑠sitalic_s. We compared these to corresponding nDGP predictions for \mathcal{R}caligraphic_R such that the nDGP models gave the same linear enhancement of structure as the GCCG cases, making their pseudo spectra identical. We observed significantly more suppression coming from \mathcal{R}caligraphic_R in the GCCG than nDGP, especially for large modifications (large s𝑠sitalic_s or large ΩrcsubscriptΩrc\Omega_{\rm rc}roman_Ω start_POSTSUBSCRIPT roman_rc end_POSTSUBSCRIPT), which may be due to the G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT term present in the GCCG. We do note that the CG has a very large linear enhancement of clustering at z=0𝑧0z=0italic_z = 0, equivalent to a nDGP model with Ωrc=0.6subscriptΩrc0.6\Omega_{\rm rc}=0.6roman_Ω start_POSTSUBSCRIPT roman_rc end_POSTSUBSCRIPT = 0.6. This may indicate a break down of the halo model reaction’s assumptions, specifically the ΛΛ\Lambdaroman_ΛCDM fits it assumes for the halo mass function and virial concentration. The latter has been shown to significantly impact its accuracy (Cataneo et al., 2019; Srinivasan et al., 2021; Srinivasan et al., 2024), especially when the modification to gravity is large. To further pin the z=0𝑧0z=0italic_z = 0 CG disagreement down, we would need to run a CG pseudo cosmology simulation which would make it clear whether or not the reaction modelling or ΛΛ\Lambdaroman_ΛCDM-fits in the halo model components are failing. GCCG simulations with a smaller modification will also indicate this validity range. This will be the focus of future work.

Finally, both COLA implementations remain 2%percent22\%2 % consistent with ECOSMOG in the CG case at scales k1h/Mpc𝑘1Mpck\leq 1~{}h/{\rm Mpc}italic_k ≤ 1 italic_h / roman_Mpc. COLA-FML performs slightly better at low z𝑧zitalic_z while Hi-COLA shows better agreement at higher z𝑧zitalic_z. The implementations differ only in their approach to screening and so we only show the Hi-COLA results for QCDM, where it is similarly consistent as in the CG case. We note that all codes tend to under-predict the boost at small scales. Part of this difference surely comes from the fact that while the ECOSMOG code consistently solves the full Klein-Gordon equation, the other codes implement the screening mechanism in an approximate way, making use of the spherical approximation in one way or another. Therefore, at smaller scales these approximate methods are not guaranteed to be valid. A better test of the accuracy of screening is provided by the QCDM-based boost in the bottom panels, where we see far better agreement between the COLA methods and ECOSMOG.

On this note, we remark that both COLA and MG-evolution’s disagreement with the benchmarks in both nDGP, CG and QCDM cases is also partially due to a low force resolution which can lead to a loss of power on small scales (see Brando et al., 2022, for example). By increasing the force resolution, and time steps in the COLA cases, we expect to find much better agreement above k=1h/Mpc𝑘1Mpck=1~{}h/{\rm Mpc}italic_k = 1 italic_h / roman_Mpc, particularly in the QCDM case which does not have screening. We note that the limited force accuracy will affect all particle mesh codes, including MG-GLAM, and the most efficient and sure way to go to smaller scales would be to use Tree-particle mesh or AMR codes like ECOSMOG.

Table 4: Maximal percent deviation of the nonlinear matter power spectrum boost under various modelling approaches against benchmarks, at different redshifts for k1(3)h/Mpc𝑘13Mpck\leq 1(3)~{}h/{\rm Mpc}italic_k ≤ 1 ( 3 ) italic_h / roman_Mpc.
MG-evolution COLA-FML Hi-COLA ReACT
Model z=0 z=0.5 z=1 z=0 z=0.5 z=1 z=0 z=0.5 z=1 z=0 z=0.5 z=1
N1 1(1)% 1(1)% 1(2)% 1(2)% 1(4)% 1(4)% 2(4)% 1(4)% 1(3)% 2(2)% 2(2) % 2(3)%
N5 1(1)% 1(1)% 1(1)% 1(1)% 1(1)% 1(1)% 1(1)% 1(1)% 1(1)% 1(1)% 1(1)% 1(1)%
CG 1(1)% 1(1)% 1(2)% 1(6)% 1(5)% 1(5)% 1(10)% 2(6)% 1(3)% 4(8)% 2(5)% 1(3)%
QCDM 1(5)% 1(3)% 1(2)% - - - 2(6)% 1(3)% 1(3)% 1(1)% 1(4)% 1(5)%
K-mouflage A - - - - - - 1(4)% 1(3)% 1(3)% 2(17)% 1(8)% 1(4)%
K-mouflage B - - - - - - 1(2)% 1(1)% 1(1)% 2(10)% 1(5)% 1(2)%
K-mouflage C - - - - - - 1(1)% 1(1)% 1(1)% 1(4)% 1(3)% 1(1)%

4.2.3 K-mouflage

For K-mouflage, we restrict our comparisons to MG-GLAM, Hi-COLA and ReACT with the MG-evolution implementation to be the focus of an upcoming work. We expect the same level of accuracy as exhibited in the CG and nDGP cases, especially given the freedom imparted by ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT.

In Figure 4 we show the results for the K-mouflage model. As a reference we use the MG-GLAM simulations, ran for the purpose of this comparison. We compare the K-mouflage boost for the three models listed in Table 3, all of which assume n=2𝑛2n=2italic_n = 2 in Equation 14. We begin by noting that the coupling of matter to the scalar field is proportional to βK/K0subscript𝛽Ksubscript𝐾0\beta_{\rm K}/K_{0}italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT / italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (see Equation. 81 of Brax & Valageas, 2014b, for example), and so large positive K0subscript𝐾0K_{0}italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT decreases the fifth force while large βKsubscript𝛽K\beta_{\rm K}italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT increases it. We find the larger the modification, the worse the agreement between ReACT, Hi-COLA and MG-GLAM. We can see this by moving from top to bottom panels in Figure 4. Further, we note for the largest modification (top panels), there is a 1%percent1~{}1\%1 % offset between MG-GLAM and linear theory (as well as the other codes). This was also seen in Figure. 10 of Ref. Hernández-Aguayo et al. (2022) but not seen in the linearised simulations presented in that reference, suggesting this is a consequence of the nonlinear treatment of MG-GLAM. We also note much smaller linear theory offsets at large scales for the weaker modifications.

For the strongest modification, K-mouflage A in Table 3, at low z𝑧zitalic_z, all codes are consistent within 2%percent22\%2 % for k1h/Mpc𝑘1Mpck\leq 1~{}h/{\rm Mpc}italic_k ≤ 1 italic_h / roman_Mpc. This agreement improves for the halo model reaction to 1%percent11\%1 % agreement for k3h/Mpc𝑘3Mpck\leq 3~{}h/{\rm Mpc}italic_k ≤ 3 italic_h / roman_Mpc for z=1𝑧1z=1italic_z = 1 and the weakest modification, K-mouflage C in Table 3. Overall, Hi-COLA does not show significant improvement or degradation with redshift or modification strength, consistently remaining within 2%percent22\%2 % for k3h/Mpc𝑘3Mpck\leq 3~{}h/{\rm Mpc}italic_k ≤ 3 italic_h / roman_Mpc. The exception is K-mouflage A for z=0𝑧0z=0italic_z = 0 (upper left panel), where it degrades to 4% discrepancy at k=3h/Mpc𝑘3Mpck=3~{}h/{\rm Mpc}italic_k = 3 italic_h / roman_Mpc. The Hi-COLA predictions are all made in the Jordan frame while MG-GLAM and ReACT produce predictions in the Einstein frame. It is here we note the consistency of the nonlinear matter power spectrum in both frames, confirming the claim of Ref. Francfort et al. (2019).

Before concluding we make some technical notes on the comparisons. In the case of the Jordan frame predictions from Hi-COLA, the boost is taken with the K-mouflage spectrum measured at aJsubscript𝑎Ja_{\rm J}italic_a start_POSTSUBSCRIPT roman_J end_POSTSUBSCRIPT, calculated using Equation 16. Finally, we note that ReACT has the option to use the PPF screening formalism for K-mouflage as derived in Ref. Lombriser (2016), and which we present in Appendix B for completeness. This framework comes with an additional degree of freedom and so we have chosen not to use this in our comparisons. The inclusion of K-mouflage theories in Hi-COLA will be the subject of an upcoming publication, Sen Gupta et al. (in prep.).

5 Conclusions

High quality N𝑁Nitalic_N-body codes for modified gravity are essential in order to place reliable constraints on gravity using large-scale structure (LSS) observations. Ongoing galaxy surveys such as Euclid or the Dark Energy Survey will heighten their necessity by beating down the statistical uncertainty on our measurements, making theoretical accuracy essential. Benchmarking the accuracy of approximate but computationally efficient numerical methods against these high quality simulations is an important step towards reliable constraints from the forthcoming data.

In this paper we have performed comparisons of the matter power spectrum modification induced by three distinct theories of modified gravity, each of which induces a scale-independent enhancement of the linear growth of structure: the normal branch of the DGP braneworld model, the Cubic Galileon and K-mouflage. The former two employ the Vainshtein screening mechanism, while the latter employs the K-mouflage screening mechanism. For similar comparisons with scale-dependent modifications to the linear growth and the chameleon (Khoury & Weltman, 2004) or symmmetron (Hinterbichler & Khoury, 2010) screening mechanisms, we refer the reader to Refs. Winther et al. (2015); Winther et al. (2017); Cataneo et al. (2019); Hassani & Lombriser (2020).

We compare the matter power spectrum boost predicted by 6 different numerical codes, each of which has a varying approach to the nonlinear gravitational coupling: full N𝑁Nitalic_N-body (ECOSMOG and MG-GLAM), Comoving Lagrangian Acceleration (COLA) of which we compare two distinct codes, Hi-COLA and COLA-FML, the relativistic parametrised N𝑁Nitalic_N-body code, MG-evolution, and the semi-analytic halo model reaction approach expressed by the ReACT code. We summarise the distinctions of each code below:

  • Full N𝑁Nitalic_N-body: Solves the Klein-Gordan equation exactly to get the force applied to particles in a box. Serves as an accuracy benchmark.

  • Hi-COLA: Includes a fifth force in the COLA formalism via a screening factor, as well as consistently solving the modified cosmological expansion history. Screening factors are derived using a quasi-linear treatment of the metric and scalar field perturbations, along with assuming the quasi-static approximation and spherically distributed over-densities.

  • COLA-FML: Introduces the Vainshtein mechanism by evaluating a function, Geff(k,a)subscript𝐺eff𝑘𝑎G_{\rm eff}(k,a)italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ( italic_k , italic_a ), that captures on average nonlinear corrections from the screening mechanism. This method is performed by linearizing the Klein-Gordon equation in Fourier space, and the full function is found by an iterative process.

  • MG-evolution: Employs a parametrised ansatz for the nonlinear force law which comes with a screening parameter.

  • ReACT: Uses spherical collapse, the halo model and 1-loop perturbation theory to predict the matter power spectrum.

We summarize the overall accuracy exhibited by each approach in Table 4 with respect to the full N𝑁Nitalic_N-body benchmark. We remark that N𝑁Nitalic_N-body codes solving the full Klein-Gordon equation in modified gravity are 1%percent11\%1 % consistent (Winther et al., 2015) for k7h/Mpcless-than-or-similar-to𝑘7Mpck\lesssim 7~{}h/{\rm Mpc}italic_k ≲ 7 italic_h / roman_Mpc in their prediction for the boost.

We find that all approaches considered here are overall 2%percent22\%2 % consistent with the benchmark N𝑁Nitalic_N-body boost at scales k1h/Mpc𝑘1Mpck\leq 1~{}h/{\rm Mpc}italic_k ≤ 1 italic_h / roman_Mpc and for z1𝑧1z\leq 1italic_z ≤ 1. The only exceptions are ReACT for the strongest modifications to ΛΛ\Lambdaroman_ΛCDM and at z=0𝑧0z=0italic_z = 0. MG-evolution performs the best, with a general accuracy of 1%percent11\%1 % at all scales considered (k3h/Mpc𝑘3Mpck\leq 3~{}h/{\rm Mpc}italic_k ≤ 3 italic_h / roman_Mpc), but this accuracy comes at the cost of tuning the screening parameter depending on the output redshift or modification strength, which might undermine the predictivity of the code.

We thus can advocate the safe use of these codes, and any emulators based upon them (see Tsedrik et al., 2024; Carrion et al., 2024; Gordon et al., 2024, for example)666The results of this work do not directly apply to the emulator produced in Ref. Fiorini et al. (2023), nDGPemu, as the screening approximation used to produced their training set is different from the ones adopted in this work., at fairly nonlinear scales for scale-independent models. We note the caveat that emulation error should be quantified and appropriately accounted for.

