Large Blue Spectral Index From a Conformal Limit of a Rotating Complex Scalar

Daniel J. H. Chung danielchung@wisc.edu Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA    Sai Chaitanya Tadepalli stadepalli@wisc.edu Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
Abstract

One well known method of generating a large blue spectral index for axionic isocurvature perturbations is through a flat direction not having a quartic potential term for the radial partner of the axion field. In this work, we show how one can obtain a large blue spectral index even with a quartic potential term associated with the Peccei-Quinn symmetry breaking radial partner. We use the fact that a large radial direction with a quartic term can naturally induce a conformal limit which generates an isocurvature spectral index of 3. We point out that this conformal representation is intrinsically different from both the ordinary equilibrium axion scenario or massless fields in Minkowski spacetime. Another way to view this limit is as a scenario where the angular momentum of the initial conditions slows down the radial field or as a superfluid limit. Quantization of the non-static system in which derivative of the radial field and the derivative of the angular field do not commute is treated with great care to compute the vacuum state. The parametric region consistent with axion dark matter and isocurvature cosmology is discussed.

I Introduction

Having a large blue tilt in the axionic isocurvature spectrum allows cold dark matter (CDM) density perturbations to be enhanced on short length scales without being in conflict with the precision cosmology that exists for scales k/a01less-than-or-similar-to𝑘subscript𝑎01k/a_{0}\lesssim 1italic_k / italic_a start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≲ 1 Mpc-1 (Chluba:2013dna, ; Takeuchi2014, ; Dent:2012ne, ; Chung:2015pga, ; Chung:2015tha, ; Chluba:2016bvg, ; Chung:2017uzc, ; Planck:2018jri, ; Chabanier:2019eai, ; Lee:2021bmn, ; Kurmus:2022guy, ). The generation of isocurvature perturbations by spectator axions, its model-specific characteristics, and the related observational limitations have been extensively investigated in the past (see for example (Kasuya1997, ; Kawasaki1995, ; Nakayama2015, ; Harigaya2015, ; Kadota2014, ; Kitajima2014, ; Kawasaki2014, ; Higaki2014, ; Jeong2013, ; Kobayashi2013, ; Hamann2009, ; Hertzberg2008, ; Beltran2006, ; Fox2004, ; Estevez2016, ; Kearney2016, ; Nomura2015, ; Kadota2015, ; Hikage:2012be, ; Langlois2003, ; Mollerach1990, ; Axenides1983, ; Jo2020, ; Iso2021, ; Bae2018, ; Visinelli2017, ; Takeuchi:2013hza, ; Bucher:2000hy, ; Lu:2021gso, ; Sakharov:2021dim, ; Rosa:2021gbe, ; Jukko:2021hql, ; Chen:2021wcf, ; Jeong:2022kdr, ; Cicoli:2022fzy, ; Koutsangelas:2022lte, ; Kawasaki:2023zpd, )). Although there are models of axion which naturally generate large blue tilted spectra when there are no quartic potential terms in the radial field (Kasuya:2009up, ; Dreiner:2014eda, ), there is no previous discussion in the literature regarding generating a large k𝑘kitalic_k range of very blue spectrum followed by a plateau from a well-motivated axion models that contain a quartic term in the radial potential (Kim:2008hd, ; DiLuzio:2020wdo, ).111For models that generate a moderately large blue tilt, although not as large as the ones considered in this paper, see (Ebadi:2023xhq, ). From a model building perspective, one can therefore ask whether the overdamped spectrum of (Kasuya:2009up, ) (i.e. a smooth spectrum composed of an exponentially large k𝑘kitalic_k-range with a very blue spectral index and followed by a zero spectral index plateau without any large bumplike features) can be a signature of flat direction models that are distinct from the quartic radial potential models. If the answer is affirmative, then not only is the time-dependent mass a property that one can infer (Chung:2015tha, ) from measuring the spectral shape similar to that of (Kasuya:2009up, ), also the existence of flat direction would be inferrable from such a measurement.

Motivated by this question and also from the desire to find novel well-motivated beyond the Standard Model scenarios that generate a strongly blue tilted axionic isocurvature spectra, we consider a generic complex scalar sector with the radial direction field ΓΓ\Gammaroman_Γ, the angular field θ𝜃\thetaitalic_θ, and a quartic coupling λ𝜆\lambdaitalic_λ. The quartic term usually controls the axion decay constant

Γvac=2M2λsubscriptΓvac2superscript𝑀2𝜆\Gamma_{{\rm vac}}=\sqrt{\frac{2M^{2}}{\lambda}}roman_Γ start_POSTSUBSCRIPT roman_vac end_POSTSUBSCRIPT = square-root start_ARG divide start_ARG 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_λ end_ARG end_ARG (1)

(what people often denote as fPQsubscript𝑓PQf_{\mathrm{PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT) where the mass parameter M𝑀Mitalic_M controls the tachyonic mass term responsible for spontaneous breaking of Peccei-Quinn (PQ) symmetry. For the blue isocurvature models, we require a large rolling period of the radial field ΓΓ\Gammaroman_Γ because it is the time-dependence of the background fields that map to the nontrivial positive power (i.e. blue tilt) of k𝑘kitalic_k in the dimensionless power spectrum. When ΓΓvacmuch-greater-thanΓsubscriptΓvac\Gamma\gg\Gamma_{\mathrm{vac}}roman_Γ ≫ roman_Γ start_POSTSUBSCRIPT roman_vac end_POSTSUBSCRIPT and the initial kinetic energy is negligible, we might naively expect ΓΓ\Gammaroman_Γ to roll to ΓvacsubscriptΓvac\Gamma_{\mathrm{vac}}roman_Γ start_POSTSUBSCRIPT roman_vac end_POSTSUBSCRIPT on a time scale of (V′′(Γ))1/2superscriptsuperscript𝑉′′Γ12\left(V^{\prime\prime}(\Gamma)\right)^{-1/2}( italic_V start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( roman_Γ ) ) start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT. Such a fast roll for V′′(Γ)H2much-greater-thansuperscript𝑉′′Γsuperscript𝐻2V^{\prime\prime}(\Gamma)\gg H^{2}italic_V start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( roman_Γ ) ≫ italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (making a large blue tilt) would generate the range of k𝑘kitalic_k over which the blue spectra is produced to be

kbreakklongestklongestHV′′(Γ)1similar-tosubscript𝑘breaksubscript𝑘longestsubscript𝑘longest𝐻superscript𝑉′′Γmuch-less-than1\frac{k_{\mathrm{break}}-k_{\mathrm{longest}}}{k_{\mathrm{longest}}}\sim\frac{% H}{\sqrt{V^{\prime\prime}(\Gamma)}}\ll 1divide start_ARG italic_k start_POSTSUBSCRIPT roman_break end_POSTSUBSCRIPT - italic_k start_POSTSUBSCRIPT roman_longest end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT roman_longest end_POSTSUBSCRIPT end_ARG ∼ divide start_ARG italic_H end_ARG start_ARG square-root start_ARG italic_V start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( roman_Γ ) end_ARG end_ARG ≪ 1 (2)

where klongestsubscript𝑘longestk_{\mathrm{longest}}italic_k start_POSTSUBSCRIPT roman_longest end_POSTSUBSCRIPT is the length scale that leaves the horizon when ΓΓ\Gammaroman_Γ begins to roll and kbreaksubscript𝑘breakk_{\mathrm{break}}italic_k start_POSTSUBSCRIPT roman_break end_POSTSUBSCRIPT is the scale that leaves the horizon when ΓΓ\Gammaroman_Γ reaches the minimum such that modes having k>kbreak𝑘subscript𝑘breakk>k_{\mathrm{break}}italic_k > italic_k start_POSTSUBSCRIPT roman_break end_POSTSUBSCRIPT will approximately be a flat spectrum.

However, if there is an axion background field motion in the conserved U(1)PQ𝑈subscript1PQU(1)_{\mathrm{PQ}}italic_U ( 1 ) start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT angular direction, we know that the time scale to reach ΓvacsubscriptΓvac\Gamma_{\mathrm{vac}}roman_Γ start_POSTSUBSCRIPT roman_vac end_POSTSUBSCRIPT can be infinite in the limit that all U(1)PQ𝑈subscript1PQU(1)_{\mathrm{PQ}}italic_U ( 1 ) start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT symmetry breaking terms are turned off and a˙0˙𝑎0\dot{a}\rightarrow 0over˙ start_ARG italic_a end_ARG → 0. Hence, in scenarios where the angular motion in the conserved angular momentum direction is large, we might expect to be able to have a similar radial rolling as the flat direction model of (Kasuya:2009up, ). Unlike in the scenarios of (Co:2019wyp, ; Co:2021lkc, ), we will use the initial conditions where the phenomenology generating rotations are occurring during inflation. In such angular momentum dependent scenarios, one naively expects the main limitations to obtaining a large kbreak/klongestsubscript𝑘breaksubscript𝑘longestk_{\mathrm{break}}/k_{\mathrm{longest}}italic_k start_POSTSUBSCRIPT roman_break end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT roman_longest end_POSTSUBSCRIPT to be the dilution of the angular momentum due to the Hubble expansion. After substituting the kinetic derived θ˙2superscript˙𝜃2\dot{\theta}^{2}over˙ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for the “angular momentum” L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, there is the well known effective potential term

VE(Γ,a)=λ4Γ4+12L2a6Γ2subscript𝑉𝐸Γ𝑎𝜆4superscriptΓ412superscript𝐿2superscript𝑎6superscriptΓ2V_{E}(\Gamma,a)=\frac{\lambda}{4}\Gamma^{4}+\frac{1}{2}\frac{L^{2}}{a^{6}% \Gamma^{2}}italic_V start_POSTSUBSCRIPT italic_E end_POSTSUBSCRIPT ( roman_Γ , italic_a ) = divide start_ARG italic_λ end_ARG start_ARG 4 end_ARG roman_Γ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT roman_Γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG (3)

which naively indicates that the effect of L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT will decay as a6superscript𝑎6a^{-6}italic_a start_POSTSUPERSCRIPT - 6 end_POSTSUPERSCRIPT, becoming irrelevant too fast to be of interest. However, the situation is a bit more interesting.

Because ΓΓ\Gammaroman_Γ is decreasing when Γ>ΓminΓsubscriptΓmin\Gamma>\Gamma_{\mathrm{min}}roman_Γ > roman_Γ start_POSTSUBSCRIPT roman_min end_POSTSUBSCRIPT, the denominator a6Γ2superscript𝑎6superscriptΓ2a^{6}\Gamma^{2}italic_a start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT roman_Γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT initially decreases only like a4superscript𝑎4a^{-4}italic_a start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT: i.e. more mildly, giving intuitively a better chance for a blue spectrum to be generated for a larger number of efolds. Furthermore, this means that Γ4superscriptΓ4\Gamma^{4}roman_Γ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT is also decreasing as a4superscript𝑎4a^{-4}italic_a start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT, making the relative contribution of the angular momentum not diminish with the increasing scale factor. Indeed, this causes the potential to scale as the inverse mass dimension of the potential, hinting that this is a conformal limit. As will be explained in this paper, this is a time-independent conformal limit of a special type (different from a massless scalar field in Minkowski space or a massless equilibrium axion in dS space), and this will be utilized to generate a blue isocurvature spectrum for the axion field which is approximately δχ𝛿𝜒\delta\chiitalic_δ italic_χ: i.e. Δs2k2proportional-tosuperscriptsubscriptΔ𝑠2superscript𝑘2\Delta_{s}^{2}\propto k^{2}roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT corresponding to a spectral index of nI=3subscript𝑛𝐼3n_{I}=3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT = 3.

In addition to constructing a novel model of generating a blue spectrum, we also systematically quantize the fields in this background-out-of-equilibrium situation which can be characterized by the novel nonvanishing of the commutator [ηδχ,ηδΓ]subscript𝜂𝛿𝜒subscript𝜂𝛿Γ\left[\partial_{\eta}\delta\chi,\partial_{\eta}\delta\Gamma\right][ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_χ , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ roman_Γ ] representing velocity correlation even in the absence of non-derivative correlations. Although the work of (Creminelli:2023kze, ; Hui:2023pxc, ) quantizes a similar theory222We do not use any methods of their quantization because their work appeared after we had finished that part of our paper. and agrees with our results, we present some distinct and unique details here regarding the axion spectrum (particularly regarding conformal symmetry representation) and apply it to isocurvature and dark matter phenomenology. One revelation is that the radial perturbations about the conformal background solution mix with the angular perturbations for any eigenstate of the Hamiltonian even at the quadratic fluctuation level, and the different energy eigenvectors (each eigenvector representing the mixing) are not orthogonal. Indeed, it will be shown that a massive δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ that kinetically mixes with δχ𝛿𝜒\delta\chiitalic_δ italic_χ has nearly identical conformal representation as δχ𝛿𝜒\delta\chiitalic_δ italic_χ. A more important revelation is that, despite the complicated quantum mode mixing arising from the time-dependent background, explicit quantization allows one to construct a time-independent Hamiltonian whose ground state well-represents the vacuum. Because of this and angular field translational symmetry, Goldstone theorem still applies during the conformal period, and the dispersion relationship is approximately linear in k𝑘kitalic_k as k0𝑘0k\rightarrow 0italic_k → 0 but with a different sound speed coefficient of 1/3131/\sqrt{3}1 / square-root start_ARG 3 end_ARG, similar to a relativistic perfect fluid pressure wave. Indeed, it is well known that a quartic complex scalar with spontaneous U(1)𝑈1U(1)italic_U ( 1 ) breaking is a simple model of a superfluid (see e.g. (Leggett:1999zz, )).

As far as model parameters are concerned, there are the initial conditions of the background fields, the quartic coupling, and the usual axion parameters which control the dark matter abundances. The main theoretical limitation on extending this blue spectrum over a large k𝑘kitalic_k range is the requirement that the axion remains a spectator, which limits the coupling and the background field initial displacement value in the conformal regime. We also identify a range of initial condition deformations away from the conformal limit over which the isocurvature spectrum is approximate k2superscript𝑘2k^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, beyond which parametric resonance sets in and destroys the smooth blue spectrum. We identify the parameter regime in which this type of model can reproduce a spectrum of blue-tilt followed by a plateau.

The order of presentation will be as follows. In Sec. II, we define the notation for the “vanilla” axion model and make general arguments of how a time-independent conformal limit and the spectral index nI=3subscript𝑛𝐼3n_{I}=3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT = 3 arises with the combination of large field displacements and angular momentum. In Sec. III, we quantize the theory explicitly about the large phase angular momentum to make the vacuum choice precise and to compute the resulting normalization for the desired correlation function. We also give a simplified discussion of how the intermediate-time transition away from the time-independent conformal-era will not result in a large bump in the isocurvature spectrum. In Sec. IV, we discuss how deformations of the initial conditions away from the time-independent conformal limit will modify the spectrum. This will lead to oscillatory features in the spectrum. In Sec. V, we present example isocurvature spectra plots and the parametric ranges over which the QCD axion phenomenology is compatible with observations. We then conclude with a summary. Many appendices follow that provide details of the results presented in the main body of the work. For example, the details of the conformal field representation will be given in Appendix A and the details of the quantization is presented in Appendix D.

II Spectator Definition and Basics of the Conformal Limit

In this section, we introduce the Lagrangian for our spectator field in terms of a complex scalar field ΦΦ\Phiroman_Φ with an underlying global U(1)𝑈1U(1)italic_U ( 1 ) PQ symmetry and lay out the basic physics central to the computation before delving into detailed computations in the subsequent sections.

II.1 Basic Action

Consider the following action for a spectator complex scalar field ΦΦ\Phiroman_Φ containing the axion in a 4-dimensional FLRW spacetime

S=𝑑td3xg(μΦμΦV)𝑆differential-d𝑡superscript𝑑3𝑥𝑔subscript𝜇superscriptΦsuperscript𝜇Φ𝑉S=\int dtd^{3}x\sqrt{-g}\left(-\partial_{\mu}\Phi^{*}\partial^{\mu}\Phi-V\right)italic_S = ∫ italic_d italic_t italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x square-root start_ARG - italic_g end_ARG ( - ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT roman_Φ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT roman_Φ - italic_V ) (4)

where the potential is composed of the usual renormalizable terms symmetric under a global U(1)𝑈1U(1)italic_U ( 1 )

V=2M2ΦΦ+λ(ΦΦ)2𝑉2superscript𝑀2superscriptΦΦ𝜆superscriptsuperscriptΦΦ2V=-2M^{2}\Phi^{*}\Phi+\lambda\left(\Phi^{*}\Phi\right)^{2}italic_V = - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT roman_Φ + italic_λ ( roman_Φ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT roman_Φ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (5)

with a dimensionless self-coupling constant λ𝜆\lambdaitalic_λ and a dimension-one mass parameter M𝑀Mitalic_M. We will assume that the background metric ds2=gμν(0)dxμdxν=dt2+a2(t)|dx|2𝑑superscript𝑠2superscriptsubscript𝑔𝜇𝜈0𝑑superscript𝑥𝜇𝑑superscript𝑥𝜈𝑑superscript𝑡2superscript𝑎2𝑡superscript𝑑𝑥2ds^{2}=g_{\mu\nu}^{(0)}dx^{\mu}dx^{\nu}=-dt^{2}+a^{2}(t)|d\vec{x}|^{2}italic_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_g start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT italic_d italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_d italic_x start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT = - italic_d italic_t start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) | italic_d over→ start_ARG italic_x end_ARG | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is driven by an inflaton whose energy dominates over the energy of Φ.Φ\Phi.roman_Φ . As is well known (see e.g. (Chung:2015pga, )), the non-adiabatic quantum fluctuations of ΦΦ\Phiroman_Φ are diffeomorphism gauge invariant at the linear level and govern the spectator isocurvature perturbations that add to the usual curvature perturbations of the inflaton.

To make the U(1)𝑈1U(1)italic_U ( 1 ) angular physics manifest, parameterize ΦΦ\Phiroman_Φ as usual in terms of a radial field ΓΓ\Gammaroman_Γ and an axial field ΣΣ\Sigmaroman_Σ:

Φ=12ΓeiΣΓΦ12Γsuperscript𝑒𝑖ΣΓ\Phi=\frac{1}{\sqrt{2}}\Gamma e^{i\frac{\Sigma}{\Gamma}}roman_Φ = divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG roman_Γ italic_e start_POSTSUPERSCRIPT italic_i divide start_ARG roman_Σ end_ARG start_ARG roman_Γ end_ARG end_POSTSUPERSCRIPT (6)

where ΓΓ\Gammaroman_Γ and ΣΣ\Sigmaroman_Σ are real scalar fields. The potential V𝑉Vitalic_V in terms of the real field ΓΓ\Gammaroman_Γ is

V=M2Γ2+λ4Γ4𝑉superscript𝑀2superscriptΓ2𝜆4superscriptΓ4V=-M^{2}\Gamma^{2}+\frac{\lambda}{4}\Gamma^{4}italic_V = - italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG italic_λ end_ARG start_ARG 4 end_ARG roman_Γ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT (7)

with the stable vacuum at

Γvac=2M2λ.subscriptΓvac2superscript𝑀2𝜆\Gamma_{{\rm vac}}=\sqrt{\frac{2M^{2}}{\lambda}}.roman_Γ start_POSTSUBSCRIPT roman_vac end_POSTSUBSCRIPT = square-root start_ARG divide start_ARG 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_λ end_ARG end_ARG . (8)

The kinetic terms of the Lagrangian in terms of fields ΓΓ\Gammaroman_Γ and ΣΣ\Sigmaroman_Σ are similarly rewritten as

μΦμΦ=12(μΓμΓ2ΣΓμΣμΓ+(ΣΓ)2μΓμΓ+μΣμΣ)subscript𝜇superscriptΦsuperscript𝜇Φ12subscript𝜇Γsuperscript𝜇Γ2ΣΓsubscript𝜇Σsuperscript𝜇ΓsuperscriptΣΓ2subscript𝜇Γsuperscript𝜇Γsubscript𝜇Σsuperscript𝜇Σ-\partial_{\mu}\Phi^{*}\partial^{\mu}\Phi=-\frac{1}{2}\left(\partial_{\mu}% \Gamma\partial^{\mu}\Gamma-2\frac{\Sigma}{\Gamma}\partial_{\mu}\Sigma\partial^% {\mu}\Gamma+\left(\frac{\Sigma}{\Gamma}\right)^{2}\partial_{\mu}\Gamma\partial% ^{\mu}\Gamma+\partial_{\mu}\Sigma\partial^{\mu}\Sigma\right)- ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT roman_Φ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT roman_Φ = - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT roman_Γ ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT roman_Γ - 2 divide start_ARG roman_Σ end_ARG start_ARG roman_Γ end_ARG ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT roman_Σ ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT roman_Γ + ( divide start_ARG roman_Σ end_ARG start_ARG roman_Γ end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT roman_Γ ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT roman_Γ + ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT roman_Σ ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT roman_Σ ) (9)

where the ΣμΣμΓΣsubscript𝜇Σsuperscript𝜇Γ\Sigma\partial_{\mu}\Sigma\partial^{\mu}\Gammaroman_Σ ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT roman_Σ ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT roman_Γ coupling will later play a nontrivial role for the perturbations. We now define a dimensionless angular variable

θΣΓ𝜃ΣΓ\theta\equiv\frac{\Sigma}{\Gamma}italic_θ ≡ divide start_ARG roman_Σ end_ARG start_ARG roman_Γ end_ARG (10)

such that the action in terms of ΓΓ\Gammaroman_Γ and θ𝜃\thetaitalic_θ is

S=d4xg(0)(12g(0)μν(μΓνΓ+Γ2μθνθ)(M2Γ2+λ4Γ4)).𝑆superscript𝑑4𝑥superscript𝑔012superscript𝑔0𝜇𝜈subscript𝜇Γsubscript𝜈ΓsuperscriptΓ2subscript𝜇𝜃subscript𝜈𝜃superscript𝑀2superscriptΓ2𝜆4superscriptΓ4S=\int d^{4}x\sqrt{-g^{(0)}}\left(-\frac{1}{2}g^{(0)\mu\nu}\left(\partial_{\mu% }\Gamma\partial_{\nu}\Gamma+\Gamma^{2}\partial_{\mu}\theta\partial_{\nu}\theta% \right)-\left(-M^{2}\Gamma^{2}+\frac{\lambda}{4}\Gamma^{4}\right)\right).italic_S = ∫ italic_d start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_x square-root start_ARG - italic_g start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT end_ARG ( - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_g start_POSTSUPERSCRIPT ( 0 ) italic_μ italic_ν end_POSTSUPERSCRIPT ( ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT roman_Γ ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT roman_Γ + roman_Γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_θ ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_θ ) - ( - italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG italic_λ end_ARG start_ARG 4 end_ARG roman_Γ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) ) . (11)

where we note that the kinetic terms for the fields ΓΓ\Gammaroman_Γ and ΓvacθsubscriptΓvac𝜃\Gamma_{\mathrm{vac}}\thetaroman_Γ start_POSTSUBSCRIPT roman_vac end_POSTSUBSCRIPT italic_θ appear canonically normalized. This system has a conserved background angular momentum

La2Γ02ηθ0𝐿superscript𝑎2superscriptsubscriptΓ02subscript𝜂subscript𝜃0L\equiv a^{2}\Gamma_{0}^{2}\partial_{\eta}\theta_{0}italic_L ≡ italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (12)

owing to the U(1)PQ𝑈subscript1PQU(1)_{{\rm PQ}}italic_U ( 1 ) start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT symmetry where the subscript 00 indicates homogeneous background components of the fields and η𝜂\etaitalic_η is the conformal time variable defined as

η=1aH.𝜂1𝑎𝐻\eta=\frac{-1}{aH}.italic_η = divide start_ARG - 1 end_ARG start_ARG italic_a italic_H end_ARG . (13)

In principle, this large angular momentum may be generated by a CP violating non-renormalizable term as in the usual Affleck-Dine mechanism. We define any canonically normalized scalar field ΥΥ\Upsilonroman_Υ during inflation to be a spectator if

ρΥρinflatonmuch-less-thansubscript𝜌Υsubscript𝜌inflaton\rho_{\Upsilon}\ll\text{$\rho_{{\rm inflaton}}$}italic_ρ start_POSTSUBSCRIPT roman_Υ end_POSTSUBSCRIPT ≪ italic_ρ start_POSTSUBSCRIPT roman_inflaton end_POSTSUBSCRIPT (14)

where ρΥsubscript𝜌Υ\rho_{\Upsilon}italic_ρ start_POSTSUBSCRIPT roman_Υ end_POSTSUBSCRIPT represents the energy density of a field ΥΥ\Upsilonroman_Υ. For an initial displacement of the radial field ΓΓ\Gammaroman_Γ away from its vacuum state ΓvacsubscriptΓvac\Gamma_{{\rm vac}}roman_Γ start_POSTSUBSCRIPT roman_vac end_POSTSUBSCRIPT, Eq. (14) translates to

12(Γ0˙2+Γ02θ0˙2)+λ4Γ043MP2H2much-less-than12superscript˙subscriptΓ02superscriptsubscriptΓ02superscript˙subscript𝜃02𝜆4superscriptsubscriptΓ043superscriptsubscript𝑀𝑃2superscript𝐻2\frac{1}{2}\left(\dot{\Gamma_{0}}^{2}+\Gamma_{0}^{2}\dot{\theta_{0}}^{2}\right% )+\frac{\lambda}{4}\Gamma_{0}^{4}\ll 3M_{P}^{2}H^{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( over˙ start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over˙ start_ARG italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + divide start_ARG italic_λ end_ARG start_ARG 4 end_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ≪ 3 italic_M start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (15)

where H=a˙(t)/a(t)𝐻˙𝑎𝑡𝑎𝑡H=\dot{a}(t)/a(t)italic_H = over˙ start_ARG italic_a end_ARG ( italic_t ) / italic_a ( italic_t ) is the Hubble expansion rate. We will refer to this condition later when we define our spectator dynamics under different initial conditions. This will be one of the dominant constraints on the initial radial displacement of the system.

II.2 How conformal limit generates a blue spectrum

In this section, we will explain how a conformal limit spontaneously broken by a U(1)𝑈1U(1)italic_U ( 1 ) time-translation locking can generate a blue spectral index of 3333 for the axion. The details of this section are given in Appendix A. One nontrivial aspect that will be explained below is how the angular time-dependence leads to a novel conformal phase that is distinct from the massless conformal phase of Minkowski spacetime.

Consider the ΦΦ\Phiroman_Φ action Eq. (11) in the conformal coordinates defined by the background metric ds2=a2(η)(dη2+|dx|2)𝑑superscript𝑠2superscript𝑎2𝜂𝑑superscript𝜂2superscript𝑑𝑥2ds^{2}=a^{2}(\eta)\left(-d\eta^{2}+|d\vec{x}|^{2}\right)italic_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) ( - italic_d italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_d over→ start_ARG italic_x end_ARG | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ):

S𝑆\displaystyle Sitalic_S =𝑑ηd3x(12ημν(μYνY+Y2μθνθ)[12a′′aY2M2a2Y2+λY44]).absentdifferential-d𝜂superscript𝑑3𝑥12superscript𝜂𝜇𝜈subscript𝜇𝑌subscript𝜈𝑌superscript𝑌2subscript𝜇𝜃subscript𝜈𝜃delimited-[]12superscript𝑎′′𝑎superscript𝑌2superscript𝑀2superscript𝑎2superscript𝑌2𝜆superscript𝑌44\displaystyle=\int d\eta d^{3}x\left(\frac{-1}{2}\eta^{\mu\nu}\left(\partial_{% \mu}Y\partial_{\nu}Y+Y^{2}\partial_{\mu}\theta\partial_{\nu}\theta\right)-% \left[-\frac{1}{2}\frac{a^{\prime\prime}}{a}Y^{2}-M^{2}a^{2}Y^{2}+\lambda\frac% {Y^{4}}{4}\right]\right).= ∫ italic_d italic_η italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x ( divide start_ARG - 1 end_ARG start_ARG 2 end_ARG italic_η start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ( ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_Y ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_Y + italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_θ ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_θ ) - [ - divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_a end_ARG italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ divide start_ARG italic_Y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG ] ) . (16)

where ημνsubscript𝜂𝜇𝜈\eta_{\mu\nu}italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT is the Minkowski metric, θ𝜃\thetaitalic_θ is given by Eq. (10), and YaΓ𝑌𝑎ΓY\equiv a\Gammaitalic_Y ≡ italic_a roman_Γ. Note that only the M2a2Y2superscript𝑀2superscript𝑎2superscript𝑌2M^{2}a^{2}Y^{2}italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT term breaks the scaling symmetry

au1a𝑎superscript𝑢1𝑎a\rightarrow u^{-1}aitalic_a → italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_a (17)

where u𝑢uitalic_u is a constant while the time-dependent term (a′′/a)Y2superscript𝑎′′𝑎superscript𝑌2(a^{\prime\prime}/a)Y^{2}( italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a ) italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT term does not. On the other hand a/asuperscript𝑎𝑎a^{\prime}/aitalic_a start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT / italic_a is time-dependent. The action of Eq. (16) therefore does not know about constant time hypersurface proper length scales or time-translation noninvariance when both M2a2Y2superscript𝑀2superscript𝑎2superscript𝑌2M^{2}a^{2}Y^{2}italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and (a′′/a)Y2superscript𝑎′′𝑎superscript𝑌2(a^{\prime\prime}/a)Y^{2}( italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a ) italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT can be neglected. If we consider only the classical homogeneous background equation of Y(x)Y0(η)𝑌𝑥subscript𝑌0𝜂Y(x)\approx Y_{0}(\eta)italic_Y ( italic_x ) ≈ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ), as shown in the Appendix A, we can go to a classical background solution of

Y0=Yc=constsubscript𝑌0subscript𝑌𝑐constY_{0}=Y_{c}=\mathrm{const}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = roman_const (18)
ηθ0=constsubscript𝜂subscript𝜃0const\partial_{\eta}\theta_{0}=\mathrm{const}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = roman_const (19)

in the limit

λY0Ma,a′′/a.much-greater-than𝜆subscript𝑌0𝑀𝑎superscript𝑎′′𝑎\sqrt{\lambda}Y_{0}\gg Ma,\sqrt{a^{\prime\prime}/a}.square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≫ italic_M italic_a , square-root start_ARG italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a end_ARG . (20)

Hence, dynamically, we achieve the limit of Eq. (17) and the action written in terms of Y𝑌Yitalic_Y and θ𝜃\thetaitalic_θ (when considering quantum fluctuations about the classical solution) does not know about spatial proper length scales or time translation symmetry violations. This is intuitive since when λY0Mamuch-greater-than𝜆subscript𝑌0𝑀𝑎\sqrt{\lambda}Y_{0}\gg Masquare-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≫ italic_M italic_a, the conformal factor a(η)𝑎𝜂a(\eta)italic_a ( italic_η ) scaling by a constant is a classical invariance. Furthermore, even though a′′/asuperscript𝑎′′𝑎a^{\prime\prime}/aitalic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a is time-dependent (despite it being conformally invariant) in quasi-dS spacetime, large λY0𝜆subscript𝑌0\sqrt{\lambda}Y_{0}square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT limit allows one to neglect this term to give a static system. A key defining characteristic of this scenario is that θ˙00subscript˙𝜃00\dot{\theta}_{0}\neq 0over˙ start_ARG italic_θ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≠ 0 gives a tachyonic mass contribution ημνY2μθνθ/2superscript𝜂𝜇𝜈superscript𝑌2subscript𝜇𝜃subscript𝜈𝜃2-\eta^{\mu\nu}Y^{2}\partial_{\mu}\theta\partial_{\nu}\theta/2- italic_η start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_θ ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_θ / 2 which is important for achieving λY0Ma,a′′/amuch-greater-than𝜆subscript𝑌0𝑀𝑎superscript𝑎′′𝑎\sqrt{\lambda}Y_{0}\gg Ma,\sqrt{a^{\prime\prime}/a}square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≫ italic_M italic_a , square-root start_ARG italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a end_ARG at the minimum of Y0subscript𝑌0Y_{0}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT effective potential. This in turn leads to a new perturbation mixing term

ημνY2μθνθ/2Y0δYηθ00δθsubscript𝑌0𝛿𝑌subscript𝜂subscript𝜃0subscript0𝛿𝜃superscript𝜂𝜇𝜈superscript𝑌2subscript𝜇𝜃subscript𝜈𝜃2-\eta^{\mu\nu}Y^{2}\partial_{\mu}\theta\partial_{\nu}\theta/2\ni Y_{0}\delta Y% \partial_{\eta}\theta_{0}\partial_{0}\delta\theta- italic_η start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_θ ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_θ / 2 ∋ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_δ italic_Y ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_δ italic_θ (21)

that changes the dispersion relationship. This is the reason why rotation is important for this scenario and leads to an interesting tree-level conformally invariant theory which is the subject of this paper. It is also important to note that once one expands about the background of Eqs. (18) and (19), there is a scale ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT in the theory, but because it arises from spontaneous symmetry breaking, it transforms under diffeomorphism that eventually will make the conformal representation similar to that of a massive scalar field theory with the mass parameter behaving as a spurion (see Appendix A for more details). Moreover, owing to the U(1)𝑈1U(1)italic_U ( 1 ) symmetry, the spontaneous conformal symmetry breaking term ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is a constant in the conformal time coordinates (as indicated by Eq. (19)).333Also, it is easy to check that there is no Q-ball formation in the current scenario.

Now, let’s consider the axion sector with a rescaling of Eq. (10) as

θ=aΣY𝒜Y.𝜃𝑎Σ𝑌𝒜𝑌\theta=\frac{a\Sigma}{Y}\equiv\frac{\mathcal{A}}{Y}.italic_θ = divide start_ARG italic_a roman_Σ end_ARG start_ARG italic_Y end_ARG ≡ divide start_ARG caligraphic_A end_ARG start_ARG italic_Y end_ARG . (22)

The action will be of the form

S𝑑ηd3x(12ημνμδ𝒜νδ𝒜+U(1) and time invariant mixing of δY and δ𝒜)differential-d𝜂superscript𝑑3𝑥12superscript𝜂𝜇𝜈subscript𝜇𝛿𝒜subscript𝜈𝛿𝒜𝑈1 and time invariant mixing of 𝛿𝑌 and 𝛿𝒜𝑆S\ni\int d\eta d^{3}x\left(\frac{-1}{2}\eta^{\mu\nu}\partial_{\mu}\mathcal{% \delta A}\partial_{\nu}\delta\mathcal{A}+U(1)\mbox{ {and} time invariant % mixing of }\delta Y\mbox{ and }\mathcal{\delta A}\right)italic_S ∋ ∫ italic_d italic_η italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x ( divide start_ARG - 1 end_ARG start_ARG 2 end_ARG italic_η start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_δ caligraphic_A ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_δ caligraphic_A + italic_U ( 1 ) bold_and time invariant mixing of italic_δ italic_Y and italic_δ caligraphic_A ) (23)

where δ𝒜𝛿𝒜\delta\mathcal{A}italic_δ caligraphic_A are the scaled axion fluctuations about the constant ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT background solution that pairs with Eq. (18). The mixing of δY𝛿𝑌\delta Yitalic_δ italic_Y and δ𝒜𝛿𝒜\delta\mathcal{A}italic_δ caligraphic_A coming from Eq. (21) is the main difference between the Minkowski spacetime’s conformal massless field and the axion here. As will be shown in Appendix A, the scaling symmetry of Eq. (17), SO(3)𝑆𝑂3SO(3)italic_S italic_O ( 3 ) symmetry, spatial translation invariance, and time-translational symmetry together with PQ U(1)𝑈1U(1)italic_U ( 1 ) symmetry tells us

δ𝒜(η,x)δ𝒜(η,0)|x|cA|x|2delimited-⟨⟩𝛿𝒜𝜂𝑥𝛿𝒜𝜂0𝑥similar-tosubscript𝑐𝐴superscript𝑥2\langle\delta\mathcal{A}(\eta,\vec{x})\mathcal{\delta A}(\eta,0)\rangle% \underset{|\vec{x}|\rightarrow\infty}{\sim}\frac{c_{A}}{|\vec{x}|^{2}}⟨ italic_δ caligraphic_A ( italic_η , over→ start_ARG italic_x end_ARG ) italic_δ caligraphic_A ( italic_η , 0 ) ⟩ start_UNDERACCENT | over→ start_ARG italic_x end_ARG | → ∞ end_UNDERACCENT start_ARG ∼ end_ARG divide start_ARG italic_c start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT end_ARG start_ARG | over→ start_ARG italic_x end_ARG | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG (24)

for a constant cAsubscript𝑐𝐴c_{A}italic_c start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT or equivalently

δ(Γθ)(η,x)δ(Γθ)(η,0)|x|cAa2(η)|x|2delimited-⟨⟩𝛿Γ𝜃𝜂𝑥𝛿Γ𝜃𝜂0𝑥similar-tosubscript𝑐𝐴superscript𝑎2𝜂superscript𝑥2\boxed{\langle\delta\left(\Gamma\theta\right)(\eta,\vec{x})\delta\left(\Gamma% \theta\right)(\eta,0)\rangle\underset{|\vec{x}|\rightarrow\infty}{\sim}\frac{c% _{A}}{a^{2}(\eta)|\vec{x}|^{2}}}⟨ italic_δ ( roman_Γ italic_θ ) ( italic_η , over→ start_ARG italic_x end_ARG ) italic_δ ( roman_Γ italic_θ ) ( italic_η , 0 ) ⟩ start_UNDERACCENT | over→ start_ARG italic_x end_ARG | → ∞ end_UNDERACCENT start_ARG ∼ end_ARG divide start_ARG italic_c start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) | over→ start_ARG italic_x end_ARG | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG (25)

is the physical axion correlator.