For a more concrete estimate on the validity of these methods, we can consider a Euclid-like survey whose weak lensing analysis will have a signal to noise peaking at (conservatively) z0.7𝑧0.7z\approx 0.7italic_z ≈ 0.7 (see Lepori et al., 2022, for example). Imposing a 2%percent22\%2 % accuracy demand on the matter power spectrum model, and assuming a ΛΛ\Lambdaroman_ΛCDM fiducial background cosmology, we can arguably trust all method predictions for max1800less-than-or-similar-tosubscriptmax1800\ell_{\rm max}\lesssim 1800roman_ℓ start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT ≲ 1800. This roughly corresponds to the pessimistic scenario described in Ref. Blanchard et al. (2020).

At scales k>1h/Mpc𝑘1Mpck>1~{}h/{\rm Mpc}italic_k > 1 italic_h / roman_Mpc we find all codes begin to diverge by more than 2%percent22\%2 % for the strongest modifications considered. They should thus not be used to model the highly nonlinear scales of structure formation in the context of forthcoming LSS analyses without considering an appropriate theoretical error contribution to the error budget (see Audren et al., 2013, for example).

The goal of this work was to validate different methods to compute the nonlinear matter power spectrum boost (see Equation 32). This function inherently depends on the nonlinear matter power spectrum of ΛΛ\Lambdaroman_ΛCDM. But further, the boost must be applied to an accurate ΛΛ\Lambdaroman_ΛCDM spectrum prediction in order to get a nonlinear modified matter power spectrum prediction. Therefore, the final modified gravity prescription inherits a dependence on predictions of the standard model. While we now have state-of-the-art high resolution tools to evaluate PNLΛCDM(k,z)superscriptsubscript𝑃NLΛCDM𝑘𝑧P_{\rm NL}^{\rm\Lambda CDM}(k,z)italic_P start_POSTSUBSCRIPT roman_NL end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_Λ roman_CDM end_POSTSUPERSCRIPT ( italic_k , italic_z ), the region in which these tools have internal accuracy within 1%2%percent1percent21\%-2\%1 % - 2 % may not be as broad as we need for extracting unbiased constraints on cosmological parameters for Stage-IV LSS surveys (see Gordon et al., 2024, for a more in depth discussion). Furhtermore it is expected that in beyond-ΛΛ\Lambdaroman_ΛCDM analysis, extreme regions of the parameter space need to be sampled, which heightens the need for the development of more comprehensive emulators in ΛΛ\Lambdaroman_ΛCDM, as these are also imperative for the study of beyond-ΛΛ\Lambdaroman_ΛCDM models.

In a similar vein, a further investigation of the impact of baryons in a full parameter inference scenario remains imperative to perform using the codes validated in this work. It has been shown that the interplay between baryonic physics and cosmology exhibit some dependence at small scales (Elbers et al., 2024). However, it is unknown to what extent in the nonlinear regime we can still extract relevant cosmological information to improve our constraints, i.e., if we need to model baryonic physics deep inside the nonlinear regime, k10h/k\sim 10~{}h/italic_k ∼ 10 italic_h /Mpc or not. Alternatively to modelling baryonic physics at the level of the power spectrum, it would be interesting to investigate the performance of procedures that mitigate the impact of baryons in the parameter constrains, such as the methods described in Refs. Eifler et al. (2015); Huang et al. (2019); Huang et al. (2021).

To conclude, let us highlight that the methods compared in this work have been designed with an element of theoretical flexibility in mind. There is a general shift to move beyond hard-coded codes designed to run with only one gravity model, and instead build more general tools that can be calibrated to a range of different models777A caveat here is that a hard-coded full N𝑁Nitalic_N-body code like MG-GLAM or ECOSMOG may always be needed for validation.. This is an essential step forward to streamline the testing of new theoretical ideas with data from Stage IV surveys.

Acknowledgements

B.B. is supported by a UKRI Stephen Hawking Fellowship (EP/W005654/2). A.S.G. is supported by a STFC PhD studentship. F.H. acknowledges the Research Council of Norway and the resources provided by UNINETT Sigma2 – the National Infrastructure for High Performance Computing and Data Storage in Norway. F.H. is also supported by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID s1051. T.B. is supported by ERC Starting Grant SHADE (grant no. StG 949572) and by a Royal Society University Research Fellowship (grant no. URF\\\backslash\R\\\backslash\231006). L.A. is supported by Fundação para a Ciência e a Tecnologia (FCT) through the research grants UIDB/04434/2020, UIDP/04434/2020 and from the FCT PhD fellowship grant with ref. number 2022.11152.BD. N.F. is supported by the Italian Ministry of University and Research (MUR) through the Rita Levi Montalcini project “Tests of gravity on cosmic scales" with reference PGR19ILFGP. L.A. and N.F. also acknowledge the FCT project with ref. number PTDC/FIS-AST/0054/2021 and the COST Action CosmoVerse, CA21136, supported by COST (European Cooperation in Science and Technology). C.H-A. acknowledges support from the Excellence Cluster ORIGINS which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2094 – 390783311. G.B. is supported by the Alexander von Humboldt Foundation. B.F. is supported by a Royal Society Enhancement Award (grant no. RF\\\backslash\ERE\\\backslash\210304). This work used the DiRAC@Durham facility managed by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). The equipment was funded by BEIS capital funding via STFC capital grants ST/K00042X/1, ST/P002293/1, ST/R002371/1 and ST/S002502/1, Durham University and STFC operations grant ST/R000832/1. DiRAC is part of the National e-Infrastructure. Hi-COLA data was generated utilising Queen Mary’s Apocrita HPC facility, supported by QMUL Research-IT, and the Sciama High Performance Compute (HPC) cluster which is supported by the ICG, SEPNet and the University of Portsmouth. For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.

Data Availability

The halo model reaction software used in this article is publicly available in the ACTio-ReACTio repository at https://github.com/nebblu/ACTio-ReACTio. In the same repository we also provide a Mathematica notebook, kmouflage.nb, which contains relevant calculations for the K-mouflage model. N𝑁Nitalic_N-body matter power spectra measurements are available upon request.

References

  • Abbott et al. (2016) Abbott T., et al., 2016, Mon. Not. Roy. Astron. Soc., 460, 1270
  • Abbott et al. (2017) Abbott B. P., et al., 2017, Astrophys. J., 848, L13
  • Adamek et al. (2016a) Adamek J., Daverio D., Durrer R., Kunz M., 2016a, JCAP, 07, 053
  • Adamek et al. (2016b) Adamek J., Daverio D., Durrer R., Kunz M., 2016b, Nature Phys., 12, 346
  • Aghanim et al. (2020) Aghanim N., et al., 2020, Astron. Astrophys., 641, A6
  • Akeson et al. (2019) Akeson R., et al., 2019, The Wide Field Infrared Survey Telescope: 100 Hubbles for the 2020s (arXiv:1902.05569)
  • Alam et al. (2021) Alam S., et al., 2021, Phys. Rev. D, 103, 083533
  • Albrecht et al. (2006) Albrecht A., et al., 2006, Report of the Dark Energy Task Force (arXiv:astro-ph/0609591)
  • Albuquerque et al. (2022) Albuquerque I. S., Frusciante N., Martinelli M., 2022, Phys. Rev. D, 105, 044056
  • Armendariz-Picon et al. (1999) Armendariz-Picon C., Damour T., Mukhanov V. F., 1999, Phys. Lett. B, 458, 209
  • Arnold et al. (2019) Arnold C., Leo M., Li B., 2019, Nature Astronomy, 3, 945
  • Arnold et al. (2021) Arnold C., Li B., Giblin B., Harnois-Déraps J., Cai Y.-C., 2021, (arXiv:2109.04984)
  • Atayde et al. (2024) Atayde L., Frusciante N., Bose B., Casas S., Li B., 2024, Non-linear power spectrum and forecasts for Generalized Cubic Covariant Galileon (arXiv:2404.11471)
  • Audren et al. (2013) Audren B., Lesgourgues J., Bird S., Haehnelt M. G., Viel M., 2013, JCAP, 01, 026
  • Babichev & Deffayet (2013) Babichev E., Deffayet C., 2013, Class. Quant. Grav., 30, 184001
  • Babichev et al. (2009) Babichev E., Deffayet C., Ziour R., 2009, Int. J. Mod. Phys. D, 18, 2147
  • Bag et al. (2018) Bag S., Mishra S. S., Sahni V., 2018, Phys. Rev. D, 97, 123537
  • Baker et al. (2017) Baker T., Bellini E., Ferreira P. G., Lagos M., Noller J., Sawicki I., 2017, Phys. Rev. Lett., 119, 251301
  • Baker et al. (2018) Baker T., Clampitt J., Jain B., Trodden M., 2018, Phys. Rev. D, 98, 023511
  • Baker et al. (2022) Baker T., et al., 2022, JCAP, 08, 031
  • Baker et al. (2023) Baker T., Barausse E., Chen A., de Rham C., Pieroni M., Tasinato G., 2023, JCAP, 03, 044
  • Baldauf et al. (2016) Baldauf T., Mirbabayi M., Simonović M., Zaldarriaga M., 2016, LSS constraints with controlled theoretical uncertainties (arXiv:1602.00674)
  • Baldi & Simpson (2015) Baldi M., Simpson F., 2015, Mon. Not. Roy. Astron. Soc., 449, 2239
  • Barreira et al. (2012) Barreira A., Li B., Baugh C. M., Pascoli S., 2012, Phys. Rev. D, 86, 124016
  • Barreira et al. (2013a) Barreira A., Li B., Hellwing W. A., Baugh C. M., Pascoli S., 2013a, JCAP, 10, 027
  • Barreira et al. (2013b) Barreira A., Li B., Baugh C. M., Pascoli S., 2013b, JCAP, 11, 056
  • Barreira et al. (2014) Barreira A., Li B., Baugh C., Pascoli S., 2014, JCAP, 08, 059
  • Barreira et al. (2015a) Barreira A., Brax P., Clesse S., Li B., Valageas P., 2015a, Phys. Rev. D, 91, 063528
  • Barreira et al. (2015b) Barreira A., Brax P., Clesse S., Li B., Valageas P., 2015b, Phys. Rev. D, 91, 123522
  • Barreira et al. (2016) Barreira A., Sánchez A. G., Schmidt F., 2016, Phys. Rev. D, 94, 084022
  • Barroso et al. (2024) Barroso J. A. A., et al., 2024, Euclid. I. Overview of the Euclid mission (arXiv:2405.13491)
  • Battye et al. (2018) Battye R. A., Pace F., Trinh D., 2018, Phys. Rev. D, 98, 023504
  • Becker et al. (2020) Becker C., Arnold C., Li B., Heisenberg L., 2020, JCAP, 10, 055
  • Belgacem et al. (2019) Belgacem E., Finke A., Frassino A., Maggiore M., 2019, JCAP, 02, 035
  • Bellini et al. (2018) Bellini E., et al., 2018, Phys. Rev. D, 97, 023520
  • Benevento et al. (2019) Benevento G., Raveri M., Lazanu A., Bartolo N., Liguori M., Brax P., Valageas P., 2019, JCAP, 05, 027
  • Bernardeau et al. (2002) Bernardeau F., Colombi S., Gaztanaga E., Scoccimarro R., 2002, Phys. Rept., 367, 1
  • Bernardo et al. (2022) Bernardo H., Bose B., Franzmann G., Hagstotz S., He Y., Litsa A., Niedermann F., 2022, (arXiv:2210.06810)
  • Blanchard et al. (2020) Blanchard A., et al., 2020, Astron. Astrophys., 642, A191
  • Bonici et al. (2023) Bonici M., et al., 2023, Astron. Astrophys., 670, A47
  • Bose & Koyama (2016) Bose B., Koyama K., 2016, JCAP, 08, 032
  • Bose et al. (2018) Bose B., Baldi M., Pourtsidou A., 2018, JCAP, 04, 032
  • Bose et al. (2020) Bose B., Cataneo M., Tröster T., Xia Q., Heymans C., Lombriser L., 2020, Mon. Not. Roy. Astron. Soc., 498, 4650
  • Bose et al. (2021) Bose B., et al., 2021, Mon. Not. Roy. Astron. Soc., 508, 2479
  • Bose et al. (2022) Bose B., Tsedrik M., Kennedy J., Lombriser L., Pourtsidou A., Taylor A., 2022, (arXiv:2210.01094)
  • Brando et al. (2019) Brando G., Falciano F. T., Linder E. V., Velten H. E. S., 2019, JCAP, 11, 018
  • Brando et al. (2022) Brando G., Fiorini B., Koyama K., Winther H. A., 2022, JCAP, 09, 051
  • Brando et al. (2023) Brando G., Koyama K., Winther H. A., 2023, JCAP, 06, 045
  • Brax & Valageas (2014a) Brax P., Valageas P., 2014a, Phys. Rev. D, 90, 023507
  • Brax & Valageas (2014b) Brax P., Valageas P., 2014b, Phys. Rev. D, 90, 023508
  • Brax et al. (2011) Brax P., van de Bruck C., Davis A.-C., Li B., Shaw D. J., 2011, Phys. Rev. D, 83, 104026
  • Brax et al. (2013) Brax P., Davis A.-C., Li B., Winther H. A., Zhao G.-B., 2013, JCAP, 04, 029
  • Brax et al. (2015) Brax P., Rizzo L. A., Valageas P., 2015, Phys. Rev. D, 92, 043519
  • Brax et al. (2021) Brax P., Casas S., Desmond H., Elder B., 2021, Universe, 8, 11
  • Carrilho et al. (2022) Carrilho P., Carrion K., Bose B., Pourtsidou A., Hidalgo J. C., Lombriser L., Baldi M., 2022, Mon. Not. Roy. Astron. Soc., 512, 3691
  • Carrion et al. (2024) Carrion K., Carrilho P., Spurio Mancini A., Pourtsidou A., Hidalgo J. C., 2024, Dark Scattering: accelerated constraints from KiDS-1000 with 𝚁𝚎𝙰𝙲𝚃𝚁𝚎𝙰𝙲𝚃\tt{ReACT}typewriter_ReACT and 𝙲𝚘𝚜𝚖𝚘𝙿𝚘𝚠𝚎𝚛𝙲𝚘𝚜𝚖𝚘𝙿𝚘𝚠𝚎𝚛\tt{CosmoPower}typewriter_CosmoPower (arXiv:2402.18562)
  • Casas et al. (2023) Casas S., et al., 2023, Euclid: Constraints on f(R) cosmologies from the spectroscopic and photometric primary probes (arXiv:2306.11053)
  • Cataneo et al. (2019) Cataneo M., Lombriser L., Heymans C., Mead A., Barreira A., Bose S., Li B., 2019, Mon. Not. Roy. Astron. Soc., 488, 2121
  • Cataneo et al. (2020) Cataneo M., Emberson J. D., Inman D., Harnois-Deraps J., Heymans C., 2020, Mon. Not. Roy. Astron. Soc., 491, 3101
  • Catena et al. (2007) Catena R., Pietroni M., Scarabello L., 2007, Phys. Rev. D, 76, 084039
  • Chiba & Yamaguchi (2013) Chiba T., Yamaguchi M., 2013, JCAP, 10, 040
  • Christiansen et al. (2023) Christiansen O., Hassani F., Jalilvand M., Mota D. F., 2023, JCAP, 05, 009
  • Clifton et al. (2020) Clifton T., Carrilho P., Fernandes P. G. S., Mulryne D. J., 2020, Phys. Rev. D, 102, 084005
  • Cooray & Sheth (2002) Cooray A., Sheth R. K., 2002, Phys. Rept., 372, 1
  • Creminelli & Vernizzi (2017) Creminelli P., Vernizzi F., 2017, Phys. Rev. Lett., 119, 251302
  • Creminelli et al. (2018) Creminelli P., Lewandowski M., Tambalo G., Vernizzi F., 2018, JCAP, 1812, 025
  • Davis et al. (2012) Davis A.-C., Li B., Mota D. F., Winther H. A., 2012, Astrophys. J., 748, 61
  • De Felice & Tsujikawa (2012) De Felice A., Tsujikawa S., 2012, JCAP, 02, 007
  • Deffayet et al. (2009) Deffayet C., Esposito-Farese G., Vikman A., 2009, Phys. Rev. D, 79, 084003
  • Deffayet et al. (2011) Deffayet C., Gao X., Steer D. A., Zahariade G., 2011, Phys. Rev. D, 84, 064039
  • Dvali et al. (2000) Dvali G. R., Gabadadze G., Porrati M., 2000, Phys. Lett. B, 485, 208
  • Eifler et al. (2015) Eifler T., Krause E., Dodelson S., Zentner A. R., Hearin A. P., Gnedin N. Y., 2015, Mon. Notices Royal Astron. Soc., 454, 2451
  • Elbers et al. (2024) Elbers W., et al., 2024, The FLAMINGO project: the coupling between baryonic feedback and cosmology in light of the S8subscript𝑆8S_{8}italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT tension (arXiv:2403.12967)
  • Ezquiaga & Zumalacárregui (2017) Ezquiaga J. M., Zumalacárregui M., 2017, Phys. Rev. Lett., 119, 251304
  • Fiorini et al. (2023) Fiorini B., Koyama K., Baker T., 2023, JCAP, 12, 045
  • Francfort et al. (2019) Francfort J., Ghosh B., Durrer R., 2019, JCAP, 09, 071
  • Frusciante & Pace (2020) Frusciante N., Pace F., 2020, Phys. Dark Univ., 30, 100686
  • Frusciante & Perenon (2020) Frusciante N., Perenon L., 2020, Phys. Rept., 857, 1
  • Frusciante et al. (2020) Frusciante N., Peirone S., Atayde L., De Felice A., 2020, Phys. Rev. D, 101, 064001
  • Frusciante et al. (2023) Frusciante N., et al., 2023, Euclid: Constraining linearly scale-independent modifications of gravity with the spectroscopic and photometric primary probes (arXiv:2306.12368)
  • Gabadadze & Iglesias (2006) Gabadadze G., Iglesias A., 2006, Phys. Lett. B, 639, 88
  • Giblin et al. (2019) Giblin B., Cataneo M., Moews B., Heymans C., 2019, Mon. Not. Roy. Astron. Soc., 490, 4826
  • Goldstein et al. (2017) Goldstein A., et al., 2017, Astrophys. J. Lett., 848, L14
  • Gordon et al. (2024) Gordon J., de Aguiar B. F., Rebouças J. a., Brando G., Falciano F., Miranda V., Koyama K., Winther H. A., 2024, Modeling nonlinear scales with COLA: preparing for LSST-Y1 (arXiv:2404.12344)
  • Harnois-Déraps et al. (2022) Harnois-Déraps J., Hernandez-Aguayo C., Cuesta-Lazaro C., Arnold C., Li B., Davies C. T., Cai Y.-C., 2022, (arXiv:2211.05779)
  • Harry & Noller (2022) Harry I., Noller J., 2022, Gen. Rel. Grav., 54, 133
  • Hassani & Lombriser (2020) Hassani F., Lombriser L., 2020, Mon. Not. Roy. Astron. Soc., 497, 1885
  • Hassani et al. (2019) Hassani F., Adamek J., Kunz M., Vernizzi F., 2019, JCAP, 12, 011
  • Hassani et al. (2020) Hassani F., L’Huillier B., Shafieloo A., Kunz M., Adamek J., 2020, JCAP, 04, 039
  • Hearin et al. (2012) Hearin A. P., Zentner A. R., Ma Z., 2012, JCAP, 04, 034
  • Hernández-Aguayo et al. (2021) Hernández-Aguayo C., Arnold C., Li B., Baugh C. M., 2021, MNRAS, 503, 3867
  • Hernández-Aguayo et al. (2022) Hernández-Aguayo C., Ruan C.-Z., Li B., Arnold C., Baugh C. M., Klypin A., Prada F., 2022, J. Cosmology Astropart. Phys., 2022, 048
  • Hildebrandt et al. (2017) Hildebrandt H., et al., 2017, Mon. Not. Roy. Astron. Soc., 465, 1454
  • Hinterbichler & Khoury (2010) Hinterbichler K., Khoury J., 2010, Phys. Rev. Lett., 104, 231301
  • Horndeski (1974) Horndeski G. W., 1974, Int.J.Theor.Phys., 10, 363
  • Hou et al. (2023) Hou J., Bautista J., Berti M., Cuesta-Lazaro C., Hernández-Aguayo C., Tröster T., Zheng J., 2023, Universe, 9, 302
  • Howlett et al. (2015) Howlett C., Manera M., Percival W. J., 2015, Astron. Comput., 12, 109
  • Hu & Sawicki (2007) Hu W., Sawicki I., 2007, Phys.Rev., D76, 064004
  • Hu et al. (2014) Hu B., Raveri M., Frusciante N., Silvestri A., 2014, Phys. Rev. D, 89, 103530
  • Huang et al. (2019) Huang H.-J., Eifler T., Mandelbaum R., Dodelson S., 2019, Mon. Not. of the Royal Astron. Soc., 488, 1652
  • Huang et al. (2021) Huang H.-J., et al., 2021, Mon. Not. of the Royal Astron. Soc., 502, 6010
  • Ivezić et al. (2019) Ivezić v., et al., 2019, Astrophys. J., 873, 111
  • Jing (2005) Jing Y. P., 2005, Astrophys. J., 620, 559
  • Kable et al. (2022) Kable J. A., Benevento G., Frusciante N., De Felice A., Tsujikawa S., 2022, JCAP, 09, 002
  • Khoury & Weltman (2004) Khoury J., Weltman A., 2004, Phys. Rev. Lett., 93, 171104
  • Khoury & Wyman (2009) Khoury J., Wyman M., 2009, Phys. Rev. D, 80, 064023
  • Kimura et al. (2012) Kimura R., Kobayashi T., Yamamoto K., 2012, Phys. Rev. D, 85, 024023
  • Klypin & Prada (2018) Klypin A., Prada F., 2018, MNRAS, 478, 4602
  • Knabenhans et al. (2019) Knabenhans M., et al., 2019, Mon. Not. Roy. Astron. Soc., 484, 5509
  • Kobayashi (2019) Kobayashi T., 2019, Rept. Prog. Phys., 82, 086901
  • Kobayashi et al. (2010) Kobayashi T., Yamaguchi M., Yokoyama J., 2010, Phys. Rev. Lett., 105, 231302
  • Koyama & Maartens (2006) Koyama K., Maartens R., 2006, JCAP, 01, 016
  • LSST Dark Energy Science Collaboration (2012) LSST Dark Energy Science Collaboration 2012, Large Synoptic Survey Telescope: Dark Energy Science Collaboration (arXiv:1211.0310)
  • Lepori et al. (2022) Lepori F., et al., 2022, Astron. Astrophys., 662, A93
  • Levi et al. (2019) Levi M., et al., 2019, in Bulletin of the American Astronomical Society. p. 57 (arXiv:1907.10688)
  • Li et al. (2012) Li B., Zhao G.-B., Teyssier R., Koyama K., 2012, JCAP, 01, 051
  • Li et al. (2013a) Li B., Zhao G.-B., Koyama K., 2013a, JCAP, 05, 023
  • Li et al. (2013b) Li B., Barreira A., Baugh C. M., Hellwing W. A., Koyama K., Pascoli S., Zhao G.-B., 2013b, JCAP, 11, 012
  • Llinares et al. (2014) Llinares C., Mota D. F., Winther H. A., 2014, Astron. Astrophys., 562, A78
  • Lombriser (2016) Lombriser L., 2016, JCAP, 11, 039
  • Lombriser & Lima (2017) Lombriser L., Lima N. A., 2017, Phys. Lett., B765, 382
  • Lombriser & Taylor (2016) Lombriser L., Taylor A., 2016, JCAP, 1603, 031
  • Lombriser et al. (2009) Lombriser L., Hu W., Fang W., Seljak U., 2009, Phys. Rev. D, 80, 063536
  • Lue (2006) Lue A., 2006, Phys. Rept., 423, 1
  • Luty et al. (2003) Luty M. A., Porrati M., Rattazzi R., 2003, JHEP, 09, 029
  • Martinelli et al. (2021) Martinelli M., et al., 2021, Astron. Astrophys., 649, A100
  • Mead et al. (2016) Mead A., Heymans C., Lombriser L., Peacock J., Steele O., Winther H., 2016, Mon. Not. Roy. Astron. Soc., 459, 1468
  • Mead et al. (2020) Mead A., Brieden S., Tröster T., Heymans C., 2020, Mon. Not. Roy. Astron. Soc.
  • Nicolis et al. (2009) Nicolis A., Rattazzi R., Trincherini E., 2009, Phys. Rev. D, 79, 064036
  • Nouri-Zonoz et al. (2024) Nouri-Zonoz A. R., Hassani F., Kunz M., 2024, k𝑘kitalic_k-eμ𝜇\muitalic_μlator: emulating clustering effects of the k𝑘kitalic_k-essence dark energy (arXiv:2405.10424)
  • Pace et al. (2021) Pace F., Battye R., Bellini E., Lombriser L., Vernizzi F., Bolliet B., 2021, JCAP, 06, 017
  • Peirone et al. (2018) Peirone S., Frusciante N., Hu B., Raveri M., Silvestri A., 2018, Phys. Rev. D, 97, 063518
  • Peirone et al. (2019) Peirone S., Benevento G., Frusciante N., Tsujikawa S., 2019, Phys. Rev. D, 100, 063540
  • Perlmutter et al. (1999) Perlmutter S., et al., 1999, Astrophys. J., 517, 565
  • Piga et al. (2023) Piga L., Marinucci M., D’Amico G., Pietroni M., Vernizzi F., Wright B. S., 2023, JCAP, 04, 038
  • Prunet et al. (2008) Prunet S., Pichon C., Aubert D., Pogosyan D., Teyssier R., Gottloeber S., 2008, Astrophys. J. Suppl., 178, 179
  • Puchwein et al. (2013) Puchwein E., Baldi M., Springel V., 2013, Mon. Not. Roy. Astron. Soc., 436, 348
  • Quartin et al. (2023) Quartin M., Tsujikawa S., Amendola L., Sturani R., 2023, JCAP, 08, 049
  • Ramachandra et al. (2021) Ramachandra N., Valogiannis G., Ishak M., Heitmann K., 2021, Phys. Rev. D, 103, 123525
  • Renk et al. (2017) Renk J., Zumalacárregui M., Montanari F., Barreira A., 2017, JCAP, 10, 020
  • Riess et al. (1998) Riess A. G., et al., 1998, Astron. J., 116, 1009
  • Ruan et al. (2022) Ruan C.-Z., Hernández-Aguayo C., Li B., Arnold C., Baugh C. M., Klypin A., Prada F., 2022, J. Cosmology Astropart. Phys., 2022, 018
  • Sakstein & Jain (2017) Sakstein J., Jain B., 2017, Phys. Rev. Lett., 119, 251303
  • Sawicki & Bellini (2015) Sawicki I., Bellini E., 2015, Phys. Rev. D, 92, 084061
  • Schmidt (2009a) Schmidt F., 2009a, Phys. Rev. D, 80, 043001
  • Schmidt (2009b) Schmidt F., 2009b, Phys. Rev. D, 80, 123003
  • Schmidt et al. (2010) Schmidt F., Hu W., Lima M., 2010, Phys. Rev. D, 81, 063005
  • Scoccimarro (2009) Scoccimarro R., 2009, Phys. Rev. D, 80, 104006
  • Sefusatti et al. (2016) Sefusatti E., Crocce M., Scoccimarro R., Couchman H., 2016, Mon. Not. Roy. Astron. Soc., 460, 3624
  • Simpson (2010) Simpson F., 2010, Phys. Rev. D, 82, 083505
  • Srinivasan et al. (2021) Srinivasan S., Thomas D. B., Pace F., Battye R., 2021, JCAP, 06, 016
  • Srinivasan et al. (2024) Srinivasan S., Thomas D. B., Battye R., 2024, JCAP, 03, 039
  • Takahashi et al. (2012) Takahashi R., Sato M., Nishimichi T., Taruya A., Oguri M., 2012, Astrophys. J., 761, 152
  • Tassev et al. (2013) Tassev S., Zaldarriaga M., Eisenstein D., 2013, JCAP, 06, 036
  • Teyssier (2002) Teyssier R., 2002, Astron. Astrophys., 385, 337
  • Tsedrik et al. (2024) Tsedrik M., Bose B., Carrilho P., Pourtsidou A., Pamuk S., Casas S., Lesgourgues J., 2024, Stage-IV Cosmic Shear with Modified Gravity and Model-independent Screening (arXiv:2404.11508)
  • Vainshtein (1972) Vainshtein A., 1972, Phys.Lett., B39, 393
  • Valogiannis & Bean (2017) Valogiannis G., Bean R., 2017, Phys. Rev. D, 95, 103515
  • Will (2014) Will C. M., 2014, Living Rev. Rel., 17, 4
  • Winther & Ferreira (2015a) Winther H. A., Ferreira P. G., 2015a, Phys. Rev. D, 91, 123507
  • Winther & Ferreira (2015b) Winther H. A., Ferreira P. G., 2015b, Phys. Rev. D, 92, 064005
  • Winther et al. (2015) Winther H. A., et al., 2015, Mon. Not. Roy. Astron. Soc., 454, 4208
  • Winther et al. (2017) Winther H. A., Koyama K., Manera M., Wright B. S., Zhao G.-B., 2017, JCAP, 08, 006
  • Wright et al. (2023) Wright B. S., Sen Gupta A., Baker T., Valogiannis G., Fiorini B., 2023, JCAP, 03, 040
  • Zhao (2014) Zhao G.-B., 2014, Astrophys. J. Suppl., 211, 23
  • Zumalacárregui et al. (2017) Zumalacárregui M., Bellini E., Sawicki I., Lesgourgues J., Ferreira P. G., 2017, JCAP, 08, 019
  • de Rham & Melville (2018) de Rham C., Melville S., 2018, Phys. Rev. Lett., 121, 221101
  • de Rham et al. (2021) de Rham C., Melville S., Noller J., 2021, JCAP, 08, 018