Remarkably, despite the fact that |x|aH1,much-greater-than𝑥𝑎superscript𝐻1|\vec{x}|a\gg H^{-1},| over→ start_ARG italic_x end_ARG | italic_a ≫ italic_H start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , the fluctuations δ𝒜𝛿𝒜\delta\mathcal{A}italic_δ caligraphic_A do not sense the spacetime curvature. In contrast, a generic minimally coupled massless real scalar field φssubscript𝜑𝑠\varphi_{s}italic_φ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT has a kinetic term for a rescaled ΦsaφssubscriptΦ𝑠𝑎subscript𝜑𝑠\Phi_{s}\equiv a\varphi_{s}roman_Φ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ≡ italic_a italic_φ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT of

Sφ=𝑑ηd3x(12[(ηΦs)2(a′′(η)a(η))Φs2i(iΦs)2])subscript𝑆𝜑differential-d𝜂superscript𝑑3𝑥12delimited-[]superscriptsubscript𝜂subscriptΦ𝑠2superscript𝑎′′𝜂𝑎𝜂superscriptsubscriptΦ𝑠2subscript𝑖superscriptsubscript𝑖subscriptΦ𝑠2S_{\varphi}=\int d\eta d^{3}x\left(\frac{1}{2}\left[\left(\partial_{\eta}\Phi_% {s}\right)^{2}-\left(\frac{a^{\prime\prime}(\eta)}{a(\eta)}\right)\Phi_{s}^{2}% -\sum_{i}\left(\partial_{i}\Phi_{s}\right)^{2}\right]\right)italic_S start_POSTSUBSCRIPT italic_φ end_POSTSUBSCRIPT = ∫ italic_d italic_η italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT roman_Φ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( divide start_ARG italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_η ) end_ARG start_ARG italic_a ( italic_η ) end_ARG ) roman_Φ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ∑ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Φ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] ) (26)

which contains time-dependence through (a′′/a)superscript𝑎′′𝑎\left(a^{\prime\prime}/a\right)( italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a ): i.e. this theory is aau𝑎𝑎𝑢a\rightarrow auitalic_a → italic_a italic_u invariant but it is not time-translation invariant. In such situations, one has

Φs(η,x)Φs(η,0)|x|F(a′′a,|x|)delimited-⟨⟩subscriptΦ𝑠𝜂𝑥subscriptΦ𝑠𝜂0𝑥similar-to𝐹superscript𝑎′′𝑎𝑥\langle\Phi_{s}(\eta,\vec{x})\Phi_{s}(\eta,0)\rangle\underset{|\vec{x}|% \rightarrow\infty}{\sim}F\left(\frac{a^{\prime\prime}}{a},|\vec{x}|\right)⟨ roman_Φ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( italic_η , over→ start_ARG italic_x end_ARG ) roman_Φ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( italic_η , 0 ) ⟩ start_UNDERACCENT | over→ start_ARG italic_x end_ARG | → ∞ end_UNDERACCENT start_ARG ∼ end_ARG italic_F ( divide start_ARG italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_a end_ARG , | over→ start_ARG italic_x end_ARG | ) (27)

where F𝐹Fitalic_F is a functional of (a′′/a)superscript𝑎′′𝑎(a^{\prime\prime}/a)( italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a ) and a function of |x|𝑥|\vec{x}|| over→ start_ARG italic_x end_ARG |. Since the spatial derivatives become unimportant for Eq. (26) for long wavelength modes, the dependence of F𝐹Fitalic_F on (a′′/a)superscript𝑎′′𝑎\left(a^{\prime\prime}/a\right)( italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a ) becomes important in this |x|𝑥|\vec{x}|\rightarrow\infty| over→ start_ARG italic_x end_ARG | → ∞ limit.444This infinity here literally means |x|aH1much-greater-than𝑥𝑎superscript𝐻1|\vec{x}|a\gg H^{-1}| over→ start_ARG italic_x end_ARG | italic_a ≫ italic_H start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. The absence of this analogous time-translation invariance breaking term for δ𝒜𝛿𝒜\mathcal{\delta A}italic_δ caligraphic_A in Eq. (23) is partly due to the axionic nature of 𝒜𝒜\mathcal{A}caligraphic_A in addition to being in the conformal radial sector discussed previously. This is a time-independent conformal phase of the axionic theory.

The Fourier-space isocurvature spectrum corresponding to Eq. (25) is

Δs2k2proportional-tosuperscriptsubscriptΔ𝑠2superscript𝑘2\Delta_{s}^{2}\propto k^{2}roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∝ italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (28)

which is conventionally described as having a spectral index of nI=3subscript𝑛𝐼3n_{I}=3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT = 3. In other words, the large ΓΓ\Gammaroman_Γ limit and a conformally compatible boundary conditions for the background field Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT allowed the scaled axion field 𝒜𝒜\mathcal{A}caligraphic_A to settle into a tree-level conformal theory that does not see the expanding universe. Explicit mode computations shown in the subsequent sections will support this general expectation based on conformality arguments. We should also note that Eq. (16) indicates that the field δY=aδΓ𝛿𝑌𝑎𝛿Γ\delta Y=a\delta\Gammaitalic_δ italic_Y = italic_a italic_δ roman_Γ is expected to behave as a massive field in the long wavelength limit owing to the mass scale provided by Y2(ηθ0)2superscript𝑌2superscriptsubscript𝜂subscript𝜃02Y^{2}\left(\partial_{\eta}\theta_{0}\right)^{2}italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT with a large ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT supporting a large Eq. (18). This implies that δY𝛿𝑌\delta Yitalic_δ italic_Y two-point function in the long wavelength limit will behave as the massive correlator in flat space giving δYδYk3proportional-todelimited-⟨⟩𝛿𝑌𝛿𝑌superscript𝑘3\left\langle\delta Y\delta Y\right\rangle\propto k^{3}⟨ italic_δ italic_Y italic_δ italic_Y ⟩ ∝ italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT which implies

δΓδΓ=CYk3/a2/(ηθ0)delimited-⟨⟩𝛿Γ𝛿Γsubscript𝐶𝑌superscript𝑘3superscript𝑎2subscript𝜂subscript𝜃0\left\langle\delta\Gamma\delta\Gamma\right\rangle=C_{Y}k^{3}/a^{2}/(\partial_{% \eta}\theta_{0})⟨ italic_δ roman_Γ italic_δ roman_Γ ⟩ = italic_C start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT / italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) (29)

(where CYsubscript𝐶𝑌C_{Y}italic_C start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT is a constant) during the time-independent conformal era when ηθ0=λΓ0(ηi)a(ηi)subscript𝜂subscript𝜃0𝜆subscriptΓ0subscript𝜂𝑖𝑎subscript𝜂𝑖\partial_{\eta}\theta_{0}=\sqrt{\lambda}\Gamma_{0}(\eta_{i})a(\eta_{i})∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = square-root start_ARG italic_λ end_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) (see Appendix A that explains the appearance of ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT from a conformal representation perspective). As explained in the Appendix A, we cannot read off k2superscript𝑘2k^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT behavior of Eq. (28) from conformal invariance alone because of the spontaneous breaking scale ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT: it is a result of knowing time-independent conformal invariance and masslessness of the δ𝒜𝛿𝒜\mathcal{\delta A}italic_δ caligraphic_A field (the latter coming from the Goldstone property of the spontaneously broken U(1)PQ𝑈subscript1𝑃𝑄U(1)_{PQ}italic_U ( 1 ) start_POSTSUBSCRIPT italic_P italic_Q end_POSTSUBSCRIPT symmetry).

The mixing of δY𝛿𝑌\delta Yitalic_δ italic_Y with δ𝒜𝛿𝒜\delta\mathcal{A}italic_δ caligraphic_A through the ημνY2μθνθsuperscript𝜂𝜇𝜈superscript𝑌2subscript𝜇𝜃subscript𝜈𝜃\eta^{\mu\nu}Y^{2}\partial_{\mu}\theta\partial_{\nu}\thetaitalic_η start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_θ ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_θ term after the spontaneous symmetry breaking term ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is turned on in Eq. (16) leads to an interesting dispersion relationship. Instead of the dispersion relationship of a free massless theory, it will be that of a relativistic perfect fluid acoustic wave: i.e.

dωdk=13𝑑𝜔𝑑𝑘13\frac{d\omega}{dk}=\frac{1}{\sqrt{3}}divide start_ARG italic_d italic_ω end_ARG start_ARG italic_d italic_k end_ARG = divide start_ARG 1 end_ARG start_ARG square-root start_ARG 3 end_ARG end_ARG (30)

where ω𝜔\omegaitalic_ω is the frequency associated with the lighter eigenmode. This is an indication that the axion here is a perturbation about a nontrivially interacting background medium. One obvious consequence of this is that the perturbations freeze out a bit earlier when ka(tk)3H𝑘𝑎subscript𝑡𝑘3𝐻k\approx a(t_{k})\sqrt{3}Hitalic_k ≈ italic_a ( italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) square-root start_ARG 3 end_ARG italic_H during inflation in contrast with the situation when 3131\sqrt{3}\rightarrow 1square-root start_ARG 3 end_ARG → 1. The fact that the dispersion relationship here is linear in k𝑘kitalic_k is just as for a Nambu-Goldstone boson: the shift symmetry is still intact even though there is a nontrivial mixing. In field theoretic situations where the system acts approximately as an isotropic, adiabatic fluid, one expects the trace of the energy momentum tensor to vanish if the system is conformal Pρ/3𝑃𝜌3P\approx\rho/3italic_P ≈ italic_ρ / 3 which implies that the sound speed is as given by Eq. (30).555This follows from the conservation of dilatation current jμ=Tμνxνsubscript𝑗𝜇subscript𝑇𝜇𝜈superscript𝑥𝜈j_{\mu}=T_{\mu\nu}x^{\nu}italic_j start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT = italic_T start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT if the dilatation is assumed to arise from a recoordinatization. More about the relationship between the diffeomorphism representation and the spurion representation is explained in Appendix. A.

Before moving on to the details, we should also remark about what the usual axion conformal phase is after the initial time-independent conformal phase ends and the ΓΓ\Gammaroman_Γ has settled to its minimum leading to the ordinary axion quantum fluctuation physics. The theory in that case is that of a spacetime-curvature induced massive scalar field

Sd4x12{ημνμ(aΣ)ν(aΣ)+(a′′a)(aΣ)2}𝑆superscript𝑑4𝑥12superscript𝜂𝜇𝜈subscript𝜇𝑎Σsubscript𝜈𝑎Σsuperscript𝑎′′𝑎superscript𝑎Σ2S\approx\int d^{4}x\frac{1}{2}\left\{-\eta^{\mu\nu}\partial_{\mu}\left(a\Sigma% \right)\partial_{\nu}(a\Sigma)+\left(\frac{a^{\prime\prime}}{a}\right)\left(a% \Sigma\right)^{2}\right\}italic_S ≈ ∫ italic_d start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_x divide start_ARG 1 end_ARG start_ARG 2 end_ARG { - italic_η start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT ( italic_a roman_Σ ) ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT ( italic_a roman_Σ ) + ( divide start_ARG italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_a end_ARG ) ( italic_a roman_Σ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT } (31)

which does have manifest conformal invariance of Eq. (17), but not time translation invariance nor masslessness since during inflation (a′′/a)=2/η2superscript𝑎′′𝑎2superscript𝜂2\left(a^{\prime\prime}/a\right)=2/\eta^{2}( italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a ) = 2 / italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT which leads to a well-known tachyonic mass for 𝒜=aΣ𝒜𝑎Σ\mathcal{A}=a\Sigmacaligraphic_A = italic_a roman_Σ. Hence, we see that the theory which we are analyzing in detail in this paper is a theory that goes from a time-independent spontaneously broken conformal phase to a time-dependent conformal phase, latter of which is the usual axionic isocurvature quantum fluctuation theory during inflation.

III Explicit quantization in the conformal limit

Although we have given a conformal limit argument in Sec. II.2 for the spectral index nI=3subscript𝑛𝐼3n_{I}=3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT = 3, we have not justified the selection of the vacuum state in the situation in which the background field ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is large. Also, given the fast rotation which kinetically mixes the radial mode with the angular mode, we expect the dispersion relationship to change from the standard one leading to order unity changes in the power spectrum. To address these issues, we quantize the theory in the conformal limit explicitly.666After the quantization part of this work was completed, the work (Hui:2023pxc, ; Creminelli:2023kze, ) appeared which quantizes a similar theory and agrees with the results here. One main difference is that we present more details here regarding the axion spectrum and apply it to isocurvature and dark matter phenomenology.

III.1 Conformal limit power quantization and power spectra

As shown in the Appendix D, we can quantize the two real scalar degrees of freedom

δψn=(δY,δX)n(aδΓ,aδχ)n(aδΓ,aΓ0δθ)n𝛿superscript𝜓𝑛superscript𝛿𝑌𝛿𝑋𝑛superscript𝑎𝛿Γ𝑎𝛿𝜒𝑛superscript𝑎𝛿Γ𝑎subscriptΓ0𝛿𝜃𝑛\delta\psi^{n}=\left(\delta Y,\delta X\right)^{n}\equiv\left(a\delta\Gamma,a% \delta\chi\right)^{n}\equiv\left(a\delta\Gamma,a\Gamma_{0}\delta\theta\right)^% {n}italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = ( italic_δ italic_Y , italic_δ italic_X ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ≡ ( italic_a italic_δ roman_Γ , italic_a italic_δ italic_χ ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ≡ ( italic_a italic_δ roman_Γ , italic_a roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_δ italic_θ ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT (32)

governed by the quadratically expanded action

S2subscript𝑆2\displaystyle S_{2}italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT =dηd3x{12ημνμδYνδY12ημνμδXνδX\displaystyle=\int d\eta d^{3}x\left\{-\frac{1}{2}\eta_{\mu\nu}\partial^{\mu}% \delta Y\partial^{\nu}\delta Y-\frac{1}{2}\eta_{\mu\nu}\partial^{\mu}\delta X% \partial^{\nu}\delta X\right.= ∫ italic_d italic_η italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x { - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_δ italic_Y ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_δ italic_Y - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_δ italic_X ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_δ italic_X
2δYημνμδXνθ0+2δXδYY0ημνμY0νθ0+δXY0ημνμδXνY0+δYημνμδYνaa2𝛿𝑌subscript𝜂𝜇𝜈superscript𝜇𝛿𝑋superscript𝜈subscript𝜃02𝛿𝑋𝛿𝑌subscript𝑌0subscript𝜂𝜇𝜈superscript𝜇subscript𝑌0superscript𝜈subscript𝜃0𝛿𝑋subscript𝑌0subscript𝜂𝜇𝜈superscript𝜇𝛿𝑋superscript𝜈subscript𝑌0𝛿𝑌subscript𝜂𝜇𝜈superscript𝜇𝛿𝑌superscript𝜈𝑎𝑎\displaystyle-2\delta Y\eta_{\mu\nu}\partial^{\mu}\delta X\partial^{\nu}\theta% _{0}+\frac{2\delta X\delta Y}{Y_{0}}\eta_{\mu\nu}\partial^{\mu}Y_{0}\partial^{% \nu}\theta_{0}+\frac{\delta X}{Y_{0}}\eta_{\mu\nu}\partial^{\mu}\delta X% \partial^{\nu}Y_{0}+\frac{\delta Y\eta_{\mu\nu}\partial^{\mu}\delta Y\partial^% {\nu}a}{a}- 2 italic_δ italic_Y italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_δ italic_X ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + divide start_ARG 2 italic_δ italic_X italic_δ italic_Y end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + divide start_ARG italic_δ italic_X end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_δ italic_X ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + divide start_ARG italic_δ italic_Y italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_δ italic_Y ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG
+12(δX)2ημν(μY0νY0Y02+2μaνaa22μaνY0aY0)12superscript𝛿𝑋2subscript𝜂𝜇𝜈superscript𝜇subscript𝑌0superscript𝜈subscript𝑌0superscriptsubscript𝑌022superscript𝜇𝑎superscript𝜈𝑎superscript𝑎22superscript𝜇𝑎superscript𝜈subscript𝑌0𝑎subscript𝑌0\displaystyle+\frac{1}{2}\left(\delta X\right)^{2}\eta_{\mu\nu}\left(\frac{% \partial^{\mu}Y_{0}\partial^{\nu}Y_{0}}{Y_{0}^{2}}+2\frac{\partial^{\mu}a% \partial^{\nu}a}{a^{2}}-2\frac{\partial^{\mu}a\partial^{\nu}Y_{0}}{aY_{0}}\right)+ divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_δ italic_X ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ( divide start_ARG ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + 2 divide start_ARG ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_a ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - 2 divide start_ARG ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_a ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_a italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG )
12(δY)2ημν(μθ0νθ0+μaνaa2)(2M2a22+3λ2Y02)(δY)2}.\displaystyle\left.-\frac{1}{2}\left(\delta Y\right)^{2}\eta_{\mu\nu}\left(% \partial^{\mu}\theta_{0}\partial^{\nu}\theta_{0}+\frac{\partial^{\mu}a\partial% ^{\nu}a}{a^{2}}\right)-\left(-\frac{2M^{2}a^{2}}{2}+\frac{3\lambda}{2}Y_{0}^{2% }\right)\left(\delta Y\right)^{2}\right\}.- divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_δ italic_Y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ( ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + divide start_ARG ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_a ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) - ( - divide start_ARG 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + divide start_ARG 3 italic_λ end_ARG start_ARG 2 end_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( italic_δ italic_Y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT } . (33)

in the coordinates ds2=a2(η)(dη2+|dx|2)𝑑superscript𝑠2superscript𝑎2𝜂𝑑superscript𝜂2superscript𝑑𝑥2ds^{2}=a^{2}(\eta)\left(-d\eta^{2}+|d\vec{x}|^{2}\right)italic_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) ( - italic_d italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_d over→ start_ARG italic_x end_ARG | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) using

[δψn(η,x),δψm(η,x)]𝛿superscript𝜓𝑛𝜂𝑥𝛿superscript𝜓𝑚𝜂𝑥\displaystyle\left[\delta\psi^{n}(\eta,\vec{x}),\delta\psi^{m}(\eta,\vec{x})\right][ italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_η , over→ start_ARG italic_x end_ARG ) , italic_δ italic_ψ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( italic_η , over→ start_ARG italic_x end_ARG ) ] =0,absent0\displaystyle=0,= 0 , (34)
[πn(η,x),πm(η,x)]superscript𝜋𝑛𝜂𝑥superscript𝜋𝑚𝜂𝑥\displaystyle\left[\pi^{n}(\eta,\vec{x}),\pi^{m}(\eta,\vec{x})\right][ italic_π start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_η , over→ start_ARG italic_x end_ARG ) , italic_π start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( italic_η , over→ start_ARG italic_x end_ARG ) ] =0,absent0\displaystyle=0,= 0 , (35)
[δψn(η,x),πm(η,x)]𝛿superscript𝜓𝑛𝜂𝑥superscript𝜋𝑚𝜂𝑥\displaystyle\left[\delta\psi^{n}(\eta,\vec{x}),\pi^{m}(\eta,\vec{x})\right][ italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_η , over→ start_ARG italic_x end_ARG ) , italic_π start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( italic_η , over→ start_ARG italic_x end_ARG ) ] =iδnmδ(3)(xy)absent𝑖superscript𝛿𝑛𝑚superscript𝛿3𝑥𝑦\displaystyle=i\delta^{nm}\delta^{(3)}(\vec{x}-\vec{y})= italic_i italic_δ start_POSTSUPERSCRIPT italic_n italic_m end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG ) (36)

as usual. What is special in the scenario considered in this paper is that the coefficients involving {X0,Y0,a}subscript𝑋0subscript𝑌0𝑎\{X_{0},Y_{0},a\}{ italic_X start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_a } are generally time-dependent, but in the conformal limit described by Eqs. (18), (19), and (20), the coefficients become time-independent: e.g.

Y0aΓ0Yc=L1/3λ1/6=constantsubscript𝑌0𝑎subscriptΓ0subscript𝑌𝑐superscript𝐿13superscript𝜆16constantY_{0}\equiv a\Gamma_{0}\approx Y_{c}=\frac{L^{1/3}}{\lambda^{1/6}}=\mathrm{constant}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≡ italic_a roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≈ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = divide start_ARG italic_L start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG start_ARG italic_λ start_POSTSUPERSCRIPT 1 / 6 end_POSTSUPERSCRIPT end_ARG = roman_constant (37)

which follows from the conditions given in Eqs. (12) and (198). Here, Ycsubscript𝑌𝑐Y_{c}italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT represents a constant conformal background radial solution.

Since we are going to compute the quantum correlator to 00th order in λ𝜆\lambdaitalic_λ while Eq. (37) does not allow us to set λ=0𝜆0\lambda=0italic_λ = 0, an explanation of the expansion is in order. Note that this conformal limit background is a solution to the classical equation of motion

δSδΦ=0𝛿𝑆𝛿superscriptΦ0\frac{\delta S}{\delta\Phi^{*}}=0divide start_ARG italic_δ italic_S end_ARG start_ARG italic_δ roman_Φ start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_ARG = 0 (38)

which corresponds to leading 0Planck-constant-over-2-pi0\hbar\rightarrow 0roman_ℏ → 0 field path. Keeping the nonlinear interactions for the classical equation means we are treating λ|Φ|2Φ𝜆superscriptΦ2Φ\lambda\left|\Phi\right|^{2}\Phiitalic_λ | roman_Φ | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ to be on equal footing as M2Φsuperscript𝑀2ΦM^{2}\Phiitalic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Φ. On the other hand we are computing the quantum dynamics with λ0𝜆0\lambda\rightarrow 0italic_λ → 0 in considering the quadratic quantum fluctuations for the quantum correlator. Hence, we are taking the limit

O(λ|Φ|2a2)O(λY02)O(M2a2)similar-to𝑂𝜆superscriptΦ2superscript𝑎2𝑂𝜆superscriptsubscript𝑌02greater-than-or-equivalent-to𝑂superscript𝑀2superscript𝑎2O(\lambda|\Phi|^{2}a^{2})\sim O(\lambda Y_{0}^{2})\gtrsim O(M^{2}a^{2})italic_O ( italic_λ | roman_Φ | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ∼ italic_O ( italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ≳ italic_O ( italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) (39)

in the quadratic computation. Eq. (37) then says we are in the parametric region in which

λ2/3L2/3O(M2a2)greater-than-or-equivalent-tosuperscript𝜆23superscript𝐿23𝑂superscript𝑀2superscript𝑎2\lambda^{2/3}L^{2/3}\gtrsim O(M^{2}a^{2})italic_λ start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT italic_L start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT ≳ italic_O ( italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) (40)

which will break down when a2superscript𝑎2a^{-2}italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT has sufficiently diluted L2/3superscript𝐿23L^{2/3}italic_L start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT.

In this regime when Y0=Ycsubscript𝑌0subscript𝑌𝑐Y_{0}=Y_{c}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT and ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT are constants, the Hamiltonian density simplifies to

=12(ηδY)2+12(ηδX)2+12(iδΓ)2+12(iδχ)212(δY)2(ηθ0)2+(3λ2Yc2)(δY)2.12superscriptsubscript𝜂𝛿𝑌212superscriptsubscript𝜂𝛿𝑋212superscriptsubscript𝑖𝛿Γ212superscriptsubscript𝑖𝛿𝜒212superscript𝛿𝑌2superscriptsubscript𝜂subscript𝜃023𝜆2superscriptsubscript𝑌𝑐2superscript𝛿𝑌2\mathcal{H}=\frac{1}{2}\left(\partial_{\eta}\delta Y\right)^{2}+\frac{1}{2}% \left(\partial_{\eta}\delta X\right)^{2}+\frac{1}{2}\left(\partial_{i}\delta% \Gamma\right)^{2}+\frac{1}{2}\left(\partial_{i}\delta\chi\right)^{2}-\frac{1}{% 2}\left(\delta Y\right)^{2}\left(\partial_{\eta}\theta_{0}\right)^{2}+\left(% \frac{3\lambda}{2}Y_{c}^{2}\right)\left(\delta Y\right)^{2}.caligraphic_H = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_Y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_X ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_δ roman_Γ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_δ italic_χ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_δ italic_Y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( divide start_ARG 3 italic_λ end_ARG start_ARG 2 end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( italic_δ italic_Y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (41)

The Fock state diagonalizing the Hamiltonian can be constructed using the ladder operators as

δψn=d3p(2π)3/2[ap++c++V++neiω++η+ap+c+V+neiω+η+h.c.]eipx\delta\psi^{n}=\int\frac{d^{3}p}{(2\pi)^{3/2}}\left[a_{\vec{p}}^{++}c_{++}V_{+% +}^{n}e^{-i\omega_{++}\eta}+a_{\vec{p}}^{+-}c_{+-}V_{+-}^{n}e^{-i\omega_{+-}% \eta}+h.c.\right]e^{i\vec{p}\cdot\vec{x}}italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_p end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG [ italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_h . italic_c . ] italic_e start_POSTSUPERSCRIPT italic_i over→ start_ARG italic_p end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT (42)

where

V++n=(1++),V+n=(1+),formulae-sequencesuperscriptsubscript𝑉absent𝑛1subscriptabsentsuperscriptsubscript𝑉absent𝑛1subscriptabsentV_{++}^{n}=\left(\begin{array}[]{c}1\\ \mathcal{R}_{++}\end{array}\right),\,\,V_{+-}^{n}=\left(\begin{array}[]{c}1\\ \mathcal{R}_{+-}\end{array}\right),italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) , italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) , (43)
++subscriptabsent\displaystyle\mathcal{R}_{++}caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT i(2(LYc2)ω++12(ω++2ω+2)+(λYc2)+2(LYc2)2),absent𝑖2𝐿superscriptsubscript𝑌𝑐2subscript𝜔absent12superscriptsubscript𝜔absent2superscriptsubscript𝜔absent2𝜆superscriptsubscript𝑌𝑐22superscript𝐿superscriptsubscript𝑌𝑐22\displaystyle\equiv i\left(\frac{-2\left(\frac{L}{Y_{c}^{2}}\right)\omega_{++}% }{\frac{1}{2}\left(\omega_{++}^{2}-\omega_{+-}^{2}\right)+\left(\lambda Y_{c}^% {2}\right)+2\left(\frac{L}{Y_{c}^{2}}\right)^{2}}\right),≡ italic_i ( divide start_ARG - 2 ( divide start_ARG italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT end_ARG start_ARG divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + ( italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + 2 ( divide start_ARG italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) , (44)
+subscriptabsent\displaystyle\mathcal{R}_{+-}caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT i(2(LYc2)ω+12(ω++2ω+2)(λYc2)2(LYc2)2),absent𝑖2𝐿superscriptsubscript𝑌𝑐2subscript𝜔absent12superscriptsubscript𝜔absent2superscriptsubscript𝜔absent2𝜆superscriptsubscript𝑌𝑐22superscript𝐿superscriptsubscript𝑌𝑐22\displaystyle\equiv i\left(\frac{2\left(\frac{L}{Y_{c}^{2}}\right)\omega_{+-}}% {\frac{1}{2}\left(\omega_{++}^{2}-\omega_{+-}^{2}\right)-\left(\lambda Y_{c}^{% 2}\right)-2\left(\frac{L}{Y_{c}^{2}}\right)^{2}}\right),≡ italic_i ( divide start_ARG 2 ( divide start_ARG italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT end_ARG start_ARG divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) - ( italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) - 2 ( divide start_ARG italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) , (45)
ωs1s2s1k2+3λYc2+s2Ycλ(4k2+9λYc2),subscript𝜔subscript𝑠1subscript𝑠2subscript𝑠1superscript𝑘23𝜆superscriptsubscript𝑌𝑐2subscript𝑠2subscript𝑌𝑐𝜆4superscript𝑘29𝜆superscriptsubscript𝑌𝑐2\omega_{s_{1}s_{2}}\equiv s_{1}\sqrt{k^{2}+3\lambda Y_{c}^{2}+s_{2}Y_{c}\sqrt{% \lambda\left(4k^{2}+9\lambda Y_{c}^{2}\right)}},italic_ω start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≡ italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT square-root start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT square-root start_ARG italic_λ ( 4 italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 9 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG end_ARG , (46)
c++c++subscript𝑐absentsuperscriptsubscript𝑐absent\displaystyle c_{++}c_{++}^{*}italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT =(1+2)ω+2iηθ0+2(+ω+++ω++)(+ω++++ω+),absent1superscriptsubscriptabsent2subscript𝜔absent2𝑖subscript𝜂subscript𝜃0subscriptabsent2subscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absent\displaystyle=-\frac{\left(1-\mathcal{R}_{+-}^{2}\right)\omega_{+-}-2i\partial% _{\eta}\theta_{0}\mathcal{R}_{+-}}{2\left(\mathcal{R}_{+-}\omega_{+-}-\mathcal% {R}_{++}\omega_{++}\right)\left(\mathcal{R}_{+-}\omega_{++}-\mathcal{R}_{++}% \omega_{+-}\right)},= - divide start_ARG ( 1 - caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - 2 italic_i ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT end_ARG start_ARG 2 ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG , (47)
c+c+subscript𝑐absentsuperscriptsubscript𝑐absent\displaystyle c_{+-}c_{+-}^{*}italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT =(1++2)ω++2iηθ0++2(+ω+++ω++)(+ω++++ω+).absent1superscriptsubscriptabsent2subscript𝜔absent2𝑖subscript𝜂subscript𝜃0subscriptabsent2subscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absent\displaystyle=-\frac{\left(1-\mathcal{R}_{++}^{2}\right)\omega_{++}-2i\partial% _{\eta}\theta_{0}\mathcal{R}_{++}}{2\left(\mathcal{R}_{+-}\omega_{+-}-\mathcal% {R}_{++}\omega_{++}\right)\left(\mathcal{R}_{+-}\omega_{++}-\mathcal{R}_{++}% \omega_{+-}\right)}.= - divide start_ARG ( 1 - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - 2 italic_i ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT end_ARG start_ARG 2 ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG . (48)

Note that V++subscript𝑉absentV_{++}italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT and V+subscript𝑉absentV_{+-}italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT are not orthogonal. In the IR limit 1k2λYc2much-less-than1superscript𝑘2much-less-than𝜆superscriptsubscript𝑌𝑐21\ll k^{2}\ll\lambda Y_{c}^{2}1 ≪ italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≪ italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, the two distinct frequency-squared values are

ω±2k23+O(k4λYc2),superscriptsubscript𝜔plus-or-minusabsent2superscript𝑘23𝑂superscript𝑘4𝜆superscriptsubscript𝑌𝑐2\omega_{\pm-}^{2}\approx\frac{k^{2}}{3}+O\left(\frac{k^{4}}{\lambda Y_{c}^{2}}% \right),italic_ω start_POSTSUBSCRIPT ± - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≈ divide start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 3 end_ARG + italic_O ( divide start_ARG italic_k start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) , (49)

and

ω±+26λYc2+5k23+O(k4λYc2)superscriptsubscript𝜔plus-or-minusabsent26𝜆superscriptsubscript𝑌𝑐25superscript𝑘23𝑂superscript𝑘4𝜆superscriptsubscript𝑌𝑐2\omega_{\pm+}^{2}\approx 6\lambda Y_{c}^{2}+\frac{5k^{2}}{3}+O\left(\frac{k^{4% }}{\lambda Y_{c}^{2}}\right)italic_ω start_POSTSUBSCRIPT ± + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≈ 6 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 5 italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 3 end_ARG + italic_O ( divide start_ARG italic_k start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) (50)

corresponding to low and high frequency solutions and are separated by a large O(λYc2/k2)𝑂𝜆superscriptsubscript𝑌𝑐2superscript𝑘2O\left(\lambda Y_{c}^{2}/k^{2}\right)italic_O ( italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) hierarchy. In the UV limit,

limkλYc2ω±±2k2subscriptmuch-greater-than𝑘𝜆superscriptsubscript𝑌𝑐2superscriptsubscript𝜔plus-or-minusabsentplus-or-minus2superscript𝑘2\lim_{k\gg\lambda Y_{c}^{2}}\omega_{\pm\pm}^{2}\rightarrow k^{2}roman_lim start_POSTSUBSCRIPT italic_k ≫ italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT ± ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (51)

and the two frequency solutions become degenerate. When excited with the lighter normal frequency ω±subscript𝜔plus-or-minusabsent\omega_{\pm-}italic_ω start_POSTSUBSCRIPT ± - end_POSTSUBSCRIPT the fluctuations δΓ,δχ𝛿Γ𝛿𝜒\delta\Gamma,\delta\chiitalic_δ roman_Γ , italic_δ italic_χ have a group velocity

limkλYcdω±dk13subscriptmuch-less-than𝑘𝜆subscript𝑌𝑐𝑑subscript𝜔plus-or-minusabsent𝑑𝑘13\lim_{k\ll\sqrt{\lambda}Y_{c}}\frac{d\omega_{\pm-}}{dk}\approx\frac{1}{\sqrt{3}}roman_lim start_POSTSUBSCRIPT italic_k ≪ square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_POSTSUBSCRIPT divide start_ARG italic_d italic_ω start_POSTSUBSCRIPT ± - end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_k end_ARG ≈ divide start_ARG 1 end_ARG start_ARG square-root start_ARG 3 end_ARG end_ARG (52)

corresponding to a radiation fluid with sound speed squared cs21/3superscriptsubscript𝑐𝑠213c_{s}^{2}\approx 1/3italic_c start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≈ 1 / 3. This is what we naively expect from the conformal limit discussed in Sec. II.2 if the conformal limit of this interacting system is behaving like a relativistic perfect fluid which has an equation of state P=ρ/3𝑃𝜌3P=\rho/3italic_P = italic_ρ / 3 owing to the conformal symmetry current conservation. As is well known, such a fluid has a sound speed

cs2=Pρ=13superscriptsubscript𝑐𝑠2𝑃𝜌13c_{s}^{2}=\frac{\partial P}{\partial\rho}=\frac{1}{3}italic_c start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG ∂ italic_P end_ARG start_ARG ∂ italic_ρ end_ARG = divide start_ARG 1 end_ARG start_ARG 3 end_ARG (53)

which implies that acoustic waves travel with speed 1/3131/\sqrt{3}1 / square-root start_ARG 3 end_ARG matching the group velocity Eq. (52). Another interesting analogy comes from the tightly coupled cosmic microwave background radiation to the electrons just before recombination. In that situation, in the limit that the baryon loading vanishes, the speed of sound is 1/3131/\sqrt{3}1 / square-root start_ARG 3 end_ARG. Physically, the fast scattering of the electrons is inducing photon pressure on the nonrelativistic electrons, setting up an acoustic wave, similar to how a ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-induced mixing is generating an axion pressure-supported acoustic wave in the mixture of axions and heavy radial fields.

To choose the vacuum, we define it as usual as

ap+±|0=0superscriptsubscript𝑎𝑝absentplus-or-minusket00a_{\vec{p}}^{+\pm}|0\rangle=0italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + ± end_POSTSUPERSCRIPT | 0 ⟩ = 0 (54)

since the ladder operators diagonalize the Hamiltonian. The nonadiabaticity at the end of the conformal period may lead to particle production since the WKB vacuum after the conformal period will be different from this vacuum. Any particles produced during such time periods will be inflated away.777Any effects on nongaussianities from this will be left for a future work.

An interesting consequence of this quantized system is that the πnsuperscript𝜋𝑛\pi^{n}italic_π start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT commutator equation of Eq. (35) which usually is not very constraining induces a special constraint of

[ηδX,ηδY]=2iηθ0δ(3)(xy)subscript𝜂𝛿𝑋subscript𝜂𝛿𝑌2𝑖subscript𝜂subscript𝜃0superscript𝛿3𝑥𝑦\left[\partial_{\eta}\delta X,\partial_{\eta}\delta Y\right]=-2i\partial_{\eta% }\theta_{0}\delta^{(3)}(\vec{x}-\vec{y})[ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_X , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_Y ] = - 2 italic_i ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG ) (55)

which makes the kinetic contributions to the isocurvature cross correlators of radial and angular mode temporarily nonzero as long as ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is not negligible. This leads to ηδΓηδχ0delimited-⟨⟩subscript𝜂𝛿Γsubscript𝜂𝛿𝜒0\left\langle\partial_{\eta}\delta\Gamma\partial_{\eta}\delta\chi\right\rangle\neq 0⟨ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ roman_Γ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_χ ⟩ ≠ 0 even though δΓδχ=0delimited-⟨⟩𝛿Γ𝛿𝜒0\left\langle\delta\Gamma\delta\chi\right\rangle=0⟨ italic_δ roman_Γ italic_δ italic_χ ⟩ = 0 during this time-independent conformal era when ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is constant. Eventually, the time-independent conformal era ends when the background radial modes reaches the minimum of the effective potential making ηθ00subscript𝜂subscript𝜃00\partial_{\eta}\theta_{0}\rightarrow 0∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT → 0 and in turn causing this kinetic cross correlation to disappear as the system leaves the time-independent conformal phase to enter the usual time-dependent conformal phase of the stabilized axions.

The correlation functions of radial and angular directions in the time-independent conformal region (before the transition of the radial field at time ttrsubscript𝑡trt_{{\rm tr}}italic_t start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT to fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT) is

ΔδΓΓ0δΓΓ02(η<ηtr)superscriptsubscriptΔ𝛿ΓsubscriptΓ0𝛿ΓsubscriptΓ02𝜂subscript𝜂tr\displaystyle\Delta_{\frac{\delta\Gamma}{\Gamma_{0}}\frac{\delta\Gamma}{\Gamma% _{0}}}^{2}(\eta<\eta_{{\rm tr}})roman_Δ start_POSTSUBSCRIPT divide start_ARG italic_δ roman_Γ end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG divide start_ARG italic_δ roman_Γ end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) =1Γ02(η)a2(η)k32π2(|c++|2+|c+|2)absent1superscriptsubscriptΓ02𝜂superscript𝑎2𝜂superscript𝑘32superscript𝜋2superscriptsubscript𝑐absent2superscriptsubscript𝑐absent2\displaystyle=\frac{1}{\Gamma_{0}^{2}(\eta)a^{2}(\eta)}\frac{k^{3}}{2\pi^{2}}% \left(\left|c_{++}\right|^{2}+\left|c_{+-}\right|^{2}\right)= divide start_ARG 1 end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( | italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) (56)
ΔδχΓ0δχΓ02(η<ηtr)superscriptsubscriptΔ𝛿𝜒subscriptΓ0𝛿𝜒subscriptΓ02𝜂subscript𝜂tr\displaystyle\Delta_{\frac{\delta\chi}{\Gamma_{0}}\frac{\delta\chi}{\Gamma_{0}% }}^{2}(\eta<\eta_{{\rm tr}})roman_Δ start_POSTSUBSCRIPT divide start_ARG italic_δ italic_χ end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG divide start_ARG italic_δ italic_χ end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) =1Γ02(η)a2(η)k32π2(|c++++|2+|c++|2)absent1superscriptsubscriptΓ02𝜂superscript𝑎2𝜂superscript𝑘32superscript𝜋2superscriptsubscript𝑐absentsubscriptabsent2superscriptsubscript𝑐absentsubscriptabsent2\displaystyle=\frac{1}{\Gamma_{0}^{2}(\eta)a^{2}(\eta)}\frac{k^{3}}{2\pi^{2}}% \left(\left|c_{++}\mathcal{R}_{++}\right|^{2}+\left|c_{+-}\mathcal{R}_{+-}% \right|^{2}\right)= divide start_ARG 1 end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( | italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) (57)

where c+±subscript𝑐absentplus-or-minusc_{+\pm}italic_c start_POSTSUBSCRIPT + ± end_POSTSUBSCRIPT and +±subscriptabsentplus-or-minus\mathcal{R}_{+\pm}caligraphic_R start_POSTSUBSCRIPT + ± end_POSTSUBSCRIPT depend on k𝑘kitalic_k. In Fig. 1, we plot the correlation functions given in Eqs. (56) and (59) and compare them with the analytic approximations. We illustrate that for modes kηθ0much-less-than𝑘subscript𝜂subscript𝜃0k\ll\partial_{\eta}\theta_{0}italic_k ≪ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, the radial and angular isocurvature fluctuations during t<ttr𝑡subscript𝑡trt<t_{{\rm tr}}italic_t < italic_t start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT exhibit spectral dependencies of k3superscript𝑘3k^{3}italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTand k2superscript𝑘2k^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT respectively.

Refer to caption
Figure 1: Plot illustrating the spectral dependence of the correlation functions given in Eqs. (57) and (56) corresponding respectively to the angular (solid blue) and radial (dotted red) directions in the time-independent conformal era. For modes kηθ0much-less-than𝑘subscript𝜂subscript𝜃0k\ll\partial_{\eta}\theta_{0}italic_k ≪ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, the radial and angular isocurvature fluctuations exhibit spectral dependencies of k3superscript𝑘3k^{3}italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTand k2superscript𝑘2k^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT respectively. The green dashed curve represents our analytic approximation taken from Eq. (59), where Yi=Γ0(ηi)a(ηi)subscript𝑌𝑖subscriptΓ0subscript𝜂𝑖𝑎subscript𝜂𝑖Y_{i}=\Gamma_{0}(\eta_{i})a(\eta_{i})italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ). Note the presence of an additional normalizing factor of 1/3131/\sqrt{3}1 / square-root start_ARG 3 end_ARG, resulting from the angular modes behaving like a radiation fluid with a sound speed cs2=1/3superscriptsubscript𝑐𝑠213c_{s}^{2}=1/3italic_c start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 1 / 3. Modes with kηθ0much-greater-than𝑘subscript𝜂subscript𝜃0k\gg\partial_{\eta}\theta_{0}italic_k ≫ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT do not see the effective potential and thus resemble massless modes. These modes must be normalized with the usual Bunch-Davies (BD) vacuum state. The brown dotdashed curve provides an analytic approximation for pure massless modes normalized with the BD vacuum solution. The plot highlights smooth transition from the vacuum state for the strongly coupled axion, obtained from the minimization of the Hamiltonian density during the time-independent conformal era, to the usual BD solution. Notably, the spectral dependence of angular fluctuations k2proportional-toabsentsuperscript𝑘2\propto k^{2}∝ italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT highlights that in the rotating axion model, angular fluctuations maintain conformality across all scales during t<ttr𝑡subscript𝑡trt<t_{{\rm tr}}italic_t < italic_t start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT.

The complicated k𝑘kitalic_k-dependence simplifies to

limkηθ0ΔδΓΓ0δΓΓ02(η<ηtr)subscriptmuch-less-than𝑘subscript𝜂subscript𝜃0superscriptsubscriptΔ𝛿ΓsubscriptΓ0𝛿ΓsubscriptΓ02𝜂subscript𝜂tr\displaystyle\lim_{k\ll\partial_{\eta}\theta_{0}}\Delta_{\frac{\delta\Gamma}{% \Gamma_{0}}\frac{\delta\Gamma}{\Gamma_{0}}}^{2}(\eta<\eta_{{\rm tr}})roman_lim start_POSTSUBSCRIPT italic_k ≪ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_Δ start_POSTSUBSCRIPT divide start_ARG italic_δ roman_Γ end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG divide start_ARG italic_δ roman_Γ end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) (131/223/2)1Γ02(η)a2(η)k32π2ηθ0,absent1superscript312superscript2321superscriptsubscriptΓ02𝜂superscript𝑎2𝜂superscript𝑘32superscript𝜋2subscript𝜂subscript𝜃0\displaystyle\approx\left(\frac{1}{3^{1/2}2^{3/2}}\right)\frac{1}{\Gamma_{0}^{% 2}(\eta)a^{2}(\eta)}\frac{k^{3}}{2\pi^{2}\partial_{\eta}\theta_{0}},≈ ( divide start_ARG 1 end_ARG start_ARG 3 start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT 2 start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ) divide start_ARG 1 end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG , (58)
limkηθ0ΔδχΓ0δχΓ02(η<ηtr)subscriptmuch-less-than𝑘subscript𝜂subscript𝜃0superscriptsubscriptΔ𝛿𝜒subscriptΓ0𝛿𝜒subscriptΓ02𝜂subscript𝜂tr\displaystyle\lim_{k\ll\partial_{\eta}\theta_{0}}\Delta_{\frac{\delta\chi}{% \Gamma_{0}}\frac{\delta\chi}{\Gamma_{0}}}^{2}(\eta<\eta_{{\rm tr}})roman_lim start_POSTSUBSCRIPT italic_k ≪ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_Δ start_POSTSUBSCRIPT divide start_ARG italic_δ italic_χ end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG divide start_ARG italic_δ italic_χ end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) 131/2(H/(2π)Γ0(ηi))2(ka(ηi)H)2absent1superscript312superscript𝐻2𝜋subscriptΓ0subscript𝜂𝑖2superscript𝑘𝑎subscript𝜂𝑖𝐻2\displaystyle\approx\frac{1}{3^{1/2}}\left(\frac{H/(2\pi)}{\Gamma_{0}(\eta_{i}% )}\right)^{2}\left(\frac{k}{a(\eta_{i})H}\right)^{2}≈ divide start_ARG 1 end_ARG start_ARG 3 start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG italic_H / ( 2 italic_π ) end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_k end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) italic_H end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (59)

on large length scales. Although the spectral indices here can be inferred from the symmetry representations and minimal dynamical considerations of Appendix A, the details of 1/3131/\sqrt{3}1 / square-root start_ARG 3 end_ARG and normalization factors appearing here are difficult to predict without explicit quantization. Although one may naively think ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT here acts as a scale similar to the horizon scale in ordinary curvature perturbations, making the spectral amplitude freeze out, the spectral amplitude is actually always approximately frozen during the time-independent conformal period. Since ηθ0a(ηi)Hmuch-greater-thansubscript𝜂subscript𝜃0𝑎subscript𝜂𝑖𝐻\partial_{\eta}\theta_{0}\gg a(\eta_{i})H∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≫ italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) italic_H is typical for the parametric region of phenomenological interest, we can have a frozen subhorizon k2superscript𝑘2k^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT spectrum for a massless field. The δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ spectral index minus one is 3333 while the δχ𝛿𝜒\delta\chiitalic_δ italic_χ spectral index is characterized by nI1=2subscript𝑛𝐼12n_{I}-1=2italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT - 1 = 2 as anticipated. This says that the δχ𝛿𝜒\delta\chiitalic_δ italic_χ correlator dominates over the δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ correlator by a factor of ηθ0/ksubscript𝜂subscript𝜃0𝑘\partial_{\eta}\theta_{0}/k∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_k. The fact that 1/3131/\sqrt{3}1 / square-root start_ARG 3 end_ARG appears even for the massive δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ correlator is indicative of the sound speed changing due to the presence of ηθsubscript𝜂𝜃\partial_{\eta}\theta∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ induced mixing.

At approximately the time ttrsubscript𝑡trt_{{\rm tr}}italic_t start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT, the time-independent conformal regime in this strongly mixed model comes to an end, and the radial field settles to the minimum of the potential at fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT. From the EoM provided in Eq. (280) for the axial perturbations δχ𝛿𝜒\delta\chiitalic_δ italic_χ, we infer that around this time, the axial perturbations transition to a massless axion state entering a time-dependent conformal era. Because Γ0(η)subscriptΓ0𝜂\Gamma_{0}(\eta)roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) tends to follow δχ𝛿𝜒\delta\chiitalic_δ italic_χ mode on superhorizon scales (see Appendix F) and because the radial kinetic energy is too small to generate nontrivial resonances, there is no evolution of Eq. (59) after the transition to the vacuum at time t=ttr𝑡subscript𝑡trt=t_{\mathrm{tr}}italic_t = italic_t start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT. Therefore, the dimensionless power spectrum Eq. (59) can be used for η>ηtr𝜂subscript𝜂tr\eta>\eta_{\mathrm{tr}}italic_η > italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT as well. For modes that exit the horizon a long time after the radial field has settled to the minimum at fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT, the spectrum is scale invariant. For these modes the initial amplitude of the axial field fluctuations is normalized with the usual BD vacuum state as 1/2ksimilar-toabsent12𝑘\sim 1/\sqrt{2k}∼ 1 / square-root start_ARG 2 italic_k end_ARG. Hence, we approximate the spectrum as

limkηθ0ΔδχΓ0δχΓ02(η0)(H/(2π)fPQ)2subscriptmuch-greater-than𝑘subscript𝜂subscript𝜃0superscriptsubscriptΔ𝛿𝜒subscriptΓ0𝛿𝜒subscriptΓ02𝜂0superscript𝐻2𝜋subscript𝑓𝑃𝑄2\lim_{k\gg\partial_{\eta}\theta_{0}}\Delta_{\frac{\delta\chi}{\Gamma_{0}}\frac% {\delta\chi}{\Gamma_{0}}}^{2}(\eta\rightarrow 0)\approx\left(\frac{H/(2\pi)}{f% _{PQ}}\right)^{2}roman_lim start_POSTSUBSCRIPT italic_k ≫ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_Δ start_POSTSUBSCRIPT divide start_ARG italic_δ italic_χ end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG divide start_ARG italic_δ italic_χ end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η → 0 ) ≈ ( divide start_ARG italic_H / ( 2 italic_π ) end_ARG start_ARG italic_f start_POSTSUBSCRIPT italic_P italic_Q end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (60)

which is the same as the usual equilibrium spectrum. In matching Eqs. (59) and (60), there is a sound-speed related factor shift in where the blue tilt region will match the plateau, and this is the hallmark of our current model flowing from one rotating phase conformal field theory to the usual Goldstone case which from the perspective Eq. (31) corresponds to a time-dependent scenario.

Note that Bunch-Davies boundary condition is in the limit k/(aH)𝑘𝑎𝐻k/(aH)\rightarrow\inftyitalic_k / ( italic_a italic_H ) → ∞. If \infty is interpreted modestly as ηθ0/k1greater-than-or-equivalent-tosubscript𝜂subscript𝜃0𝑘1\partial_{\eta}\theta_{0}/k\gtrsim 1∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT / italic_k ≳ 1, we see that the δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ correlation function dominates in the UV. This indicates that the kinetic term of δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ is important in the Bunch-Davies limit and δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ cannot be integrated out in this limit. Indeed, one can explicitly compute

ΔηδΓηδχ2(k,η<ηtr)=1a2(η)k32π2(iηθ0)superscriptsubscriptΔsubscript𝜂𝛿Γsubscript𝜂𝛿𝜒2𝑘𝜂subscript𝜂tr1superscript𝑎2𝜂superscript𝑘32superscript𝜋2𝑖subscript𝜂subscript𝜃0\Delta_{\partial_{\eta}\delta\Gamma\partial_{\eta}\delta\chi}^{2}(k,\eta<\eta_% {{\rm tr}})=\frac{1}{a^{2}(\eta)}\frac{k^{3}}{2\pi^{2}}\left(i\partial_{\eta}% \theta_{0}\right)roman_Δ start_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ roman_Γ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) = divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_i ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) (61)

which says that there is a strong mixing between δχ𝛿𝜒\delta\chiitalic_δ italic_χ and δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ in the modest kinematic range reasonable for standard Bunch-Davies boundary conditions.888Because ηΓ(x)ηχ(y)delimited-⟨⟩subscript𝜂Γ𝑥subscript𝜂𝜒𝑦\left\langle\partial_{\eta}\Gamma(\vec{x})\partial_{\eta}\chi(\vec{y})\right\rangle⟨ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT roman_Γ ( over→ start_ARG italic_x end_ARG ) ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_χ ( over→ start_ARG italic_y end_ARG ) ⟩ is not a Hermitian correlator, it does not have a direct measurability: the measurable correlation ηΓ(x)ηχ(y)+ηχ(y)ηΓ(x)delimited-⟨⟩subscript𝜂Γ𝑥subscript𝜂𝜒𝑦subscript𝜂𝜒𝑦subscript𝜂Γ𝑥\left\langle\partial_{\eta}\Gamma(\vec{x})\partial_{\eta}\chi(\vec{y})+% \partial_{\eta}\chi(\vec{y})\partial_{\eta}\Gamma(\vec{x})\right\rangle⟨ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT roman_Γ ( over→ start_ARG italic_x end_ARG ) ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_χ ( over→ start_ARG italic_y end_ARG ) + ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_χ ( over→ start_ARG italic_y end_ARG ) ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT roman_Γ ( over→ start_ARG italic_x end_ARG ) ⟩ vanishes at least at this order in perturbation theory. Nonetheless, the kinetic correlations will appear in quantum dynamics including interactions. We will leave this topic to a future investigation. Even more impressively, we know that even in the small k𝑘kitalic_k limit, there is essentially no distinction between the δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ kinetic correlator and the δχ𝛿𝜒\delta\chiitalic_δ italic_χ kinetic correlator

limkηθ0ΔηδΓηδΓ2(k,η<ηtr)subscriptmuch-less-than𝑘subscript𝜂subscript𝜃0superscriptsubscriptΔsubscript𝜂𝛿Γsubscript𝜂𝛿Γ2𝑘𝜂subscript𝜂tr\displaystyle\lim_{k\ll\partial_{\eta}\theta_{0}}\Delta_{\partial_{\eta}\delta% \Gamma\partial_{\eta}\delta\Gamma}^{2}(k,\eta<\eta_{{\rm tr}})roman_lim start_POSTSUBSCRIPT italic_k ≪ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_Δ start_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ roman_Γ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) 1a2(η)32k32π2(ηθ0),absent1superscript𝑎2𝜂32superscript𝑘32superscript𝜋2subscript𝜂subscript𝜃0\displaystyle\approx\frac{1}{a^{2}(\eta)}\sqrt{\frac{3}{2}}\frac{k^{3}}{2\pi^{% 2}}\left(\partial_{\eta}\theta_{0}\right),≈ divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG square-root start_ARG divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , (62)
limkηθ0Δηδχηδχ2(k,η<ηtr)subscriptmuch-less-than𝑘subscript𝜂subscript𝜃0superscriptsubscriptΔsubscript𝜂𝛿𝜒subscript𝜂𝛿𝜒2𝑘𝜂subscript𝜂tr\displaystyle\lim_{k\ll\partial_{\eta}\theta_{0}}\Delta_{\partial_{\eta}\delta% \chi\partial_{\eta}\delta\chi}^{2}(k,\eta<\eta_{{\rm tr}})roman_lim start_POSTSUBSCRIPT italic_k ≪ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_Δ start_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_χ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) 1a2(η)23k32π2(ηθ0),absent1superscript𝑎2𝜂23superscript𝑘32superscript𝜋2subscript𝜂subscript𝜃0\displaystyle\approx\frac{1}{a^{2}(\eta)}\sqrt{\frac{2}{3}}\frac{k^{3}}{2\pi^{% 2}}\left(\partial_{\eta}\theta_{0}\right),≈ divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG square-root start_ARG divide start_ARG 2 end_ARG start_ARG 3 end_ARG end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , (63)

in the time-independent conformal phase. This says you cannot really integrate out δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ for any k𝑘kitalic_k if you care about the kinetic term.999Of course kinetic terms become more important for larger k𝑘kitalic_k values. This implies that the only way to justify completely integrating out the δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ mode in this cosmological context is not to use the standard Bunch-Davies conditions, but require a non-standard restriction of modes that satisfy

kηθ01much-less-than𝑘subscript𝜂subscript𝜃01\frac{k}{\partial_{\eta}\theta_{0}}\ll 1divide start_ARG italic_k end_ARG start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ≪ 1 (64)

and neglect kinetic aspects of inhomogeneity correlator physics.

III.2 Post-time-independent-conformal-era time evolution

After the time-independent conformal era ends, what happens to these spectra? In this section, we will consider the time evolution of our coupled system during inflation and determine the dimensionless power spectrum for the axial and radial fields as η0𝜂0\eta\rightarrow 0italic_η → 0. We consider the equation of motion for the background field Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT derived from Eq. (11) and substitute ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT with the conserved angular momentum L𝐿Litalic_L defined by Eq. (12):

η2Γ0+2ηaaηΓ0+(2M2a2+λΓ02a2(La2Γ02)2)Γ0=0.superscriptsubscript𝜂2subscriptΓ02subscript𝜂𝑎𝑎subscript𝜂subscriptΓ02superscript𝑀2superscript𝑎2𝜆superscriptsubscriptΓ02superscript𝑎2superscript𝐿superscript𝑎2superscriptsubscriptΓ022subscriptΓ00\partial_{\eta}^{2}\Gamma_{0}+2\frac{\partial_{\eta}a}{a}\partial_{\eta}\Gamma% _{0}+\left(-2M^{2}a^{2}+\lambda\Gamma_{0}^{2}a^{2}-\left(\frac{L}{a^{2}\Gamma_% {0}^{2}}\right)^{2}\right)\Gamma_{0}=0.∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + 2 divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( divide start_ARG italic_L end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 . (65)

Note the in the limit η0𝜂0\eta\rightarrow 0italic_η → 0, the radial field settles to the minimum

Γ0,min=M2λfPQsubscriptΓ0min𝑀2𝜆subscript𝑓PQ\Gamma_{0,{\rm min}}=M\sqrt{\frac{2}{\lambda}}\equiv f_{{\rm PQ}}roman_Γ start_POSTSUBSCRIPT 0 , roman_min end_POSTSUBSCRIPT = italic_M square-root start_ARG divide start_ARG 2 end_ARG start_ARG italic_λ end_ARG end_ARG ≡ italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT (66)

and the angular velocity decays as H3/a2superscript𝐻3superscript𝑎2H^{3}/a^{2}italic_H start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT / italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Using the full solution for the background field Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, we can obtain the evolution of the linear perturbations δϕkn=(δΓk,δχk)n𝛿superscriptsubscriptitalic-ϕ𝑘𝑛superscript𝛿subscriptΓ𝑘𝛿subscript𝜒𝑘𝑛\delta\phi_{k}^{n}=\left(\delta\Gamma_{k},\delta\chi_{k}\right)^{n}italic_δ italic_ϕ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = ( italic_δ roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_δ italic_χ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT for each mode k𝑘kitalic_k by solving the mode function hkjm(η)superscriptsubscript𝑘𝑗𝑚𝜂h_{k}^{jm}(\eta)italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j italic_m end_POSTSUPERSCRIPT ( italic_η ) using the Eq. (296) derived in Appendix D:

[δnjη2+κnjη+(𝒲2)nj]hkjm(η)=0delimited-[]superscript𝛿𝑛𝑗superscriptsubscript𝜂2superscript𝜅𝑛𝑗subscript𝜂superscriptsuperscript𝒲2𝑛𝑗superscriptsubscript𝑘𝑗𝑚𝜂0\left[\delta^{nj}\partial_{\eta}^{2}+\kappa^{nj}\partial_{\eta}+\left(\mathcal% {W}^{2}\right)^{nj}\right]h_{k}^{jm}(\eta)=0[ italic_δ start_POSTSUPERSCRIPT italic_n italic_j end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_κ start_POSTSUPERSCRIPT italic_n italic_j end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT + ( caligraphic_W start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_n italic_j end_POSTSUPERSCRIPT ] italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j italic_m end_POSTSUPERSCRIPT ( italic_η ) = 0 (67)

where n𝑛nitalic_n is the flavor index and m𝑚mitalic_m runs over distinct frequencies. We set the initial conditions at ηisubscript𝜂𝑖\eta_{i}italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT for each of the two frequency solutions as follows:

(hk1(η)hk2(η))η=ηi++superscriptsubscriptsuperscriptsubscript𝑘1𝜂superscriptsubscript𝑘2𝜂𝜂subscript𝜂𝑖absent\displaystyle\left(\begin{array}[]{c}h_{k}^{1}(\eta)\\ h_{k}^{2}(\eta)\end{array}\right)_{\eta=\eta_{i}}^{++}( start_ARRAY start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW end_ARRAY ) start_POSTSUBSCRIPT italic_η = italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT =c++(V++1(ηi)V++2(ηi))eiω++ηi,(ηhk1(η)ηhk2(η))η=ηi++=iω++(hk1(η)hk2(η))η=ηi++formulae-sequenceabsentsubscript𝑐absentsuperscriptsubscript𝑉absent1subscript𝜂𝑖superscriptsubscript𝑉absent2subscript𝜂𝑖superscript𝑒𝑖subscript𝜔absentsubscript𝜂𝑖superscriptsubscriptsubscript𝜂superscriptsubscript𝑘1𝜂subscript𝜂superscriptsubscript𝑘2𝜂𝜂subscript𝜂𝑖absent𝑖subscript𝜔absentsuperscriptsubscriptsuperscriptsubscript𝑘1𝜂superscriptsubscript𝑘2𝜂𝜂subscript𝜂𝑖absent\displaystyle=c_{++}\left(\begin{array}[]{c}V_{++}^{1}(\eta_{i})\\ V_{++}^{2}(\eta_{i})\end{array}\right)e^{-i\omega_{++}\eta_{i}},\qquad\left(% \begin{array}[]{c}\partial_{\eta}h_{k}^{1}(\eta)\\ \partial_{\eta}h_{k}^{2}(\eta)\end{array}\right)_{\eta=\eta_{i}}^{++}=-i\omega% _{++}\left(\begin{array}[]{c}h_{k}^{1}(\eta)\\ h_{k}^{2}(\eta)\end{array}\right)_{\eta=\eta_{i}}^{++}= italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ( start_ARRAY start_ROW start_CELL italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_CELL end_ROW start_ROW start_CELL italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARRAY ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , ( start_ARRAY start_ROW start_CELL ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW start_ROW start_CELL ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW end_ARRAY ) start_POSTSUBSCRIPT italic_η = italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT = - italic_i italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ( start_ARRAY start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW end_ARRAY ) start_POSTSUBSCRIPT italic_η = italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT (76)

and

(hk1(η)hk2(η))η=ηi+superscriptsubscriptsuperscriptsubscript𝑘1𝜂superscriptsubscript𝑘2𝜂𝜂subscript𝜂𝑖absent\displaystyle\left(\begin{array}[]{c}h_{k}^{1}(\eta)\\ h_{k}^{2}(\eta)\end{array}\right)_{\eta=\eta_{i}}^{+-}( start_ARRAY start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW end_ARRAY ) start_POSTSUBSCRIPT italic_η = italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT =c+(V+1(ηi)V+2(ηi))eiω+ηi,(ηhk1(η)ηhk2(η))η=ηi+=iω+(hk1(η)hk2(η))η=ηi+.formulae-sequenceabsentsubscript𝑐absentsuperscriptsubscript𝑉absent1subscript𝜂𝑖superscriptsubscript𝑉absent2subscript𝜂𝑖superscript𝑒𝑖subscript𝜔absentsubscript𝜂𝑖superscriptsubscriptsubscript𝜂superscriptsubscript𝑘1𝜂subscript𝜂superscriptsubscript𝑘2𝜂𝜂subscript𝜂𝑖absent𝑖subscript𝜔absentsuperscriptsubscriptsuperscriptsubscript𝑘1𝜂superscriptsubscript𝑘2𝜂𝜂subscript𝜂𝑖absent\displaystyle=c_{+-}\left(\begin{array}[]{c}V_{+-}^{1}(\eta_{i})\\ V_{+-}^{2}(\eta_{i})\end{array}\right)e^{-i\omega_{+-}\eta_{i}},\qquad\left(% \begin{array}[]{c}\partial_{\eta}h_{k}^{1}(\eta)\\ \partial_{\eta}h_{k}^{2}(\eta)\end{array}\right)_{\eta=\eta_{i}}^{+-}=-i\omega% _{+-}\left(\begin{array}[]{c}h_{k}^{1}(\eta)\\ h_{k}^{2}(\eta)\end{array}\right)_{\eta=\eta_{i}}^{+-}.= italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ( start_ARRAY start_ROW start_CELL italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_CELL end_ROW start_ROW start_CELL italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_CELL end_ROW end_ARRAY ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , ( start_ARRAY start_ROW start_CELL ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW start_ROW start_CELL ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW end_ARRAY ) start_POSTSUBSCRIPT italic_η = italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT = - italic_i italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ( start_ARRAY start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW end_ARRAY ) start_POSTSUBSCRIPT italic_η = italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT . (85)

For modes kηθ0much-less-than𝑘subscript𝜂subscript𝜃0k\ll\partial_{\eta}\theta_{0}italic_k ≪ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, the above initial conditions correspond to the mode amplitudes

(hk1(η)hk2(η))η=ηi++163/4ηθ0(3i2)superscriptsubscriptsuperscriptsubscript𝑘1𝜂superscriptsubscript𝑘2𝜂𝜂subscript𝜂𝑖absent1superscript634subscript𝜂subscript𝜃03𝑖2\left(\begin{array}[]{c}h_{k}^{1}(\eta)\\ h_{k}^{2}(\eta)\end{array}\right)_{\eta=\eta_{i}}^{++}\approx\frac{1}{6^{3/4}% \sqrt{\partial_{\eta}\theta_{0}}}\left(\begin{array}[]{c}\sqrt{3}\\ -i\sqrt{2}\end{array}\right)( start_ARRAY start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW end_ARRAY ) start_POSTSUBSCRIPT italic_η = italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT ≈ divide start_ARG 1 end_ARG start_ARG 6 start_POSTSUPERSCRIPT 3 / 4 end_POSTSUPERSCRIPT square-root start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG end_ARG ( start_ARRAY start_ROW start_CELL square-root start_ARG 3 end_ARG end_CELL end_ROW start_ROW start_CELL - italic_i square-root start_ARG 2 end_ARG end_CELL end_ROW end_ARRAY ) (86)

and

(hk1(η)hk2(η))η=ηi+1233/4(k/ηθ0i3/k)superscriptsubscriptsuperscriptsubscript𝑘1𝜂superscriptsubscript𝑘2𝜂𝜂subscript𝜂𝑖absent12superscript334𝑘subscript𝜂subscript𝜃0𝑖3𝑘\left(\begin{array}[]{c}h_{k}^{1}(\eta)\\ h_{k}^{2}(\eta)\end{array}\right)_{\eta=\eta_{i}}^{+-}\approx\frac{1}{\sqrt{2}% 3^{3/4}}\left(\begin{array}[]{c}\sqrt{k}/\partial_{\eta}\theta_{0}\\ i\sqrt{3}/\sqrt{k}\end{array}\right)( start_ARRAY start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW end_ARRAY ) start_POSTSUBSCRIPT italic_η = italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT ≈ divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG 3 start_POSTSUPERSCRIPT 3 / 4 end_POSTSUPERSCRIPT end_ARG ( start_ARRAY start_ROW start_CELL square-root start_ARG italic_k end_ARG / ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_i square-root start_ARG 3 end_ARG / square-root start_ARG italic_k end_ARG end_CELL end_ROW end_ARRAY ) (87)

such that the canonical field amplitudes have the ratios

|δΓk(ηi)δχk(ηi)|++32,superscript𝛿subscriptΓ𝑘subscript𝜂𝑖𝛿subscript𝜒𝑘subscript𝜂𝑖absent32\left|\frac{\delta\Gamma_{k}(\eta_{i})}{\delta\chi_{k}(\eta_{i})}\right|^{++}% \approx\sqrt{\frac{3}{2}},| divide start_ARG italic_δ roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG start_ARG italic_δ italic_χ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG | start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT ≈ square-root start_ARG divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_ARG , (88)

and

|δΓk(ηi)δχk(ηi)|+k3ηθ0superscript𝛿subscriptΓ𝑘subscript𝜂𝑖𝛿subscript𝜒𝑘subscript𝜂𝑖absent𝑘3subscript𝜂subscript𝜃0\left|\frac{\delta\Gamma_{k}(\eta_{i})}{\delta\chi_{k}(\eta_{i})}\right|^{+-}% \approx\frac{k}{\sqrt{3}\partial_{\eta}\theta_{0}}| divide start_ARG italic_δ roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG start_ARG italic_δ italic_χ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG | start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT ≈ divide start_ARG italic_k end_ARG start_ARG square-root start_ARG 3 end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG (89)

for the +++++ + and ++-+ - frequency solutions respectively. The fact that the radial mode amplitude vanishes in the k0𝑘0k\rightarrow 0italic_k → 0 limit indicates that the smaller frequency mode is primarily made of the angular mode at the initial time. Using these initial conditions for the mode functions hknrsuperscriptsubscript𝑘𝑛𝑟h_{k}^{nr}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT, we evolve the coupled system from ηisubscript𝜂𝑖\eta_{i}italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT to a late time ηfsubscript𝜂𝑓\eta_{f}italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT when the background radial field Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is settled at fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT and all modes of interest k𝑘kitalic_k are super-horizon. The above results also imply that the amplitude of the axial fluctuations for modes with kηθ0much-less-than𝑘subscript𝜂subscript𝜃0k\ll\partial_{\eta}\theta_{0}italic_k ≪ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is dominated by the lighter frequency (ω+)subscript𝜔absent\left(\omega_{+-}\right)( italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) solutions since

limkηθ0|δχk(ηi)|++|δχk(ηi)|+O(kηθ0).subscriptmuch-less-than𝑘subscript𝜂subscript𝜃0superscript𝛿subscript𝜒𝑘subscript𝜂𝑖absentsuperscript𝛿subscript𝜒𝑘subscript𝜂𝑖absent𝑂𝑘subscript𝜂subscript𝜃0\lim_{k\ll\partial_{\eta}\theta_{0}}\frac{\left|\delta\chi_{k}(\eta_{i})\right% |^{++}}{\left|\delta\chi_{k}(\eta_{i})\right|^{+-}}\approx O\left(\sqrt{\frac{% k}{\partial_{\eta}\theta_{0}}}\right).roman_lim start_POSTSUBSCRIPT italic_k ≪ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT divide start_ARG | italic_δ italic_χ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) | start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT end_ARG start_ARG | italic_δ italic_χ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) | start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT end_ARG ≈ italic_O ( square-root start_ARG divide start_ARG italic_k end_ARG start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG end_ARG ) . (90)

III.2.1 Adiabatic time-evolution example

Let us consider an example where we initialize the background radial field Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT at ηisubscript𝜂𝑖\eta_{i}italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT with the time-independent conformal solution

a(ηi)Γ0(ηi)=YcL1/3λ1/6.𝑎subscript𝜂𝑖subscriptΓ0subscript𝜂𝑖subscript𝑌𝑐superscript𝐿13superscript𝜆16a(\eta_{i})\Gamma_{0}(\eta_{i})=Y_{c}\equiv\frac{L^{1/3}}{\lambda^{1/6}}.italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ≡ divide start_ARG italic_L start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG start_ARG italic_λ start_POSTSUPERSCRIPT 1 / 6 end_POSTSUPERSCRIPT end_ARG . (91)

Furthermore, in this example, we set H=Hinf𝐻subscript𝐻infimumH=H_{\inf}italic_H = italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT, λ=1𝜆1\lambda=1italic_λ = 1 and fPQ=10Hinfsubscript𝑓PQ10subscript𝐻infimumf_{{\rm PQ}}=10H_{\inf}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT = 10 italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT such that M=fPQ/2𝑀subscript𝑓PQ2M=f_{{\rm PQ}}/\sqrt{2}italic_M = italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT / square-root start_ARG 2 end_ARG. We choose the conserved angular momentum L=λ109Hinf3a3(ηi)𝐿𝜆superscript109superscriptsubscript𝐻infimum3superscript𝑎3subscript𝜂𝑖L=\sqrt{\lambda}10^{9}H_{\inf}^{3}a^{3}(\eta_{i})italic_L = square-root start_ARG italic_λ end_ARG 10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ), hence Γ0(ηi)=1000HinfsubscriptΓ0subscript𝜂𝑖1000subscript𝐻infimum\Gamma_{0}(\eta_{i})=1000H_{\inf}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = 1000 italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT. Note that even though the radial field has a large displacement away from the minimum along a quartic potential, the effective radial mass is only order Hinfsubscript𝐻infH_{{\rm inf}}italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT due to the effects of the angular momentum. This cancellation is nothing more than the statement that stable orbits not passing through the origin exist with angular momentum conservation, and if the space does not expand, this orbit can persist indefinitely.

Refer to caption
Figure 2: Plot showing the time evolution of the background radial field Γ0(t)subscriptΓ0𝑡\Gamma_{0}(t)roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) during the quasi-dS phase of inflation. Starting from Γ0(ηi)=1000HinfsubscriptΓ0subscript𝜂𝑖1000subscript𝐻infimum\Gamma_{0}(\eta_{i})=1000H_{\inf}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = 1000 italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT, the field takes approximately 5555 efolds to settle to the minimum M2/λ=10Hinf𝑀2𝜆10subscript𝐻infimumM\sqrt{2/\lambda}=10H_{\inf}italic_M square-root start_ARG 2 / italic_λ end_ARG = 10 italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT. The initial evolution of the field a(η)Γ(η)=constant.𝑎𝜂Γ𝜂constanta(\eta)\Gamma(\eta)={\rm constant}.italic_a ( italic_η ) roman_Γ ( italic_η ) = roman_constant .

In Fig. 2, we show the time evolution of the background radial field. We observe that for our choice of fiducial values, the radial field takes approximately 5 efolds to settle to the minimum. This is close to the analytic estimate

ΔNsettleln(Yc(ηi)/a(ηi)fPQ1+H2/M2).Δsubscript𝑁settlesubscript𝑌𝑐subscript𝜂𝑖𝑎subscript𝜂𝑖subscript𝑓PQ1superscript𝐻2superscript𝑀2\Delta N_{{\rm settle}}\approx\ln\left(\frac{Y_{c}(\eta_{i})/a(\eta_{i})}{f_{{% \rm PQ}}\sqrt{1+H^{2}/M^{2}}}\right).roman_Δ italic_N start_POSTSUBSCRIPT roman_settle end_POSTSUBSCRIPT ≈ roman_ln ( divide start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) / italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG start_ARG italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT square-root start_ARG 1 + italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG ) . (92)

In Fig. 3, we show the time evolution of the corresponding radial and axial mode functions for the two frequency solutions ω+±subscript𝜔absentplus-or-minus\omega_{+\pm}italic_ω start_POSTSUBSCRIPT + ± end_POSTSUBSCRIPT for a fiducial wavenumber k/a(ηi)=10𝑘𝑎subscript𝜂𝑖10k/a(\eta_{i})=10italic_k / italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = 10. The mode amplitudes hk2rsuperscriptsubscript𝑘2𝑟h_{k}^{2r}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_r end_POSTSUPERSCRIPT corresponding to the axial field (n=2)𝑛2(n=2)( italic_n = 2 ) freeze out when the background radial field settles to the minimum at time ttrsubscript𝑡𝑡𝑟t_{tr}italic_t start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT. In contrast, the radial perturbations corresponding to hk1rsuperscriptsubscript𝑘1𝑟h_{k}^{1r}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_r end_POSTSUPERSCRIPT persist in their massive state, undergoing continued decay. For the modes k<ηθ0λYc𝑘subscript𝜂subscript𝜃0𝜆subscript𝑌𝑐k<\partial_{\eta}\theta_{0}\equiv\sqrt{\lambda}Y_{c}italic_k < ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≡ square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, the mode function hk2rsuperscriptsubscript𝑘2𝑟h_{k}^{2r}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_r end_POSTSUPERSCRIPT corresponding to the lower frequency solution ωr=ω+subscript𝜔𝑟subscript𝜔absent\omega_{r}=\omega_{+-}italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT has the larger amplitude. This is mainly due to the overall normalization factor of 1/ωr1subscript𝜔𝑟1/\sqrt{\omega_{r}}1 / square-root start_ARG italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG. Hence, a lower frequency yields a comparatively larger mode amplitude.

Refer to caption
Figure 3: Plot showing the time evolution of the mode functions hknr/asuperscriptsubscript𝑘𝑛𝑟𝑎h_{k}^{nr}/aitalic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT / italic_a during the quasi de-Sitter phase of inflation for a fiducial mode k/a(ηi)=10Hinf𝑘𝑎subscript𝜂𝑖10subscript𝐻infk/a(\eta_{i})=10H_{{\rm inf}}italic_k / italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = 10 italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT where the background radial field moves along a trajectory as expected in the time-independent conformal period as shown in Fig. 2. The mode amplitudes hk2+±/asuperscriptsubscript𝑘limit-from2plus-or-minus𝑎h_{k}^{2+\pm}/aitalic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 + ± end_POSTSUPERSCRIPT / italic_a corresponding to the axial field freeze out when the background radial field settles to the minimum while the radial perturbations corresponding to hk1+±superscriptsubscript𝑘limit-from1plus-or-minush_{k}^{1+\pm}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 + ± end_POSTSUPERSCRIPT persist in their massive state, undergoing continued decay.

IV Deformations away from time-independent conformal limit

The previous section described a special initial condition leading to a time-independent Γ0(η)a(η)subscriptΓ0𝜂𝑎𝜂\Gamma_{0}(\eta)a(\eta)roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) italic_a ( italic_η ), leading to a time-independent conformal theory. Such cases are the analogs of circular orbits in mechanics. In this section, we describe deformations away from this time-independent conformal limit such that Γ0(η)a(η)subscriptΓ0𝜂𝑎𝜂\Gamma_{0}(\eta)a(\eta)roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) italic_a ( italic_η ) will have oscillations. These will imprint oscillations into the power spectrum as we will show.

IV.1 Equations of motion

Eq. (11) implies the background equations of motion (EoM) for the radial and angular degrees of freedom of

η2Γ0+2ηaaηΓ0+(2M2a2+λΓ02a2(ηθ0)2)Γ0superscriptsubscript𝜂2subscriptΓ02subscript𝜂𝑎𝑎subscript𝜂subscriptΓ02superscript𝑀2superscript𝑎2𝜆superscriptsubscriptΓ02superscript𝑎2superscriptsubscript𝜂subscript𝜃02subscriptΓ0\displaystyle\partial_{\eta}^{2}\Gamma_{0}+2\frac{\partial_{\eta}a}{a}\partial% _{\eta}\Gamma_{0}+\left(-2M^{2}a^{2}+\lambda\Gamma_{0}^{2}a^{2}-\left(\partial% _{\eta}\theta_{0}\right)^{2}\right)\Gamma_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + 2 divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT =0absent0\displaystyle=0= 0 (93)
η2θ+2ηaaηθ0+2ηΓ0Γ0ηθ0superscriptsubscript𝜂2𝜃2subscript𝜂𝑎𝑎subscript𝜂subscript𝜃02subscript𝜂subscriptΓ0subscriptΓ0subscript𝜂subscript𝜃0\displaystyle\partial_{\eta}^{2}\theta+2\frac{\partial_{\eta}a}{a}\partial_{% \eta}\theta_{0}+2\frac{\partial_{\eta}\Gamma_{0}}{\Gamma_{0}}\partial_{\eta}% \theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_θ + 2 divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + 2 divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT =0absent0\displaystyle=0= 0 (94)

where we have as usual assumed the background field to be spatially independent like the background metric. We distinguish the spatially inhomogeneous fluctuations of quantities Q𝑄Qitalic_Q with δQ.𝛿𝑄\delta Q.italic_δ italic_Q . Eq. (94) leads to the conserved angular momentum L𝐿Litalic_L as defined in Eq. (12). This can be interpreted as there being a comoving homogeneous U(1)𝑈1U(1)italic_U ( 1 ) charge density Γ02tθ0superscriptsubscriptΓ02subscript𝑡subscript𝜃0\Gamma_{0}^{2}\partial_{t}\theta_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT that dilutes as a3superscript𝑎3a^{-3}italic_a start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT. We also note from Eq. (93) that the background radial field has a force from (ηθ0)2Γ0superscriptsubscript𝜂subscript𝜃02subscriptΓ0\left(\partial_{\eta}\theta_{0}\right)^{2}\Gamma_{0}( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT that can cancel a part of (λΓ032M2Γ0)a2𝜆superscriptsubscriptΓ032superscript𝑀2subscriptΓ0superscript𝑎2\left(\lambda\Gamma_{0}^{3}-2M^{2}\Gamma_{0}\right)a^{2}( italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT depending on the size of the angular momentum L𝐿Litalic_L. This is the key cancellation that allows the radial roll to be slow similar to the flat direction situation of (Kasuya:2009up, ) which is only lifted by O(H2)𝑂superscript𝐻2O\left(H^{2}\right)italic_O ( italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) mass terms. The linear order perturbation variables δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ and δχΓ0δθ𝛿𝜒subscriptΓ0𝛿𝜃\delta\chi\equiv\Gamma_{0}\delta\thetaitalic_δ italic_χ ≡ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_δ italic_θ in Fourier space satisfy the mode equations given in Eqs. (279) and (280). Here, we note that one can easily identify most of the axial fluctuation δΣ𝛿Σ\delta\Sigmaitalic_δ roman_Σ with δχ𝛿𝜒\delta\chiitalic_δ italic_χ since

δΣ=Γδθ+θδΓ𝛿ΣΓ𝛿𝜃𝜃𝛿Γ\delta\Sigma=\Gamma\delta\theta+\theta\delta\Gammaitalic_δ roman_Σ = roman_Γ italic_δ italic_θ + italic_θ italic_δ roman_Γ (95)

and in the limit δΓ/Γδθ/θmuch-less-than𝛿ΓΓ𝛿𝜃𝜃\delta\Gamma/\Gamma\ll\delta\theta/\thetaitalic_δ roman_Γ / roman_Γ ≪ italic_δ italic_θ / italic_θ, the axial fluctuations are given as δΣδχ𝛿Σ𝛿𝜒\delta\Sigma\approx\delta\chiitalic_δ roman_Σ ≈ italic_δ italic_χ. Eqs. (279) and (280) show that the fluctuations in the radial and angular directions are coupled at linear order via the dominant quadratic interaction term int2δΓa2ημνμδχνθ02𝛿Γsuperscript𝑎2subscript𝜂𝜇𝜈superscript𝜇𝛿𝜒superscript𝜈subscript𝜃0subscriptint\mathcal{L}_{{\rm int}}\supset-2\delta\Gamma a^{2}\eta_{\mu\nu}\partial^{\mu}% \delta\chi\partial^{\nu}\theta_{0}caligraphic_L start_POSTSUBSCRIPT roman_int end_POSTSUBSCRIPT ⊃ - 2 italic_δ roman_Γ italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_δ italic_χ ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. This spontaneous conformal symmetry breaking induced coupling is a novel feature of field fluctuations about a rotating background.