Appendix A K-mouflage ReACT patch

Here we present the expressions needed to calculate the halo model reaction (see Equation 27) in the K-mouflage model. The halo model reaction relies on both the halo model (see Cooray & Sheth, 2002, for a review) and 1-loop perturbation theory (see Bernardeau et al., 2002, for a review). In particular, besides the background expansion H(a)𝐻𝑎H(a)italic_H ( italic_a ), we require the modifications to the 1st, 2nd, 3rd order perturbative and nonlinear Poisson equations, as well as contributions to the potential energy of halos in order to solve the virial theorem (see Cataneo et al., 2019; Bose et al., 2020, for more details). K-mouflage also comes with a friction term correction to the Euler equation (Brax & Valageas, 2014b).

A.1 Background

For the background expansion we must solve the Klein-Gordon and Friedmann equations simultaneously. We do this numerically in ReACT as done in Ref. Hernández-Aguayo et al. (2022). The Friedmann equations are

2H02[1φ26]=\displaystyle\frac{\mathcal{H}^{2}}{H_{0}^{2}}\left[1-\frac{\varphi^{\prime}{}% ^{2}}{6}\right]=divide start_ARG caligraphic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG [ 1 - divide start_ARG italic_φ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT end_ARG start_ARG 6 end_ARG ] = A(φ)Ωm,0a+13λ2a2𝐴𝜑subscriptΩm0𝑎13superscript𝜆2superscript𝑎2\displaystyle\frac{A(\varphi)\Omega_{\rm m,0}}{a}+\frac{1}{3}\lambda^{2}a^{2}divide start_ARG italic_A ( italic_φ ) roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_a end_ARG + divide start_ARG 1 end_ARG start_ARG 3 end_ARG italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
+(2n1)3λ2a2K0(φ22λ2a2)n2nH02n,\displaystyle+\frac{(2n-1)}{3}\lambda^{2}a^{2}K_{0}\left(\frac{\varphi^{\prime% }{}^{2}}{2\lambda^{2}a^{2}}\right)^{n}\frac{\mathcal{H}^{2n}}{H_{0}^{2n}}\,,+ divide start_ARG ( 2 italic_n - 1 ) end_ARG start_ARG 3 end_ARG italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( divide start_ARG italic_φ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT end_ARG start_ARG 2 italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT divide start_ARG caligraphic_H start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT end_ARG , (33)
ddτ1H02=dd𝜏1superscriptsubscript𝐻02absent\displaystyle\frac{{\rm d}\mathcal{H}}{{\rm d\tau}}\frac{1}{H_{0}^{2}}=divide start_ARG roman_d caligraphic_H end_ARG start_ARG roman_d italic_τ end_ARG divide start_ARG 1 end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = A(φ)Ωm,02a+13λ2a213φ2H022𝐴𝜑subscriptΩm02𝑎13superscript𝜆2superscript𝑎213superscript𝜑superscriptsuperscript2superscriptsubscript𝐻022\displaystyle-\frac{A(\varphi)\Omega_{\rm m,0}}{2a}+\frac{1}{3}\lambda^{2}a^{2% }-\frac{1}{3}\varphi^{\prime}{}^{2}\frac{\mathcal{H}^{2}}{H_{0}^{2}}- divide start_ARG italic_A ( italic_φ ) roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_a end_ARG + divide start_ARG 1 end_ARG start_ARG 3 end_ARG italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 3 end_ARG italic_φ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT divide start_ARG caligraphic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
(n+1)3λ2a2K0(φ22λ2a2)n2nH02n,\displaystyle-\frac{(n+1)}{3}\lambda^{2}a^{2}K_{0}\left(\frac{\varphi^{\prime}% {}^{2}}{2\lambda^{2}a^{2}}\right)^{n}\frac{\mathcal{H}^{2n}}{H_{0}^{2n}}\,,- divide start_ARG ( italic_n + 1 ) end_ARG start_ARG 3 end_ARG italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( divide start_ARG italic_φ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT end_ARG start_ARG 2 italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT divide start_ARG caligraphic_H start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT end_ARG , (34)

while the Klein-Gordan equation is given as

(KX+2X¯KXX)[2H02φ′′+ddτ1H02φ]subscript𝐾𝑋2¯𝑋subscript𝐾𝑋𝑋delimited-[]superscript2superscriptsubscript𝐻02superscript𝜑′′dd𝜏1superscriptsubscript𝐻02superscript𝜑\displaystyle(K_{X}+2\bar{X}K_{XX})\left[\frac{\mathcal{H}^{2}}{H_{0}^{2}}% \varphi^{\prime\prime}+\frac{{\rm d}\mathcal{H}}{{\rm d\tau}}\frac{1}{H_{0}^{2% }}\varphi^{\prime}\right]( italic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT + 2 over¯ start_ARG italic_X end_ARG italic_K start_POSTSUBSCRIPT italic_X italic_X end_POSTSUBSCRIPT ) [ divide start_ARG caligraphic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_φ start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT + divide start_ARG roman_d caligraphic_H end_ARG start_ARG roman_d italic_τ end_ARG divide start_ARG 1 end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_φ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ]
+2(KXX¯KXX)2H02φ+3dA(φ)dφΩm,0a=0,2subscript𝐾𝑋¯𝑋subscript𝐾𝑋𝑋superscript2superscriptsubscript𝐻02superscript𝜑3d𝐴𝜑d𝜑subscriptΩm0𝑎0\displaystyle+2(K_{X}-\bar{X}K_{XX})\frac{\mathcal{H}^{2}}{H_{0}^{2}}\varphi^{% \prime}+3\frac{{\rm d}A(\varphi)}{\rm d\varphi}\frac{\Omega_{\rm m,0}}{a}=0\,,+ 2 ( italic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT - over¯ start_ARG italic_X end_ARG italic_K start_POSTSUBSCRIPT italic_X italic_X end_POSTSUBSCRIPT ) divide start_ARG caligraphic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_φ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + 3 divide start_ARG roman_d italic_A ( italic_φ ) end_ARG start_ARG roman_d italic_φ end_ARG divide start_ARG roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_a end_ARG = 0 , (35)

where KXX=d2K/dX2subscript𝐾𝑋𝑋superscriptd2𝐾dsuperscript𝑋2K_{XX}={\rm d}^{2}K/{\rm d}X^{2}italic_K start_POSTSUBSCRIPT italic_X italic_X end_POSTSUBSCRIPT = roman_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_K / roman_d italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and we recall primes denote derivatives with respect to lna𝑎\ln aroman_ln italic_a. In these equations we have defined the normalised scalar field φϕ/Mpl𝜑italic-ϕsubscript𝑀pl\varphi\equiv\phi/M_{\rm pl}italic_φ ≡ italic_ϕ / italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT and used the conformal Hubble rate (a)=H(a)a𝑎𝐻𝑎𝑎\mathcal{H}(a)=H(a)acaligraphic_H ( italic_a ) = italic_H ( italic_a ) italic_a. τ𝜏\tauitalic_τ is conformal time. We indicate that a few typographical errors did occur in Ref. Hernández-Aguayo et al. (2022) which have been corrected in the above equations.