In Sec. III we highlighted that the coupled δΓδχ𝛿Γ𝛿𝜒\delta\Gamma-\delta\chiitalic_δ roman_Γ - italic_δ italic_χ system can be diagonalized with two sets of normal frequencies denoted as ω++subscript𝜔absent\omega_{++}italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT and ω+subscript𝜔absent\omega_{+-}italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT. In the IR limit corresponding to modes with k2λYc2much-less-thansuperscript𝑘2𝜆superscriptsubscript𝑌𝑐2k^{2}\ll\lambda Y_{c}^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≪ italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, the lowest frequency ω+subscript𝜔absent\omega_{+-}italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT has a dispersion relationship that is linear in k𝑘kitalic_k and the associated mode function resembles a Goldstone mode. In this limiting case corresponding to a Goldstone mode, it is possible to integrate out the radial mode δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ and obtain a decoupled EoM for the axial field fluctuations δχ𝛿𝜒\delta\chiitalic_δ italic_χ. To this end, we rewrite the EoM for the scaled radial fluctuation δY𝛿𝑌\delta Yitalic_δ italic_Y from Eq. (284) and neglect the kinetic term η2δYsuperscriptsubscript𝜂2𝛿𝑌\partial_{\eta}^{2}\delta Y∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_Y:

i2δY2ηθ0ηδX+(2M2a2+3λY02(ηθ0)2η2aa)δY+2ηθ0(ηY0Y0)δX=0.superscriptsubscript𝑖2𝛿𝑌2subscript𝜂subscript𝜃0subscript𝜂𝛿𝑋2superscript𝑀2superscript𝑎23𝜆superscriptsubscript𝑌02superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝜂2𝑎𝑎𝛿𝑌2subscript𝜂subscript𝜃0subscript𝜂subscript𝑌0subscript𝑌0𝛿𝑋0-\partial_{i}^{2}\delta Y-2\partial_{\eta}\theta_{0}\partial_{\eta}\delta X+% \left(-2M^{2}a^{2}+3\lambda Y_{0}^{2}-\left(\partial_{\eta}\theta_{0}\right)^{% 2}-\frac{\partial_{\eta}^{2}a}{a}\right)\delta Y+2\partial_{\eta}\theta_{0}% \left(\frac{\partial_{\eta}Y_{0}}{Y_{0}}\right)\delta X=0.- ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_Y - 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_X + ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ) italic_δ italic_Y + 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) italic_δ italic_X = 0 . (96)

As noted in the discussion around Eq. (64), we can justify this step using the fact that we are not concerned with kinetic correlators. Going to the Fourier space and evaluating within the conformal regime, we obtain the expression

(k22M2a2+3λY02(ηθ0)2η2aa)δYk=2ηθ0ηδXk.superscript𝑘22superscript𝑀2superscript𝑎23𝜆superscriptsubscript𝑌02superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝜂2𝑎𝑎𝛿subscript𝑌𝑘2subscript𝜂subscript𝜃0subscript𝜂𝛿subscript𝑋𝑘\left(k^{2}-2M^{2}a^{2}+3\lambda Y_{0}^{2}-\left(\partial_{\eta}\theta_{0}% \right)^{2}-\frac{\partial_{\eta}^{2}a}{a}\right)\delta Y_{k}=2\partial_{\eta}% \theta_{0}\partial_{\eta}\delta X_{k}.( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ) italic_δ italic_Y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_X start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT . (97)

The above expression allows us to replace δYk𝛿subscript𝑌𝑘\delta Y_{k}italic_δ italic_Y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT in the EoM for the axial field. Thus, we arrive at the following decoupled EoM for the scaled axial field δX𝛿𝑋\delta Xitalic_δ italic_X:

η2δXk+2ηθ0η(2ηθ0ηδXk(k22M2a2+3λY02(ηθ0)2η2aa))superscriptsubscript𝜂2𝛿subscript𝑋𝑘2subscript𝜂subscript𝜃0subscript𝜂2subscript𝜂subscript𝜃0subscript𝜂𝛿subscript𝑋𝑘superscript𝑘22superscript𝑀2superscript𝑎23𝜆superscriptsubscript𝑌02superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝜂2𝑎𝑎\displaystyle\partial_{\eta}^{2}\delta X_{k}+2\partial_{\eta}\theta_{0}\,% \partial_{\eta}\left(\frac{2\partial_{\eta}\theta_{0}\partial_{\eta}\delta X_{% k}}{\left(k^{2}-2M^{2}a^{2}+3\lambda Y_{0}^{2}-\left(\partial_{\eta}\theta_{0}% \right)^{2}-\frac{\partial_{\eta}^{2}a}{a}\right)}\right)\qquad\qquad∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_X start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ( divide start_ARG 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_X start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_ARG start_ARG ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ) end_ARG )
+(k22M2a2+λY02(ηθ0)2η2aa)δXksuperscript𝑘22superscript𝑀2superscript𝑎2𝜆superscriptsubscript𝑌02superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝜂2𝑎𝑎𝛿subscript𝑋𝑘\displaystyle+\left(k^{2}-2M^{2}a^{2}+\lambda Y_{0}^{2}-\left(\partial_{\eta}% \theta_{0}\right)^{2}-\frac{\partial_{\eta}^{2}a}{a}\right)\delta X_{k}+ ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ) italic_δ italic_X start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT =0absent0\displaystyle=0= 0 (98)

which can be rewritten as

η2δXk(1+4(ηθ0)2(k22M2a2+3λY02(ηθ0)2η2aa))superscriptsubscript𝜂2𝛿subscript𝑋𝑘14superscriptsubscript𝜂subscript𝜃02superscript𝑘22superscript𝑀2superscript𝑎23𝜆superscriptsubscript𝑌02superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝜂2𝑎𝑎\displaystyle\partial_{\eta}^{2}\delta X_{k}\left(1+\frac{4\left(\partial_{% \eta}\theta_{0}\right)^{2}}{\left(k^{2}-2M^{2}a^{2}+3\lambda Y_{0}^{2}-\left(% \partial_{\eta}\theta_{0}\right)^{2}-\frac{\partial_{\eta}^{2}a}{a}\right)}% \right)\qquad\qquad∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_X start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( 1 + divide start_ARG 4 ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ) end_ARG )
+(k22M2a2+λY02(ηθ0)2η2aa)δXk0superscript𝑘22superscript𝑀2superscript𝑎2𝜆superscriptsubscript𝑌02superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝜂2𝑎𝑎𝛿subscript𝑋𝑘0\displaystyle+\left(k^{2}-2M^{2}a^{2}+\lambda Y_{0}^{2}-\left(\partial_{\eta}% \theta_{0}\right)^{2}-\frac{\partial_{\eta}^{2}a}{a}\right)\delta X_{k}\approx 0+ ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ) italic_δ italic_X start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≈ 0 (99)

where the factor associated with the kinetic term η2δXksuperscriptsubscript𝜂2𝛿subscript𝑋𝑘\partial_{\eta}^{2}\delta X_{k}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_X start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT evaluates to

(1+4(ηθ0)2(k22M2a2+3λY02(ηθ0)2η2aa))314superscriptsubscript𝜂subscript𝜃02superscript𝑘22superscript𝑀2superscript𝑎23𝜆superscriptsubscript𝑌02superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝜂2𝑎𝑎3\left(1+\frac{4\left(\partial_{\eta}\theta_{0}\right)^{2}}{\left(k^{2}-2M^{2}a% ^{2}+3\lambda Y_{0}^{2}-\left(\partial_{\eta}\theta_{0}\right)^{2}-\frac{% \partial_{\eta}^{2}a}{a}\right)}\right)\approx 3( 1 + divide start_ARG 4 ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ) end_ARG ) ≈ 3 (100)

in the IR limit (kλYc)much-less-than𝑘𝜆subscript𝑌𝑐\left(k\ll\sqrt{\lambda}Y_{c}\right)( italic_k ≪ square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ) of the time-independent conformal solution (λYc=ηθ0)𝜆subscript𝑌𝑐subscript𝜂subscript𝜃0\left(\sqrt{\lambda}Y_{c}=\partial_{\eta}\theta_{0}\right)( square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ). Therefore, in this limiting scenario, the strong coupling with the radial mode only changes the overall normalization for the kinetic term of δχ𝛿𝜒\delta\chiitalic_δ italic_χ.

In time coordinate t𝑡titalic_t, the mass-squared term for the perturbations δχ𝛿𝜒\delta\chiitalic_δ italic_χ can be identified from the decoupled EoM as

mδχ2=t2Γ0Γ03tΓ0Γ0=2M2+λΓ02L2a6Γ4superscriptsubscript𝑚𝛿𝜒2superscriptsubscript𝑡2subscriptΓ0subscriptΓ03subscript𝑡subscriptΓ0subscriptΓ02superscript𝑀2𝜆superscriptsubscriptΓ02superscript𝐿2superscript𝑎6superscriptΓ4m_{\delta\chi}^{2}=-\frac{\partial_{t}^{2}\Gamma_{0}}{\Gamma_{0}}-3\frac{% \partial_{t}\Gamma_{0}}{\Gamma_{0}}=-2M^{2}+\lambda\Gamma_{0}^{2}-\frac{L^{2}}% {a^{6}\Gamma^{4}}italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = - divide start_ARG ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG - 3 divide start_ARG ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG = - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT roman_Γ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG (101)

which goes to zero when the radial field settles to its vacuum state, say at time ttr,subscript𝑡trt_{{\rm tr}},italic_t start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT , and the angular momentum term is negligible. In this limit when δχ𝛿𝜒\delta\chiitalic_δ italic_χ becomes massless, the quantum fluctuation mode δχ𝛿𝜒\delta\chiitalic_δ italic_χ does not decay any further, whereas modes decay when mδχ2superscriptsubscript𝑚𝛿𝜒2m_{\delta\chi}^{2}italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is non-negligible (even if the modes are superhorizon). The isocurvature spectrum has a k𝑘kitalic_k dependence that is usually parameterized by the isocurvature spectral index nIsubscript𝑛𝐼n_{I}italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT:

Δs2(k)knI1.proportional-tosuperscriptsubscriptΔ𝑠2𝑘superscript𝑘subscript𝑛𝐼1\Delta_{s}^{2}(k)\propto k^{n_{I}-1}.roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ) ∝ italic_k start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT . (102)

For a slowly varying mass of the linear spectator fluctuation δχ𝛿𝜒\delta\chiitalic_δ italic_χ, the decoupled EoM in Eq. (99) suggests that the spectral index nIsubscript𝑛𝐼n_{I}italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT can be evaluated as

nI(k)1=33149mδχ2(k)subscript𝑛𝐼𝑘133149superscriptsubscript𝑚𝛿𝜒2𝑘n_{I}(k)-1=3-3\sqrt{1-\frac{4}{9}m_{\delta\chi}^{2}(k)}italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ( italic_k ) - 1 = 3 - 3 square-root start_ARG 1 - divide start_ARG 4 end_ARG start_ARG 9 end_ARG italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ) end_ARG (103)

where mδχ2(k)superscriptsubscript𝑚𝛿𝜒2𝑘m_{\delta\chi}^{2}(k)italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ) is the effective mass-squared function from Eq. (101) evaluated at a time tksubscript𝑡𝑘t_{k}italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT when k/a(tk)1𝑘𝑎subscript𝑡𝑘1k/a(t_{k})\approx 1italic_k / italic_a ( italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) ≈ 1. Hence, mδχ2(k)superscriptsubscript𝑚𝛿𝜒2𝑘m_{\delta\chi}^{2}(k)italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ) must be at least O(H2)𝑂superscript𝐻2O\left(H^{2}\right)italic_O ( italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) for a blue isocurvature power spectrum, which can be achieved early in the evolution of Γ(t)Γ𝑡\Gamma(t)roman_Γ ( italic_t ) due to the cancellation between λΓ02𝜆superscriptsubscriptΓ02\lambda\Gamma_{0}^{2}italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and θ˙2superscript˙𝜃2\dot{\theta}^{2}over˙ start_ARG italic_θ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. For the time-independent conformal solution where Y0aΓ0=constantsubscript𝑌0𝑎subscriptΓ0constantY_{0}\equiv a\Gamma_{0}={\rm constant}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≡ italic_a roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = roman_constant until t<ttr𝑡subscript𝑡𝑡𝑟t<t_{tr}italic_t < italic_t start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT, we have

2M2+λΓ02L2a6Γ4=η2aa3=2H2t<ttrformulae-sequence2superscript𝑀2𝜆superscriptsubscriptΓ02superscript𝐿2superscript𝑎6superscriptΓ4superscriptsubscript𝜂2𝑎superscript𝑎32superscript𝐻2for-all𝑡subscript𝑡𝑡𝑟-2M^{2}+\lambda\Gamma_{0}^{2}-\frac{L^{2}}{a^{6}\Gamma^{4}}=\frac{\partial_{% \eta}^{2}a}{a^{3}}=2H^{2}\quad\forall t<t_{tr}- 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT roman_Γ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG = divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG = 2 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∀ italic_t < italic_t start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT (104)

which yields

mδχ2(k<ktr)=2H2superscriptsubscript𝑚𝛿𝜒2𝑘subscript𝑘𝑡𝑟2superscript𝐻2m_{\delta\chi}^{2}(k<k_{tr})=2H^{2}italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k < italic_k start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) = 2 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (105)

and a spectral index

nI(k<ktr)1=2subscript𝑛𝐼𝑘subscript𝑘𝑡𝑟12n_{I}(k<k_{tr})-1=2italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ( italic_k < italic_k start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) - 1 = 2 (106)

where the scale associated with the transition ttrsubscript𝑡𝑡𝑟t_{tr}italic_t start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT is given as

ktr=a(ηtr)a(ηi)ki.subscript𝑘𝑡𝑟𝑎subscript𝜂𝑡𝑟𝑎subscript𝜂𝑖subscript𝑘𝑖k_{tr}=\frac{a(\eta_{tr})}{a(\eta_{i})}k_{i}.italic_k start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT = divide start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT . (107)

For k𝑘kitalic_k-modes such that tkttrgreater-than-or-equivalent-tosubscript𝑡𝑘subscript𝑡𝑡𝑟t_{k}\gtrsim t_{tr}italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≳ italic_t start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT and θ˙(tk)˙𝜃subscript𝑡𝑘\dot{\theta}(t_{k})over˙ start_ARG italic_θ end_ARG ( italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) is negligible, the δχ(t>tk)𝛿𝜒𝑡subscript𝑡𝑘\delta\chi(t>t_{k})italic_δ italic_χ ( italic_t > italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) spectator is massless, the δχ𝛿𝜒\delta\chiitalic_δ italic_χ power spectrum flattens out and becomes scale invariant. This region is recognized as a massless plateau characterized by the familiar [H2/(2πfPQ)]2superscriptdelimited-[]superscript𝐻22𝜋subscript𝑓PQ2[H^{2}/(2\pi f_{{\rm PQ}})]^{2}[ italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( 2 italic_π italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT ) ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT isocurvature amplitude. In contrast, the fluctuation δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ in the radial field has an effective mass-squared term mδΓ2=mδχ2+2λΓ02superscriptsubscript𝑚𝛿Γ2superscriptsubscript𝑚𝛿𝜒22𝜆superscriptsubscriptΓ02m_{\delta\Gamma}^{2}=m_{\delta\chi}^{2}+2\lambda\Gamma_{0}^{2}italic_m start_POSTSUBSCRIPT italic_δ roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. In the limit ΓfPQΓsubscript𝑓PQ\Gamma\rightarrow f_{{\rm PQ}}roman_Γ → italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT and negligible angular velocity, the superhorizon fluctuations in δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ can continue to decay if 2λfPQ2>9/4H22𝜆superscriptsubscript𝑓PQ294superscript𝐻22\lambda f_{{\rm PQ}}^{2}>9/4H^{2}2 italic_λ italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT > 9 / 4 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and will not contribute significantly to the power spectrum due to the decay. Preventing the decay will require 2λfPQ2<O(H2)2𝜆superscriptsubscript𝑓PQ2𝑂superscript𝐻22\lambda f_{{\rm PQ}}^{2}<O\left(H^{2}\right)2 italic_λ italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT < italic_O ( italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) such that radial fluctuations can also contribute to the overall power spectrum. However, these cases do not give rise to a time-independent conformal background solution as explained in Sec. II and thus do not result in an extremely blue spectral index (e.g. nI>2.4subscript𝑛𝐼2.4n_{I}>2.4italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT > 2.4 (Chung:2015tha, )).

In Sec. IV.3, we will study how deviations away from the time-independent conformal solution impact the effective mass-squared parameter mδχ2superscriptsubscript𝑚𝛿𝜒2m_{\delta\chi}^{2}italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT in Eq. (101), and thus determine a particular parametric window of initial conditions within which one can obtain large blue isocurvature power spectrum for a rotating spectator field ΦΦ\Phiroman_Φ.

IV.2 Non-rotating scenario

Before we present the rotating case, we will briefly comment on the non-rotating complex scalar dynamics during inflation in the context of a quartic potential. In such cases, the angular velocity is taken to be zero and hence the net angular momentum is negligible. During inflation if the radial field ΓΓ\Gammaroman_Γ is frozen at some large displacement ΓisubscriptΓ𝑖\Gamma_{i}roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, at some initial time tisubscript𝑡𝑖t_{i}italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, away from the stable vacuum ΓvacsubscriptΓvac\Gamma_{\mathrm{vac}}roman_Γ start_POSTSUBSCRIPT roman_vac end_POSTSUBSCRIPT, the isocurvature fluctuations in the angular direction are scale-invariant and can be suppressed due to largeness of ΓisubscriptΓ𝑖\Gamma_{i}roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. After ΓΓ\Gammaroman_Γ starts to roll towards ΓvacsubscriptΓvac\Gamma_{\mathrm{vac}}roman_Γ start_POSTSUBSCRIPT roman_vac end_POSTSUBSCRIPT due to the Hubble expansion rate dropping below the large mass of order λΓ𝜆Γ\sqrt{\lambda}\Gammasquare-root start_ARG italic_λ end_ARG roman_Γ, based on arguments similar to that presented around Eq. (16), one might naively conclude that there is a scale invariant isocurvature during the roll towards the minimum. However, this would be incorrect since Eq. (198) shows that Y0=0subscript𝑌00Y_{0}=0italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 with θ˙=0˙𝜃0\dot{\theta}=0over˙ start_ARG italic_θ end_ARG = 0 (i.e. rotations turned off), which contradicts the time-independent conformality requirement Y0a′′/amuch-greater-thansubscript𝑌0superscript𝑎′′𝑎Y_{0}\gg\sqrt{a^{\prime\prime}/a}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≫ square-root start_ARG italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a end_ARG.

Furthermore, after reaching the minimum, large amplitude oscillations of the background radial field can lead to parametric resonant enhancement of the angular fluctuations δχ𝛿𝜒\delta\chiitalic_δ italic_χ. Alternatively, if we consider large radial displacements such that λΓ2/H21much-greater-than𝜆superscriptΓ2superscript𝐻21\lambda\Gamma^{2}/H^{2}\gg 1italic_λ roman_Γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≫ 1 during inflation, where the maximum radial displacement is bounded by the spectator condition given in Eq. (15), then the radial field is not frozen and oscillations of the radial field during inflation will give rise to similar parametric resonance (PR) effects for the isocurvature fluctuations.

More explicitly, the solution to the non-rotating background radial EoM in Eq. (93) for a quartic potential is given by elliptic functions. When the amplitude is large such that λΓ02/H21much-greater-than𝜆superscriptsubscriptΓ02superscript𝐻21\lambda\Gamma_{0}^{2}/H^{2}\gg 1italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≫ 1, the elliptic solution can be approximated as ((Greene:1997fu, ; Kawasaki:2013iha, ))

Γ0(t)ΓieH(tti)cos(cλΓi/H(1eH(tti)))subscriptΓ0𝑡subscriptΓ𝑖superscript𝑒𝐻𝑡subscript𝑡𝑖𝑐𝜆subscriptΓ𝑖𝐻1superscript𝑒𝐻𝑡subscript𝑡𝑖\Gamma_{0}(t)\approx\Gamma_{i}e^{-H\left(t-t_{i}\right)}\cos\left(c\sqrt{% \lambda}\Gamma_{i}/H\left(1-e^{-H(t-t_{i})}\right)\right)roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) ≈ roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_H ( italic_t - italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT roman_cos ( italic_c square-root start_ARG italic_λ end_ARG roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_H ( 1 - italic_e start_POSTSUPERSCRIPT - italic_H ( italic_t - italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ) ) (108)

where c0.847𝑐0.847c\approx 0.847italic_c ≈ 0.847, ΓisubscriptΓ𝑖\Gamma_{i}roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is the radial displacement at an initial time tisubscript𝑡𝑖t_{i}italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, and we have considered a quasi de-Sitter scale factor a(t)/a(ti)=exp(H(tti))𝑎𝑡𝑎subscript𝑡𝑖𝐻𝑡subscript𝑡𝑖a(t)/a(t_{i})=\exp(H(t-t_{i}))italic_a ( italic_t ) / italic_a ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = roman_exp ( italic_H ( italic_t - italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) during inflation for an approximately constant inflationary Hubble parameter. As noted in the introduction, the field rolls down to the minimum in a Hubble time. Due to the oscillating background radial field, the linearized EoM for the axial fluctuations δχ𝛿𝜒\delta\chiitalic_δ italic_χ in Eq. (280) now has a large amplitude oscillating mass-squared term

mδχ2λΓi2e2H(tti)cos2(cλΓi/H(1eH(tti))).superscriptsubscript𝑚𝛿𝜒2𝜆superscriptsubscriptΓ𝑖2superscript𝑒2𝐻𝑡subscript𝑡𝑖superscript2𝑐𝜆subscriptΓ𝑖𝐻1superscript𝑒𝐻𝑡subscript𝑡𝑖m_{\delta\chi}^{2}\approx\lambda\Gamma_{i}^{2}e^{-2H\left(t-t_{i}\right)}\,% \cos^{2}\left(c\sqrt{\lambda}\Gamma_{i}/H\left(1-e^{-H(t-t_{i})}\right)\right).italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≈ italic_λ roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - 2 italic_H ( italic_t - italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_c square-root start_ARG italic_λ end_ARG roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_H ( 1 - italic_e start_POSTSUPERSCRIPT - italic_H ( italic_t - italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT ) ) . (109)

In the absence of angular rotations, the EoM in Eq. (284) for the scaled linear fluctuations X=aδχ𝑋𝑎𝛿𝜒X=a\delta\chiitalic_X = italic_a italic_δ italic_χ takes the form

η2X+(k2+(2M2a2+λYi2cos2(cλYi(ηηi))η2aa))X(η)=0superscriptsubscript𝜂2𝑋superscript𝑘22superscript𝑀2superscript𝑎2𝜆superscriptsubscript𝑌𝑖2superscript2𝑐𝜆subscript𝑌𝑖𝜂subscript𝜂𝑖superscriptsubscript𝜂2𝑎𝑎𝑋𝜂0\partial_{\eta}^{2}X+\left(k^{2}+\left(-2M^{2}a^{2}+\lambda Y_{i}^{2}\cos^{2}% \left(c\sqrt{\lambda}Y_{i}\left(\eta-\eta_{i}\right)\right)-\frac{\partial_{% \eta}^{2}a}{a}\right)\right)X(\eta)=0∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_X + ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_c square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ) ) italic_X ( italic_η ) = 0 (110)

where we have substituted Y0=aΓ0subscript𝑌0𝑎subscriptΓ0Y_{0}=a\Gamma_{0}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_a roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT from the expression in Eq. (108). The above expression can be reframed in the form of a general Mathieu differential equation:

z2X+(Aχ+2qχcos(2z))X=0superscriptsubscript𝑧2𝑋subscript𝐴𝜒2subscript𝑞𝜒2𝑧𝑋0\partial_{z}^{2}X+\left(A_{\chi}+2q_{\chi}\cos\left(2z\right)\right)X=0∂ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_X + ( italic_A start_POSTSUBSCRIPT italic_χ end_POSTSUBSCRIPT + 2 italic_q start_POSTSUBSCRIPT italic_χ end_POSTSUBSCRIPT roman_cos ( 2 italic_z ) ) italic_X = 0 (111)

for

z=cλYi(ηηi),𝑧𝑐𝜆subscript𝑌𝑖𝜂subscript𝜂𝑖z=c\sqrt{\lambda}Y_{i}\left(\eta-\eta_{i}\right),italic_z = italic_c square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) , (112)
Aχsubscript𝐴𝜒\displaystyle A_{\chi}italic_A start_POSTSUBSCRIPT italic_χ end_POSTSUBSCRIPT =k22M2a2η2aac2λYi2+2qχ,absentsuperscript𝑘22superscript𝑀2superscript𝑎2superscriptsubscript𝜂2𝑎𝑎superscript𝑐2𝜆superscriptsubscript𝑌𝑖22subscript𝑞𝜒\displaystyle=\frac{k^{2}-2M^{2}a^{2}-\frac{\partial_{\eta}^{2}a}{a}}{c^{2}% \lambda Y_{i}^{2}}+2q_{\chi},= divide start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG end_ARG start_ARG italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_λ italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + 2 italic_q start_POSTSUBSCRIPT italic_χ end_POSTSUBSCRIPT , (113)
qχsubscript𝑞𝜒\displaystyle q_{\chi}italic_q start_POSTSUBSCRIPT italic_χ end_POSTSUBSCRIPT =14c2.absent14superscript𝑐2\displaystyle=\frac{1}{4c^{2}}.= divide start_ARG 1 end_ARG start_ARG 4 italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (114)

We note that the Mathieu parameter qχsubscript𝑞𝜒q_{\chi}italic_q start_POSTSUBSCRIPT italic_χ end_POSTSUBSCRIPT appears constant only as long as λΓ2/H21much-greater-than𝜆superscriptΓ2superscript𝐻21\lambda\Gamma^{2}/H^{2}\gg 1italic_λ roman_Γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≫ 1. As λΓ2/H21𝜆superscriptΓ2superscript𝐻21\lambda\Gamma^{2}/H^{2}\rightarrow 1italic_λ roman_Γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → 1, the background radial field cannot be approximated through elliptic functions and hence the angular fluctuations do not satisfy Mathieu equation anymore. Substituting for the value of c𝑐citalic_c from above, we infer that qχ0.35subscript𝑞𝜒0.35q_{\chi}\approx 0.35italic_q start_POSTSUBSCRIPT italic_χ end_POSTSUBSCRIPT ≈ 0.35 and Aχ2qχsubscript𝐴𝜒2subscript𝑞𝜒A_{\chi}\approx 2q_{\chi}italic_A start_POSTSUBSCRIPT italic_χ end_POSTSUBSCRIPT ≈ 2 italic_q start_POSTSUBSCRIPT italic_χ end_POSTSUBSCRIPT for modes with k2λYi2much-less-thansuperscript𝑘2𝜆superscriptsubscript𝑌𝑖2k^{2}\ll\lambda Y_{i}^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≪ italic_λ italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. For these modes, PR occurs in the first instability band. This results in a large exponential amplification of the fluctuations and may result in the formation of axion strings until back-reaction ceases PR. However, the inflation eventually dilutes these away and any disastrous cosmological effects from them are generically avoided.101010In principle, these may produce gravity waves. We will defer the investigation of this issue to a future work. Modes that lie barely outside the instability band do not undergo PR and extend over a short ΔkΔ𝑘\Delta kroman_Δ italic_k-range of approximately Δk/kiO(10)similar-toΔ𝑘subscript𝑘𝑖𝑂10\Delta k/k_{i}\sim O(10)roman_Δ italic_k / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∼ italic_O ( 10 ). In Sec. V, we will revisit the concept of PR resulting from minor deviations from the time-independent conformal solution and provide a thorough discussion on the underlying Mathieu system.

IV.3 Rotating scenario

As discussed around Eq.(103), to achieve a large blue isocurvature power spectrum we require that the background radial field ΓΓ\Gammaroman_Γ or the angular fluctuations δχ𝛿𝜒\delta\chiitalic_δ italic_χ have an effective mass of O(H)𝑂𝐻O(H)italic_O ( italic_H ) for a suitable Nbluesubscript𝑁blueN_{{\rm blue}}italic_N start_POSTSUBSCRIPT roman_blue end_POSTSUBSCRIPT number of e-folds during inflation. The blue-tilted part of the isocurvature spectrum has an approximate Δk/kiΔ𝑘subscript𝑘𝑖\Delta k/k_{i}roman_Δ italic_k / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT-range equal to exp(Nblue)subscript𝑁blue\exp\left(N_{{\rm blue}}\right)roman_exp ( italic_N start_POSTSUBSCRIPT roman_blue end_POSTSUBSCRIPT ) and hence Nbluesubscript𝑁blueN_{{\rm blue}}italic_N start_POSTSUBSCRIPT roman_blue end_POSTSUBSCRIPT provides a parametric cutoff for the transition of the isocurvature power spectrum from a blue region to a massless plateau. The above requirements can be easily fulfilled for a tuned rotating complex scalar field ΦΦ\Phiroman_Φ during inflation. We will now discuss this parametric range and dynamics in detail, computing an analytic estimate of the isocurvature spectrum as well as an expression for the parametric tuning. The perturbations away from the nI=3subscript𝑛𝐼3n_{I}=3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT = 3 limit can be viewed as perturbing the boundary conditions away from the time-independent conformal limit case presented in Appendix  A.

We begin with the EoM for the background field Y0=aΓ0subscript𝑌0𝑎subscriptΓ0Y_{0}=a\Gamma_{0}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_a roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT:

η2Y0+(2M2a2η2aa+λY02(LY02)2)Y0=0superscriptsubscript𝜂2subscript𝑌02superscript𝑀2superscript𝑎2superscriptsubscript𝜂2𝑎𝑎𝜆superscriptsubscript𝑌02superscript𝐿superscriptsubscript𝑌022subscript𝑌00\partial_{\eta}^{2}Y_{0}+\left(-2M^{2}a^{2}-\frac{\partial_{\eta}^{2}a}{a}+% \lambda Y_{0}^{2}-\left(\frac{L}{Y_{0}^{2}}\right)^{2}\right)Y_{0}=0∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG + italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( divide start_ARG italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 (115)

The above EoM implies that the time-independent conformal radial field Y0subscript𝑌0Y_{0}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT has an effective potential

VY0(η)subscript𝑉subscript𝑌0𝜂\displaystyle V_{Y_{0}}(\eta)italic_V start_POSTSUBSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_η ) =12(2M2+2H2H2η2+12λY02+L2Y04)Y02+constant.absent122superscript𝑀22superscript𝐻2superscript𝐻2superscript𝜂212𝜆superscriptsubscript𝑌02superscript𝐿2superscriptsubscript𝑌04superscriptsubscript𝑌02constant\displaystyle=\frac{1}{2}\left(-\frac{2M^{2}+2H^{2}}{H^{2}\eta^{2}}+\frac{1}{2% }\lambda Y_{0}^{2}+\frac{L^{2}}{Y_{0}^{4}}\right)Y_{0}^{2}+{\rm constant}.= divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( - divide start_ARG 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ) italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_constant . (116)

For a constant background solution, the potential is driven by the quartic (self-interaction) term with an appropriately large angular velocity and a comparatively negligible Hubble friction and mass terms:

λY022M2+2H2H2η2λΓ02(η)2M2+2H2.much-greater-than𝜆superscriptsubscript𝑌022superscript𝑀22superscript𝐻2superscript𝐻2superscript𝜂2𝜆superscriptsubscriptΓ02𝜂much-greater-than2superscript𝑀22superscript𝐻2\lambda Y_{0}^{2}\gg\frac{2M^{2}+2H^{2}}{H^{2}\eta^{2}}\Longrightarrow\lambda% \Gamma_{0}^{2}\left(\eta\right)\gg 2M^{2}+2H^{2}.italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≫ divide start_ARG 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ⟹ italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) ≫ 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (117)

Thus, for a large angular velocity, the effective potential has a time-dependent local minimum at

Y0(η)=(1+δ(η))Ycsubscript𝑌0𝜂1𝛿𝜂subscript𝑌𝑐Y_{0}(\eta)=\left(1+\delta(\eta)\right)Y_{c}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) = ( 1 + italic_δ ( italic_η ) ) italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT (118)

where |δ(η)|1much-less-than𝛿𝜂1|\delta(\eta)|\ll 1| italic_δ ( italic_η ) | ≪ 1.

To study the quantum inhomogeneities about a background solution where δ(η)𝛿𝜂\delta(\eta)italic_δ ( italic_η ) is nontrivial, we will below introduce two parameters {κ,ϵL}𝜅subscriptitalic-ϵ𝐿\{\kappa,\epsilon_{L}\}{ italic_κ , italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT } that control the deformations away from the time-independent conformal limit. Consider an initial displacement of the scaled radial field

Y0(ηi)=YifPQa(ηi).subscript𝑌0subscript𝜂𝑖subscript𝑌𝑖much-greater-thansubscript𝑓PQ𝑎subscript𝜂𝑖Y_{0}(\eta_{i})=Y_{i}\gg f_{{\rm PQ}}a(\eta_{i}).italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≫ italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) . (119)

and parameterize initial radial velocity as

ηY0|ηi=κ6λYi2evaluated-atsubscript𝜂subscript𝑌0subscript𝜂𝑖𝜅6𝜆superscriptsubscript𝑌𝑖2\left.\partial_{\eta}Y_{0}\right|_{\eta_{i}}=\kappa\sqrt{6\lambda}Y_{i}^{2}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_κ square-root start_ARG 6 italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (120)

at some initial time ηisubscript𝜂𝑖\eta_{i}italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and where κ𝜅\kappaitalic_κ is a dimensionless number. For a rotating (L0𝐿0L\neq 0italic_L ≠ 0) complex scalar field, we parameterize the angular velocity as

ηθ0|ηi=(1ϵL)λYi.evaluated-atsubscript𝜂subscript𝜃0subscript𝜂𝑖1subscriptitalic-ϵ𝐿𝜆subscript𝑌𝑖\left.\partial_{\eta}\theta_{0}\right|_{\eta_{i}}=\left(1-\epsilon_{L}\right)% \sqrt{\lambda}Y_{i}.∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT = ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT . (121)

The corresponding value of the conserved angular momentum L𝐿Litalic_L is given as

L=(1ϵL)λYi3𝐿1subscriptitalic-ϵ𝐿𝜆superscriptsubscript𝑌𝑖3L=\left(1-\epsilon_{L}\right)\sqrt{\lambda}Y_{i}^{3}italic_L = ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT (122)

With this parameterization, a value of κ=ϵL=0𝜅subscriptitalic-ϵ𝐿0\kappa=\epsilon_{L}=0italic_κ = italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 0 refers to the situation where the angular kinetic gradient approximately cancels with the radial potential gradient term at tisubscript𝑡𝑖t_{i}italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT with the residual 2M2λΓi2much-less-than2superscript𝑀2𝜆superscriptsubscriptΓ𝑖22M^{2}\ll\lambda\Gamma_{i}^{2}2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≪ italic_λ roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. This is the time-independent conformal limit boundary condition presented earlier. As we will show now, the approximate cancellation with |ϵL|1much-less-thansubscriptitalic-ϵ𝐿1|\epsilon_{L}|\ll 1| italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT | ≪ 1 results in a pseudo-flat direction in radial dynamics that is only lifted by an O(H2)𝑂superscript𝐻2O(H^{2})italic_O ( italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) mass-squared term after integrating out residual UV degree of freedoms which arise as a result ϵL0subscriptitalic-ϵ𝐿0\epsilon_{L}\neq 0italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≠ 0. Hence, there exists a parametric window for ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT within which the leading approximation of a time-independent conformal background solution is stable against UV oscillations.111111A similar parameterization was given in (Co:2020dya, ) where the authors found numerically that the PR doesn’t occur if |ϵL|0.2less-than-or-similar-tosubscriptitalic-ϵ𝐿0.2\left|\epsilon_{L}\right|\lesssim 0.2| italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT | ≲ 0.2. Therein, the authors show that post-inflation if |ϵL|0.2less-than-or-similar-tosubscriptitalic-ϵ𝐿0.2\left|\epsilon_{L}\right|\lesssim 0.2| italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT | ≲ 0.2, the rotating PQ field can lead to kinetic misalignment mechanism for axion production. However, in this paper, we are interested in rotations that occur during inflation and decay before the end of inflation.

With the above parameterization, the new time-independent conformal background solution is

Ycsubscript𝑌𝑐\displaystyle Y_{c}italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT =(1ϵL)1/3Yi.absentsuperscript1subscriptitalic-ϵ𝐿13subscript𝑌𝑖\displaystyle=\left(1-\epsilon_{L}\right)^{1/3}Y_{i}.= ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT . (123)

Next we write the complete solution of the background radial field as

Y0(η)=Yc+ΔY0(η)subscript𝑌0𝜂subscript𝑌𝑐Δsubscript𝑌0𝜂Y_{0}(\eta)=Y_{c}+\Delta Y_{0}(\eta)italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) = italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT + roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) (124)

and substitute into Eq. (115) to obtain an EoM for ΔY0Δsubscript𝑌0\Delta Y_{0}roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT:

η2(Yc+ΔY0)+(2M2a2η2aa+λ(Yc2+ΔY02+2YcΔY0)L2(Yc+ΔY0)4)(Yc+ΔY0)=0.superscriptsubscript𝜂2subscript𝑌𝑐Δsubscript𝑌02superscript𝑀2superscript𝑎2superscriptsubscript𝜂2𝑎𝑎𝜆superscriptsubscript𝑌𝑐2Δsuperscriptsubscript𝑌022subscript𝑌𝑐Δsubscript𝑌0superscript𝐿2superscriptsubscript𝑌𝑐Δsubscript𝑌04subscript𝑌𝑐Δsubscript𝑌00\partial_{\eta}^{2}\left(Y_{c}+\Delta Y_{0}\right)+\left(-2M^{2}a^{2}-\frac{% \partial_{\eta}^{2}a}{a}+\lambda\left(Y_{c}^{2}+\Delta Y_{0}^{2}+2Y_{c}\Delta Y% _{0}\right)-\frac{L^{2}}{\left(Y_{c}+\Delta Y_{0}\right)^{4}}\right)\left(Y_{c% }+\Delta Y_{0}\right)=0.∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT + roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) + ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG + italic_λ ( italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - divide start_ARG italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT + roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ) ( italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT + roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = 0 . (125)

Considering initial displacements and velocities not significantly deviating from a conformal solution Ycsubscript𝑌𝑐Y_{c}italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, and thus parameterized by small values of ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT and κ𝜅\kappaitalic_κ, we can examine small-amplitude oscillations ΔY0Ycmuch-less-thanΔsubscript𝑌0subscript𝑌𝑐\Delta Y_{0}\ll Y_{c}roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≪ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT. Hence, we linearize the EoM for ΔY0Δsubscript𝑌0\Delta Y_{0}roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT as

η2(ΔY0)+(6λYc2)ΔY0(2M2a2+η2aa)Ycsuperscriptsubscript𝜂2Δsubscript𝑌06𝜆superscriptsubscript𝑌𝑐2Δsubscript𝑌02superscript𝑀2superscript𝑎2superscriptsubscript𝜂2𝑎𝑎subscript𝑌𝑐\partial_{\eta}^{2}\left(\Delta Y_{0}\right)+\left(6\lambda Y_{c}^{2}\right)% \Delta Y_{0}\approx\left(2M^{2}a^{2}+\frac{\partial_{\eta}^{2}a}{a}\right)Y_{c}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) + ( 6 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≈ ( 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ) italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT (126)

where the O(H2)𝑂superscript𝐻2O\left(H^{2}\right)italic_O ( italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) terms on the RHS induce supplementary small amplitude deviations away from a constant background solution even when ϵL=κ=0subscriptitalic-ϵ𝐿𝜅0\epsilon_{L}=\kappa=0italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = italic_κ = 0. Using the initial condition ΔY0(ηi)=YiYcΔsubscript𝑌0subscript𝜂𝑖subscript𝑌𝑖subscript𝑌𝑐\Delta Y_{0}(\eta_{i})=Y_{i}-Y_{c}roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT and ηΔY0|ηi=κ6λYi2evaluated-atsubscript𝜂Δsubscript𝑌0subscript𝜂𝑖𝜅6𝜆superscriptsubscript𝑌𝑖2\left.\partial_{\eta}\Delta Y_{0}\right|_{\eta_{i}}=\kappa\sqrt{6\lambda}Y_{i}% ^{2}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_κ square-root start_ARG 6 italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and by defining a new frequency parameter

f=6λYc6λYi(1ϵL)1/3𝑓6𝜆subscript𝑌𝑐6𝜆subscript𝑌𝑖superscript1subscriptitalic-ϵ𝐿13f=\sqrt{6\lambda}Y_{c}\equiv\sqrt{6\lambda}Y_{i}\left(1-\epsilon_{L}\right)^{1% /3}italic_f = square-root start_ARG 6 italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ≡ square-root start_ARG 6 italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT (127)

we obtain the approximate solution

ΔY0(η)Δsubscript𝑌0𝜂\displaystyle\Delta Y_{0}(\eta)roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) (YiYc)cos(f(ηηi))+6Yc(2M2/H2+2)+6κλYi2ηi6fηisin(f(ηηi))absentsubscript𝑌𝑖subscript𝑌𝑐𝑓𝜂subscript𝜂𝑖6subscript𝑌𝑐2superscript𝑀2superscript𝐻226𝜅𝜆superscriptsubscript𝑌𝑖2subscript𝜂𝑖6𝑓subscript𝜂𝑖𝑓𝜂subscript𝜂𝑖\displaystyle\approx\left(Y_{i}-Y_{c}\right)\cos\left(f\left(\eta-\eta_{i}% \right)\right)+\frac{\sqrt{6}Y_{c}\left(2M^{2}/H^{2}+2\right)+6\kappa\sqrt{% \lambda}Y_{i}^{2}\eta_{i}}{\sqrt{6}f\eta_{i}}\sin\left(f\left(\eta-\eta_{i}% \right)\right)≈ ( italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ) roman_cos ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) + divide start_ARG square-root start_ARG 6 end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 ) + 6 italic_κ square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG 6 end_ARG italic_f italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG roman_sin ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) )
+Yc(2M2/H2+2)(cos(fη)(Ci(fηi)Ci(fη))+sin(fη)(Si(fηi)Si(fη)))subscript𝑌𝑐2superscript𝑀2superscript𝐻22𝑓𝜂𝐶𝑖𝑓subscript𝜂𝑖𝐶𝑖𝑓𝜂𝑓𝜂𝑆𝑖𝑓subscript𝜂𝑖𝑆𝑖𝑓𝜂\displaystyle+Y_{c}\left(2M^{2}/H^{2}+2\right)\left(\cos\left(f\eta\right)% \left(Ci\left(f\eta_{i}\right)-Ci\left(f\eta\right)\right)+\sin\left(f\eta% \right)\left(Si\left(f\eta_{i}\right)-Si\left(f\eta\right)\right)\right)+ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 ) ( roman_cos ( italic_f italic_η ) ( italic_C italic_i ( italic_f italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) - italic_C italic_i ( italic_f italic_η ) ) + roman_sin ( italic_f italic_η ) ( italic_S italic_i ( italic_f italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) - italic_S italic_i ( italic_f italic_η ) ) ) (128)

where we have taken η2aa=2H2superscriptsubscript𝜂2𝑎𝑎2superscript𝐻2\frac{\partial_{\eta}^{2}a}{a}=2H^{2}divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG = 2 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and Ci,Si𝐶𝑖𝑆𝑖Ci,Siitalic_C italic_i , italic_S italic_i are cosine- and sine-integral functions respectively defined as

Ci(z)zdttcost𝐶𝑖𝑧superscriptsubscript𝑧𝑑𝑡𝑡𝑡Ci(z)\equiv-\int_{z}^{\infty}\frac{dt}{t}\cos titalic_C italic_i ( italic_z ) ≡ - ∫ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_d italic_t end_ARG start_ARG italic_t end_ARG roman_cos italic_t (129)
Si(z)0zdttcost.𝑆𝑖𝑧superscriptsubscript0𝑧𝑑𝑡𝑡𝑡Si(z)\equiv\int_{0}^{z}\frac{dt}{t}\cos t\,.italic_S italic_i ( italic_z ) ≡ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT divide start_ARG italic_d italic_t end_ARG start_ARG italic_t end_ARG roman_cos italic_t . (130)

The oscillations have a constant frequency f𝑓fitalic_f in conformal time coordinate. During the conformal regime when fη1much-greater-than𝑓𝜂1f\eta\gg 1italic_f italic_η ≫ 1, we can reduce the Ci,Si𝐶𝑖𝑆𝑖Ci,Siitalic_C italic_i , italic_S italic_i functions in the above solution to obtain an approximate result:

ΔY0(η)Δsubscript𝑌0𝜂\displaystyle\Delta Y_{0}(\eta)roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) (YiYc)cos(f(ηηi))+κYi2Ycsin(f(ηηi))absentsubscript𝑌𝑖subscript𝑌𝑐𝑓𝜂subscript𝜂𝑖𝜅superscriptsubscript𝑌𝑖2subscript𝑌𝑐𝑓𝜂subscript𝜂𝑖\displaystyle\approx\left(Y_{i}-Y_{c}\right)\cos\left(f\left(\eta-\eta_{i}% \right)\right)+\frac{\kappa Y_{i}^{2}}{Y_{c}}\sin\left(f\left(\eta-\eta_{i}% \right)\right)≈ ( italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ) roman_cos ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) + divide start_ARG italic_κ italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG roman_sin ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) )
+Yc((2M2+2H2)f2η2H2(2M2+2H2)f2ηi2H2cos(f(ηηi))).subscript𝑌𝑐2superscript𝑀22superscript𝐻2superscript𝑓2superscript𝜂2superscript𝐻22superscript𝑀22superscript𝐻2superscript𝑓2superscriptsubscript𝜂𝑖2superscript𝐻2𝑓𝜂subscript𝜂𝑖\displaystyle+Y_{c}\left(\frac{\left(2M^{2}+2H^{2}\right)}{f^{2}\eta^{2}H^{2}}% -\frac{\left(2M^{2}+2H^{2}\right)}{f^{2}\eta_{i}^{2}H^{2}}\cos\left(f\left(% \eta-\eta_{i}\right)\right)\right).+ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( divide start_ARG ( 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG start_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG ( 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG start_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_cos ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ) . (131)

Therefore, an approximate analytic solution for the background radial solution is

Y0(η)subscript𝑌0𝜂\displaystyle Y_{0}(\eta)italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) Yc(1+(1(1ϵL)1/3(1ϵL)1/3)cos(f(ηηi))+κ(1ϵL)2/3sin(f(ηηi)))absentsubscript𝑌𝑐11superscript1subscriptitalic-ϵ𝐿13superscript1subscriptitalic-ϵ𝐿13𝑓𝜂subscript𝜂𝑖𝜅superscript1subscriptitalic-ϵ𝐿23𝑓𝜂subscript𝜂𝑖\displaystyle\approx Y_{c}\left(1+\left(\frac{1-\left(1-\epsilon_{L}\right)^{1% /3}}{\left(1-\epsilon_{L}\right)^{1/3}}\right)\cos\left(f\left(\eta-\eta_{i}% \right)\right)+\frac{\kappa}{\left(1-\epsilon_{L}\right)^{2/3}}\sin\left(f% \left(\eta-\eta_{i}\right)\right)\right)≈ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 1 + ( divide start_ARG 1 - ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG ) roman_cos ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) + divide start_ARG italic_κ end_ARG start_ARG ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT end_ARG roman_sin ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) )
+Yc((2M2/H2+2)f2η2(2M2/H2+2)f2ηi2cos(f(ηηi))).subscript𝑌𝑐2superscript𝑀2superscript𝐻22superscript𝑓2superscript𝜂22superscript𝑀2superscript𝐻22superscript𝑓2superscriptsubscript𝜂𝑖2𝑓𝜂subscript𝜂𝑖\displaystyle+Y_{c}\left(\frac{\left(2M^{2}/H^{2}+2\right)}{f^{2}\eta^{2}}-% \frac{\left(2M^{2}/H^{2}+2\right)}{f^{2}\eta_{i}^{2}}\cos\left(f\left(\eta-% \eta_{i}\right)\right)\right).+ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( divide start_ARG ( 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 ) end_ARG start_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG ( 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 ) end_ARG start_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_cos ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ) . (132)

By comparing our analytic solution with the numerical results, we find that modifying f𝑓fitalic_f from Eq. (127) to

f=6λYc(1+δ)6λYi(1ϵL)1/3(1+δ)𝑓6𝜆subscript𝑌𝑐1𝛿6𝜆subscript𝑌𝑖superscript1subscriptitalic-ϵ𝐿131𝛿f=\sqrt{6\lambda}Y_{c}\left(1+\delta\right)\equiv\sqrt{6\lambda}Y_{i}\left(1-% \epsilon_{L}\right)^{1/3}\left(1+\delta\right)italic_f = square-root start_ARG 6 italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 1 + italic_δ ) ≡ square-root start_ARG 6 italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT ( 1 + italic_δ ) (133)

with δ=0.1137ϵL2.178𝛿0.1137superscriptsubscriptitalic-ϵ𝐿2.178\delta=0.1137\epsilon_{L}^{2.178}italic_δ = 0.1137 italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2.178 end_POSTSUPERSCRIPT leads to a sub-percent level accuracy for η<ηtr𝜂subscript𝜂tr\eta<\eta_{{\rm tr}}italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT. For instance, δ0.006𝛿0.006\delta\approx 0.006italic_δ ≈ 0.006 for ϵL=0.25subscriptitalic-ϵ𝐿0.25\epsilon_{L}=0.25italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 0.25. The additional empirical factor (1+δ)1𝛿\left(1+\delta\right)( 1 + italic_δ ) accounts for minor correction to the frequency due to the residual nonlinear effects of our original nonlinear differential system in Eq. (125). We note that the kinetic energy induced oscillatory terms vanish in the limit {κ0,ϵL0}formulae-sequence𝜅0subscriptitalic-ϵ𝐿0\{\kappa\rightarrow 0,\epsilon_{L}\rightarrow 0\}{ italic_κ → 0 , italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT → 0 } corresponding to the time-independent conformal boundary conditions. When the set {κ,ϵL}𝜅subscriptitalic-ϵ𝐿\{\kappa,\epsilon_{L}\}{ italic_κ , italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT } is nontrivial, then the effective action Eq. (202) obtains a time-dependent conformal representation: i.e. even in the a′′/asuperscript𝑎′′𝑎a^{\prime\prime}/aitalic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a neglected approximation

S2subscript𝑆2\displaystyle S_{2}italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT dηd3x{12ημνμδYνδY12ημνμδXνδXδXY00δXY0(η)\displaystyle\approx\int d\eta d^{3}x\left\{-\frac{1}{2}\eta_{\mu\nu}\partial^% {\mu}\delta Y\partial^{\nu}\delta Y-\frac{1}{2}\eta_{\mu\nu}\partial^{\mu}% \delta X\partial^{\nu}\delta X-\frac{\delta X}{Y_{0}}\partial_{0}\delta XY_{0}% ^{\prime}(\eta)\right.≈ ∫ italic_d italic_η italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x { - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_δ italic_Y ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_δ italic_Y - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_δ italic_X ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_δ italic_X - divide start_ARG italic_δ italic_X end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ∂ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_δ italic_X italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_η )
+2LY02(η)[0δXδYY0(η)Y0(η)δXδY]12(Y0(η))2Y02(η)(δX)2+12[(LY02(η))23λY02(η)](δY)2}\displaystyle\left.+\frac{2L}{Y_{0}^{2}(\eta)}\left[\partial_{0}\delta X\delta Y% -\frac{Y_{0}^{\prime}(\eta)}{Y_{0}(\eta)}\delta X\delta Y\right]-\frac{1}{2}% \frac{\left(Y_{0}^{\prime}(\eta)\right)^{2}}{Y_{0}^{2}(\eta)}\left(\delta X% \right)^{2}+\frac{1}{2}\left[\left(\frac{L}{Y_{0}^{2}(\eta)}\right)^{2}-3% \lambda Y_{0}^{2}(\eta)\right]\left(\delta Y\right)^{2}\right\}+ divide start_ARG 2 italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG [ ∂ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_δ italic_X italic_δ italic_Y - divide start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_η ) end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) end_ARG italic_δ italic_X italic_δ italic_Y ] - divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG ( italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_η ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG ( italic_δ italic_X ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ ( divide start_ARG italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 3 italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) ] ( italic_δ italic_Y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT } (134)

the Y0subscript𝑌0Y_{0}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT dependent terms of this equation are violating time-translation invariance.121212Recall we had a simpler a′′/asuperscript𝑎′′𝑎a^{\prime\prime}/aitalic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a time-dependent conformal representation in Eq. (31). According to Eq. (132), for |κ|,|ϵL|1much-less-than𝜅subscriptitalic-ϵ𝐿1|\kappa|,|\epsilon_{L}|\ll 1| italic_κ | , | italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT | ≪ 1, the radial field oscillates around the mean Γi(ai/a)(1ϵL)1/3subscriptΓ𝑖subscript𝑎𝑖𝑎superscript1subscriptitalic-ϵ𝐿13\Gamma_{i}\left(a_{i}/a\right)\left(1-\epsilon_{L}\right)^{1/3}roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_a ) ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT with an amplitude

ΓampsubscriptΓamp\displaystyle\Gamma_{\mathrm{amp}}roman_Γ start_POSTSUBSCRIPT roman_amp end_POSTSUBSCRIPT =Γi(ai/a)(1(1ϵL)1/3)2+κ2(1ϵL)2/3absentsubscriptΓ𝑖subscript𝑎𝑖𝑎superscript1superscript1subscriptitalic-ϵ𝐿132superscript𝜅2superscript1subscriptitalic-ϵ𝐿23\displaystyle=\Gamma_{i}\left(a_{i}/a\right)\sqrt{\left(1-\left(1-\epsilon_{L}% \right)^{1/3}\right)^{2}+\frac{\kappa^{2}}{\left(1-\epsilon_{L}\right)^{2/3}}}= roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_a ) square-root start_ARG ( 1 - ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG italic_κ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT end_ARG end_ARG (135)
=Γi(ai/a)(ϵL/3)2+κ2+O({ϵL2,κ2,ϵLκ})absentsubscriptΓ𝑖subscript𝑎𝑖𝑎superscriptsubscriptitalic-ϵ𝐿32superscript𝜅2𝑂superscriptsubscriptitalic-ϵ𝐿2superscript𝜅2subscriptitalic-ϵ𝐿𝜅\displaystyle=\Gamma_{i}\left(a_{i}/a\right)\sqrt{\left(\epsilon_{L}/3\right)^% {2}+\kappa^{2}}+O\left(\left\{\epsilon_{L}^{2},\kappa^{2},\epsilon_{L}\kappa% \right\}\right)= roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_a ) square-root start_ARG ( italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT / 3 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_κ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + italic_O ( { italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_κ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_κ } ) (136)

and a large frequency O(f)Hmuch-greater-than𝑂𝑓𝐻O\left(f\right)\gg Hitalic_O ( italic_f ) ≫ italic_H. These oscillations are small if

|ϵL|subscriptitalic-ϵ𝐿\displaystyle|\epsilon_{L}|| italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT | 1much-less-thanabsent1\displaystyle\ll 1≪ 1 (137)
|κ|𝜅\displaystyle|\kappa|| italic_κ | 1.much-less-thanabsent1\displaystyle\ll 1.≪ 1 . (138)

Although there is an asymmetry of how fast ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT rises for ϵL>0subscriptitalic-ϵ𝐿0\epsilon_{L}>0italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT > 0 versus ϵL<0subscriptitalic-ϵ𝐿0\epsilon_{L}<0italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT < 0 due to the fact that dΓampdϵL𝑑subscriptΓamp𝑑subscriptitalic-ϵ𝐿\frac{d\Gamma_{\mathrm{amp}}}{d\epsilon_{L}}divide start_ARG italic_d roman_Γ start_POSTSUBSCRIPT roman_amp end_POSTSUBSCRIPT end_ARG start_ARG italic_d italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT end_ARG diverges at ϵL=1subscriptitalic-ϵ𝐿1\epsilon_{L}=1italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 1, the asymmetry magnitude is typically small. Since the parameters ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT and κ𝜅\kappaitalic_κ induce similar deviations, we can remove this degeneracy by taking κ0𝜅0\kappa\rightarrow 0italic_κ → 0.

The boundary of ΔY00.1Ycless-than-or-similar-toΔsubscript𝑌00.1subscript𝑌𝑐\Delta Y_{0}\lesssim 0.1Y_{c}roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≲ 0.1 italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT for small oscillations corresponds to |ϵL|0.3less-than-or-similar-tosubscriptitalic-ϵ𝐿0.3\left|\epsilon_{L}\right|\lesssim 0.3| italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT | ≲ 0.3 for κ=0𝜅0\kappa=0italic_κ = 0. As ΔY0Δsubscript𝑌0\Delta Y_{0}roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT increases due to an increasing |ϵL|subscriptitalic-ϵ𝐿|\epsilon_{L}|| italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT |, the oscillating mass-squared term at the linear order can lead to PRs. The onset of PR for the radial and axial fluctuations of rotating complex spectator will be discussed in Sec. V. There we will show that the mass-squared term for the radial modes δYk𝛿subscript𝑌𝑘\delta Y_{k}italic_δ italic_Y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT leads to PR in the blue-tilted region of the spectrum if ϵL0.25greater-than-or-equivalent-tosubscriptitalic-ϵ𝐿0.25\epsilon_{L}\gtrsim 0.25italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≳ 0.25 or ϵL0.37less-than-or-similar-tosubscriptitalic-ϵ𝐿0.37\epsilon_{L}\lesssim-0.37italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≲ - 0.37. Including effects due to the strong coupling with the axial field, the PR can be avoided for |ϵL|0.1less-than-or-similar-tosubscriptitalic-ϵ𝐿0.1|\epsilon_{L}|\lesssim 0.1| italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT | ≲ 0.1.

Next we evaluate the mass-squared quantity mδχ2superscriptsubscript𝑚𝛿𝜒2m_{\delta\chi}^{2}italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Using the analytic solution for the background radial field given in Eq. (132) and substituting Ycsubscript𝑌𝑐Y_{c}italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT from Eq. (37), we evaluate mδχ2superscriptsubscript𝑚𝛿𝜒2m_{\delta\chi}^{2}italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT in Eq. (101) up to linear order in ΔY0Δsubscript𝑌0\Delta Y_{0}roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT as

mδχ2superscriptsubscript𝑚𝛿𝜒2\displaystyle m_{\delta\chi}^{2}italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT =(2M2a2+λY02L2Y04)a2absent2superscript𝑀2superscript𝑎2𝜆superscriptsubscript𝑌02superscript𝐿2superscriptsubscript𝑌04superscript𝑎2\displaystyle=\left(-2M^{2}a^{2}+\lambda Y_{0}^{2}-\frac{L^{2}}{Y_{0}^{4}}% \right)a^{-2}= ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ) italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT (139)
=2M2+6λYcΔY0a2+O(9λΔY02a2).absent2superscript𝑀26𝜆subscript𝑌𝑐Δsubscript𝑌0superscript𝑎2𝑂9𝜆Δsuperscriptsubscript𝑌02superscript𝑎2\displaystyle=-2M^{2}+6\lambda Y_{c}\Delta Y_{0}a^{-2}+O\left(9\lambda\Delta Y% _{0}^{2}a^{-2}\right).= - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 6 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT + italic_O ( 9 italic_λ roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ) . (140)

Substituting the solution for ΔY0Δsubscript𝑌0\Delta Y_{0}roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT from Eq. (131), we obtain the expression for the mass-squared mδχ2superscriptsubscript𝑚𝛿𝜒2m_{\delta\chi}^{2}italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT as

mδχ2superscriptsubscript𝑚𝛿𝜒2\displaystyle m_{\delta\chi}^{2}italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT 2M2+a2(6λYcYi(1Yc/Yi)cos(f(ηηi))+κ6λYi2sin(f(ηηi)))absent2superscript𝑀2superscript𝑎26𝜆subscript𝑌𝑐subscript𝑌𝑖1subscript𝑌𝑐subscript𝑌𝑖𝑓𝜂subscript𝜂𝑖𝜅6𝜆superscriptsubscript𝑌𝑖2𝑓𝜂subscript𝜂𝑖\displaystyle\approx-2M^{2}+a^{-2}\left(6\lambda Y_{c}Y_{i}\left(1-Y_{c}/Y_{i}% \right)\cos\left(f\left(\eta-\eta_{i}\right)\right)+\kappa 6\lambda Y_{i}^{2}% \sin\left(f\left(\eta-\eta_{i}\right)\right)\right)≈ - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ( 6 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 1 - italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT / italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) roman_cos ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) + italic_κ 6 italic_λ italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_sin ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) )
+((2M2/H2+2)η2a2a2(2M2/H2+2)ηi2cos(f(ηηi))),2superscript𝑀2superscript𝐻22superscript𝜂2superscript𝑎2superscript𝑎22superscript𝑀2superscript𝐻22superscriptsubscript𝜂𝑖2𝑓𝜂subscript𝜂𝑖\displaystyle+\left(\frac{\left(2M^{2}/H^{2}+2\right)}{\eta^{2}}a^{-2}-a^{-2}% \frac{\left(2M^{2}/H^{2}+2\right)}{\eta_{i}^{2}}\cos\left(f\left(\eta-\eta_{i}% \right)\right)\right),+ ( divide start_ARG ( 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 ) end_ARG start_ARG italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT divide start_ARG ( 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 ) end_ARG start_ARG italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_cos ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ) ,
mδχ2superscriptsubscript𝑚𝛿𝜒2\displaystyle m_{\delta\chi}^{2}italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT 2H2+a2(f2((1ϵL)1/31)(2M2/H2+2)ηi2)cos(f(ηηi))absent2superscript𝐻2superscript𝑎2superscript𝑓2superscript1subscriptitalic-ϵ𝐿1312superscript𝑀2superscript𝐻22superscriptsubscript𝜂𝑖2𝑓𝜂subscript𝜂𝑖\displaystyle\approx 2H^{2}+a^{-2}\left(f^{2}\left(\left(1-\epsilon_{L}\right)% ^{-1/3}-1\right)-\frac{\left(2M^{2}/H^{2}+2\right)}{\eta_{i}^{2}}\right)\cos% \left(f\left(\eta-\eta_{i}\right)\right)≈ 2 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ( italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 / 3 end_POSTSUPERSCRIPT - 1 ) - divide start_ARG ( 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 ) end_ARG start_ARG italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) roman_cos ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) )
+f2a2κ(1ϵL)2/3sin(f(ηηi)).superscript𝑓2superscript𝑎2𝜅superscript1subscriptitalic-ϵ𝐿23𝑓𝜂subscript𝜂𝑖\displaystyle+f^{2}a^{-2}\kappa\left(1-\epsilon_{L}\right)^{-2/3}\sin\left(f% \left(\eta-\eta_{i}\right)\right).+ italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_κ ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 2 / 3 end_POSTSUPERSCRIPT roman_sin ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) . (141)

The last two terms in the above expression are fast oscillating large amplitude (since 6λYi2H2much-greater-than6𝜆superscriptsubscript𝑌𝑖2superscript𝐻26\lambda Y_{i}^{2}\gg H^{2}6 italic_λ italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≫ italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT) contributions to the effective mass-squared function mδχ2superscriptsubscript𝑚𝛿𝜒2m_{\delta\chi}^{2}italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . As shown in Appendix B and also discussed in (Chung:2021lfg, ), if the ratio of the amplitude to frequency-squared of the oscillatory terms are much less than 1111, then the effective mass-squared quantity is dominated by the slow-varying terms. Hence, from Eq. (141), we have the ratios of amplitude to frequency-squared for the two oscillating terms as approximately O(κ)𝑂𝜅O\left(\kappa\right)italic_O ( italic_κ ) and O(max[ϵL/3,(fPQ/Γi)2])𝑂subscriptitalic-ϵ𝐿3superscriptsubscript𝑓PQsubscriptΓ𝑖2O\left(\max\left[\epsilon_{L}/3,\left(f_{{\rm PQ}}/\Gamma_{i}\right)^{2}\right% ]\right)italic_O ( roman_max [ italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT / 3 , ( italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT / roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] ) respectively. Since small radial oscillations require bounds given in Eqs. (137-138), averaging over (which we will refer to as integrating out) the UV fluctuations to obtain an effectively slowly varying equation as discussed in Appendix B is justified.

Finally after integrating out the UV oscillations, the effective O(H2)𝑂superscript𝐻2O(H^{2})italic_O ( italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) mass-squared term up to zeroth order in ϵL,κsubscriptitalic-ϵ𝐿𝜅\epsilon_{L},\kappaitalic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT , italic_κ is

mδχ22H2,superscriptsubscript𝑚𝛿𝜒22superscript𝐻2m_{\delta\chi}^{2}\approx 2H^{2},italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≈ 2 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (142)

and using the definition given in Eq. (103) the isocurvature power spectrum for the rotating complex scalar has a blue spectral index of

nI3.subscript𝑛𝐼3n_{I}\approx 3.italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ≈ 3 . (143)

In view of the conformal limit discussion of Sec. II.2, this is simply a stability statement indicating that the UV oscillations do not change the leading approximation of conformal behavior when Eqs. (137) and (138) are satisfied.

In addition to the conformal arguments given in Sec. II.2 and Eq. (143), here is yet another way to view the power spectrum from a horizon exit perspective. If we approximate the quantum fluctuations δθ𝛿𝜃\delta\thetaitalic_δ italic_θ in the angular modes as H/(2πΓk)𝐻2𝜋subscriptΓ𝑘H/\left(2\pi\Gamma_{k}\right)italic_H / ( 2 italic_π roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) where ΓksubscriptΓ𝑘\Gamma_{k}roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is the radial amplitude when the relevant mode exits the horizon at some time tksubscript𝑡𝑘t_{k}italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, the isocurvature power spectrum is approximately

Δs2(k)(H2πΓkθi)2similar-tosuperscriptsubscriptΔ𝑠2𝑘superscript𝐻2𝜋subscriptΓ𝑘subscript𝜃𝑖2\Delta_{s}^{2}(k)\sim\left(\frac{H}{2\pi\Gamma_{k}\theta_{i}}\right)^{2}roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ) ∼ ( divide start_ARG italic_H end_ARG start_ARG 2 italic_π roman_Γ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (144)

where θisubscript𝜃𝑖\theta_{i}italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is the final misalignment angle when the radial field settles to its stable vacuum131313Consistent with its use in the literature, we denote the final misalignment angle as θisubscript𝜃𝑖\theta_{i}italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. It is important not to confuse this with the initial value of θ𝜃\thetaitalic_θ at time tisubscript𝑡𝑖t_{i}italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT.. Using the leading Eq. (141) (or equivalently the conformal solution Eq. (18)), we find

Δs2(k)superscriptsubscriptΔ𝑠2𝑘\displaystyle\Delta_{s}^{2}(k)roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ) (H2πθiΓi(1ϵL)1/3)2(a(tk)ai)2similar-toabsentsuperscript𝐻2𝜋subscript𝜃𝑖subscriptΓ𝑖superscript1subscriptitalic-ϵ𝐿132superscript𝑎subscript𝑡𝑘subscript𝑎𝑖2\displaystyle\sim\left(\frac{H}{2\pi\theta_{i}\Gamma_{i}\left(1-\epsilon_{L}% \right)^{1/3}}\right)^{2}\left(\frac{a(t_{k})}{a_{i}}\right)^{2}∼ ( divide start_ARG italic_H end_ARG start_ARG 2 italic_π italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_a ( italic_t start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
(H2πθiΓi(1ϵL)1/3)2(kki)2similar-toabsentsuperscript𝐻2𝜋subscript𝜃𝑖subscriptΓ𝑖superscript1subscriptitalic-ϵ𝐿132superscript𝑘subscript𝑘𝑖2\displaystyle\sim\left(\frac{H}{2\pi\theta_{i}\Gamma_{i}\left(1-\epsilon_{L}% \right)^{1/3}}\right)^{2}\left(\frac{k}{k_{i}}\right)^{2}∼ ( divide start_ARG italic_H end_ARG start_ARG 2 italic_π italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_k end_ARG start_ARG italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (145)

where kisubscript𝑘𝑖k_{i}italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT corresponds to the mode exiting the horizon at tisubscript𝑡𝑖t_{i}italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT or conformal time ηisubscript𝜂𝑖\eta_{i}italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT.

To determine θisubscript𝜃𝑖\theta_{i}italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, we integrate Eq. (94) to obtain

θ(t)𝜃𝑡\displaystyle\theta(t)italic_θ ( italic_t ) =θ(ti)+tit𝑑tLa3Γ2.absent𝜃subscript𝑡𝑖superscriptsubscriptsubscript𝑡𝑖𝑡differential-d𝑡𝐿superscript𝑎3superscriptΓ2\displaystyle=\theta(t_{i})+\int_{t_{i}}^{t}dt\frac{L}{a^{3}\Gamma^{2}}.= italic_θ ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) + ∫ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_d italic_t divide start_ARG italic_L end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT roman_Γ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (146)

Since L𝐿Litalic_L is a constant and the radial field decays exponentially as ΓΓi(1ϵL)1/3(ai/a)ΓsubscriptΓ𝑖superscript1subscriptitalic-ϵ𝐿13subscript𝑎𝑖𝑎\Gamma\approx\Gamma_{i}\left(1-\epsilon_{L}\right)^{1/3}\left(a_{i}/a\right)roman_Γ ≈ roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT ( italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_a ) until λΓ(t)O(M,H)𝜆Γ𝑡𝑂𝑀𝐻\sqrt{\lambda}\Gamma(t)\rightarrow O\left(M,H\right)square-root start_ARG italic_λ end_ARG roman_Γ ( italic_t ) → italic_O ( italic_M , italic_H ), the integral in the above expression is dominated at early times (t<ttr)𝑡subscript𝑡tr\left(t<t_{{\rm tr}}\right)( italic_t < italic_t start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) and saturates as ΓfPQΓsubscript𝑓PQ\Gamma\rightarrow f_{{\rm PQ}}roman_Γ → italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT. Substituting Eq. (132) as the analytic solution to the radial field and neglecting any O(ϵL)𝑂subscriptitalic-ϵ𝐿O(\epsilon_{L})italic_O ( italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) oscillations, we can approximate

θ(t)𝜃𝑡\displaystyle\theta(t)italic_θ ( italic_t ) θ(ti)+LΓi2(1ϵL)2/3ai2titdtaabsent𝜃subscript𝑡𝑖𝐿superscriptsubscriptΓ𝑖2superscript1subscriptitalic-ϵ𝐿23superscriptsubscript𝑎𝑖2superscriptsubscriptsubscript𝑡𝑖𝑡𝑑𝑡𝑎\displaystyle\approx\theta(t_{i})+\frac{L}{\Gamma_{i}^{2}\left(1-\epsilon_{L}% \right)^{2/3}a_{i}^{2}}\int_{t_{i}}^{t}\frac{dt}{a}≈ italic_θ ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) + divide start_ARG italic_L end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 / 3 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT divide start_ARG italic_d italic_t end_ARG start_ARG italic_a end_ARG (147)
θ(ti)+λΓi(1ϵL)1/3(1eH(tti)H)absent𝜃subscript𝑡𝑖𝜆subscriptΓ𝑖superscript1subscriptitalic-ϵ𝐿131superscript𝑒𝐻𝑡subscript𝑡𝑖𝐻\displaystyle\approx\theta(t_{i})+\frac{\sqrt{\lambda}\Gamma_{i}}{\left(1-% \epsilon_{L}\right)^{1/3}}\left(\frac{1-e^{-H\left(t-t_{i}\right)}}{H}\right)≈ italic_θ ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) + divide start_ARG square-root start_ARG italic_λ end_ARG roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG 1 - italic_e start_POSTSUPERSCRIPT - italic_H ( italic_t - italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT end_ARG start_ARG italic_H end_ARG ) (148)

where we took the scale factor as a(t)exp(Ht)𝑎𝑡𝐻𝑡a(t)\approx\exp\left(Ht\right)italic_a ( italic_t ) ≈ roman_exp ( italic_H italic_t ). Hence for ttimuch-greater-than𝑡subscript𝑡𝑖t\gg t_{i}italic_t ≫ italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT,

θi=limttiθ(t)θ(ti)+λΓi/H(1ϵL)1/3.subscript𝜃𝑖subscriptmuch-greater-than𝑡subscript𝑡𝑖𝜃𝑡𝜃subscript𝑡𝑖𝜆subscriptΓ𝑖𝐻superscript1subscriptitalic-ϵ𝐿13\theta_{i}=\lim_{t\gg t_{i}}\theta(t)\approx\theta(t_{i})+\frac{\sqrt{\lambda}% \Gamma_{i}/H}{\left(1-\epsilon_{L}\right)^{1/3}}.italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = roman_lim start_POSTSUBSCRIPT italic_t ≫ italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_θ ( italic_t ) ≈ italic_θ ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) + divide start_ARG square-root start_ARG italic_λ end_ARG roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_H end_ARG start_ARG ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG . (149)

Choosing to express θisubscript𝜃𝑖\theta_{i}italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT in the interval [π,π]𝜋𝜋[-\pi,\pi][ - italic_π , italic_π ] as is sometimes customarily done, we write

θi+π(θ(ti)+λΓi/H(1ϵL)1/3)mod2π.subscript𝜃𝑖𝜋modulo𝜃subscript𝑡𝑖𝜆subscriptΓ𝑖𝐻superscript1subscriptitalic-ϵ𝐿132𝜋\theta_{i}+\pi\approx\left(\theta(t_{i})+\frac{\sqrt{\lambda}\Gamma_{i}/H}{% \left(1-\epsilon_{L}\right)^{1/3}}\right)\mod 2\pi.italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT + italic_π ≈ ( italic_θ ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) + divide start_ARG square-root start_ARG italic_λ end_ARG roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_H end_ARG start_ARG ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG ) roman_mod 2 italic_π . (150)

The λΓi/H/(1ϵL)1/3𝜆subscriptΓ𝑖𝐻superscript1subscriptitalic-ϵ𝐿13\sqrt{\lambda}\Gamma_{i}/H/\left(1-\epsilon_{L}\right)^{1/3}square-root start_ARG italic_λ end_ARG roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_H / ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT merely adds to the usual uncertainty in the vacuum θ𝜃\thetaitalic_θ angle.

IV.3.1 Quasi-adiabatic time-evolution example

Let us consider an example of a rotating complex scalar with deviations away from the conformal solution. Similar to the example presented in Sec. III.2.1, we set λ=1𝜆1\lambda=1italic_λ = 1 and fPQ=10Hinfsubscript𝑓PQ10subscript𝐻infimumf_{{\rm PQ}}=10H_{\inf}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT = 10 italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT . Further, we initialize the background radial field Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT at ηisubscript𝜂𝑖\eta_{i}italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT with the same value as in Sec. III.2.1:

Γ0(ηi)=1000Hinf.subscriptΓ0subscript𝜂𝑖1000subscript𝐻inf\Gamma_{0}(\eta_{i})=1000H_{{\rm inf}}.roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = 1000 italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT . (151)

To parameterize the deviations away from an adiabatic time-evolution for a perfect conformal solution, we set ϵL=0.1subscriptitalic-ϵ𝐿0.1\epsilon_{L}=0.1italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 0.1 and κ=0𝜅0\kappa=0italic_κ = 0 such that the conserved angular momentum from Eq. (122) is given as

L=0.9λ109Hinf3a3(ηi).𝐿0.9𝜆superscript109superscriptsubscript𝐻infimum3superscript𝑎3subscript𝜂𝑖L=0.9\sqrt{\lambda}10^{9}H_{\inf}^{3}a^{3}(\eta_{i}).italic_L = 0.9 square-root start_ARG italic_λ end_ARG 10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) . (152)

Note that with the above parameterization, Eq. (123) implies that the new conformal background value is Yc965.49Hinfa(ηi)subscript𝑌𝑐965.49subscript𝐻inf𝑎subscript𝜂𝑖Y_{c}\approx 965.49H_{{\rm inf}}a(\eta_{i})italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ≈ 965.49 italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ). In Fig. 2 we plot the time evolution of Γ0(t)subscriptΓ0𝑡\Gamma_{0}(t)roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) from an initial amplitude Γ0(ηi)subscriptΓ0subscript𝜂𝑖\Gamma_{0}(\eta_{i})roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) to fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT. In the same plot (see inset) we show a comparison of our analytic solution with the numerical result.