To solve these equations we first find the analytic solutions to Equation 33 for a given value of n𝑛nitalic_n 888We provide a Mathematica notebook which computes the solutions for n=2,3𝑛23n=2,3italic_n = 2 , 3 and checks consistency of the equations.. For n=2𝑛2n=2italic_n = 2 this is a quadratic equation in 2/H02superscript2superscriptsubscript𝐻02\mathcal{H}^{2}/H_{0}^{2}caligraphic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Then, for a given value of a𝑎aitalic_a (or lna𝑎\ln aroman_ln italic_a) we can substitute \mathcal{H}caligraphic_H and Equation 34 in Equation 35, enabling us to solve for the entire evolution of φ𝜑\varphiitalic_φ (and φsuperscript𝜑\varphi^{\prime}italic_φ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT), and consequently H(a)𝐻𝑎H(a)italic_H ( italic_a ).

A.2 Perturbations

The linear modification to the Poisson equation is given by (Brax & Valageas, 2014b)

Geff,LGN=A(φ)(1+2βK2KX).subscript𝐺effLsubscript𝐺N𝐴𝜑12superscriptsubscript𝛽K2subscript𝐾𝑋\frac{G_{\rm eff,L}}{G_{\rm N}}=A(\varphi)\left(1+\frac{2\beta_{\rm K}^{2}}{K_% {X}}\right)\,.divide start_ARG italic_G start_POSTSUBSCRIPT roman_eff , roman_L end_POSTSUBSCRIPT end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG = italic_A ( italic_φ ) ( 1 + divide start_ARG 2 italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG ) . (36)

Here we have included the conformal factor A(φ)𝐴𝜑A(\varphi)italic_A ( italic_φ ), that comes along with ρmsubscript𝜌m\rho_{\rm m}italic_ρ start_POSTSUBSCRIPT roman_m end_POSTSUBSCRIPT in the Poisson equation, Equation 4. Note that Geff,L/GN=μ(k,a)subscript𝐺effLsubscript𝐺N𝜇𝑘𝑎G_{\rm eff,L}/G_{\rm N}=\mu(k,a)italic_G start_POSTSUBSCRIPT roman_eff , roman_L end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT = italic_μ ( italic_k , italic_a ) in the ReACT standard notation of Refs. Bose & Koyama (2016); Cataneo et al. (2019); Bose et al. (2020, 2022) for example.

The 2nd and 3rd order symmetrised modifications to the Poisson equation, in the same notation of Ref. Bose & Koyama (2016); Bose et al. (2020), are (Brax & Valageas, 2014b)

γ2(𝒌1,𝒌2,a)=subscript𝛾2subscript𝒌1subscript𝒌2𝑎absent\displaystyle\gamma_{2}(\mbox{\boldmath$k$}_{1},\mbox{\boldmath$k$}_{2},a)=italic_γ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( bold_italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , bold_italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_a ) = 0,0\displaystyle 0\,,0 ,
γ3(𝒌1,𝒌2,𝒌3,a)=subscript𝛾3subscript𝒌1subscript𝒌2subscript𝒌3𝑎absent\displaystyle\gamma_{3}(\mbox{\boldmath$k$}_{1},\mbox{\boldmath$k$}_{2},\mbox{% \boldmath$k$}_{3},a)=italic_γ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( bold_italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , bold_italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , bold_italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , italic_a ) = 92KXX(A(φ)Ωm,0aH022)3(βKKX)44H021a2λ292subscript𝐾𝑋𝑋superscript𝐴𝜑subscriptΩm0𝑎superscriptsubscript𝐻02superscript23superscriptsubscript𝛽Ksubscript𝐾𝑋4superscript4superscriptsubscript𝐻021superscript𝑎2superscript𝜆2\displaystyle-\frac{9}{2}K_{XX}\left(\frac{A(\varphi)\Omega_{\rm m,0}}{a}\frac% {H_{0}^{2}}{\mathcal{H}^{2}}\right)^{3}\left(\frac{\beta_{\rm K}}{K_{X}}\right% )^{4}\frac{\mathcal{H}^{4}}{H_{0}^{2}}\frac{1}{a^{2}\lambda^{2}}- divide start_ARG 9 end_ARG start_ARG 2 end_ARG italic_K start_POSTSUBSCRIPT italic_X italic_X end_POSTSUBSCRIPT ( divide start_ARG italic_A ( italic_φ ) roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_a end_ARG divide start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG caligraphic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( divide start_ARG italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT end_ARG start_ARG italic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT divide start_ARG caligraphic_H start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
×[(μ12+2μ13μ23)k1k2+(μ13+2μ23μ12)k1k3\displaystyle\times\left[\frac{(\mu_{12}+2\mu_{13}\mu_{23})}{k_{1}k_{2}}+\frac% {(\mu_{13}+2\mu_{23}\mu_{12})}{k_{1}k_{3}}\right.× [ divide start_ARG ( italic_μ start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT + 2 italic_μ start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT italic_μ start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG + divide start_ARG ( italic_μ start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT + 2 italic_μ start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT italic_μ start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_ARG
+(μ23+2μ13μ12)k2k3],\displaystyle\left.+\frac{(\mu_{23}+2\mu_{13}\mu_{12})}{k_{2}k_{3}}\right]\,,+ divide start_ARG ( italic_μ start_POSTSUBSCRIPT 23 end_POSTSUBSCRIPT + 2 italic_μ start_POSTSUBSCRIPT 13 end_POSTSUBSCRIPT italic_μ start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_ARG ] , (37)

where we have defined μijk^ik^jsubscript𝜇𝑖𝑗subscript^𝑘𝑖subscript^𝑘𝑗\mu_{ij}\equiv\hat{k}_{i}\cdot\hat{k}_{j}italic_μ start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT ≡ over^ start_ARG italic_k end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⋅ over^ start_ARG italic_k end_ARG start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT and ki=|𝒌i|subscript𝑘𝑖subscript𝒌𝑖k_{i}=|\mbox{\boldmath$k$}_{i}|italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = | bold_italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT |.

Lastly, we also have a modification to the Euler equation in the form of a friction term (Brax & Valageas, 2014b). Similar terms have been included in ReACT in the context of interacting dark energy models (Simpson, 2010; Baldi & Simpson, 2015; Bose et al., 2018; Carrilho et al., 2022). In the K-mouflage model considered here, this term is given as

Afriction=βKφ.subscript𝐴frictionsubscript𝛽Ksuperscript𝜑A_{\rm friction}=\beta_{\rm K}\varphi^{\prime}\,.italic_A start_POSTSUBSCRIPT roman_friction end_POSTSUBSCRIPT = italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT italic_φ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT . (38)

This term enters the Euler equation as expressed in Equation. 2.10 of Ref. Bose et al. (2018) for example.

A.3 Spherical collapse

The halo model reaction also requires us to solve for the spherical top-hat overdensity. This involves solving the evolution equation for the top-hat radius which requires specification of the nonlinear Poisson equation. The modification to this equation is to a good approximation equal to the linear modification at extra galactic scales given the smallness of the K-mouflage radius (Brax & Valageas, 2014b)

Geff(k,a)GN=Geff, L(a)GN.subscript𝐺eff𝑘𝑎subscript𝐺Nsubscript𝐺eff, L𝑎subscript𝐺N\frac{G_{\text{eff}}(k,a)}{G_{\rm N}}=\frac{G_{\text{eff, L}}(a)}{G_{\rm N}}\,.divide start_ARG italic_G start_POSTSUBSCRIPT eff end_POSTSUBSCRIPT ( italic_k , italic_a ) end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_G start_POSTSUBSCRIPT eff, L end_POSTSUBSCRIPT ( italic_a ) end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG . (39)

We note in the notation of Ref. Cataneo et al. (2019), =Geff/GN1=ΔGeff/GNsubscript𝐺effsubscript𝐺N1Δsubscript𝐺effsubscript𝐺N\mathcal{F}=G_{\rm eff}/G_{\rm N}-1=\Delta G_{\rm eff}/G_{\rm N}caligraphic_F = italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT - 1 = roman_Δ italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT. In ReACT \mathcal{F}caligraphic_F appears as 1+11+\mathcal{F}1 + caligraphic_F in the Poisson equation. This yields the correct conformal factor accounting for the Einstein-frame transformation of the background density in the nonlinear Poisson equation, as it is already explicit in Equation 36.

Lastly, we note that the top-hat radius evolution also must include the friction term Equation 38.

A.4 Virial theorem

Here we present the potential energy contributions to the virial theorem in the K-mouflage model considered. This is needed to calculate the virial mass in the halo model reaction calculations. The specific components we require are (Schmidt et al., 2010; Cataneo et al., 2019)

WNE0subscript𝑊Nsubscript𝐸0\displaystyle\frac{W_{\rm N}}{E_{0}}divide start_ARG italic_W start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG =Ωm,0a1ai2y2(1+δ);absentsubscriptΩm0superscript𝑎1superscriptsubscript𝑎i2superscript𝑦21𝛿\displaystyle=-\Omega_{\rm m,0}\frac{a^{-1}}{a_{\rm i}^{2}}y^{2}(1+\delta)\,;= - roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT divide start_ARG italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 1 + italic_δ ) ; (40)
WϕE0subscript𝑊italic-ϕsubscript𝐸0\displaystyle\frac{W_{\rm\phi}}{E_{0}}divide start_ARG italic_W start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG =Ωm,0a1ai2y2δ;absentsubscriptΩm0superscript𝑎1superscriptsubscript𝑎i2superscript𝑦2𝛿\displaystyle=-\Omega_{\rm m,0}\mathcal{F}\,\frac{a^{-1}}{a_{\rm i}^{2}}y^{2}% \delta\,;= - roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT caligraphic_F divide start_ARG italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ ; (41)
WeffE0subscript𝑊effsubscript𝐸0\displaystyle\frac{W_{\rm eff}}{E_{0}}divide start_ARG italic_W start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG =13Mpl2H02(1+3weff)ρ¯effa2ai2y2;absent13superscriptsubscript𝑀pl2superscriptsubscript𝐻0213subscript𝑤effsubscript¯𝜌effsuperscript𝑎2superscriptsubscript𝑎i2superscript𝑦2\displaystyle=-\frac{1}{3M_{\rm pl}^{2}H_{0}^{2}}(1+3w_{\rm eff})\,\bar{\rho}_% {\rm eff}\frac{a^{2}}{a_{\rm i}^{2}}y^{2}\,;= - divide start_ARG 1 end_ARG start_ARG 3 italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( 1 + 3 italic_w start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT ) over¯ start_ARG italic_ρ end_ARG start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ; (42)
WfricE0subscript𝑊fricsubscript𝐸0\displaystyle\frac{W_{\rm fric}}{E_{0}}divide start_ARG italic_W start_POSTSUBSCRIPT roman_fric end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG =2AfrictionH2H02a2ai2yy,absent2subscript𝐴frictionsuperscript𝐻2superscriptsubscript𝐻02superscript𝑎2superscriptsubscript𝑎i2𝑦superscript𝑦\displaystyle=-2A_{\rm friction}\frac{H^{2}}{H_{0}^{2}}\frac{a^{2}}{a_{\rm i}^% {2}}\,y\,y^{\prime}\,,= - 2 italic_A start_POSTSUBSCRIPT roman_friction end_POSTSUBSCRIPT divide start_ARG italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_y italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , (43)

where yRTHRiaia𝑦subscript𝑅THsubscript𝑅isubscript𝑎i𝑎y\equiv\frac{R_{\rm TH}}{R_{\rm i}}\frac{a_{\rm i}}{a}italic_y ≡ divide start_ARG italic_R start_POSTSUBSCRIPT roman_TH end_POSTSUBSCRIPT end_ARG start_ARG italic_R start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT end_ARG divide start_ARG italic_a start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT end_ARG start_ARG italic_a end_ARG, RTHsubscript𝑅THR_{\rm TH}italic_R start_POSTSUBSCRIPT roman_TH end_POSTSUBSCRIPT being the comoving top-hat radius, Risubscript𝑅iR_{\rm i}italic_R start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT the initial top-hat radius and E0subscript𝐸0E_{0}italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is a normalisation. These represent the Newtonian contribution, the scalar field contribution, the effective dark energy contribution and a frictional force contribution as derived in Ref. Carrilho et al. (2022). In the K-mouflage model the scalar field affects both force enhancement and acts as an effective dark energy component.