Refer to caption
Figure 4: Plot showing the time evolution of the background radial field Γ0(t)subscriptΓ0𝑡\Gamma_{0}(t)roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) (solid blue curve) during the quasi de-Sitter phase of inflation for deviations from conformal conditions, parameterized by ϵL=0.1subscriptitalic-ϵ𝐿0.1\epsilon_{L}=0.1italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 0.1 and κ=0𝜅0\kappa=0italic_κ = 0. Starting from Γ0(ηi)=1000HinfsubscriptΓ0subscript𝜂𝑖1000subscript𝐻infimum\Gamma_{0}(\eta_{i})=1000H_{\inf}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = 1000 italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT, the radial field quickly evolves along the conformal solution Γc(η)=L1/3λ1/6a(η)subscriptΓ𝑐𝜂superscript𝐿13superscript𝜆16𝑎𝜂\Gamma_{c}(\eta)=\frac{L^{1/3}}{\lambda^{1/6}a(\eta)}roman_Γ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_η ) = divide start_ARG italic_L start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG start_ARG italic_λ start_POSTSUPERSCRIPT 1 / 6 end_POSTSUPERSCRIPT italic_a ( italic_η ) end_ARG (red dashed line) while undergoing small amplitude O(ϵLΓc(ηi))similar-toabsent𝑂subscriptitalic-ϵ𝐿subscriptΓ𝑐subscript𝜂𝑖\sim O\left(\epsilon_{L}\Gamma_{c}(\eta_{i})\right)∼ italic_O ( italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) oscillations along this trajectory. The oscillations have a frequency 6λYcabsent6𝜆subscript𝑌𝑐\approx\sqrt{6\lambda}Y_{c}≈ square-root start_ARG 6 italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT. The orange dotted curve shown in the inset represents our analytic approximation for the small amplitude oscillations as given in Eq. (132).
Refer to caption
Figure 5: Plot showing the time evolution of the mode functions hknrsuperscriptsubscript𝑘𝑛𝑟h_{k}^{nr}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT during the quasi de-Sitter phase of inflation for a fiducial mode k/a(ηi)=10Hinf𝑘𝑎subscript𝜂𝑖10subscript𝐻infk/a(\eta_{i})=10H_{{\rm inf}}italic_k / italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = 10 italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT in the context of quasi-adiabatic example where ϵL=0.1subscriptitalic-ϵ𝐿0.1\epsilon_{L}=0.1italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 0.1 and κ=0𝜅0\kappa=0italic_κ = 0. Compared to Fig. 3, we observe that the mode amplitude show small amplitude oscillations similar to background radial field. Apart from these oscillations, the general evolution of the mode functions is similar to the case presented in Sec. III.2.1.

To study the evolution of the linear perturbations, we note that the time-scale of oscillations of the background radial field is much smaller than the evolution of the mean conformal solution, i.e

ToscO(16λΓ0(ηi))O(1H).similar-tosubscript𝑇osc𝑂16𝜆subscriptΓ0subscript𝜂𝑖much-less-than𝑂1𝐻T_{{\rm osc}}\sim O\left(\frac{1}{\sqrt{6\lambda}\Gamma_{0}(\eta_{i})}\right)% \ll O\left(\frac{1}{H}\right).italic_T start_POSTSUBSCRIPT roman_osc end_POSTSUBSCRIPT ∼ italic_O ( divide start_ARG 1 end_ARG start_ARG square-root start_ARG 6 italic_λ end_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG ) ≪ italic_O ( divide start_ARG 1 end_ARG start_ARG italic_H end_ARG ) . (153)

Hence, we will time-average over these rapid oscillations, and assume an approximately conformal evolution of the background radial field. This assumption allows us to quantize this system similar to the analysis presented in Sec. III. Therefore, we employ the same set of initial conditions for the two frequency solutions that we presented in Eqs. (76) and (85) to solve for the mode functions with a non-zero ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT. In Fig. 5, we show the time evolution of the radial and axial mode functions for a fiducial wavenumber k/a(ηi)=10𝑘𝑎subscript𝜂𝑖10k/a(\eta_{i})=10italic_k / italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = 10 in the context of this quasi-adiabatic system with small deviations away from a conformal solution.

V Plots and Discussion

In Sec. III we derived analytic expressions for the effective mass-squared term mδχ2superscriptsubscript𝑚𝛿𝜒2m_{\delta\chi}^{2}italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for the axial fluctuations at the linear order. Subsequently we showed that for a particular conformal choice of background field boundary conditions, the isocurvature power spectrum Δs2superscriptsubscriptΔ𝑠2\Delta_{s}^{2}roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT has a blue index nI3subscript𝑛𝐼3n_{I}\approx 3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ≈ 3 and hence increases as k2superscript𝑘2k^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT before transitioning to a massless plateau in agreement with the general considerations of Sec. II.2. Next, we considered deformations away from the conformal boundary condition, which generically induces radial background field oscillations which in turn nontrivially alter the perturbation dynamics. In this section, we give plots of the isocurvature power spectrum and briefly discuss the parameteric dependences. The dimensionless superhorizon isocurvature power spectrum of the axial field fluctuations is given as:

Δs2(k)=4ωa2Δδχδχ2(k,ηf)(fPQθi)2superscriptsubscriptΔ𝑠2𝑘4superscriptsubscript𝜔𝑎2superscriptsubscriptΔ𝛿𝜒𝛿𝜒2𝑘subscript𝜂𝑓superscriptsubscript𝑓PQsubscript𝜃𝑖2\Delta_{s}^{2}(k)=4\omega_{a}^{2}\frac{\Delta_{\delta\chi\delta\chi}^{2}(k,% \eta_{f})}{\left(f_{{\rm PQ}}\theta_{i}\right)^{2}}roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ) = 4 italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divide start_ARG roman_Δ start_POSTSUBSCRIPT italic_δ italic_χ italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) end_ARG start_ARG ( italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG (154)

where ηf0subscript𝜂𝑓0\eta_{f}\rightarrow 0italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT → 0 and Δδχδχ2superscriptsubscriptΔ𝛿𝜒𝛿𝜒2\Delta_{\delta\chi\delta\chi}^{2}roman_Δ start_POSTSUBSCRIPT italic_δ italic_χ italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is given in Eq. (391) and ωaΩaxion/Ωcdmsubscript𝜔𝑎subscriptΩaxionsubscriptΩcdm\omega_{a}\equiv\Omega_{\mathrm{axion}}/\Omega_{\mathrm{cdm}}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≡ roman_Ω start_POSTSUBSCRIPT roman_axion end_POSTSUBSCRIPT / roman_Ω start_POSTSUBSCRIPT roman_cdm end_POSTSUBSCRIPT assumes that the axions make up the CDM. Such axionic CDM would contribute to an approximately uncorrelated photon-dark matter isocurvature inhomogeneities in the post-inflationary cosmological evolution before the horizon reentry. Following the discussion under Eq. (59), we approximate the amplitude of the blue-tilted region of the spectrum as

Δs2(k<ktr)=ωa2π23(HΓ0(ηi)θi)2(ka(ηi)H)2.superscriptsubscriptΔ𝑠2𝑘subscript𝑘trsuperscriptsubscript𝜔𝑎2superscript𝜋23superscript𝐻subscriptΓ0subscript𝜂𝑖subscript𝜃𝑖2superscript𝑘𝑎subscript𝜂𝑖𝐻2\Delta_{s}^{2}(k<k_{{\rm tr}})=\frac{\omega_{a}^{2}}{\pi^{2}\sqrt{3}}\left(% \frac{H}{\Gamma_{0}(\eta_{i})\theta_{i}}\right)^{2}\left(\frac{k}{a(\eta_{i})H% }\right)^{2}.roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k < italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) = divide start_ARG italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT square-root start_ARG 3 end_ARG end_ARG ( divide start_ARG italic_H end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_k end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) italic_H end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (155)

From Eq. (60), we infer that the scale invariant part of the isocurvature spectrum is

Δs2(kktr)superscriptsubscriptΔ𝑠2much-greater-than𝑘subscript𝑘tr\displaystyle\Delta_{s}^{2}(k\gg k_{{\rm tr}})roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ≫ italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) =ωa2π2(HfPQθi)2.absentsuperscriptsubscript𝜔𝑎2superscript𝜋2superscript𝐻subscript𝑓PQsubscript𝜃𝑖2\displaystyle=\frac{\omega_{a}^{2}}{\pi^{2}}\left(\frac{H}{f_{{\rm PQ}}\theta_% {i}}\right)^{2}.= divide start_ARG italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG italic_H end_ARG start_ARG italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (156)

In the plots presented in this section, we normalize the isocurvature power spectra Δs2(k)superscriptsubscriptΔ𝑠2𝑘\Delta_{s}^{2}(k)roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ) with respect to the quantity (fPQθi)2/(ωaH)2superscriptsubscript𝑓PQsubscript𝜃𝑖2superscriptsubscript𝜔𝑎𝐻2\left(f_{{\rm PQ}}\theta_{i}\right)^{2}/\left(\omega_{a}H\right)^{2}( italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Hence, we plot 4H2Δδχδχ2(k,ηf)4superscript𝐻2superscriptsubscriptΔ𝛿𝜒𝛿𝜒2𝑘subscript𝜂𝑓4H^{-2}\Delta_{\delta\chi\delta\chi}^{2}(k,\eta_{f})4 italic_H start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT roman_Δ start_POSTSUBSCRIPT italic_δ italic_χ italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) on the y-axis and the analytic approximation for the normalized spectrum Δs2¯(k)¯superscriptsubscriptΔ𝑠2𝑘\overline{\Delta_{s}^{2}}(k)over¯ start_ARG roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_k ) can be expressed as

Δs2¯(k<ktr)=(fPQθi)2ωa2H2Δs2(k<ktr)={1π23(fPQΓ0(ηi))2(ka(ηi)H)2k<ktr1π2kktr.¯superscriptsubscriptΔ𝑠2𝑘subscript𝑘trsuperscriptsubscript𝑓PQsubscript𝜃𝑖2superscriptsubscript𝜔𝑎2superscript𝐻2superscriptsubscriptΔ𝑠2𝑘subscript𝑘trcases1superscript𝜋23superscriptsubscript𝑓PQsubscriptΓ0subscript𝜂𝑖2superscript𝑘𝑎subscript𝜂𝑖𝐻2𝑘subscript𝑘tr1superscript𝜋2much-greater-than𝑘subscript𝑘tr\overline{\Delta_{s}^{2}}(k<k_{{\rm tr}})=\frac{\left(f_{{\rm PQ}}\theta_{i}% \right)^{2}}{\omega_{a}^{2}H^{2}}\Delta_{s}^{2}(k<k_{{\rm tr}})=\begin{cases}% \frac{1}{\pi^{2}\sqrt{3}}\left(\frac{f_{{\rm PQ}}}{\Gamma_{0}(\eta_{i})}\right% )^{2}\left(\frac{k}{a(\eta_{i})H}\right)^{2}&k<k_{{\rm tr}}\\ \frac{1}{\pi^{2}}&k\gg k_{{\rm tr}}\end{cases}.over¯ start_ARG roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_k < italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) = divide start_ARG ( italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k < italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) = { start_ROW start_CELL divide start_ARG 1 end_ARG start_ARG italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT square-root start_ARG 3 end_ARG end_ARG ( divide start_ARG italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_k end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) italic_H end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL italic_k < italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL divide start_ARG 1 end_ARG start_ARG italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_CELL start_CELL italic_k ≫ italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT end_CELL end_ROW . (157)
Refer to caption
Refer to caption
Figure 6: Plots showing the late-time conserved superhorizon isocurvature power spectra (normalized with (fPQθi)2/ωa2superscriptsubscript𝑓PQsubscript𝜃𝑖2superscriptsubscript𝜔𝑎2\left(f_{{\rm PQ}}\theta_{i}\right)^{2}/\omega_{a}^{2}( italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT in Eq. (154)) of the axial field δχ𝛿𝜒\delta\chiitalic_δ italic_χ for the two examples presented in Secs. III.2.1 and IV.3.1. The plots are generated by numerically evolving the radial and axial mode fluctuations from ηisubscript𝜂𝑖\eta_{i}italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT to ηf0subscript𝜂𝑓0\eta_{f}\rightarrow 0italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT → 0 and evaluating the final isocurvature spectrum using Eq. (154). The plots on the top (bottom) rows correspond to the parameter ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT set to 00 (0.1)0.1)0.1 ) while keeping κ=0𝜅0\kappa=0italic_κ = 0. The power spectra have a spectral index nI3subscript𝑛𝐼3n_{I}\approx 3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ≈ 3 for modes k<ktr𝑘subscript𝑘trk<k_{{\rm tr}}italic_k < italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT where ktr/ai/HΓi/fPQsubscript𝑘trsubscript𝑎𝑖𝐻subscriptΓ𝑖subscript𝑓PQk_{{\rm tr}}/a_{i}/H\approx\Gamma_{i}/f_{{\rm PQ}}italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_H ≈ roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT. In each plot we show the final power spectrum (red curve, circular markers) and individual contributions from the ω++subscript𝜔absent\omega_{++}italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT (blue curve, diamond markers) and ω+subscript𝜔absent\omega_{+-}italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT (green curve, square markers) frequency modes. The spectrum is dominated by the Goldstone mode. Using Eqs. (155) and (156) we plot the analytic spectrum (black dotted curve) in the k<ktr𝑘subscript𝑘trk<k_{{\rm tr}}italic_k < italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT and k>3ktr𝑘3subscript𝑘trk>3k_{{\rm tr}}italic_k > 3 italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT regions of the spectra respectively. The small-amplitude oscillations seen in the ϵL=0.1subscriptitalic-ϵ𝐿0.1\epsilon_{L}=0.1italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 0.1 scenario are explained in the main text.

For the isocurvature spectrum normalized in this way, the amplitude of blue-tilted region only depends upon the ratio Γ0(ηi)/fPQsubscriptΓ0subscript𝜂𝑖subscript𝑓PQ\Gamma_{0}(\eta_{i})/f_{{\rm PQ}}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) / italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT.

In Fig. 6 we illustrate the isocurvature spectra for the two examples discussed in Secs. III.2.1 and IV.3.1. These plots highlight that the isocurvature power spectrum has a blue index nI3subscript𝑛𝐼3n_{I}\approx 3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ≈ 3 for modes k<ktr𝑘subscript𝑘trk<k_{{\rm tr}}italic_k < italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT where ktr/ai/HinfΓi/fPQsubscript𝑘trsubscript𝑎𝑖subscript𝐻infsubscriptΓ𝑖subscript𝑓PQk_{{\rm tr}}/a_{i}/H_{{\rm inf}}\approx\Gamma_{i}/f_{{\rm PQ}}italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT ≈ roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT. In each plot we show the contributions from the ω++subscript𝜔absent\omega_{++}italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT and ω+subscript𝜔absent\omega_{+-}italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT frequency modes, with the spectrum being predominantly influenced by the lighter (ω+)subscript𝜔absent\left(\omega_{+-}\right)( italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) mode due to the mode normalization. For comparison we also include our analytic spectrum in the blue-tilted k<ktr𝑘subscript𝑘trk<k_{{\rm tr}}italic_k < italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT and massless-plateau k>3ktr𝑘3subscript𝑘trk>3k_{{\rm tr}}italic_k > 3 italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT regions of the spectrum. We lack an analytic prediction for the intermediate (bumpy) region. Due to the sub-dominant deviations from the conformal background solution in the ϵL=0.1subscriptitalic-ϵ𝐿0.1\epsilon_{L}=0.1italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 0.1 scenario, we observe tiny oscillations in the spectrum that can be attributed to the oscillation of the background radial field around the conformal background. Below we explore the impact of a non-zero ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT on the isocurvature spectrum.

V.1 ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT dependence

Refer to caption
Refer to caption
Figure 7: Plots showing isocurvature power spectrum for rotating complex scalar ΦΦ\Phiroman_Φ for different values of ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT. For generating these plots, we set λ=104𝜆superscript104\lambda=10^{-4}italic_λ = 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT, M=Hinf𝑀subscript𝐻infM=H_{{\rm inf}}italic_M = italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT and κ=0𝜅0\kappa=0italic_κ = 0. The initial radial displacement at ηisubscript𝜂𝑖\eta_{i}italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is set at 300fPQ300subscript𝑓PQ300f_{{\rm PQ}}300 italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT such that the k𝑘kitalic_k-range of the blue part of the spectrum is approximately ktr/ki103similar-tosubscript𝑘trsubscript𝑘𝑖superscript103k_{{\rm tr}}/k_{i}\sim 10^{3}italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∼ 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. The power spectrum has a blue index nI3subscript𝑛𝐼3n_{I}\approx 3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ≈ 3. We note that for ϵL0subscriptitalic-ϵ𝐿0\epsilon_{L}\neq 0italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≠ 0, the spectrum exhibits oscillations that grow rapidly with ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT. The plot in the top row shows parametric enhancement of the spectrum within the k2superscript𝑘2k^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT region for values of ϵL=+0.3subscriptitalic-ϵ𝐿0.3\epsilon_{L}=+0.3italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = + 0.3 and ϵL=0.4subscriptitalic-ϵ𝐿0.4\epsilon_{L}=-0.4italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = - 0.4. In the bottom row, we plot the isocurvature spectra on a much finer k𝑘kitalic_k-bin to highlight sharp parameterically enhanced peaks at k/Hinf/ai0.9(2λYc)𝑘subscript𝐻infsubscript𝑎𝑖0.92𝜆subscript𝑌𝑐k/H_{{\rm inf}}/a_{i}\approx 0.9\left(2\sqrt{\lambda}Y_{c}\right)italic_k / italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT / italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≈ 0.9 ( 2 square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ) within the flat region.

In Fig. 7, we plot several examples of isocurvature power spectra for the rotating complex scalar ΦΦ\Phiroman_Φ for different values of ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT highlighting the effect of a non-zero ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT on the blue-tilted part of the spectrum. For all cases, the vacuum boundary conditions for the fluctuations are set according to Eqs. (76) and (85). As we will discuss below, the oscillations in the spectrum arise due to the deviation of the background radial field from a conformal background solution. There is also a contribution from the residual non-adiabaticity in the Bunch-Davies-like vacuum definition for the radial and axial fluctuations coming from our choice of initial conditions.

In Sec. III, we showed that for a time-independent conformal background solution, the Hamiltonian for the coupled radial-axial field fluctuations can be diagonalized with frequency solutions ωH=ω±+subscript𝜔𝐻subscript𝜔plus-or-minusabsent\omega_{H}=\omega_{\pm+}italic_ω start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT = italic_ω start_POSTSUBSCRIPT ± + end_POSTSUBSCRIPT and ωL=ω±subscript𝜔𝐿subscript𝜔plus-or-minusabsent\omega_{L}=\omega_{\pm-}italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = italic_ω start_POSTSUBSCRIPT ± - end_POSTSUBSCRIPT as given in Eq. (46). The isocurvature power spectrum for the IR modes is dominated by the lower frequency solution ωLsubscript𝜔𝐿\omega_{L}italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT and is blue-tilted, Δs2(kkIR)k2proportional-tosuperscriptsubscriptΔ𝑠2less-than-or-similar-to𝑘subscript𝑘IRsuperscript𝑘2\Delta_{s}^{2}(k\lesssim k_{{\rm IR}})\propto k^{2}roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ≲ italic_k start_POSTSUBSCRIPT roman_IR end_POSTSUBSCRIPT ) ∝ italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. In the ϵL0subscriptitalic-ϵ𝐿0\epsilon_{L}\neq 0italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≠ 0 scenario, the conformal symmetry is broken in a time-dependent way through the choice of boundary condition leading to the background radial field Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT having O(ϵL)𝑂subscriptitalic-ϵ𝐿O\left(\epsilon_{L}\right)italic_O ( italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) amplitude high-frequency oscillations for |ϵL|1much-less-thansubscriptitalic-ϵ𝐿1|\epsilon_{L}|\ll 1| italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT | ≪ 1. This is described by the approximate analytic solution given in Eq. (132). Compared to the constant solution Ycsubscript𝑌𝑐Y_{c}italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, the amplitude of the oscillations can be defined by a new parameter x𝑥xitalic_x as

(YiYcYc)=xO(ϵL/3)1.subscript𝑌𝑖subscript𝑌𝑐subscript𝑌𝑐𝑥similar-to𝑂subscriptitalic-ϵ𝐿3much-less-than1\left(\frac{Y_{i}-Y_{c}}{Y_{c}}\right)=x\sim O\left(\epsilon_{L}/3\right)\ll 1.( divide start_ARG italic_Y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG ) = italic_x ∼ italic_O ( italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT / 3 ) ≪ 1 . (158)

Under these conditions, the oscillations of the background radial field induce coupling between the axial and radial field fluctuations which is O(x)𝑂𝑥O\left(x\right)italic_O ( italic_x ) magnitude and time-dependent. This leads to a mixing between the normal mode-states eLsubscript𝑒𝐿e_{L}italic_e start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT and eHsubscript𝑒𝐻e_{H}italic_e start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT corresponding to ωLsubscript𝜔𝐿\omega_{L}italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT and ωHsubscript𝜔𝐻\omega_{H}italic_ω start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT respectively. Qualitatively, it suggests that an initial excitation of the lighter frequency state at ηisubscript𝜂𝑖\eta_{i}italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT will generate O(x)𝑂𝑥O\left(x\right)italic_O ( italic_x ) excitations of the remaining frequency solutions through the time-dependent mixing term. Quantitatively, if the axial fluctuation is excited with the positive-frequency lighter eigenstate, eiωLηsuperscript𝑒𝑖subscript𝜔𝐿𝜂e^{-i\omega_{L}\eta}italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT, then the time-dependent mixing will generate a mixed state expressed approximately as

δχk(η)Ck[(1+O(x))eiωLη+O(x)eiωHη+O(x)e+iωHη+O(x)e+iωLη]similar-to𝛿subscript𝜒𝑘𝜂subscript𝐶𝑘delimited-[]1𝑂𝑥superscript𝑒𝑖subscript𝜔𝐿𝜂𝑂𝑥superscript𝑒𝑖subscript𝜔𝐻𝜂𝑂𝑥superscript𝑒𝑖subscript𝜔𝐻𝜂𝑂𝑥superscript𝑒𝑖subscript𝜔𝐿𝜂\delta\chi_{k}(\eta)\sim C_{k}\left[\left(1+O(x)\right)e^{-i\omega_{L}\eta}+O(% x)e^{-i\omega_{H}\eta}+O(x)e^{+i\omega_{H}\eta}+O(x)e^{+i\omega_{L}\eta}\right]italic_δ italic_χ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_η ) ∼ italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT [ ( 1 + italic_O ( italic_x ) ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_O ( italic_x ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_O ( italic_x ) italic_e start_POSTSUPERSCRIPT + italic_i italic_ω start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_O ( italic_x ) italic_e start_POSTSUPERSCRIPT + italic_i italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT ] (159)

where the Cksubscript𝐶𝑘C_{k}italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is an overall normalization of mode function χksubscript𝜒𝑘\chi_{k}italic_χ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT. The isocurvature power spectrum during this phase (ηηtrmuch-less-than𝜂subscript𝜂𝑡𝑟\eta\ll\eta_{tr}italic_η ≪ italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT) can be approximately given as

Δδχδχ2(k,η)superscriptsubscriptΔ𝛿𝜒𝛿𝜒2𝑘𝜂\displaystyle\Delta_{\delta\chi\delta\chi}^{2}(k,\eta)roman_Δ start_POSTSUBSCRIPT italic_δ italic_χ italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_η ) k3δχkδχksimilar-toabsentsuperscript𝑘3𝛿superscriptsubscript𝜒𝑘𝛿subscript𝜒𝑘\displaystyle\sim k^{3}\delta\chi_{k}^{*}\delta\chi_{k}∼ italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_δ italic_χ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_δ italic_χ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT (160)
k3|Ck|2[1+2O(x)+2O(x)cos(2ωL(ηηi))+\displaystyle\sim k^{3}\left|C_{k}\right|^{2}\left[1+2O(x)+2O(x)\cos\left(2% \omega_{L}\left(\eta-\eta_{i}\right)\right)+\right.∼ italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT | italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ 1 + 2 italic_O ( italic_x ) + 2 italic_O ( italic_x ) roman_cos ( 2 italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) +
2O(x)cos((ωH+ωL)(ηηi))+2O(x)cos((ωHωL)(ηηi))]+O(x2).\displaystyle\left.2O(x)\cos\left(\left(\omega_{H}+\omega_{L}\right)\left(\eta% -\eta_{i}\right)\right)+2O(x)\cos\left(\left(\omega_{H}-\omega_{L}\right)\left% (\eta-\eta_{i}\right)\right)\right]+O(x^{2})\,.2 italic_O ( italic_x ) roman_cos ( ( italic_ω start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT + italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) + 2 italic_O ( italic_x ) roman_cos ( ( italic_ω start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ] + italic_O ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) . (161)

Hence, we note that |ϵL|1much-less-thansubscriptitalic-ϵ𝐿1|\epsilon_{L}|\ll 1| italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT | ≪ 1 deviations from a perfect conformal boundary condition “weakly” break time-independent conformal phase and generate O(x)𝑂𝑥O(x)italic_O ( italic_x )-amplitude oscillatory signals on the blue-tilted part of the spectrum. These oscillations are approximately linear in k𝑘kitalic_k. In terms of normalized momentum kηi𝑘subscript𝜂𝑖-k\eta_{i}- italic_k italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, the k𝑘kitalic_k-space frequencies for these oscillations in the blue-tilted region can be read from the above expression as

ωj{23,13±5k66λYc2}(1η/ηi)subscript𝜔𝑗23plus-or-minus135𝑘66𝜆superscriptsubscript𝑌𝑐21𝜂subscript𝜂𝑖\omega_{j}\approx\left\{\frac{2}{\sqrt{3}},\frac{1}{\sqrt{3}}\pm\frac{5k}{6% \sqrt{6\lambda Y_{c}^{2}}}\right\}\left(1-\eta/\eta_{i}\right)italic_ω start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≈ { divide start_ARG 2 end_ARG start_ARG square-root start_ARG 3 end_ARG end_ARG , divide start_ARG 1 end_ARG start_ARG square-root start_ARG 3 end_ARG end_ARG ± divide start_ARG 5 italic_k end_ARG start_ARG 6 square-root start_ARG 6 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG } ( 1 - italic_η / italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) (162)

and the isocurvature spectrum can be conveniently expressed as

Δδχδχ2(kλYc,ηηtr)superscriptsubscriptΔ𝛿𝜒𝛿𝜒2formulae-sequencemuch-less-than𝑘𝜆subscript𝑌𝑐much-less-than𝜂subscript𝜂𝑡𝑟\displaystyle\Delta_{\delta\chi\delta\chi}^{2}(k\ll\sqrt{\lambda}Y_{c},\eta\ll% \eta_{tr})roman_Δ start_POSTSUBSCRIPT italic_δ italic_χ italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ≪ square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , italic_η ≪ italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) k3|Ck|2[1+2O(x)+j=132O(x)cos(ωj(kηi))].similar-toabsentsuperscript𝑘3superscriptsubscript𝐶𝑘2delimited-[]12𝑂𝑥superscriptsubscript𝑗132𝑂𝑥subscript𝜔𝑗𝑘subscript𝜂𝑖\displaystyle\sim k^{3}\left|C_{k}\right|^{2}\left[1+2O(x)+\sum_{j=1}^{3}2O(x)% \cos\left(\omega_{j}\left(-k\eta_{i}\right)\right)\right].∼ italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT | italic_C start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ 1 + 2 italic_O ( italic_x ) + ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT 2 italic_O ( italic_x ) roman_cos ( italic_ω start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( - italic_k italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ] . (163)

For η0𝜂0\eta\rightarrow 0italic_η → 0 and kλYcmuch-less-than𝑘𝜆subscript𝑌𝑐k\ll\sqrt{\lambda}Y_{c}italic_k ≪ square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, these frequencies are simply multiples of 1/3131/\sqrt{3}1 / square-root start_ARG 3 end_ARG. Thus, the time-dependent conformal symmetry breaking boundary conditions imprint an oscillatory signal that is a signature of the Goldstone mode’s dispersion relation. Since the k𝑘kitalic_k-space wavelength of these oscillations is λk2π3/ηiO(10/ηi)subscript𝜆𝑘2𝜋3subscript𝜂𝑖similar-to𝑂10subscript𝜂𝑖\lambda_{k}\approx 2\pi\sqrt{3}/\eta_{i}\sim O(10/\eta_{i})italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≈ 2 italic_π square-root start_ARG 3 end_ARG / italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∼ italic_O ( 10 / italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ), these may be measurable.

To facilitate matching/fitting with the numerical/observational data, we transform the expression in Eq. (161) into a semi-analytic empirical form by introducing O(1)similar-toabsent𝑂1\sim O(1)∼ italic_O ( 1 ) unknown coefficients c0,1,2,3subscript𝑐0123c_{0,1,2,3}italic_c start_POSTSUBSCRIPT 0 , 1 , 2 , 3 end_POSTSUBSCRIPT:

Δδχδχ2(k,η)superscriptsubscriptΔ𝛿𝜒𝛿𝜒2𝑘𝜂\displaystyle\Delta_{\delta\chi\delta\chi}^{2}(k,\eta)roman_Δ start_POSTSUBSCRIPT italic_δ italic_χ italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_η ) 1+2x[c0+c3cos(2ωL(ηηi))+\displaystyle\propto 1+2x\left[c_{0}+c_{3}\cos\left(2\omega_{L}\left(\eta-\eta% _{i}\right)\right)+\right.∝ 1 + 2 italic_x [ italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_cos ( 2 italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) +
c1cos((ωH+ωL)(ηηi))+c2cos((ωHωL)(ηηi))].\displaystyle\left.c_{1}\cos\left(\left(\omega_{H}+\omega_{L}\right)\left(\eta% -\eta_{i}\right)\right)+c_{2}\cos\left(\left(\omega_{H}-\omega_{L}\right)\left% (\eta-\eta_{i}\right)\right)\right].italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_cos ( ( italic_ω start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT + italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) + italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_cos ( ( italic_ω start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ] . (164)

If c1c2subscript𝑐1subscript𝑐2c_{1}\approx c_{2}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≈ italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, the above expression takes the form

Δδχδχ2(k,η)1+2x[c0+c3cos(2ωL(ηηi))+2c1cos(ωH(ηηi))cos(ωL(ηηi))].proportional-tosuperscriptsubscriptΔ𝛿𝜒𝛿𝜒2𝑘𝜂12𝑥delimited-[]subscript𝑐0subscript𝑐32subscript𝜔𝐿𝜂subscript𝜂𝑖2subscript𝑐1subscript𝜔𝐻𝜂subscript𝜂𝑖subscript𝜔𝐿𝜂subscript𝜂𝑖\Delta_{\delta\chi\delta\chi}^{2}(k,\eta)\propto 1+2x\left[c_{0}+c_{3}\cos% \left(2\omega_{L}\left(\eta-\eta_{i}\right)\right)+2c_{1}\cos\left(\omega_{H}% \left(\eta-\eta_{i}\right)\right)\cos\left(\omega_{L}\left(\eta-\eta_{i}\right% )\right)\right].roman_Δ start_POSTSUBSCRIPT italic_δ italic_χ italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_η ) ∝ 1 + 2 italic_x [ italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_cos ( 2 italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) + 2 italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_cos ( italic_ω start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) roman_cos ( italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ] . (165)

To isolate the oscillations present in the data, we can normalize it with the smoother (no-wiggle (nw)) spectrum. The resulting normalized spectrum can then be fitted using the following empirical expression

Δδχδχ2(k)Δδχδχ,nw2(k)superscriptsubscriptΔ𝛿𝜒𝛿𝜒2𝑘superscriptsubscriptΔ𝛿𝜒𝛿𝜒nw2𝑘\displaystyle\frac{\Delta_{\delta\chi\delta\chi}^{2}(k)}{\Delta_{\delta\chi% \delta\chi,{\rm nw}}^{2}(k)}divide start_ARG roman_Δ start_POSTSUBSCRIPT italic_δ italic_χ italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ) end_ARG start_ARG roman_Δ start_POSTSUBSCRIPT italic_δ italic_χ italic_δ italic_χ , roman_nw end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ) end_ARG =1+2x[c0+c3cos(2ωL(ηi))+c1cos((ωH+ωL)(ηi))\displaystyle=1+2x\left[c_{0}+c_{3}\cos\left(2\omega_{L}\left(-\eta_{i}\right)% \right)+c_{1}\cos\left(\left(\omega_{H}+\omega_{L}\right)\left(-\eta_{i}\right% )\right)\right.= 1 + 2 italic_x [ italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_cos ( 2 italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_cos ( ( italic_ω start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT + italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) ( - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) )
+c2cos((ωHωL)(ηi))].\displaystyle\left.+c_{2}\cos\left(\left(\omega_{H}-\omega_{L}\right)\left(-% \eta_{i}\right)\right)\right].+ italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_cos ( ( italic_ω start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) ( - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ] . (166)
Refer to caption
Refer to caption
Figure 8: Plots showing the normalized isocurvature power spectra for ϵL=0.05subscriptitalic-ϵ𝐿0.05\epsilon_{L}=0.05italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 0.05. These plots are generated for a fiducial set of model parameters with λ=1𝜆1\lambda=1italic_λ = 1 and 2M/Hinf=102𝑀subscript𝐻inf10\sqrt{2}M/H_{{\rm inf}}=10square-root start_ARG 2 end_ARG italic_M / italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT = 10 such that fPQ=10Hinfsubscript𝑓PQ10subscript𝐻inff_{{\rm PQ}}=10H_{{\rm inf}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT = 10 italic_H start_POSTSUBSCRIPT roman_inf end_POSTSUBSCRIPT. To highlight the oscillatory signal in the power spectra for a nonzero ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT parameter, we have normalized the spectrum with the smooth, non-wiggly part of the spectrum. The numerical data is plotted in black color with circular markers and our semi-analytic empirical expression from Eq. (164) is depicted by the red-dashed curve. The top (bottom) plot shows the isocurvature spectrum before (after) the radial field reaches the fPQsubscript𝑓𝑃𝑄f_{PQ}italic_f start_POSTSUBSCRIPT italic_P italic_Q end_POSTSUBSCRIPT.

In Fig. 8, we illustrate the normalized isocurvature spectra for ϵL=0.05subscriptitalic-ϵ𝐿0.05\epsilon_{L}=0.05italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = 0.05. Through the figure, we highlight the comparison between the numerical data and our semi-analytic empirical expression in Eq. (166). For the axial fluctuations initially excited with the positive-frequency lighter eigenstate eiωLηsuperscript𝑒𝑖subscript𝜔𝐿𝜂e^{-i\omega_{L}\eta}italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT, the time-dependent O(ϵL)𝑂subscriptitalic-ϵ𝐿O(\epsilon_{L})italic_O ( italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) oscillations will generate a mixed state with other frequencies, where the mixing is controlled by the O(ϵL/3)𝑂subscriptitalic-ϵ𝐿3O(\epsilon_{L}/3)italic_O ( italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT / 3 ) parameter as shown in Eq. (166). By fitting the numerical data, we obtain the best fit values of the coefficients as {c0=0.0585,c1=0.9544,c2=1.0354,c3=0.3518}formulae-sequencesubscript𝑐00.0585formulae-sequencesubscript𝑐10.9544formulae-sequencesubscript𝑐21.0354subscript𝑐30.3518\{c_{0}=-0.0585,c_{1}=0.9544,c_{2}=1.0354,c_{3}=-0.3518\}{ italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 0.0585 , italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0.9544 , italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 1.0354 , italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = - 0.3518 }. The normalized amplitude of the oscillation during this phase is O(2x)ϵL0.05similar-to𝑂2𝑥subscriptitalic-ϵ𝐿0.05O(2x)\sim\epsilon_{L}\equiv 0.05italic_O ( 2 italic_x ) ∼ italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≡ 0.05. After transition, the axial fluctuations corresponding to the heavier frequency state, ±ωHplus-or-minussubscript𝜔𝐻\pm\omega_{H}± italic_ω start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT, decay by a factor min[1,O(H/M)]proportional-toabsent1𝑂𝐻𝑀\propto\min\left[1,O(H/M)\right]∝ roman_min [ 1 , italic_O ( italic_H / italic_M ) ]. This is represented by the best fit values of the coefficients {c0=0.0029,c1=0.1444,c2=0.1684,c3=0.3311}formulae-sequencesubscript𝑐00.0029formulae-sequencesubscript𝑐10.1444formulae-sequencesubscript𝑐20.1684subscript𝑐30.3311\{c_{0}=-0.0029,c_{1}=0.1444,c_{2}=0.1684,c_{3}=-0.3311\}{ italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 0.0029 , italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0.1444 , italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0.1684 , italic_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = - 0.3311 } for the oscillations of the late-time spectrum as illustrated in the bottom plot.