We recall that =Geff/GN1subscript𝐺effsubscript𝐺N1\mathcal{F}=G_{\rm eff}/G_{\rm N}-1caligraphic_F = italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT - 1 which does not account for the correct conformal factor to appear in Equation 41 in the K-mouflage model. In this case we should have

WϕE0subscript𝑊italic-ϕsubscript𝐸0\displaystyle\frac{W_{\rm\phi}}{E_{0}}divide start_ARG italic_W start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG =Ωm,0[Geff,L/GNA(φ)]a1ai2y2δ,absentsubscriptΩm0delimited-[]subscript𝐺effLsubscript𝐺N𝐴𝜑superscript𝑎1superscriptsubscript𝑎i2superscript𝑦2𝛿\displaystyle=-\Omega_{\rm m,0}\left[G_{\rm eff,L}/G_{\rm N}-A(\varphi)\right]% \,\frac{a^{-1}}{a_{\rm i}^{2}}y^{2}\delta\,,= - roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT [ italic_G start_POSTSUBSCRIPT roman_eff , roman_L end_POSTSUBSCRIPT / italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT - italic_A ( italic_φ ) ] divide start_ARG italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ ,
=Ωm,0[A(φ)2βK2KX]a1ai2y2δ,absentsubscriptΩm0delimited-[]𝐴𝜑2superscriptsubscript𝛽K2subscript𝐾𝑋superscript𝑎1superscriptsubscript𝑎i2superscript𝑦2𝛿\displaystyle=-\Omega_{\rm m,0}\left[A(\varphi)\frac{2\beta_{\rm K}^{2}}{K_{X}% }\right]\,\frac{a^{-1}}{a_{\rm i}^{2}}y^{2}\delta\,,= - roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT [ italic_A ( italic_φ ) divide start_ARG 2 italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG ] divide start_ARG italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ , (44)

where we used Equation 39 and Equation 36. Africtionsubscript𝐴frictionA_{\rm friction}italic_A start_POSTSUBSCRIPT roman_friction end_POSTSUBSCRIPT is given by Equation 38. weff=p¯eff/ρ¯effsubscript𝑤effsubscript¯𝑝effsubscript¯𝜌effw_{\rm eff}=\bar{p}_{\rm eff}/\bar{\rho}_{\rm eff}italic_w start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = over¯ start_ARG italic_p end_ARG start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT / over¯ start_ARG italic_ρ end_ARG start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT and ρ¯effsubscript¯𝜌eff\bar{\rho}_{\rm eff}over¯ start_ARG italic_ρ end_ARG start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT are the equation of state and energy density of the effective dark energy fluid component, with p¯effsubscript¯𝑝eff\bar{p}_{\rm eff}over¯ start_ARG italic_p end_ARG start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT being the fluid’s pressure. These are given in the Einstein frame by (Brax & Valageas, 2014a, b):

ρ¯effsubscript¯𝜌eff\displaystyle\bar{\rho}_{\rm eff}over¯ start_ARG italic_ρ end_ARG start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT =Mpl2H02λ2(KMpl2H2ϕ¯KX2);absentsuperscriptsubscript𝑀pl2superscriptsubscript𝐻02superscript𝜆2𝐾superscriptsubscript𝑀pl2superscript𝐻2superscript¯italic-ϕsuperscriptsubscript𝐾𝑋2\displaystyle=-M_{\rm pl}^{2}H_{0}^{2}\lambda^{2}(K-M_{\rm pl}^{2}H^{2}\bar{% \phi}^{\prime}{}^{2}K_{X})\,;= - italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_K - italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over¯ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT italic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) ; (45)
p¯effsubscript¯𝑝eff\displaystyle\bar{p}_{\rm eff}over¯ start_ARG italic_p end_ARG start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT =Mpl2H02λ2K.absentsuperscriptsubscript𝑀pl2superscriptsubscript𝐻02superscript𝜆2𝐾\displaystyle=M_{\rm pl}^{2}H_{0}^{2}\lambda^{2}K\,.= italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_K . (46)

We then get

weff=KKMpl2H2ϕ¯KX2.subscript𝑤eff𝐾𝐾superscriptsubscript𝑀pl2superscript𝐻2superscript¯italic-ϕsuperscriptsubscript𝐾𝑋2w_{\rm eff}=-\frac{K}{K-M_{\rm pl}^{2}H^{2}\bar{\phi}^{\prime}{}^{2}K_{X}}\,.italic_w start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = - divide start_ARG italic_K end_ARG start_ARG italic_K - italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over¯ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT italic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT end_ARG . (47)

We can simplify Equation 42 further by noting that when adopting the model in Equation 14 we have

KX=1H02λ2Mpl2+K01H02nλ2nMpl2nnXn1.subscript𝐾𝑋1superscriptsubscript𝐻02superscript𝜆2superscriptsubscript𝑀pl2subscript𝐾01superscriptsubscript𝐻02𝑛superscript𝜆2𝑛superscriptsubscript𝑀pl2𝑛𝑛superscript𝑋𝑛1K_{X}=\frac{1}{H_{0}^{2}\lambda^{2}M_{\rm pl}^{2}}+K_{0}\frac{1}{H_{0}^{2n}% \lambda^{2n}M_{\rm pl}^{2n}}n\,X^{n-1}\,.italic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT end_ARG italic_n italic_X start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT . (48)

Substituting this into Equation 47, we find the effective dark energy contribution to the potential energy is given by

WeffE0=λ23[2K+H2H02φ2λ2(1+K0nXn1)]a2ai2y2.\frac{W_{\rm eff}}{E_{0}}=-\frac{\lambda^{2}}{3}\left[2K+\frac{H^{2}}{H_{0}^{2% }}\frac{\varphi^{\prime}{}^{2}}{\lambda^{2}}\left(1+K_{0}nX^{n-1}\right)\right% ]\frac{a^{2}}{a_{\rm i}^{2}}y^{2}\,.divide start_ARG italic_W start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG = - divide start_ARG italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 3 end_ARG [ 2 italic_K + divide start_ARG italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG divide start_ARG italic_φ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT end_ARG start_ARG italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( 1 + italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_n italic_X start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT ) ] divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (49)

Finally, we should note that the Newtonian contribution also should have a conformal factor along with Ωm,0subscriptΩm0\Omega_{\rm m,0}roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT

WNE0=A(φ)Ωm,0a1ai2y2(1+δ).subscript𝑊Nsubscript𝐸0𝐴𝜑subscriptΩm0superscript𝑎1superscriptsubscript𝑎i2superscript𝑦21𝛿\frac{W_{\rm N}}{E_{0}}=-A(\varphi)\Omega_{\rm m,0}\frac{a^{-1}}{a_{\rm i}^{2}% }y^{2}(1+\delta)\,.divide start_ARG italic_W start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG start_ARG italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG = - italic_A ( italic_φ ) roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT divide start_ARG italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUBSCRIPT roman_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 1 + italic_δ ) . (50)

Appendix B Parametrised post-Friedmannian expressions

Here we review expressions for the general parametrisation of the effective gravitational constant appearing in the nonlinear Poisson equation as described in Ref. Lombriser (2016). This is based on the parametrised post-Friedmannian framework and is the means of modelling modifications to nonlinear structure formation in the MG-evolution code. This parametrisation has also been implemented in the ReACT code (Bose et al., 2022).

MG-evolution adopts a generalised form of the Vainshtein screening effect given by (Lombriser, 2016)

ΔGeff, NLG=b(kk)af{[1+(kk)af]1/b1},Δsubscript𝐺eff, NL𝐺𝑏superscriptsubscript𝑘𝑘subscript𝑎𝑓superscriptdelimited-[]1superscript𝑘subscript𝑘subscript𝑎𝑓1𝑏1\frac{\Delta G_{\text{eff, NL}}}{G}=b\left(\frac{k_{*}}{k}\right)^{a_{f}}\left% \{\left[1+\left(\frac{k}{k_{*}}\right)^{a_{f}}\right]^{1/b}-1\right\},divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT eff, NL end_POSTSUBSCRIPT end_ARG start_ARG italic_G end_ARG = italic_b ( divide start_ARG italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_k end_ARG ) start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT end_POSTSUPERSCRIPT { [ 1 + ( divide start_ARG italic_k end_ARG start_ARG italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT 1 / italic_b end_POSTSUPERSCRIPT - 1 } , (51)

where NL stands for nonlinear, and ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT and b𝑏bitalic_b, respectively, characterise the effective screening wavenumber and the interpolation rate between the screened and unscreened regimes. This expression augments the linear theory prediction as given in Equation 22 to give the full solution for Geffsubscript𝐺effG_{\rm eff}italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT. We shall briefly provide the particular form of this expression for the three models considered in this work and refer the reader to Ref. Lombriser (2016) for more details.

B.1 nDGP

To parametrise nDGP gravity we consider (see Lombriser, 2016)

ΔGnDGP,NLGN=13β(a)(kk)3{[1+(kk)3]121},Δsubscript𝐺nDGPNLsubscript𝐺N13𝛽𝑎superscriptsubscript𝑘𝑘3superscriptdelimited-[]1superscript𝑘subscript𝑘3121\frac{\Delta G_{\rm nDGP,NL}}{G_{\rm N}}=\frac{1}{3\beta(a)}\left(\frac{k_{*}}% {k}\right)^{3}\left\{\left[1+\left(\frac{k}{k_{*}}\right)^{3}\right]^{\frac{1}% {2}}-1\right\},divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT roman_nDGP , roman_NL end_POSTSUBSCRIPT end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG = divide start_ARG 1 end_ARG start_ARG 3 italic_β ( italic_a ) end_ARG ( divide start_ARG italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_k end_ARG ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT { [ 1 + ( divide start_ARG italic_k end_ARG start_ARG italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT - 1 } , (52)

where ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT corresponds approximately to the Vainshtein radius:

r=16πGNδMrc29β2,subscript𝑟16𝜋subscript𝐺N𝛿𝑀superscriptsubscript𝑟𝑐29superscript𝛽2r_{*}=\frac{16\pi G_{\rm N}\delta Mr_{c}^{2}}{9\beta^{2}},italic_r start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT = divide start_ARG 16 italic_π italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT italic_δ italic_M italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 9 italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , (53)

where δM𝛿𝑀\delta Mitalic_δ italic_M is the mass enclosed by a spherical region, rcsubscript𝑟𝑐r_{c}italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT is the crossover scale in nDGP theories, and β(a)𝛽𝑎\beta(a)italic_β ( italic_a ) is given below. The Vainshtein radius effectively defines a region where the fifth force introduced by the scalar field gets shielded. The effective screening wavenumber ksubscript𝑘k_{*}italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT can in principle be modelled. However, it is treated as a free parameter in MG-evolution. The function β(a)𝛽𝑎\beta(a)italic_β ( italic_a ) reads as

β(a)=1+2Hrc(1+H˙3H2),𝛽𝑎12𝐻subscript𝑟𝑐1˙𝐻3superscript𝐻2\beta(a)=1+2Hr_{c}\Big{(}1+\frac{\dot{H}}{3H^{2}}\Big{)}\,,italic_β ( italic_a ) = 1 + 2 italic_H italic_r start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 1 + divide start_ARG over˙ start_ARG italic_H end_ARG end_ARG start_ARG 3 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) , (54)

and the linear effective gravitational constant in nDGP is given by

Geff,LGN=1+13β(a).subscript𝐺effLsubscript𝐺N113𝛽𝑎\frac{G_{\rm eff,\ L}}{G_{\rm N}}=1+\frac{1}{3\beta(a)}.divide start_ARG italic_G start_POSTSUBSCRIPT roman_eff , roman_L end_POSTSUBSCRIPT end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG = 1 + divide start_ARG 1 end_ARG start_ARG 3 italic_β ( italic_a ) end_ARG . (55)

We remind the reader that a cosmological background that matches that of ΛΛ\Lambdaroman_ΛCDM is assumed.

B.2 Cubic Galileon

To parametrise the Cubic Galileon we adopt Equation 22, with the nonlinear parametrisation

ΔGCG, NLGN=(kk)3{[1+(kk)3]121}.Δsubscript𝐺CG, NLsubscript𝐺Nsuperscriptsubscript𝑘𝑘3superscriptdelimited-[]1superscript𝑘subscript𝑘3121\frac{\Delta G_{\text{CG, NL}}}{G_{\rm N}}=\left(\frac{k_{*}}{k}\right)^{3}% \left\{\left[1+\left(\frac{k}{k_{*}}\right)^{3}\right]^{\frac{1}{2}}-1\right\}\,.divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT CG, NL end_POSTSUBSCRIPT end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG = ( divide start_ARG italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG start_ARG italic_k end_ARG ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT { [ 1 + ( divide start_ARG italic_k end_ARG start_ARG italic_k start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ] start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT - 1 } . (56)

To obtain the linear regime parametrisation we use the effective gravitational potential in Cubic Galileon theory in the linear regime, which reads as (Barreira et al., 2013a)

ΔGCG, LGN=23c3ϕ˙2Mpl3β2,Δsubscript𝐺CG, Lsubscript𝐺N23subscript𝑐3superscript˙italic-ϕ2subscript𝑀plsuperscript3subscript𝛽2\frac{\Delta G_{\text{CG, L}}}{G_{\rm N}}=-\frac{2}{3}\frac{c_{3}\dot{\phi}^{2% }}{M_{\mathrm{pl}}\mathcal{M}^{3}\beta_{2}}\,,divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT CG, L end_POSTSUBSCRIPT end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG = - divide start_ARG 2 end_ARG start_ARG 3 end_ARG divide start_ARG italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT over˙ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT caligraphic_M start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG , (57)

where ϕitalic-ϕ\phiitalic_ϕ is the Galileon scalar field. β2subscript𝛽2\beta_{2}italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and 3superscript3\mathcal{M}^{3}caligraphic_M start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT read,

β2subscript𝛽2\displaystyle\beta_{2}italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT 23Mplϕ˙2β1,absent2superscript3subscript𝑀plsuperscript˙italic-ϕ2subscript𝛽1\displaystyle\equiv 2\frac{\mathcal{M}^{3}M_{\mathrm{pl}}}{\dot{\phi}^{2}}% \beta_{1},≡ 2 divide start_ARG caligraphic_M start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT end_ARG start_ARG over˙ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , (58)
3superscript3\displaystyle\mathcal{M}^{3}caligraphic_M start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT MplH02,absentsubscript𝑀plsuperscriptsubscript𝐻02\displaystyle\equiv M_{\mathrm{pl}}H_{0}^{2}\,,≡ italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (59)

where

β116c3[c24c33(ϕ¨+2Hϕ˙)+2c32Mpl26ϕ˙4].subscript𝛽116subscript𝑐3delimited-[]subscript𝑐24subscript𝑐3superscript3¨italic-ϕ2𝐻˙italic-ϕ2superscriptsubscript𝑐32superscriptsubscript𝑀pl2superscript6superscript˙italic-ϕ4\beta_{1}\equiv\frac{1}{6c_{3}}\left[-c_{2}-\frac{4c_{3}}{\mathcal{M}^{3}}(% \ddot{\phi}+2H\dot{\phi})+2\frac{c_{3}^{2}}{M_{\mathrm{pl}}^{2}\mathcal{M}^{6}% }\dot{\phi}^{4}\right]\,.italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≡ divide start_ARG 1 end_ARG start_ARG 6 italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_ARG [ - italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - divide start_ARG 4 italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_ARG start_ARG caligraphic_M start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ( over¨ start_ARG italic_ϕ end_ARG + 2 italic_H over˙ start_ARG italic_ϕ end_ARG ) + 2 divide start_ARG italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT caligraphic_M start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT end_ARG over˙ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ] . (60)

We consider c2=1subscript𝑐21c_{2}=-1italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = - 1 and we use the tracker solution (Bellini et al., 2018),

ξϕ˙HMplH02,𝜉˙italic-ϕ𝐻subscript𝑀plsuperscriptsubscript𝐻02\xi\equiv\frac{\dot{\phi}H}{M_{\mathrm{pl}}H_{0}^{2}}\,,italic_ξ ≡ divide start_ARG over˙ start_ARG italic_ϕ end_ARG italic_H end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , (61)

where ξ𝜉\xiitalic_ξ is a constant and can be written in terms of c2,c3subscript𝑐2subscript𝑐3c_{2},c_{3}italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT,

ξ=c26c3=16c3.𝜉subscript𝑐26subscript𝑐316subscript𝑐3\xi=-\frac{c_{2}}{6c_{3}}=\frac{1}{6c_{3}}\,.italic_ξ = - divide start_ARG italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG 6 italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_ARG = divide start_ARG 1 end_ARG start_ARG 6 italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT end_ARG . (62)

As a result, we have the following solutions for ϕ˙˙italic-ϕ\dot{\phi}over˙ start_ARG italic_ϕ end_ARG and ϕ¨¨italic-ϕ\ddot{\phi}over¨ start_ARG italic_ϕ end_ARG

ϕ˙=ξMplH02H,ϕ¨=ξMplH02H˙H2.formulae-sequence˙italic-ϕ𝜉subscript𝑀plsuperscriptsubscript𝐻02𝐻¨italic-ϕ𝜉subscript𝑀plsuperscriptsubscript𝐻02˙𝐻superscript𝐻2\dot{\phi}=\frac{\xi M_{\mathrm{pl}}H_{0}^{2}}{H},\;\ddot{\phi}=-\frac{\xi M_{% \mathrm{pl}}H_{0}^{2}\dot{H}}{H^{2}}\,.over˙ start_ARG italic_ϕ end_ARG = divide start_ARG italic_ξ italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H end_ARG , over¨ start_ARG italic_ϕ end_ARG = - divide start_ARG italic_ξ italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over˙ start_ARG italic_H end_ARG end_ARG start_ARG italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (63)

Following the discussion presented in Ref. Barreira et al. (2013b) for the background tracker solution, we can derive the Hubble expansion rate as a function of scale factor

H2H02superscript𝐻2superscriptsubscript𝐻02\displaystyle\frac{H^{2}}{H_{0}^{2}}divide start_ARG italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG =12[(Ωm,0a3+Ωr,0a4)\displaystyle=\frac{1}{2}\Big{[}\left(\Omega_{\rm m,0}a^{-3}+\Omega_{\rm r,0}a% ^{-4}\right)= divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ ( roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT + roman_Ω start_POSTSUBSCRIPT roman_r , 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT ) (64)
+(Ωm,0a3+Ωr,0a4)2+4(1Ωm,0Ωr,0)],\displaystyle+\sqrt{\left(\Omega_{\rm m,0}a^{-3}+\Omega_{\rm r,0}a^{-4}\right)% ^{2}+4\left(1-\Omega_{\rm m,0}-\Omega_{\rm r,0}\right)}\Big{]}\,,+ square-root start_ARG ( roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT + roman_Ω start_POSTSUBSCRIPT roman_r , 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 4 ( 1 - roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_r , 0 end_POSTSUBSCRIPT ) end_ARG ] ,

where H02=8πG3superscriptsubscript𝐻028𝜋𝐺3H_{0}^{2}=\frac{8\pi G}{3}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG 8 italic_π italic_G end_ARG start_ARG 3 end_ARG in MG-evolution units and Ωr,0subscriptΩr0\Omega_{\rm r,0}roman_Ω start_POSTSUBSCRIPT roman_r , 0 end_POSTSUBSCRIPT is the radiation energy density fraction today. Computing the cosmic time derivative results in,

H˙+H2H02=˙𝐻superscript𝐻2superscriptsubscript𝐻02absent\displaystyle\frac{\dot{H}+H^{2}}{H_{0}^{2}}=divide start_ARG over˙ start_ARG italic_H end_ARG + italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = (aΩm,0+2Ωr,0)4a2𝑎subscriptΩm02subscriptΩr04superscript𝑎2\displaystyle-\frac{(a\Omega_{\rm m,0}+2\Omega_{\rm r,0})}{4a^{2}}- divide start_ARG ( italic_a roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT + 2 roman_Ω start_POSTSUBSCRIPT roman_r , 0 end_POSTSUBSCRIPT ) end_ARG start_ARG 4 italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
(aΩm,0+Ωr,0)(3aΩm,0+4Ωr,0)4a64(1Ωm,0Ωr,0)+(aΩm,0+Ωr,0)2a8𝑎subscriptΩm0subscriptΩr03𝑎subscriptΩm04subscriptΩr04superscript𝑎641subscriptΩm0subscriptΩr0superscript𝑎subscriptΩm0subscriptΩr02superscript𝑎8\displaystyle-\frac{(a\Omega_{\rm m,0}+\Omega_{\rm r,0})(3a\Omega_{\rm m,0}+4% \Omega_{\rm r,0})}{4a^{6}\sqrt{4(1-\Omega_{\rm m,0}-\Omega_{\rm r,0})+\frac{(a% \Omega_{\rm m,0}+\Omega_{\rm r,0})^{2}}{a^{8}}}}- divide start_ARG ( italic_a roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT + roman_Ω start_POSTSUBSCRIPT roman_r , 0 end_POSTSUBSCRIPT ) ( 3 italic_a roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT + 4 roman_Ω start_POSTSUBSCRIPT roman_r , 0 end_POSTSUBSCRIPT ) end_ARG start_ARG 4 italic_a start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT square-root start_ARG 4 ( 1 - roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_r , 0 end_POSTSUBSCRIPT ) + divide start_ARG ( italic_a roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT + roman_Ω start_POSTSUBSCRIPT roman_r , 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT end_ARG end_ARG end_ARG
+a224(1Ωm,0Ωr,0)+(aΩm,0+Ωr,0)2a8.superscript𝑎2241subscriptΩm0subscriptΩr0superscript𝑎subscriptΩm0subscriptΩr02superscript𝑎8\displaystyle+\frac{a^{2}}{2}\sqrt{4(1-\Omega_{\rm m,0}-\Omega_{\rm r,0})+% \frac{(a\Omega_{\rm m,0}+\Omega_{\rm r,0})^{2}}{a^{8}}}\,.+ divide start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG square-root start_ARG 4 ( 1 - roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT - roman_Ω start_POSTSUBSCRIPT roman_r , 0 end_POSTSUBSCRIPT ) + divide start_ARG ( italic_a roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT + roman_Ω start_POSTSUBSCRIPT roman_r , 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 8 end_POSTSUPERSCRIPT end_ARG end_ARG .

B.3 K-mouflage

Here we derive the effective gravitational constant appearing in the nonlinear Poisson equation for the K-mouflage model described in subsection 2.3. We follow Ref. Lombriser (2016). We also note that a conformal factor, A(φ)𝐴𝜑A(\varphi)italic_A ( italic_φ ), still needs to be applied to transform the density appearing in the nonlinear Poisson equation which is not included in the GKM,effsubscript𝐺KMeffG_{\rm KM,eff}italic_G start_POSTSUBSCRIPT roman_KM , roman_eff end_POSTSUBSCRIPT expressions below.

The effective modification assuming a spherically symmetric matter distribution is given as (Winther & Ferreira, 2015a; Brax & Valageas, 2014b)

ΔGKM,effGN=2βK2KXH02λ2Mpl2.Δsubscript𝐺KMeffsubscript𝐺N2superscriptsubscript𝛽K2subscript𝐾𝑋superscriptsubscript𝐻02superscript𝜆2superscriptsubscript𝑀pl2\frac{\Delta G_{\rm KM,eff}}{G_{\rm N}}=\frac{2\,\beta_{\rm K}^{2}}{K_{X}H_{0}% ^{2}\lambda^{2}M_{\rm pl}^{2}}\,.divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT roman_KM , roman_eff end_POSTSUBSCRIPT end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG = divide start_ARG 2 italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (65)

Using the Klein-Gordon equation for a spherically symmetric matter distribution we can write KXsubscript𝐾𝑋K_{X}italic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT as

KX2X=2βK2H04λ4Mpl2FN2,superscriptsubscript𝐾𝑋2𝑋2superscriptsubscript𝛽K2superscriptsubscript𝐻04superscript𝜆4superscriptsubscript𝑀pl2superscriptsubscript𝐹N2K_{X}^{2}X=-\frac{2\,\beta_{\rm K}^{2}}{H_{0}^{4}\lambda^{4}M_{\rm pl}^{2}}F_{% \rm N}^{2}\,,italic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_X = - divide start_ARG 2 italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_F start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (66)

where the Newtonian force is just FN=GNM(<r)/r2F_{\rm N}=G_{\rm N}M(<r)/r^{2}italic_F start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT = italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT italic_M ( < italic_r ) / italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, r𝑟ritalic_r being the physical radial coordinate and M(<r)annotated𝑀absent𝑟M(<r)italic_M ( < italic_r ) being the mass enclosed in radius r𝑟ritalic_r. Substituting for KXsubscript𝐾𝑋K_{X}italic_K start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT in Equation 65 gives

ΔGKM,effGN=βKMpl1FN2X.Δsubscript𝐺KMeffsubscript𝐺Nsubscript𝛽Ksubscript𝑀pl1subscript𝐹N2𝑋\frac{\Delta G_{\rm KM,eff}}{G_{\rm N}}=\frac{\beta_{\rm K}}{M_{\rm pl}}\frac{% 1}{F_{\rm N}}\sqrt{-2X}\,.divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT roman_KM , roman_eff end_POSTSUBSCRIPT end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG = divide start_ARG italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT end_ARG start_ARG italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT end_ARG divide start_ARG 1 end_ARG start_ARG italic_F start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG square-root start_ARG - 2 italic_X end_ARG . (67)

Now to solve for X𝑋Xitalic_X we can adopt the model in Equation 14. By using Equation 48 to solve Equation 66 we get