Let’s now go back to Fig. 7 and discuss its features for larger values of ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT. The spectrum shows parameteric resonance enhancement of the mode amplitude for values of ϵL=+0.3subscriptitalic-ϵ𝐿0.3\epsilon_{L}=+0.3italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = + 0.3 and ϵL=0.4subscriptitalic-ϵ𝐿0.4\epsilon_{L}=-0.4italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = - 0.4 in the blue-tilted region. To understand the onset of the PR and its dependence on ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT, let us consider the uncoupled mode equation for the scaled radial fluctuations

η2δYk+(k2(2M2+2H2)a2+3λ(Yc+ΔY0)2L2(Yc+ΔY0)4)δYk=0.superscriptsubscript𝜂2𝛿subscript𝑌𝑘superscript𝑘22superscript𝑀22superscript𝐻2superscript𝑎23𝜆superscriptsubscript𝑌𝑐Δsubscript𝑌02superscript𝐿2superscriptsubscript𝑌𝑐Δsubscript𝑌04𝛿subscript𝑌𝑘0\partial_{\eta}^{2}\delta Y_{k}+\left(k^{2}-\left(2M^{2}+2H^{2}\right)a^{2}+3% \lambda\left(Y_{c}+\Delta Y_{0}\right)^{2}-\frac{L^{2}}{\left(Y_{c}+\Delta Y_{% 0}\right)^{4}}\right)\delta Y_{k}=0.∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_Y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ ( italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT + roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT + roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ) italic_δ italic_Y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 0 . (167)

In this simplified discussion, we focus solely on the effect of deformation from the conformal background on the mass-squared term of the radial mode, neglecting any coupling with the axial mode. By neglecting the sub-dominant order Hubble mass terms and taking κ=0𝜅0\kappa=0italic_κ = 0, we expand up to linear order in ΔY0Δsubscript𝑌0\Delta Y_{0}roman_Δ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. This yields the reduced EoM:

η2δYk+(k2+2λYc2+10λYc2(1(1ϵL)1/3(1ϵL)1/3)cos(f(ηηi)))δYk=0superscriptsubscript𝜂2𝛿subscript𝑌𝑘superscript𝑘22𝜆superscriptsubscript𝑌𝑐210𝜆superscriptsubscript𝑌𝑐21superscript1subscriptitalic-ϵ𝐿13superscript1subscriptitalic-ϵ𝐿13𝑓𝜂subscript𝜂𝑖𝛿subscript𝑌𝑘0\partial_{\eta}^{2}\delta Y_{k}+\left(k^{2}+2\lambda Y_{c}^{2}+10\lambda Y_{c}% ^{2}\left(\frac{1-\left(1-\epsilon_{L}\right)^{1/3}}{\left(1-\epsilon_{L}% \right)^{1/3}}\right)\cos\left(f\left(\eta-\eta_{i}\right)\right)\right)\delta Y% _{k}=0∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_Y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT + ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 10 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG 1 - ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG ) roman_cos ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ) italic_δ italic_Y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = 0 (168)

where we recognize the mass-squared term for the radial fluctuations as

mδY2superscriptsubscript𝑚𝛿𝑌2\displaystyle m_{\delta Y}^{2}italic_m start_POSTSUBSCRIPT italic_δ italic_Y end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT k2+2λYc2+10λYc2(1(1ϵL)1/3(1ϵL)1/3)cos(f(ηηi)).absentsuperscript𝑘22𝜆superscriptsubscript𝑌𝑐210𝜆superscriptsubscript𝑌𝑐21superscript1subscriptitalic-ϵ𝐿13superscript1subscriptitalic-ϵ𝐿13𝑓𝜂subscript𝜂𝑖\displaystyle\approx k^{2}+2\lambda Y_{c}^{2}+10\lambda Y_{c}^{2}\left(\frac{1% -\left(1-\epsilon_{L}\right)^{1/3}}{\left(1-\epsilon_{L}\right)^{1/3}}\right)% \cos\left(f\left(\eta-\eta_{i}\right)\right).≈ italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 10 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( divide start_ARG 1 - ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG ) roman_cos ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) . (169)

In the above differential equation, we can identify the term fN=k2+2λYc2subscript𝑓𝑁superscript𝑘22𝜆superscriptsubscript𝑌𝑐2f_{N}=\sqrt{k^{2}+2\lambda Y_{c}^{2}}italic_f start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = square-root start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG as the natural frequency of the oscillator and fDfsubscript𝑓𝐷𝑓f_{D}\approx fitalic_f start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ≈ italic_f as the frequency driving the parametric excitation. Through a variable change z=f(ηηi)/2𝑧𝑓𝜂subscript𝜂𝑖2z=f\left(\eta-\eta_{i}\right)/2italic_z = italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) / 2, we reframe the above equation in terms of a general Matheiu system:

d2udz2+(α2qcos(2z))u=0superscript𝑑2𝑢𝑑superscript𝑧2𝛼2𝑞2𝑧𝑢0\frac{d^{2}u}{dz^{2}}+\left(\alpha-2q\cos\left(2z\right)\right)u=0divide start_ARG italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_u end_ARG start_ARG italic_d italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + ( italic_α - 2 italic_q roman_cos ( 2 italic_z ) ) italic_u = 0 (170)

and find the corresponding Mathieu parameters as

α𝛼\displaystyle\alphaitalic_α =4(k2+2λYc2)6λYc2,absent4superscript𝑘22𝜆superscriptsubscript𝑌𝑐26𝜆superscriptsubscript𝑌𝑐2\displaystyle=\frac{4\left(k^{2}+2\lambda Y_{c}^{2}\right)}{6\lambda Y_{c}^{2}},= divide start_ARG 4 ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG start_ARG 6 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , (171)
q=10(1(1ϵL)1/3(1ϵL)1/3)3.𝑞101superscript1subscriptitalic-ϵ𝐿13superscript1subscriptitalic-ϵ𝐿133q=-\frac{10\left(\frac{1-\left(1-\epsilon_{L}\right)^{1/3}}{\left(1-\epsilon_{% L}\right)^{1/3}}\right)}{3}.italic_q = - divide start_ARG 10 ( divide start_ARG 1 - ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG ) end_ARG start_ARG 3 end_ARG . (172)

In terms of the original model parameters, we find that α𝛼\alphaitalic_α depends only on one combination

α=α(k(1ϵL)1/3λΓi)𝛼𝛼𝑘superscript1subscriptitalic-ϵ𝐿13𝜆subscriptΓ𝑖\alpha=\alpha\left(\frac{k}{\left(1-\epsilon_{L}\right)^{1/3}\sqrt{\lambda}% \Gamma_{i}}\right)italic_α = italic_α ( divide start_ARG italic_k end_ARG start_ARG ( 1 - italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT square-root start_ARG italic_λ end_ARG roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG ) (173)

while q𝑞qitalic_q depends only on ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT. If f2k2much-greater-thansuperscript𝑓2superscript𝑘2f^{2}\gg k^{2}italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≫ italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, then

α43+O(k2/f2)𝛼43𝑂superscript𝑘2superscript𝑓2\alpha\approx\frac{4}{3}+O\left(k^{2}/f^{2}\right)italic_α ≈ divide start_ARG 4 end_ARG start_ARG 3 end_ARG + italic_O ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) (174)

causing α𝛼\alphaitalic_α to be approximately independent of the parameters. Thus, we find that the parameter α𝛼\alphaitalic_α is approximately a constant for modes that exit the horizon before axial field becomes massless, while |q|𝑞|q|| italic_q | increases linearly with ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT.

Refer to caption
Figure 9: Plot showing Mathieu stability chart in the αq𝛼𝑞\alpha-qitalic_α - italic_q parameteric space for the first few stability bands. The instability occurs within the shaded (unbounded) regions. For a fixed value of α4/3𝛼43\alpha\approx 4/3italic_α ≈ 4 / 3 (gray dashed line), we find that the system enters the first resonance band when the parameter |q|0.35greater-than-or-equivalent-to𝑞0.35|q|\gtrsim 0.35| italic_q | ≳ 0.35. The above figure is obtained by plotting even (blue) and odd (red) Mathieu functions.
Refer to caption
Figure 10: Plot of Mathieu parameter |q|𝑞|q|| italic_q | as a function of the rotational parameter ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT using Eq. (172). In terms of rotational parameter ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT, the oscillator becomes unstable for ϵL0.37less-than-or-similar-tosubscriptitalic-ϵ𝐿0.37\epsilon_{L}\lesssim-0.37italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≲ - 0.37 and ϵL+0.25greater-than-or-equivalent-tosubscriptitalic-ϵ𝐿0.25\epsilon_{L}\gtrsim+0.25italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≳ + 0.25. Also see Eq. (172).

An interesting behavior of a Mathieu oscillator is the excitation via parameteric resonance for a range of parameters α𝛼\alphaitalic_α and q𝑞qitalic_q. In Fig. 9 we plot a stability chart of the Mathieu system highlighting regions/bands of stable and unstable solutions in the αq𝛼𝑞\alpha-qitalic_α - italic_q parametric space. In the plot we fix α4/3𝛼43\alpha\approx 4/3italic_α ≈ 4 / 3 as derived in Eq. (174). When the oscillator system falls within an unstable resonance band it leads to an almost exponential excitation of the amplitude. For the radial mode fluctuations of our rotating complex field, Eq. (174) suggests that the value of α𝛼\alphaitalic_α is approximately a constant for small values of ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT and Eq. (172) indicates that q𝑞qitalic_q increases almost linearly with ϵLsubscriptitalic-ϵ𝐿\epsilon_{L}italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT as shown in Fig. 10. For a fixed value of α4/3𝛼43\alpha\approx 4/3italic_α ≈ 4 / 3 (red dashed line), we find that the system enters the first resonance band and becomes unstable when the parameter |q|0.35greater-than-or-equivalent-to𝑞0.35|q|\gtrsim 0.35| italic_q | ≳ 0.35. From Fig. 10, we infer that the uncoupled radial mode fluctuations δYk𝛿subscript𝑌𝑘\delta Y_{k}italic_δ italic_Y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT become unstable for ϵL0.37less-than-or-similar-tosubscriptitalic-ϵ𝐿0.37\epsilon_{L}\lesssim-0.37italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≲ - 0.37 and ϵL+0.25greater-than-or-equivalent-tosubscriptitalic-ϵ𝐿0.25\epsilon_{L}\gtrsim+0.25italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≳ + 0.25 for modes k2f2much-less-thansuperscript𝑘2superscript𝑓2k^{2}\ll f^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≪ italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. The oscillator amplitude is resonantly enhanced and results in a nearly exponential amplification. This observation aligns with our findings in Fig. 7. A similar analysis for the uncoupled axial field yields a much smaller value of α2k2/(3λYc2)𝛼2superscript𝑘23𝜆superscriptsubscript𝑌𝑐2\alpha\approx 2k^{2}/\left(3\lambda Y_{c}^{2}\right)italic_α ≈ 2 italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( 3 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) such that the instability in the blue region occurs only for values of |q|𝑞|q|| italic_q | close to unity.

Eq. (171) also suggests that modes close to k24λYc2superscript𝑘24𝜆superscriptsubscript𝑌𝑐2k^{2}\approx 4\lambda Y_{c}^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≈ 4 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT yield a value of α4𝛼4\alpha\approx 4italic_α ≈ 4, pushing the system towards the next resonance band. From Fig. 9, we infer that unlike the first, the second resonance band is significantly narrow for small values of |q||ϵL|1similar-to𝑞subscriptitalic-ϵ𝐿much-less-than1|q|\sim|\epsilon_{L}|\ll 1| italic_q | ∼ | italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT | ≪ 1. Consequently, only finely tuned values of k𝑘kitalic_k undergo PR, as depicted by the plot in the bottom row of Fig. 7, where we observe narrow parameterically enhanced peaks for modes kO(2λYc)𝑘𝑂2𝜆subscript𝑌𝑐k\approx O\left(2\sqrt{\lambda}Y_{c}\right)italic_k ≈ italic_O ( 2 square-root start_ARG italic_λ end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ). Similarly, PR linked to the n𝑛nitalic_nth resonance band for |q|1much-less-than𝑞1|q|\ll 1| italic_q | ≪ 1 would manifest for correspondingly higher k𝑘kitalic_k modes, with the width and amplitude of the peaks decreasing with n𝑛nitalic_n.

The above discussion has a simple interpretation. In terms of the natural and driving frequencies of a parameteric oscillator (defined below Eq. (167)), large exponential PR occurs when

fN=nfD2n{1,2,3,}formulae-sequencesubscript𝑓𝑁𝑛subscript𝑓𝐷2𝑛123f_{N}=n\frac{f_{D}}{2}\qquad n\in\{1,2,3,...\}italic_f start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = italic_n divide start_ARG italic_f start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG italic_n ∈ { 1 , 2 , 3 , … } (175)

where n𝑛nitalic_n refers to the nthsuperscript𝑛𝑡n^{th}italic_n start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT resonance/instability band. For q1much-less-than𝑞1q\ll 1italic_q ≪ 1, the bands have the usual width qnsimilar-toabsentsuperscript𝑞𝑛\sim q^{n}∼ italic_q start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and hence the most important and broadest instability band is n=1𝑛1n=1italic_n = 1 when q1much-less-than𝑞1q\ll 1italic_q ≪ 1. In the first band, resonance occurs close to fN=fD/2subscript𝑓𝑁subscript𝑓𝐷2f_{N}=f_{D}/2italic_f start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT = italic_f start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT / 2. Hence resonance occurs when the mass of the oscillating radial field is exactly twice the effective mass for the quantum modes δYk𝛿subscript𝑌𝑘\delta Y_{k}italic_δ italic_Y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT.

Due to the coupling between the radial and angular fluctuations, the parametrically enhanced radial fluctuations can drive angular fluctuations δχ𝛿𝜒\delta\chiitalic_δ italic_χ to large amplitudes. This enhancement lasts as long as the radial mode stays within the first resonance band, a duration of about O(1)𝑂1O(1)italic_O ( 1 ) Hubble time, after which the oscillatory mass behavior ceases in Eq. (167). It’s essential to note that the above discussion on PR relies on the simplified “uncoupled” EoM for the radial mode δYk𝛿subscript𝑌𝑘\delta Y_{k}italic_δ italic_Y start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT. However, the presence of a strong derivative coupling with the axial mode can notably alter the PR dynamics. Our numerical investigations across various Lagrangian parameters and initial conditions indicate that PR generally does not manifest within the blue region of the spectra for |ϵL|0.1less-than-or-similar-tosubscriptitalic-ϵ𝐿0.1|\epsilon_{L}|\lesssim 0.1| italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT | ≲ 0.1. A more comprehensive examination of PR’s dynamics is reserved for future studies.

V.2 Maximum k𝑘kitalic_k-range

As the background radial field approaches its stable vacuum, the effective mass-squared term mδχ2superscriptsubscript𝑚𝛿𝜒2m_{\delta\chi}^{2}italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for the axial fluctuations becomes approximately massless. If M2a2/(6λYc2)<1superscript𝑀2superscript𝑎26𝜆superscriptsubscript𝑌𝑐21M^{2}a^{2}/\left(6\lambda Y_{c}^{2}\right)<1italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / ( 6 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) < 1 for Nbluesubscript𝑁blueN_{\mathrm{blue}}italic_N start_POSTSUBSCRIPT roman_blue end_POSTSUBSCRIPT number of e-folds, the mass term behaves as in Eq. (142), during which time, we have a blue spectrum. Hence, the range of scales across which the spectrum remains strongly blue-tilted is approximately exp(Nblue)subscript𝑁blue\exp\left(N_{{\rm blue}}\right)roman_exp ( italic_N start_POSTSUBSCRIPT roman_blue end_POSTSUBSCRIPT ). Starting from the condition λY2max(2M2,a′′/a)much-greater-than𝜆superscript𝑌22superscript𝑀2superscript𝑎′′𝑎\lambda Y^{2}\gg\max\left(2M^{2},a^{\prime\prime}/a\right)italic_λ italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≫ roman_max ( 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a ) for a blue spectral index, one can show that

exp(Nblue)subscript𝑁blue\displaystyle\exp\left(N_{{\rm blue}}\right)roman_exp ( italic_N start_POSTSUBSCRIPT roman_blue end_POSTSUBSCRIPT ) ΓifPQ1+H2/M2.absentsubscriptΓ𝑖subscript𝑓PQ1superscript𝐻2superscript𝑀2\displaystyle\approx\frac{\Gamma_{i}}{f_{{\rm PQ}}\sqrt{1+H^{2}/M^{2}}}.≈ divide start_ARG roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT square-root start_ARG 1 + italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG . (176)

Using the spectator energy condition in Eq. (15), we can give an approximate upper bound on the maximum radial displacement ΓisubscriptΓ𝑖\Gamma_{i}roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT at tisubscript𝑡𝑖t_{i}italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT for a rotating complex scalar ΦΦ\Phiroman_Φ with |ϵL|1much-less-thansubscriptitalic-ϵ𝐿1|\epsilon_{L}|\ll 1| italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT | ≪ 1:

3λ4Γmax4ra3MP2H23𝜆4superscriptsubscriptΓ4subscript𝑟𝑎3superscriptsubscript𝑀𝑃2superscript𝐻2\frac{3\lambda}{4}\Gamma_{\max}^{4}\approx r_{a}3M_{P}^{2}H^{2}divide start_ARG 3 italic_λ end_ARG start_ARG 4 end_ARG roman_Γ start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ≈ italic_r start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT 3 italic_M start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (177)

or equivalently

ΓmaxHsubscriptΓ𝐻\displaystyle\frac{\Gamma_{\max}}{H}divide start_ARG roman_Γ start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT end_ARG start_ARG italic_H end_ARG 1030.2(ra0.01)1/4(1λ)1/4MP/H106absentsuperscript1030.2superscriptsubscript𝑟𝑎0.0114superscript1𝜆14subscript𝑀𝑃𝐻superscript106\displaystyle\approx 10^{3}\sqrt{0.2}\left(\frac{r_{a}}{0.01}\right)^{1/4}% \left(\frac{1}{\lambda}\right)^{1/4}\sqrt{\frac{M_{P}/H}{10^{6}}}≈ 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT square-root start_ARG 0.2 end_ARG ( divide start_ARG italic_r start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG start_ARG 0.01 end_ARG ) start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT ( divide start_ARG 1 end_ARG start_ARG italic_λ end_ARG ) start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT square-root start_ARG divide start_ARG italic_M start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT / italic_H end_ARG start_ARG 10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT end_ARG end_ARG (178)

where we have assumed a negligible radial velocity at tisubscript𝑡𝑖t_{i}italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. The parameter rasubscript𝑟𝑎r_{a}italic_r start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT gives the ratio of spectator energy density to that of inflaton’s and must be much less than 1111. Also, Eq. (178) states that the spectator energy bound is setting ΓmaxMPmuch-less-thansubscriptΓmaxsubscript𝑀𝑃\Gamma_{\mathrm{max}}\ll M_{P}roman_Γ start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT ≪ italic_M start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT. This is a significant departure from (Chung:2021lfg, ; Chung:2017uzc, ; Chung:2016wvv, ; Kasuya:2009up, ) in which the flat direction allowed the analog of the ΓmaxsubscriptΓmax\Gamma_{\mathrm{max}}roman_Γ start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT field to reach O(MP)𝑂subscript𝑀𝑃O(M_{P})italic_O ( italic_M start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT ) while the axionic sector still remained a spectator. Hence, even though the conformal limit liberated the quartic model from the constraints associated with the fast roll, the spectator condition has become more severe with the introduction of the quartic coupling, limiting max(Γi)subscriptΓ𝑖\max\left(\Gamma_{i}\right)roman_max ( roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ). Using Eq. (178), the maximum range for the blue part of the isocurvature spectrum for MO(H)similar-to𝑀𝑂𝐻M\sim O(H)italic_M ∼ italic_O ( italic_H ) is given by the expression

max(ktr/ki)exp(maxNblue)subscript𝑘trsubscript𝑘𝑖subscript𝑁blue\displaystyle\max\left(k_{{\rm tr}}/k_{i}\right)\approx\exp\left(\max N_{{\rm blue% }}\right)roman_max ( italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ≈ roman_exp ( roman_max italic_N start_POSTSUBSCRIPT roman_blue end_POSTSUBSCRIPT ) 1030.2(ra0.01)1/4(1λ)1/4MP/H1061fPQ/H.absentsuperscript1030.2superscriptsubscript𝑟𝑎0.0114superscript1𝜆14subscript𝑀𝑃𝐻superscript1061subscript𝑓PQ𝐻\displaystyle\approx 10^{3}\sqrt{0.2}\left(\frac{r_{a}}{0.01}\right)^{1/4}% \left(\frac{1}{\lambda}\right)^{1/4}\sqrt{\frac{M_{P}/H}{10^{6}}}\frac{1}{f_{{% \rm PQ}}/H}.≈ 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT square-root start_ARG 0.2 end_ARG ( divide start_ARG italic_r start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG start_ARG 0.01 end_ARG ) start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT ( divide start_ARG 1 end_ARG start_ARG italic_λ end_ARG ) start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT square-root start_ARG divide start_ARG italic_M start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT / italic_H end_ARG start_ARG 10 start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT end_ARG end_ARG divide start_ARG 1 end_ARG start_ARG italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT / italic_H end_ARG . (179)

V.3 Spectral bump and M𝑀Mitalic_M dependence

Refer to caption
Figure 11: Plot showing comparison of the normalized isocurvature power spectra for different values of M𝑀Mitalic_M with λ=104𝜆superscript104\lambda=10^{-4}italic_λ = 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT and Γi=300fPQsubscriptΓ𝑖300subscript𝑓PQ\Gamma_{i}=300f_{{\rm PQ}}roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 300 italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT. For these choice of λ𝜆\lambdaitalic_λ and M𝑀Mitalic_M, the PQ scale fPQ100O(M)subscript𝑓PQ100𝑂𝑀f_{{\rm PQ}}\approx 100\,O(M)italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT ≈ 100 italic_O ( italic_M ). The transition from a spectral index nI=3subscript𝑛𝐼3n_{I}=3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT = 3 occurs at the transition scale ktr/kiΓi/fPQ/1+H2/M2subscript𝑘trsubscript𝑘𝑖subscriptΓ𝑖subscript𝑓PQ1superscript𝐻2superscript𝑀2k_{{\rm tr}}/k_{i}\approx\Gamma_{i}/f_{{\rm PQ}}/\sqrt{1+H^{2}/M^{2}}italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≈ roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT / italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT / square-root start_ARG 1 + italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG. The plot also highlights the deviation of the isocurvature shapes at the transition to the massless plateau for different values of M𝑀Mitalic_M. We observe the appearance of the spectral bump for M3H/4greater-than-or-equivalent-to𝑀3𝐻4M\gtrsim 3H/4italic_M ≳ 3 italic_H / 4 as given in Eq. (273).

In Fig. 11, we show comparison between the isocurvature power spectra for different values of M𝑀Mitalic_M while keeping λ=104𝜆superscript104\lambda=10^{-4}italic_λ = 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT, Γi=300fPQsubscriptΓ𝑖300subscript𝑓PQ\Gamma_{i}=300f_{{\rm PQ}}roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 300 italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT fixed and ϵL,κ=0subscriptitalic-ϵ𝐿𝜅0\epsilon_{L},\kappa=0italic_ϵ start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT , italic_κ = 0. From Eqs. (155) and (156), we note that the normalized isocurvature power spectra Δs2¯(k)¯superscriptsubscriptΔ𝑠2𝑘\overline{\Delta_{s}^{2}}(k)over¯ start_ARG roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_k ) is independent of λ𝜆\lambdaitalic_λ and hence we do not study variation of λ𝜆\lambdaitalic_λ parameter. The plot highlights the deviation in the shape of the power spectra for different values of M𝑀Mitalic_M as the spectrum transitions from a blue region to a massless plateau. We observe the appearance of a spectral bump (irrespective of λ𝜆\lambdaitalic_λ) for values of MMcgreater-than-or-equivalent-to𝑀subscript𝑀𝑐M\gtrsim M_{c}italic_M ≳ italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT where Mc=3H/4subscript𝑀𝑐3𝐻4M_{c}=3H/4italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 3 italic_H / 4 is an approximate cutoff derived in Appendix C. This cutoff is essentially the usual dS oscillator equation having a critical mass/H=3/2mass𝐻32\mathrm{mass}/H=3/2roman_mass / italic_H = 3 / 2 but the mass at the asymptotic future minimum of the radial field effective potential is 2M.2𝑀2M.2 italic_M . As the value of M𝑀Mitalic_M rises above the cutoff Mcsubscript𝑀𝑐M_{c}italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, the asymptotic (late-time) behavior of the background radial field transitions from an exponential to oscillatory similar to the critical transition observed in damped oscillators. Thus, as the radial field ΓΓ\Gammaroman_Γ rolls down the potential and approaches its stable vacuum fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT, for values of MMcgreater-than-or-equivalent-to𝑀subscript𝑀𝑐M\gtrsim M_{c}italic_M ≳ italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT the radial field oscillates momentarily around the stable vacuum fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT before settling down. The oscillation of the radial field around fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT translates into oscillations of the mass-squared term mΓ2mδχ2superscriptsubscript𝑚Γ2superscriptsubscript𝑚𝛿𝜒2m_{\Gamma}^{2}\equiv m_{\delta\chi}^{2}italic_m start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≡ italic_m start_POSTSUBSCRIPT italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT around zero. These “non-adiabatic” oscillations give rise to a bump in the power spectrum. However, due to the presence of the tachyonic drag force from the non-zero angular velocity term, the amplitude of the oscillations and the corresponding height of the spectral bump become saturated for larger values of M𝑀Mitalic_M. Numerically, we find that for MHmuch-greater-than𝑀𝐻M\gg Hitalic_M ≫ italic_H, the amplitude of the bump is approximately a factor of 1.31.31.31.3 larger than the flat spectrum. On the other hand, when MMcless-than-or-similar-to𝑀subscript𝑀𝑐M\lesssim M_{c}italic_M ≲ italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, the radial field settles to the vacuum exponentially slow (ΓfPQ(1+exp(34(M/Mc)2t))Γsubscript𝑓PQ134superscript𝑀subscript𝑀𝑐2𝑡\Gamma\rightarrow f_{{\rm PQ}}\left(1+\exp\left(-\frac{3}{4}\left(M/M_{c}% \right)^{2}t\right)\right)roman_Γ → italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT ( 1 + roman_exp ( - divide start_ARG 3 end_ARG start_ARG 4 end_ARG ( italic_M / italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_t ) )) and hence the power spectrum gradually converges, without any bump, to the massless plateau over a large range of modes k𝑘kitalic_k as seen from the plots in Fig. 11.

Blue-tilted isocurvature power spectra with spectral bumps have been discussed previously in (Chung:2017uzc, ; Chung:2021lfg, ) for a SUSY embedding of the axion model as presented in (Kasuya:2009up, ) which we will refer to as the KK model. In the KK model, a blue power spectrum with nI=3subscript𝑛𝐼3n_{I}=3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT = 3 occurs when the Lagrangian parameter is fixed at c+=2subscript𝑐2c_{+}=2italic_c start_POSTSUBSCRIPT + end_POSTSUBSCRIPT = 2 (corresponding to the dynamical axion mass squared of c+H2subscript𝑐superscript𝐻2c_{+}H^{2}italic_c start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT). Notably, a bump in the power spectrum at the transition “always” exists for the KK model, unlike the model discussed in this paper, where the bump vanishes for MMcless-than-or-similar-to𝑀subscript𝑀𝑐M\lesssim M_{c}italic_M ≲ italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT despite the blue spectral index remaining nI=3subscript𝑛𝐼3n_{I}=3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT = 3. This is an important distinguishing feature between the model discussed in this work and the flat-direction models like the KK model. This distinction arises from the proximity of the mass c+H=2Hsubscript𝑐𝐻2𝐻\sqrt{c_{+}}H=\sqrt{2}Hsquare-root start_ARG italic_c start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_ARG italic_H = square-root start_ARG 2 end_ARG italic_H in the KK model to the critical mass 3H/23𝐻23H/23 italic_H / 2. Moreover, the KK model lacks an additional drag force from a non-zero angular velocity term, unlike the model discussed in this work. This drag force slows down the motion of the radial field in our model towards the minimum of the potential, resulting in a gradual transition of the spectrum to the massless plateau. Consequently, the presence of a bump at the transition from a k2superscript𝑘2k^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-spectrum is a generic feature in the KK model due to its near-critical mass and absence of an additional drag force. Unlike the model discussed in this work, the height of the spectral bump in the overdamped KK model for c+=2subscript𝑐2c_{+}=2italic_c start_POSTSUBSCRIPT + end_POSTSUBSCRIPT = 2 can be larger than the flat spectrum by at most a factor of 3333 where the height is governed by the parameter csubscript𝑐c_{-}italic_c start_POSTSUBSCRIPT - end_POSTSUBSCRIPT ((Chung:2021lfg, )).

Additionally, the maximum k𝑘kitalic_k-range for the blue part of the spectrum in the KK model can be much larger than that achievable from the rotating axion model. This difference arises because the potential of the KK model is quadratically dominated, compared to the quartic potential of the rotating axion model. In Fig. 12, we plot examples of normalized isocurvature power spectra for both the KK model and the rotating axion model. We emphasize that the KK model can exhibit a significantly larger max(ktr/ki)subscript𝑘trsubscript𝑘𝑖\max\left(k_{{\rm tr}}/k_{i}\right)roman_max ( italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ). In the absence of any adverse tuning of λ𝜆\lambdaitalic_λ, such a large max(ktr/ki)subscript𝑘trsubscript𝑘𝑖\max\left(k_{{\rm tr}}/k_{i}\right)roman_max ( italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) can serve as another distinguishing feature between the two models.

Refer to caption
Figure 12: We present examples of normalized isocurvature power spectra for both the KK model and the rotating axion model. As discussed in the main text, the KK model can exhibit a significantly larger max(ktr/ki)subscript𝑘trsubscript𝑘𝑖\max\left(k_{{\rm tr}}/k_{i}\right)roman_max ( italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) for the same values of fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT and H𝐻Hitalic_H. This is due to the comparatively larger radial displacement allowed by the spectator condition in the KK model. For these plots, we set fPQ/H=100subscript𝑓PQ𝐻100f_{{\rm PQ}}/H=100italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT / italic_H = 100 and H/Mp=109𝐻subscript𝑀𝑝superscript109H/M_{p}=10^{-9}italic_H / italic_M start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT - 9 end_POSTSUPERSCRIPT. The remaining Lagrangian parameters are set at {c+=2,c=2}formulae-sequencesubscript𝑐2subscript𝑐2\{c_{+}=2,c_{-}=2\}{ italic_c start_POSTSUBSCRIPT + end_POSTSUBSCRIPT = 2 , italic_c start_POSTSUBSCRIPT - end_POSTSUBSCRIPT = 2 } for the KK model and {λ=2×104,M/H=1}formulae-sequence𝜆2superscript104𝑀𝐻1\{\lambda=2\times 10^{-4},M/H=1\}{ italic_λ = 2 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT , italic_M / italic_H = 1 } for the current model. In both models, the initial radial velocity is set to zero. Without any adverse tuning of λ𝜆\lambdaitalic_λ, a large max(ktr/ki)subscript𝑘trsubscript𝑘𝑖\max\left(k_{{\rm tr}}/k_{i}\right)roman_max ( italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) in the KK model can serve as a distinguishing feature between the two models.

V.4 Bounds on the conformal axion model

Since the bounds for the blue isocurvature spectrum is weak for ktr/atoday1greater-than-or-equivalent-tosubscript𝑘trsubscript𝑎today1k_{{\rm tr}}/a_{\mathrm{today}}\gtrsim 1italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_a start_POSTSUBSCRIPT roman_today end_POSTSUBSCRIPT ≳ 1 Mpc-1 (Chluba:2013dna, ; Takeuchi2014, ; Dent:2012ne, ; Chung:2015pga, ; Chung:2015tha, ; Chluba:2016bvg, ; Chung:2017uzc, ; Planck:2018jri, ; Chabanier:2019eai, ; Lee:2021bmn, ; Kurmus:2022guy, ), the plateau part of isocurvature spectrum Δs2superscriptsubscriptΔ𝑠2\Delta_{s}^{2}roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT can be much larger than O(102)Δζ2𝑂superscript102superscriptsubscriptΔ𝜁2O(10^{-2})\Delta_{\zeta}^{2}italic_O ( 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ) roman_Δ start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (where Δζ2superscriptsubscriptΔ𝜁2\Delta_{\zeta}^{2}roman_Δ start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is the adiabatic spectrum) if ktr/ki104greater-than-or-equivalent-tosubscript𝑘trsubscript𝑘𝑖superscript104k_{{\rm tr}}/k_{i}\gtrsim 10^{4}italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≳ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT. Nonetheless, there is a constraint on the isocurvature for this shape of the spectrum as explored by (Chung:2017uzc, ; Planck:2018jri, ). To this end, we will discuss how all of following conditions being satisfied simultaneously within this conformal scenario applied to QCD axions is difficult, although relaxing any one constraint gives a sizeable parameter region:

  1. 1.

    The axion is a QCD axion

  2. 2.

    max(ktr/ki)O(103)much-greater-thansubscript𝑘trsubscript𝑘𝑖𝑂superscript103\max\left(k_{{\rm tr}}/k_{i}\right)\gg O(10^{3})roman_max ( italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ≫ italic_O ( 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT )

  3. 3.

    λ=O(1)𝜆𝑂1\lambda=O(1)italic_λ = italic_O ( 1 )

  4. 4.

    All of DM being composed of axions.

  5. 5.

    Isocurvature not violating the current bounds.

The second condition is something that is desired for the interest of future observations and allows much larger signals than the current bound of Δs2/Δζ20.02less-than-or-similar-tosuperscriptsubscriptΔ𝑠2superscriptsubscriptΔ𝜁20.02\Delta_{s}^{2}/\Delta_{\zeta}^{2}\lesssim 0.02roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / roman_Δ start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≲ 0.02 associated with the scale invariant CDM-photon isocurvature spectrum. The third condition comes from naturalness/simplicity of axion models. On the other hand, if the fourth condition is relaxed to CDM fraction being ωa=0.1subscript𝜔𝑎0.1\omega_{a}=0.1italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 0.1 (which is still quite sizeable and may even be detectable depending on the size of the electromagnetic coupling (Semertzidis:2021rxs, )), then an appreciable parameter region opens up where the isocurvature primordial amplitude can be larger than the adiabatic amplitude. Of course, for non-QCD axions, depending on the dark matter scenario, the rest of the conditions can be satisfied.

Refer to caption
Figure 13: Left figure illustrates a natural coupling λ=0.1𝜆0.1\lambda=0.1italic_λ = 0.1 scenario with spectator energy fraction taken as ra=102subscript𝑟𝑎superscript102r_{a}=10^{-2}italic_r start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT. As max(ktr/ki)MPH/λ/fPQsimilar-tosubscript𝑘trsubscript𝑘𝑖subscript𝑀𝑃𝐻𝜆subscript𝑓PQ\max\left(k_{{\rm tr}}/k_{i}\right)\sim\sqrt{M_{P}H/\sqrt{\lambda}}/f_{{\rm PQ}}roman_max ( italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ∼ square-root start_ARG italic_M start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT italic_H / square-root start_ARG italic_λ end_ARG end_ARG / italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT increases, the inflationary expansion rate H𝐻Hitalic_H has to become larger with a fixed λ𝜆\lambdaitalic_λ and fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT (where the latter is fixed by the axion fraction of CDM denoted as ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT), making the isocurvature amplitude rise. The isocurvature bound in the shaded region is an approximate extrapolation based on (Chung:2017uzc, ) assuming that the data induced bounds for that work applies to the current scenario because of the similarity in the spectral shape. Only the small segment near ktr/ki102subscript𝑘trsubscript𝑘𝑖superscript102k_{{\rm tr}}/k_{i}\approx 10^{2}italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≈ 10 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and 104superscript10410^{4}10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT can be read off easily from (Chung:2017uzc, ), and the rest of the black curve above ktr/ki=101.5subscript𝑘trsubscript𝑘𝑖superscript101.5k_{{\rm tr}}/k_{i}=10^{1.5}italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT 1.5 end_POSTSUPERSCRIPT represents a smooth interpolation. The horizontal solid black curve below ktr/ki=101.5subscript𝑘trsubscript𝑘𝑖superscript101.5k_{{\rm tr}}/k_{i}=10^{1.5}italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 10 start_POSTSUPERSCRIPT 1.5 end_POSTSUPERSCRIPT represent the phenomenological (Chung:2017uzc, ; Planck:2018jri, ) Δs2/Δζ22×102superscriptsubscriptΔ𝑠2superscriptsubscriptΔ𝜁22superscript102\Delta_{s}^{2}/\Delta_{\zeta}^{2}\approx 2\times 10^{-2}roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / roman_Δ start_POSTSUBSCRIPT italic_ζ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≈ 2 × 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT CDM-photon isocurvature bound applicable to scale invariant spectrum. The allowed region in the (Δs2(k>ktr),max(ktr/ki))superscriptsubscriptΔ𝑠2𝑘subscript𝑘trsubscript𝑘trsubscript𝑘𝑖\left(\Delta_{s}^{2}(k>k_{{\rm tr}}),\max\left(k_{{\rm tr}}/k_{i}\right)\right)( roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k > italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) , roman_max ( italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) plane is the left of the solid and the dashed diagonal lines (and below the shaded region), and the exact location for the model prediction depends on the ΓΓ\Gammaroman_Γ initial conditions. The reason why the solid and dashed diagonal lines cut off before reaching the top of the plot is because we impose H/fPQ<0.1𝐻subscript𝑓PQ0.1H/f_{{\rm PQ}}<0.1italic_H / italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT < 0.1 bound such that there is no symmetry restoration during inflation. The right figure is similar to the left figure, except λ𝜆\lambdaitalic_λ has been decreased to a more tuned value of 104superscript10410^{-4}10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT. The main lesson from these plots is that λO(1)similar-to𝜆𝑂1\lambda\sim O(1)italic_λ ∼ italic_O ( 1 ) coupling is incompatible with large break ktr/kisubscript𝑘trsubscript𝑘𝑖k_{{\rm tr}}/k_{i}italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT (such as ktr/ki104similar-tosubscript𝑘trsubscript𝑘𝑖superscript104k_{{\rm tr}}/k_{i}\sim 10^{4}italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∼ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT which phenomenologically allows larger isocurvature signal) if all of the dark matter is made of axion dark matter.

Shown in Fig. 13 is an illustration of the predictions from the present scenario assuming that the axions are QCD axions. The break in the blue spectrum given by Eq. (179) contains the following parametric dependences:

max(ktrki)MPHλ1/4fPQ.similar-tosubscript𝑘trsubscript𝑘𝑖subscript𝑀𝑃𝐻superscript𝜆14subscript𝑓PQ\max\left(\frac{k_{{\rm tr}}}{k_{i}}\right)\sim\frac{\sqrt{M_{P}H}}{\lambda^{1% /4}f_{{\rm PQ}}}.roman_max ( divide start_ARG italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG ) ∼ divide start_ARG square-root start_ARG italic_M start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT italic_H end_ARG end_ARG start_ARG italic_λ start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT end_ARG . (180)

The prediction for the break spectral value depends on the initial value Γ(ti)Γsubscript𝑡𝑖\Gamma(t_{i})roman_Γ ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) and ktr/kisubscript𝑘trsubscript𝑘𝑖k_{{\rm tr}}/k_{i}italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT can be maximally as large as what is shown in the solid and dashed diagonal lines. Hence, the conformal scenario of Γ(t)1/aproportional-toΓ𝑡1𝑎\Gamma(t)\propto 1/aroman_Γ ( italic_t ) ∝ 1 / italic_a lives to the left of these diagonal lines.

To derive the diagonal curves in Fig. 13, note that fixing ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT and θisubscript𝜃𝑖\theta_{i}italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT essentially fix fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT since

ωasubscript𝜔𝑎\displaystyle\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT =Ωah20.12absentsubscriptΩ𝑎superscript20.12\displaystyle=\frac{\Omega_{a}h^{2}}{0.12}= divide start_ARG roman_Ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT italic_h start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 0.12 end_ARG (181)
2(θi2+(H2πfPQ)2)[ln(e1θi2/π2)]7/6(fPQ1012GeV)7/6absent2superscriptsubscript𝜃𝑖2superscript𝐻2𝜋subscript𝑓PQ2superscriptdelimited-[]𝑒1superscriptsubscript𝜃𝑖2superscript𝜋276superscriptsubscript𝑓PQsuperscript1012GeV76\displaystyle\approx 2\left(\theta_{i}^{2}+\left(\frac{H}{2\pi f_{{\rm PQ}}}% \right)^{2}\right)\left[\ln\left(\frac{e}{1-\theta_{i}^{2}/\pi^{2}}\right)% \right]^{7/6}\left(\frac{f_{{\rm PQ}}}{10^{12}{\rm GeV}}\right)^{7/6}≈ 2 ( italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( divide start_ARG italic_H end_ARG start_ARG 2 italic_π italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) [ roman_ln ( divide start_ARG italic_e end_ARG start_ARG 1 - italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ] start_POSTSUPERSCRIPT 7 / 6 end_POSTSUPERSCRIPT ( divide start_ARG italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT end_ARG start_ARG 10 start_POSTSUPERSCRIPT 12 end_POSTSUPERSCRIPT roman_GeV end_ARG ) start_POSTSUPERSCRIPT 7 / 6 end_POSTSUPERSCRIPT (182)

according to (Visinelli:2009zm, ).141414Here the ln\lnroman_ln factor approximately taking into account the anharmonic effects of axion oscillations has been included to obtain the O(10)𝑂10O(10)italic_O ( 10 ) enhancement that exists for θi=3subscript𝜃𝑖3\theta_{i}=3italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 3.151515Some models in the literature explore scenarios where fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT during inflation differs from the late-time fasubscript𝑓𝑎f_{a}italic_f start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT for the axions, potentially relaxing isocurvature constraints. For further details, see (Kearney:2016vqw, ) and the references therein. Combining this fact with our knowledge that the plateau part of the spectrum (kktrmuch-greater-than𝑘subscript𝑘trk\gg k_{{\rm tr}}italic_k ≫ italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT part) is given by

Δδa2(kktr)4(H2πfPQθi)2,superscriptsubscriptΔ𝛿𝑎2much-greater-than𝑘subscript𝑘tr4superscript𝐻2𝜋subscript𝑓PQsubscript𝜃𝑖2\Delta_{\delta a}^{2}\left(k\gg k_{{\rm tr}}\right)\approx 4\left(\frac{H}{2% \pi f_{{\rm PQ}}\theta_{i}}\right)^{2},roman_Δ start_POSTSUBSCRIPT italic_δ italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k ≫ italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) ≈ 4 ( divide start_ARG italic_H end_ARG start_ARG 2 italic_π italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (183)

we see that the isocurvature amplitude in the plateau depends just on H𝐻Hitalic_H with fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT fixed. Since we now want the axion sector to be a spectator to inflation and H𝐻Hitalic_H controls the energy density during inflation, a larger H𝐻Hitalic_H is needed if the initial Γ(ti)Γsubscript𝑡𝑖\Gamma(t_{i})roman_Γ ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) displacement that we desire for a larger

max(ktrki)exp(HΔt)max[Γ(ti)]fPQsubscript𝑘trsubscript𝑘𝑖𝐻Δ𝑡maxdelimited-[]Γsubscript𝑡𝑖subscript𝑓PQ\max\left(\frac{k_{{\rm tr}}}{k_{i}}\right)\approx\exp\left(H\Delta t\right)% \approx\frac{\mathrm{max}\left[\Gamma(t_{i})\right]}{f_{{\rm PQ}}}roman_max ( divide start_ARG italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG ) ≈ roman_exp ( italic_H roman_Δ italic_t ) ≈ divide start_ARG roman_max [ roman_Γ ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ] end_ARG start_ARG italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT end_ARG (184)

carries a larger energy, where the exp(HΔt)𝐻Δ𝑡\exp(H\Delta t)roman_exp ( italic_H roman_Δ italic_t ) comes from the conformal scaling behavior of Γ(t)Γ𝑡\Gamma(t)roman_Γ ( italic_t ).