X=H02λ2Mpl26K0[1f(x)]2f(x),𝑋superscriptsubscript𝐻02superscript𝜆2superscriptsubscript𝑀pl26subscript𝐾0superscriptdelimited-[]1𝑓𝑥2𝑓𝑥X=\frac{H_{0}^{2}\lambda^{2}M_{\rm pl}^{2}}{6K_{0}}\frac{\left[1-f(x)\right]^{% 2}}{f(x)}\,,italic_X = divide start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_M start_POSTSUBSCRIPT roman_pl end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 6 italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG divide start_ARG [ 1 - italic_f ( italic_x ) ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_f ( italic_x ) end_ARG , (68)

where

f(x)=(1+x+x(x+2))13,𝑓𝑥superscript1𝑥𝑥𝑥213f(x)=\left(1+x+\sqrt{x(x+2)}\right)^{\frac{1}{3}}\,,italic_f ( italic_x ) = ( 1 + italic_x + square-root start_ARG italic_x ( italic_x + 2 ) end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT , (69)

and we have defined xCA/r4𝑥subscript𝐶𝐴superscript𝑟4x\equiv-C_{A}/r^{4}italic_x ≡ - italic_C start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT / italic_r start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT, CAsubscript𝐶𝐴C_{A}italic_C start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT being a parameter proportional to K0subscript𝐾0K_{0}italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, defined as

CA54βK2GN2M2H02λ2K0.subscript𝐶𝐴54superscriptsubscript𝛽K2superscriptsubscript𝐺N2superscript𝑀2superscriptsubscript𝐻02superscript𝜆2subscript𝐾0C_{A}\equiv\frac{54\beta_{\rm K}^{2}G_{\rm N}^{2}M^{2}}{H_{0}^{2}\lambda^{2}}K% _{0}\,.italic_C start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ≡ divide start_ARG 54 italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT . (70)

We have written M=M(<r)𝑀annotated𝑀absent𝑟M=M(<r)italic_M = italic_M ( < italic_r ) for compactness. It should be pointed out that x(2,0)𝑥20x\in(-2,0)italic_x ∈ ( - 2 , 0 ) yields no solution for X𝑋Xitalic_X which can be a problem for for very large r𝑟ritalic_r and K0>0subscript𝐾00K_{0}>0italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > 0. This will not generally be an issue as we look for solutions in the nonlinear regime.

Substituting Equation 68 into Equation 67 gives

ΔGKM,effGN=CB1f(x)xf(x),Δsubscript𝐺KMeffsubscript𝐺Nsubscript𝐶𝐵1𝑓𝑥𝑥𝑓𝑥\frac{\Delta G_{\rm KM,eff}}{G_{\rm N}}=C_{B}\frac{1-f(x)}{\sqrt{xf(x)}}\,,divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT roman_KM , roman_eff end_POSTSUBSCRIPT end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG = italic_C start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT divide start_ARG 1 - italic_f ( italic_x ) end_ARG start_ARG square-root start_ARG italic_x italic_f ( italic_x ) end_ARG end_ARG , (71)

where

CB32βK2.subscript𝐶𝐵32superscriptsubscript𝛽K2C_{B}\equiv 3\sqrt{2}\beta_{\rm K}^{2}\,.italic_C start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ≡ 3 square-root start_ARG 2 end_ARG italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (72)

We note that in Ref. Lombriser (2016) there seems to be a missing factor of 1/(22)1221/(2\sqrt{2})1 / ( 2 square-root start_ARG 2 end_ARG ) in Equation. 3.26 in order to have the identification CA=C22subscript𝐶𝐴superscriptsubscript𝐶22C_{A}=C_{2}^{2}italic_C start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT = italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. We allow here the case when x0𝑥0x\leq 0italic_x ≤ 0 which can occur for K0>0subscript𝐾00K_{0}>0italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > 0. Further, we note C1=CBsubscript𝐶1subscript𝐶𝐵C_{1}=-C_{B}italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = - italic_C start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT, C1subscript𝐶1C_{1}italic_C start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and C2subscript𝐶2C_{2}italic_C start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT being the equivalent quantities for CAsubscript𝐶𝐴C_{A}italic_C start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and CBsubscript𝐶𝐵C_{B}italic_C start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT in Ref. Lombriser (2016). We include a Mathematica notebook with our derivations.

We now derive the PPF expression from the limits of Equation 71:

ΔGKM,effGN2βK2Δsubscript𝐺KMeffsubscript𝐺N2superscriptsubscript𝛽K2\displaystyle\frac{\Delta G_{\rm KM,eff}}{G_{\rm N}}\rightarrow 2\beta_{\rm K}% ^{2}\,\qquad\quad\qquaddivide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT roman_KM , roman_eff end_POSTSUBSCRIPT end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG → 2 italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for|x|1(i.e.r4|CA|),\displaystyle{\rm for}\qquad|x|\ll 1\,\,({\rm i.e.}\,r^{4}\gg|C_{A}|)\,,roman_for | italic_x | ≪ 1 ( roman_i . roman_e . italic_r start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ≫ | italic_C start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT | ) , (73)
ΔGKM,effGNCBr4/3(CA)1/3Δsubscript𝐺KMeffsubscript𝐺Nsubscript𝐶𝐵superscript𝑟43superscriptsubscript𝐶𝐴13\displaystyle\frac{\Delta G_{\rm KM,eff}}{G_{\rm N}}\rightarrow\frac{C_{B}r^{4% /3}}{(-C_{A})^{1/3}}\,\qquaddivide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT roman_KM , roman_eff end_POSTSUBSCRIPT end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG → divide start_ARG italic_C start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT italic_r start_POSTSUPERSCRIPT 4 / 3 end_POSTSUPERSCRIPT end_ARG start_ARG ( - italic_C start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG for|x|1(i.e.r4|CA|),\displaystyle{\rm for}\qquad|x|\gg 1\,\,({\rm i.e.}\,r^{4}\ll|C_{A}|)\,,roman_for | italic_x | ≫ 1 ( roman_i . roman_e . italic_r start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ≪ | italic_C start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT | ) , (74)

which are the same limits obtained by Ref. Lombriser (2016).

We now map these onto the (real space) PPF expression, Equation. 5.3 of Ref. Lombriser (2016)

ΔGeffGN=p1p2(1+saf)1p11saf,Δsubscript𝐺effsubscript𝐺Nsubscript𝑝1subscript𝑝2superscript1superscript𝑠subscript𝑎𝑓1subscript𝑝11superscript𝑠subscript𝑎𝑓\frac{\Delta G_{\rm eff}}{G_{\rm N}}=p_{1}p_{2}\frac{(1+s^{a_{f}})^{\frac{1}{p% _{1}}}-1}{s^{a_{f}}}\,,divide start_ARG roman_Δ italic_G start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT end_ARG start_ARG italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT end_ARG = italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT divide start_ARG ( 1 + italic_s start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG end_POSTSUPERSCRIPT - 1 end_ARG start_ARG italic_s start_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT end_POSTSUPERSCRIPT end_ARG , (75)

where

af=p1p11p3,subscript𝑎𝑓subscript𝑝1subscript𝑝11subscript𝑝3a_{f}=\frac{p_{1}}{p_{1}-1}p_{3}\,,italic_a start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT = divide start_ARG italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_ARG italic_p start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT , (76)

and s=yscr/yh𝑠subscript𝑦scrsubscript𝑦hs=y_{\rm scr}/y_{\rm h}italic_s = italic_y start_POSTSUBSCRIPT roman_scr end_POSTSUBSCRIPT / italic_y start_POSTSUBSCRIPT roman_h end_POSTSUBSCRIPT. y𝑦yitalic_y is the normalised top-hat radius

yRTH/aRi/ai.𝑦subscript𝑅TH𝑎subscript𝑅𝑖subscript𝑎𝑖y\equiv\frac{R_{\rm TH}/a}{R_{i}/a_{i}}\,.italic_y ≡ divide start_ARG italic_R start_POSTSUBSCRIPT roman_TH end_POSTSUBSCRIPT / italic_a end_ARG start_ARG italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG . (77)

RTHsubscript𝑅THR_{\rm TH}italic_R start_POSTSUBSCRIPT roman_TH end_POSTSUBSCRIPT and Risubscript𝑅𝑖R_{i}italic_R start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT are the comoving halo top-hat radius and aisubscript𝑎𝑖a_{i}italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT the initial scale factor. The dimensionless screening scale is given by

yscr=p4ap5(2GNH0Mvir)p6(yenvyh)p7.subscript𝑦scrsubscript𝑝4superscript𝑎subscript𝑝5superscript2subscript𝐺Nsubscript𝐻0subscript𝑀virsubscript𝑝6superscriptsubscript𝑦envsubscript𝑦hsubscript𝑝7y_{\rm scr}=p_{4}a^{p_{5}}\left(2G_{\rm N}\,H_{0}M_{\rm vir}\right)^{p_{6}}% \left(\frac{y_{\rm env}}{y_{\rm h}}\right)^{p_{7}}\,.italic_y start_POSTSUBSCRIPT roman_scr end_POSTSUBSCRIPT = italic_p start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT italic_p start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( 2 italic_G start_POSTSUBSCRIPT roman_N end_POSTSUBSCRIPT italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT roman_vir end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_p start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( divide start_ARG italic_y start_POSTSUBSCRIPT roman_env end_POSTSUBSCRIPT end_ARG start_ARG italic_y start_POSTSUBSCRIPT roman_h end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT italic_p start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT . (78)

yenvsubscript𝑦envy_{\rm env}italic_y start_POSTSUBSCRIPT roman_env end_POSTSUBSCRIPT refers to the normalised radius of the environment and Mvirsubscript𝑀virM_{\rm vir}italic_M start_POSTSUBSCRIPT roman_vir end_POSTSUBSCRIPT is the virial mass of the halo.

Comparing Equation 75 and Equation 78 with Equation 73 and Equation 74 we find, for a choice of p1subscript𝑝1p_{1}italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT,

p2subscript𝑝2\displaystyle p_{2}italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT =2βK2p1,p3=43p11p1,formulae-sequenceabsent2superscriptsubscript𝛽K2subscript𝑝1subscript𝑝343subscript𝑝11subscript𝑝1\displaystyle=\frac{2\beta_{\rm K}^{2}}{p_{1}},\qquad p_{3}=\frac{4}{3}\frac{p% _{1}-1}{p_{1}},= divide start_ARG 2 italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG , italic_p start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = divide start_ARG 4 end_ARG start_ARG 3 end_ARG divide start_ARG italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_ARG start_ARG italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ,
p4subscript𝑝4\displaystyle p_{4}italic_p start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT =[2K0p13βK2λ2]14Ωm,013,absentsuperscriptdelimited-[]2subscript𝐾0superscriptsubscript𝑝13superscriptsubscript𝛽K2superscript𝜆214superscriptsubscriptΩm013\displaystyle=\left[\frac{-\sqrt{2}K_{0}p_{1}^{3}\beta_{\rm K}^{2}}{\lambda^{2% }}\right]^{\frac{1}{4}}\Omega_{\rm m,0}^{\frac{1}{3}},= [ divide start_ARG - square-root start_ARG 2 end_ARG italic_K start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_β start_POSTSUBSCRIPT roman_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_λ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 4 end_ARG end_POSTSUPERSCRIPT roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 3 end_ARG end_POSTSUPERSCRIPT ,
p5subscript𝑝5\displaystyle p_{5}italic_p start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT =1,p6=1/6,p7=0.formulae-sequenceabsent1formulae-sequencesubscript𝑝616subscript𝑝70\displaystyle=-1,\qquad p_{6}=1/6,\qquad p_{7}=0\,.= - 1 , italic_p start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT = 1 / 6 , italic_p start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT = 0 . (79)

We note that whether there’s a p1subscript𝑝1p_{1}italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT in p3subscript𝑝3p_{3}italic_p start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT depends on whether p1subscript𝑝1p_{1}italic_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is positive or negative (see Equation. 2.14 of Ref. Lombriser (2016)). We have also used Mvir4πΩm,0ρcritRth3/3subscript𝑀vir4𝜋subscriptΩm0subscript𝜌critsuperscriptsubscript𝑅th33M_{\rm vir}\approx 4\pi\Omega_{\rm m,0}\rho_{\rm crit}R_{\rm th}^{3}/3italic_M start_POSTSUBSCRIPT roman_vir end_POSTSUBSCRIPT ≈ 4 italic_π roman_Ω start_POSTSUBSCRIPT roman_m , 0 end_POSTSUBSCRIPT italic_ρ start_POSTSUBSCRIPT roman_crit end_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT roman_th end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT / 3.