The spectator condition with the initial energy in Γ(ti)Γsubscript𝑡𝑖\Gamma(t_{i})roman_Γ ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) being rasubscript𝑟𝑎r_{a}italic_r start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT fraction of the total sets the maximum Γ(ti)Γsubscript𝑡𝑖\Gamma(t_{i})roman_Γ ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) value to

Γimax(ktr/ki)(4MP2H2raλ)1/4superscriptsubscriptΓ𝑖maxsubscript𝑘trsubscript𝑘𝑖superscript4superscriptsubscript𝑀𝑃2superscript𝐻2subscript𝑟𝑎𝜆14\Gamma_{i}^{\mathrm{max}}(k_{{\rm tr}}/k_{i})\approx\left(\frac{4M_{P}^{2}H^{2% }r_{a}}{\lambda}\right)^{1/4}roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_max end_POSTSUPERSCRIPT ( italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ≈ ( divide start_ARG 4 italic_M start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG start_ARG italic_λ end_ARG ) start_POSTSUPERSCRIPT 1 / 4 end_POSTSUPERSCRIPT (185)

where we are assuming that the kinetic energy is negligible initially. In practice, we take ra102less-than-or-similar-tosubscript𝑟𝑎superscript102r_{a}\lesssim 10^{-2}italic_r start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≲ 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT since the slow roll parameters are of O(102)𝑂superscript102O(10^{-2})italic_O ( 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ). Hence, we find that H𝐻Hitalic_H is a function of ktr/kisubscript𝑘trsubscript𝑘𝑖k_{{\rm tr}}/k_{i}italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT in Eq. (183). More explicitly, Eqs. (184) and (185) give

H2fPQ2=λfPQ24MP2ra[max(ktrki)]4superscript𝐻2superscriptsubscript𝑓PQ2𝜆superscriptsubscript𝑓PQ24superscriptsubscript𝑀𝑃2subscript𝑟𝑎superscriptdelimited-[]subscript𝑘trsubscript𝑘𝑖4\frac{H^{2}}{f_{{\rm PQ}}^{2}}=\frac{\lambda f_{{\rm PQ}}^{2}}{4M_{P}^{2}r_{a}% }\left[\max\left(\frac{k_{{\rm tr}}}{k_{i}}\right)\right]^{4}divide start_ARG italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = divide start_ARG italic_λ italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_M start_POSTSUBSCRIPT italic_P end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG [ roman_max ( divide start_ARG italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT end_ARG start_ARG italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG ) ] start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT (186)

or when inserted into Eq. (183)

Δs2(k>ktr)105(3λ/ra102)(θi3)2(z(θi)38)12/7(max(ktr/ki)104)4ωa26/7superscriptsubscriptΔ𝑠2𝑘subscript𝑘trsuperscript1053𝜆subscript𝑟𝑎superscript102superscriptsubscript𝜃𝑖32superscript𝑧subscript𝜃𝑖38127superscriptsubscript𝑘trsubscript𝑘𝑖superscript1044superscriptsubscript𝜔𝑎267\Delta_{s}^{2}\left(k>k_{{\rm tr}}\right)\approx 10^{-5}\left(\frac{3\lambda/r% _{a}}{10^{-2}}\right)\left(\frac{\theta_{i}}{3}\right)^{-2}\left(\frac{z(% \theta_{i})}{38}\right)^{-12/7}\left(\frac{\max\left(k_{{\rm tr}}/k_{i}\right)% }{10^{4}}\right)^{4}\omega_{a}^{26/7}roman_Δ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k > italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) ≈ 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT ( divide start_ARG 3 italic_λ / italic_r start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG start_ARG 10 start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT end_ARG ) ( divide start_ARG italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG 3 end_ARG ) start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ( divide start_ARG italic_z ( italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG start_ARG 38 end_ARG ) start_POSTSUPERSCRIPT - 12 / 7 end_POSTSUPERSCRIPT ( divide start_ARG roman_max ( italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG start_ARG 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 26 / 7 end_POSTSUPERSCRIPT (187)

where

z(θi)θi2[ln(e1θi2/π2)]7/6𝑧subscript𝜃𝑖superscriptsubscript𝜃𝑖2superscriptdelimited-[]𝑒1superscriptsubscript𝜃𝑖2superscript𝜋276z(\theta_{i})\equiv\theta_{i}^{2}\left[\ln\left(\frac{e}{1-\theta_{i}^{2}/\pi^% {2}}\right)\right]^{7/6}italic_z ( italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ≡ italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ roman_ln ( divide start_ARG italic_e end_ARG start_ARG 1 - italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ] start_POSTSUPERSCRIPT 7 / 6 end_POSTSUPERSCRIPT (188)

and we have neglected the H𝐻Hitalic_H dependence in Eq. (182): i.e. the formula applies to {θi0.02,H/fPQ0.1}formulae-sequencemuch-greater-thansubscript𝜃𝑖0.02less-than-or-similar-to𝐻subscript𝑓PQ0.1\left\{\theta_{i}\gg 0.02,H/f_{{\rm PQ}}\lesssim 0.1\right\}{ italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≫ 0.02 , italic_H / italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT ≲ 0.1 }. Note that λO(1)similar-to𝜆𝑂1\lambda\sim O(1)italic_λ ∼ italic_O ( 1 ) is in tension with max(ktr/ki)104similar-tosubscript𝑘trsubscript𝑘𝑖superscript104\max\left(k_{{\rm tr}}/k_{i}\right)\sim 10^{4}roman_max ( italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ∼ 10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT with the axions being all of the CDM since the isocurvature at the break would then be already five orders of magnitude larger than the adiabatic perturbations. Making θisubscript𝜃𝑖\theta_{i}italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT smaller does not help to alleviate the isocurvature constraints while maintaining a large ktr/kisubscript𝑘trsubscript𝑘𝑖k_{{\rm tr}}/k_{i}italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT.

Note that the bound of

fPQ109GeVgreater-than-or-equivalent-tosubscript𝑓PQsuperscript109GeVf_{{\rm PQ}}\gtrsim 10^{9}\mathrm{GeV}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT ≳ 10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT roman_GeV (189)

coming from white dwarf cooling time merely sets a lower bound on ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT for a given θisubscript𝜃𝑖\theta_{i}italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT according to Eq. (182):

ωa6×104(θi2+(H2πfPQ)2)[ln(e1θi2/π2)]7/6(fPQmin109GeV)7/6.greater-than-or-equivalent-tosubscript𝜔𝑎6superscript104superscriptsubscript𝜃𝑖2superscript𝐻2𝜋subscript𝑓PQ2superscriptdelimited-[]𝑒1superscriptsubscript𝜃𝑖2superscript𝜋276superscriptsuperscriptsubscript𝑓PQsuperscript109GeV76\omega_{a}\gtrsim 6\times 10^{-4}\left(\theta_{i}^{2}+\left(\frac{H}{2\pi f_{{% \rm PQ}}}\right)^{2}\right)\left[\ln\left(\frac{e}{1-\theta_{i}^{2}/\pi^{2}}% \right)\right]^{7/6}\left(\frac{f_{{\rm PQ}}^{\min}}{10^{9}{\rm GeV}}\right)^{% 7/6}.italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≳ 6 × 10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT ( italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( divide start_ARG italic_H end_ARG start_ARG 2 italic_π italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) [ roman_ln ( divide start_ARG italic_e end_ARG start_ARG 1 - italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ] start_POSTSUPERSCRIPT 7 / 6 end_POSTSUPERSCRIPT ( divide start_ARG italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_min end_POSTSUPERSCRIPT end_ARG start_ARG 10 start_POSTSUPERSCRIPT 9 end_POSTSUPERSCRIPT roman_GeV end_ARG ) start_POSTSUPERSCRIPT 7 / 6 end_POSTSUPERSCRIPT . (190)

Hence, with θi=3subscript𝜃𝑖3\theta_{i}=3italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = 3 and neglecting the H/(2πfPQ)𝐻2𝜋subscript𝑓PQH/(2\pi f_{{\rm PQ}})italic_H / ( 2 italic_π italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT ) term, we find ωa0.02subscript𝜔𝑎0.02\omega_{a}\approx 0.02italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≈ 0.02 which rules out 103superscript10310^{-3}10 start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT as a possibility to plot in Fig. 13. With smaller θisubscript𝜃𝑖\theta_{i}italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, a smaller ωasubscript𝜔𝑎\omega_{a}italic_ω start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT is certainly consistent with Eq. (189), but that leads to a more stringent constraint associated with the existing isocurvature bounds because of Eq. (187).

VI Conclusion

In this paper, we have shown that modifying the initial conditions of a generic U(1)𝑈1U(1)italic_U ( 1 ) symmetric quartic potential complex scalar model can lead to a novel axion isocurvature scenario in which a transition takes place from a time-independent conformal phase to the time-dependent conformal phase, the latter being the usual equilibrium axion scenario. Such time-independent spontaneously broken conformal phase initial condition is controlled by a large classical background phase angular momentum ηθ0(ηi)Ma(ηi)Ha(ηi)much-greater-thansubscript𝜂subscript𝜃0subscript𝜂𝑖𝑀𝑎subscript𝜂𝑖greater-than-or-equivalent-to𝐻𝑎subscript𝜂𝑖\partial_{\eta}\theta_{0}(\eta_{i})\gg Ma(\eta_{i})\gtrsim Ha(\eta_{i})∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ≫ italic_M italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ≳ italic_H italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) and a large radial field displacement Γ0(ηi)ηθ0(ηi)/λsimilar-tosubscriptΓ0subscript𝜂𝑖subscript𝜂subscript𝜃0subscript𝜂𝑖𝜆\Gamma_{0}(\eta_{i})\sim\partial_{\eta}\theta_{0}(\eta_{i})/\sqrt{\lambda}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ∼ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) / square-root start_ARG italic_λ end_ARG. With such initial conditions for the background, the quantum perturbations remarkably enter a nontrivial time-independent spontaneously symmetry-broken conformal phase characterized by a long wavelength spectral index of nI1=2subscript𝑛𝐼12n_{I}-1=2italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT - 1 = 2 and a Goldstone dispersion with a sound speed of 1/3131/\sqrt{3}1 / square-root start_ARG 3 end_ARG. Interestingly, the cross-correlation function ηδΓηδΣdelimited-⟨⟩subscript𝜂𝛿Γsubscript𝜂𝛿Σ\left\langle\partial_{\eta}\delta\Gamma\partial_{\eta}\delta\Sigma\right\rangle⟨ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ roman_Γ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ roman_Σ ⟩ during this time-independent conformal phase between the radial and the axion fields does not vanish even though δΓδΣ=0delimited-⟨⟩𝛿Γ𝛿Σ0\left\langle\delta\Gamma\delta\Sigma\right\rangle=0⟨ italic_δ roman_Γ italic_δ roman_Σ ⟩ = 0 to leading order in perturbation theory.

After the Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT reaches the usual spontaneous PQ symmetry breaking minimum, the theory enters the usual time-dependent conformal phase characterized by the time-dependent effective mass term a′′/a=2/η2superscript𝑎′′𝑎2superscript𝜂2a^{\prime\prime}/a=2/\eta^{2}italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a = 2 / italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. For k𝑘kitalic_k values corresponding to this time region, denoted as k>ktr𝑘subscript𝑘trk>k_{\mathrm{tr}}italic_k > italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT, the isocurvature spectrum is the well-known nI1=0subscript𝑛𝐼10n_{I}-1=0italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT - 1 = 0 flat plateau, and the Goldstone dispersion has a sound speed of 1111. One nontrivial phenomenological result established in this paper is that the spectral transition from nI=3subscript𝑛𝐼3n_{I}=3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT = 3 to nI=1subscript𝑛𝐼1n_{I}=1italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT = 1 for realistic parameter ranges can be sudden such that there is no large bump connecting these two regions. This means that this quartic potential model can behave qualitatively differently from the overdamped supersymmetric (SUSY) scenarios of (Kasuya:2009up, ) where there is a bump (Chung:2016wvv, ). Furthermore, if the k𝑘kitalic_k range over which the blue spectral index sets in is sufficiently large, then the present model becomes more fine tuned compared to the flat direction models. In the sense of making parameters less tuned, the SUSY models in this context can be considered analogous to the low-energy SUSY models solving the Higgs mass hierarchy problem.

With two-parameter initial condition perturbations away from those generating the time-independent spontaneously broken conformal phase, we have shown that the smooth nI=3subscript𝑛𝐼3n_{I}=3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT = 3 to nI=1subscript𝑛𝐼1n_{I}=1italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT = 1 spectra transition scenarios are stable with O(0.1)𝑂0.1O(0.1)italic_O ( 0.1 ) deformations of λa(ηi)Γ0(ηi)/ηθ0(ηi)𝜆𝑎subscript𝜂𝑖subscriptΓ0subscript𝜂𝑖subscript𝜂subscript𝜃0subscript𝜂𝑖\sqrt{\lambda}a(\eta_{i})\Gamma_{0}(\eta_{i})/\partial_{\eta}\theta_{0}(\eta_{% i})square-root start_ARG italic_λ end_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) / ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) and η[aΓ0]/(6λa2(ηi)Γ02(ηi))subscript𝜂delimited-[]𝑎subscriptΓ06𝜆superscript𝑎2subscript𝜂𝑖superscriptsubscriptΓ02subscript𝜂𝑖\partial_{\eta}[a\Gamma_{0}]/\left(\sqrt{6\lambda}a^{2}(\eta_{i})\Gamma_{0}^{2% }(\eta_{i})\right)∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT [ italic_a roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] / ( square-root start_ARG 6 italic_λ end_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ). On the other hand, small deviations of the spectral amplitudes linear in these deformation ratios eventually gain a nonlinear dependence as these deviations grow beyond magnitudes of around 0.30.30.30.3. Afterwards parametric resonances strongly set in and destroy the original qualitative shape of the spectra. The small oscillatory features apparent in small deformation cases are well-fit by a simple formula characteristic of the 1/3131/\sqrt{3}1 / square-root start_ARG 3 end_ARG sound speed of the conformal phase.

We have also explored the parametric region for which this scenario is phenomenologically interesting. Requiring the simultaneous satisfaction of constraint of the axion being a QCD axion, maximum nI=3subscript𝑛𝐼3n_{I}=3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT = 3 blue spectral interval [ki,ktr]subscript𝑘𝑖subscript𝑘tr[k_{i},k_{\mathrm{tr}}][ italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ] satisfying ktr/kiO(103)much-greater-thansubscript𝑘trsubscript𝑘𝑖𝑂superscript103k_{{\rm tr}}/k_{i}\gg O(10^{3})italic_k start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT / italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≫ italic_O ( 10 start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ), quartic coupling of order unity, all of the DM being composed of axions, and isocurvature not violating the current bounds, no viable parameter region exists. On the other hand, with the relaxation of these constraints, there is a phenomenologically viable parametric region as shown in Fig. 13. Because the energy density rises steeply compared to the flat direction scenarios as the radial field is displaced, the spectator condition imposes a significant constraint that makes this scenario sensitive to the quartic coupling.

There are many natural future directions to explore. Given the natural similarities between this model and the SUSY flat direction model of (Kasuya:2009up, ), it would be interesting to see whether non-Gaussianities can break the degeneracy. Indeed, there is a peculiar feature of the time-independent conformal spectra which kinetically cross correlates the radial mode and the axial mode, and this kinetic mixing does not exist in the SUSY flat direction model. Hence, we would expect the non-Gaussianities to be different between the two models even if the isocurvature spectra are similar. Another interesting direction is in exploring the observability of the oscillatory features in the power spectra. As noted above, in the quasi-conformal model, there are oscillatory features in the isocurvature spectra for small deviations away from time-independent conformality and since those oscillations encode the 1/3131/\sqrt{3}1 / square-root start_ARG 3 end_ARG sound speed information, it would be interesting to see if observations can measure this sound speed. Of course, work even remains to be done in assessing the observability of the oscillatory features in the underdamped SUSY models (Chung:2021lfg, ) as noted in (Chung:2023syw, ).

Appendix A Conformal limit for the background

In this section, we describe how a large Γ/MΓ𝑀\Gamma/Mroman_Γ / italic_M and Γ/HΓ𝐻\Gamma/Hroman_Γ / italic_H limit together with a certain classical boundary condition corresponds to a spontaneously broken approximate conformal limit of the field theory of ΓΓ\Gammaroman_Γ and ΣΣ\Sigmaroman_Σ during which Γa=nonzero constant+δ(Γa)Γ𝑎nonzero constant𝛿Γ𝑎\Gamma a=\mbox{nonzero constant}+\delta(\Gamma a)roman_Γ italic_a = nonzero constant + italic_δ ( roman_Γ italic_a ) where a𝑎aitalic_a is the scale factor corresponding to the metric

ds2=a2(η)[dη2+|dx|2].𝑑superscript𝑠2superscript𝑎2𝜂delimited-[]𝑑superscript𝜂2superscript𝑑𝑥2ds^{2}=a^{2}(\eta)\left[-d\eta^{2}+|d\vec{x}|^{2}\right].italic_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) [ - italic_d italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_d over→ start_ARG italic_x end_ARG | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] . (191)

We begin by deriving the effective action from a general U(1)𝑈1U(1)italic_U ( 1 ) symmetric renormalizable theory that spontaneously breaks an approximate conformal symmetry with a large phase angular momentum. We then use the conformal symmetry parameterization to generate an automorphism of the correlation functions. This allows one to derive a differential equation for the correlation functions whose general solution is given. We will then use the spontaneously broken U(1)𝑈1U(1)italic_U ( 1 ) coset representation to derive |xy|2superscript𝑥𝑦2|\vec{x}-\vec{y}|^{2}| over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for the δX𝛿𝑋\delta Xitalic_δ italic_X correlators and use the absence of this symmetry for δY𝛿𝑌\delta Yitalic_δ italic_Y correlators to argue for the |xy|3(ηθ0)1superscript𝑥𝑦3superscriptsubscript𝜂subscript𝜃01|\vec{x}-\vec{y}|^{-3}\left(\partial_{\eta}\theta_{0}\right)^{-1}| over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT dependence.

Start with a general renormalizable U(1)𝑈1U(1)italic_U ( 1 ) invariant action action given by Eq. (16):

S𝑆\displaystyle Sitalic_S =𝑑ηd3x{12ημνμYνY12ημνY2μθνθ(12a′′aY2M2a2Y2+λ4Y4)}absentdifferential-d𝜂superscript𝑑3𝑥12superscript𝜂𝜇𝜈subscript𝜇𝑌subscript𝜈𝑌12superscript𝜂𝜇𝜈superscript𝑌2subscript𝜇𝜃subscript𝜈𝜃12superscript𝑎′′𝑎superscript𝑌2superscript𝑀2superscript𝑎2superscript𝑌2𝜆4superscript𝑌4\displaystyle=\int d\eta d^{3}x\left\{-\frac{1}{2}\eta^{\mu\nu}\partial_{\mu}Y% \partial_{\nu}Y-\frac{1}{2}\eta^{\mu\nu}Y^{2}\partial_{\mu}\theta\partial_{\nu% }\theta-\left(-\frac{1}{2}\frac{a^{\prime\prime}}{a}Y^{2}-M^{2}a^{2}Y^{2}+% \frac{\lambda}{4}Y^{4}\right)\right\}= ∫ italic_d italic_η italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x { - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_η start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_Y ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_Y - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_η start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_θ ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_θ - ( - divide start_ARG 1 end_ARG start_ARG 2 end_ARG divide start_ARG italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_a end_ARG italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG italic_λ end_ARG start_ARG 4 end_ARG italic_Y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) } (192)

where YaΓ𝑌𝑎ΓY\equiv a\Gammaitalic_Y ≡ italic_a roman_Γ. Note that this theory is almost invariant under the following constant u𝑢uitalic_u scaling conformal (dilatation) transform:

aau1𝑎𝑎superscript𝑢1a\rightarrow au^{-1}italic_a → italic_a italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (193)

were it not for the M2a2Y2superscript𝑀2superscript𝑎2superscript𝑌2M^{2}a^{2}Y^{2}italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT term. Look for Y=𝑌absentY=italic_Y =constant solutions to the equation of motion for Y(x)=Y0(η)𝑌𝑥subscript𝑌0𝜂Y(x)=Y_{0}(\eta)italic_Y ( italic_x ) = italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ):

1η00Y03L2(a′′a+2M2a2)Y0+λY03=0.1superscript𝜂00superscriptsubscript𝑌03superscript𝐿2superscript𝑎′′𝑎2superscript𝑀2superscript𝑎2subscript𝑌0𝜆superscriptsubscript𝑌030\frac{1}{\eta^{00}}Y_{0}^{-3}L^{2}-\left(\frac{a^{\prime\prime}}{a}+2M^{2}a^{2% }\right)Y_{0}+\lambda Y_{0}^{3}=0.divide start_ARG 1 end_ARG start_ARG italic_η start_POSTSUPERSCRIPT 00 end_POSTSUPERSCRIPT end_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 3 end_POSTSUPERSCRIPT italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( divide start_ARG italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_a end_ARG + 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT = 0 . (194)

where we used the U(1)𝑈1U(1)italic_U ( 1 ) generated conservation law to set

η00Y02ηθ=Lsuperscript𝜂00superscriptsubscript𝑌02subscript𝜂𝜃𝐿-\eta^{00}Y_{0}^{2}\partial_{\eta}\theta=L- italic_η start_POSTSUPERSCRIPT 00 end_POSTSUPERSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ = italic_L (195)

with L𝐿Litalic_L being a constant. Because metric scaling will be involved later, here we have chosen to keep η00superscript𝜂00\eta^{00}italic_η start_POSTSUPERSCRIPT 00 end_POSTSUPERSCRIPT explicit coming from the conserved quantity being proportional to the U(1)𝑈1U(1)italic_U ( 1 ) charge density j0superscript𝑗0j^{0}italic_j start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and not its associated 1-form j0subscript𝑗0j_{0}italic_j start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Eq. (194) has an approximately time-independent solution

Y0=L1/3(η00λ)1/6subscript𝑌0superscript𝐿13superscriptsuperscript𝜂00𝜆16Y_{0}=\frac{L^{1/3}}{\left(-\eta^{00}\lambda\right)^{1/6}}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG italic_L start_POSTSUPERSCRIPT 1 / 3 end_POSTSUPERSCRIPT end_ARG start_ARG ( - italic_η start_POSTSUPERSCRIPT 00 end_POSTSUPERSCRIPT italic_λ ) start_POSTSUPERSCRIPT 1 / 6 end_POSTSUPERSCRIPT end_ARG (196)

when

λY02a′′a+2M2a2.much-greater-than𝜆superscriptsubscript𝑌02superscript𝑎′′𝑎2superscript𝑀2superscript𝑎2\lambda Y_{0}^{2}\gg\frac{a^{\prime\prime}}{a}+2M^{2}a^{2}.italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≫ divide start_ARG italic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT end_ARG start_ARG italic_a end_ARG + 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (197)

Substituting Eq. (195) into (196), we find

Y0=Ycη00|ηθ0|λsubscript𝑌0subscript𝑌𝑐superscript𝜂00subscript𝜂subscript𝜃0𝜆Y_{0}=Y_{c}\equiv\frac{\sqrt{-\eta^{00}}\left|\partial_{\eta}\theta_{0}\right|% }{\sqrt{\lambda}}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ≡ divide start_ARG square-root start_ARG - italic_η start_POSTSUPERSCRIPT 00 end_POSTSUPERSCRIPT end_ARG | ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT | end_ARG start_ARG square-root start_ARG italic_λ end_ARG end_ARG (198)

which is a constant by the virtue of Eq. (196). Since Ycsubscript𝑌𝑐Y_{c}italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT is a constant, we know from this equation that θ0(η)superscriptsubscript𝜃0𝜂\theta_{0}^{\prime}(\eta)italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_η ) is a constant. In terms of ΓΓ\Gammaroman_Γ and θ𝜃\thetaitalic_θ fields, these solutions represent

ΓΓ0(η)=η00|θ0(η)|a(η)λΓsubscriptΓ0𝜂superscript𝜂00superscriptsubscript𝜃0𝜂𝑎𝜂𝜆\Gamma\approx\Gamma_{0}(\eta)=\frac{\sqrt{-\eta^{00}}\left|\theta_{0}^{\prime}% (\eta)\right|}{a(\eta)\sqrt{\lambda}}roman_Γ ≈ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) = divide start_ARG square-root start_ARG - italic_η start_POSTSUPERSCRIPT 00 end_POSTSUPERSCRIPT end_ARG | italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_η ) | end_ARG start_ARG italic_a ( italic_η ) square-root start_ARG italic_λ end_ARG end_ARG (199)
θθ0(η)=θ0(ηi)+ηηθ0(ηi)𝜃subscript𝜃0𝜂subscript𝜃0subscript𝜂𝑖𝜂subscript𝜂subscript𝜃0subscript𝜂𝑖\theta\approx\theta_{0}(\eta)=\theta_{0}(\eta_{i})+\eta\partial_{\eta}\theta_{% 0}(\eta_{i})italic_θ ≈ italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) = italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) + italic_η ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) (200)

indicating that this is a nontrivial approximate time-dependent background in terms of the canonical real radial field.

Now, define

XYcθ.𝑋subscript𝑌𝑐𝜃X\equiv Y_{c}\theta.italic_X ≡ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_θ . (201)

By neglecting a′′/asuperscript𝑎′′𝑎a^{\prime\prime}/aitalic_a start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT / italic_a and M2a2superscript𝑀2superscript𝑎2M^{2}a^{2}italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT consistently with Eq. (197), the action now turns out to be completely independent of the scale factor a𝑎aitalic_a:

S[X,Y,ημν,Yc]𝑑ηd3xη(12ημν[μY][νY]12ημν[μX][νX](YYc)2λY44)𝑆𝑋𝑌subscript𝜂𝜇𝜈subscript𝑌𝑐differential-d𝜂superscript𝑑3𝑥𝜂12superscript𝜂𝜇𝜈delimited-[]subscript𝜇𝑌delimited-[]subscript𝜈𝑌12superscript𝜂𝜇𝜈delimited-[]subscript𝜇𝑋delimited-[]subscript𝜈𝑋superscript𝑌subscript𝑌𝑐2𝜆superscript𝑌44S[X,Y,\eta_{\mu\nu},Y_{c}]\approx\int d\eta d^{3}x\sqrt{\eta}\left(-\frac{1}{2% }\eta^{\mu\nu}\left[\partial_{\mu}Y\right]\left[\partial_{\nu}Y\right]-\frac{1% }{2}\eta^{\mu\nu}\left[\partial_{\mu}X\right]\left[\partial_{\nu}X\right]\left% (\frac{Y}{Y_{c}}\right)^{2}-\frac{\lambda Y^{4}}{4}\right)italic_S [ italic_X , italic_Y , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ] ≈ ∫ italic_d italic_η italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x square-root start_ARG italic_η end_ARG ( - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_η start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT [ ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_Y ] [ ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_Y ] - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_η start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT [ ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_X ] [ ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_X ] ( divide start_ARG italic_Y end_ARG start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG italic_λ italic_Y start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG ) (202)

showing explicitly that we have a conformal theory enjoying the symmetry

S[Xu,Yu,ημνu2,Ycu]𝑆𝑋𝑢𝑌𝑢subscript𝜂𝜇𝜈superscript𝑢2subscript𝑌𝑐𝑢\displaystyle S[Xu,Yu,\eta_{\mu\nu}u^{-2},Y_{c}u]italic_S [ italic_X italic_u , italic_Y italic_u , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_u ] =S[X,Y,ημν,Yc].absent𝑆𝑋𝑌subscript𝜂𝜇𝜈subscript𝑌𝑐\displaystyle=S[X,Y,\eta_{\mu\nu},Y_{c}].= italic_S [ italic_X , italic_Y , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ] . (203)

where u𝑢uitalic_u is a constant.

Here, the arguments ημνsubscript𝜂𝜇𝜈\eta_{\mu\nu}italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT and Ycsubscript𝑌𝑐Y_{c}italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT of S𝑆Sitalic_S are viewed as externally input parameters, and we transform them as we would a spurion. Note that the conformal representation here is different from the dilatation subgroup representation of diffeomorphism (see e.g. (Ginsparg:1988ui, )) especially because we are scaling Ycsubscript𝑌𝑐Y_{c}italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT which is a parameter, as in a spurion representation of the conformal group in a free massive scalar theory. On the other hand, rewriting Eq. (199) as

Yc=a(η)Γ0(η)subscript𝑌𝑐𝑎𝜂subscriptΓ0𝜂Y_{c}=a(\eta)\Gamma_{0}(\eta)italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = italic_a ( italic_η ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) (204)

shows that the transform {ημν,X,Y,Yc}{ημνu2,Xu,Yu,Ycu}subscript𝜂𝜇𝜈𝑋𝑌subscript𝑌𝑐subscript𝜂𝜇𝜈superscript𝑢2𝑋𝑢𝑌𝑢subscript𝑌𝑐𝑢\{\eta_{\mu\nu},X,Y,Y_{c}\}\rightarrow\{\eta_{\mu\nu}u^{-2},Xu,Yu,Y_{c}u\}{ italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_X , italic_Y , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT } → { italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT , italic_X italic_u , italic_Y italic_u , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_u } comes from scaling the scale factor by a constant as aau1𝑎𝑎superscript𝑢1a\rightarrow au^{-1}italic_a → italic_a italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, such that the symmetry of Eq. (203) being an element of the conformal group is evident.161616If we had used Yc=η00|θ0(η)|/λsubscript𝑌𝑐superscript𝜂00superscriptsubscript𝜃0𝜂𝜆Y_{c}=\sqrt{-\eta^{00}}\left|\theta_{0}^{\prime}(\eta)\right|/\sqrt{\lambda}italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = square-root start_ARG - italic_η start_POSTSUPERSCRIPT 00 end_POSTSUPERSCRIPT end_ARG | italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_η ) | / square-root start_ARG italic_λ end_ARG, we would have still ended up with the conformal transform a2(ηi)η00=η00a2(ηi)u2η00=η00u2superscript𝑎2subscript𝜂𝑖subscript𝜂00subscript𝜂00superscript𝑎2subscript𝜂𝑖superscript𝑢2subscript𝜂00subscript𝜂00superscript𝑢2a^{2}(\eta_{i})\eta_{00}=\eta_{00}\rightarrow a^{2}(\eta_{i})u^{-2}\eta_{00}=% \eta_{00}u^{-2}italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) italic_η start_POSTSUBSCRIPT 00 end_POSTSUBSCRIPT = italic_η start_POSTSUBSCRIPT 00 end_POSTSUBSCRIPT → italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) italic_u start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_η start_POSTSUBSCRIPT 00 end_POSTSUBSCRIPT = italic_η start_POSTSUBSCRIPT 00 end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT giving YcuYcsubscript𝑌𝑐𝑢subscript𝑌𝑐Y_{c}\rightarrow uY_{c}italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT → italic_u italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT. We will see how these symmetries together with diffeomorphism will give rise to constraints on the correlation functions of interest below.

Expand the fields as

X(x)=θ0(η)Yc+δX(x)𝑋𝑥subscript𝜃0𝜂subscript𝑌𝑐𝛿𝑋𝑥X(x)=\theta_{0}(\eta)Y_{c}+\delta X(x)italic_X ( italic_x ) = italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT + italic_δ italic_X ( italic_x ) (205)
Y(x)=Yc+δY(x)𝑌𝑥subscript𝑌𝑐𝛿𝑌𝑥Y(x)=Y_{c}+\delta Y(x)italic_Y ( italic_x ) = italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT + italic_δ italic_Y ( italic_x ) (206)

where θ0(η)subscript𝜃0𝜂\theta_{0}(\eta)italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) is given by Eq. (200) and look for the effective action governing the perturbations only. The perturbation-only action is

S2[δX,δY,ημν,Yc,ηθ0]subscript𝑆2𝛿𝑋𝛿𝑌subscript𝜂𝜇𝜈subscript𝑌𝑐subscript𝜂subscript𝜃0\displaystyle S_{2}[\delta X,\delta Y,\eta_{\mu\nu},Y_{c},\partial_{\eta}% \theta_{0}]italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_δ italic_X , italic_δ italic_Y , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] =dηd3xη(12ημνμδYνδY12ημνμδXνδX\displaystyle=\int d\eta d^{3}x\sqrt{\eta}\left(\frac{-1}{2}\eta_{\mu\nu}% \partial^{\mu}\delta Y\partial^{\nu}\delta Y-\frac{1}{2}\eta_{\mu\nu}\partial^% {\mu}\delta X\partial^{\nu}\delta X\right.= ∫ italic_d italic_η italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x square-root start_ARG italic_η end_ARG ( divide start_ARG - 1 end_ARG start_ARG 2 end_ARG italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_δ italic_Y ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_δ italic_Y - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_δ italic_X ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_δ italic_X (207)
2δYημνμδXνθ012(δY)2ημν(μθ0νθ0)(3λ2Yc2)(δY)2)\displaystyle\left.-2\delta Y\eta_{\mu\nu}\partial^{\mu}\delta X\partial^{\nu}% \theta_{0}-\frac{1}{2}\left(\delta Y\right)^{2}\eta^{\mu\nu}\left(\partial_{% \mu}\theta_{0}\partial_{\nu}\theta_{0}\right)-\left(\frac{3\lambda}{2}Y_{c}^{2% }\right)\left(\delta Y\right)^{2}\right)- 2 italic_δ italic_Y italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT ∂ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_δ italic_X ∂ start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_δ italic_Y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ( ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - ( divide start_ARG 3 italic_λ end_ARG start_ARG 2 end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( italic_δ italic_Y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) (208)

which enjoys the conformal symmetry

S2[δXu,δYu,ημνu2,Ycu,ηθ0]=S2[δX,δY,ημν,Yc,ηθ0]subscript𝑆2𝛿𝑋𝑢𝛿𝑌𝑢subscript𝜂𝜇𝜈superscript𝑢2subscript𝑌𝑐𝑢subscript𝜂subscript𝜃0subscript𝑆2𝛿𝑋𝛿𝑌subscript𝜂𝜇𝜈subscript𝑌𝑐subscript𝜂subscript𝜃0S_{2}\left[\delta Xu,\delta Yu,\eta_{\mu\nu}u^{-2},Y_{c}u,\partial_{\eta}% \theta_{0}\right]=S_{2}\left[\delta X,\delta Y,\eta_{\mu\nu},Y_{c},\partial_{% \eta}\theta_{0}\right]italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_δ italic_X italic_u , italic_δ italic_Y italic_u , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_u , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] = italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_δ italic_X , italic_δ italic_Y , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] (209)

where the constant ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT does not transform. However, as we will see below, ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT will transform under diffeomorphism because of the time derivative.

Carry out a coordinate change (diffeomorphism) dx¯μ=udxμ𝑑superscript¯𝑥𝜇𝑢𝑑superscript𝑥𝜇d\underline{x}^{\mu}=udx^{\mu}italic_d under¯ start_ARG italic_x end_ARG start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT = italic_u italic_d italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT leading to

ημν¯¯subscript𝜂𝜇𝜈\displaystyle\underline{\eta_{\mu\nu}}under¯ start_ARG italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT end_ARG =u2ημνabsentsuperscript𝑢2subscript𝜂𝜇𝜈\displaystyle=u^{-2}\eta_{\mu\nu}= italic_u start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT (210)

and ϕ¯(x¯)=ϕ(x)=ϕ(x¯u1)¯italic-ϕ¯𝑥italic-ϕ𝑥italic-ϕ¯𝑥superscript𝑢1\underline{\phi}(\underline{x})=\phi(x)=\phi(\underline{x}u^{-1})under¯ start_ARG italic_ϕ end_ARG ( under¯ start_ARG italic_x end_ARG ) = italic_ϕ ( italic_x ) = italic_ϕ ( under¯ start_ARG italic_x end_ARG italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) leading to the diffeomorphism invariant action transforming as

S2[δX,δY,ημν,Yc,ηθ0]subscript𝑆2𝛿𝑋𝛿𝑌subscript𝜂𝜇𝜈subscript𝑌𝑐subscript𝜂subscript𝜃0\displaystyle S_{2}[\delta X,\delta Y,\eta_{\mu\nu},Y_{c},\partial_{\eta}% \theta_{0}]italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_δ italic_X , italic_δ italic_Y , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] =d4x¯η¯(δX¯(x¯),δY¯(x¯),ημν¯,Yc¯,η¯θ0¯)absentsuperscript𝑑4¯𝑥¯𝜂¯𝛿𝑋¯𝑥¯𝛿𝑌¯𝑥¯subscript𝜂𝜇𝜈¯subscript𝑌𝑐subscript¯𝜂¯subscript𝜃0\displaystyle=\int d^{4}\underline{x}\sqrt{\underline{\eta}}\mathcal{L}(% \underline{\delta X}(\underline{x}),\underline{\delta Y}(\underline{x}),% \underline{\eta_{\mu\nu}},\underline{Y_{c}},\partial_{\underline{\eta}}% \underline{\theta_{0}})= ∫ italic_d start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT under¯ start_ARG italic_x end_ARG square-root start_ARG under¯ start_ARG italic_η end_ARG end_ARG caligraphic_L ( under¯ start_ARG italic_δ italic_X end_ARG ( under¯ start_ARG italic_x end_ARG ) , under¯ start_ARG italic_δ italic_Y end_ARG ( under¯ start_ARG italic_x end_ARG ) , under¯ start_ARG italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT end_ARG , under¯ start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG , ∂ start_POSTSUBSCRIPT under¯ start_ARG italic_η end_ARG end_POSTSUBSCRIPT under¯ start_ARG italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) (211)
=d4x¯u4η(δX(x¯u1),δY(x¯u1),u2ημν,Yc,u1ηθ(ηi))absentsuperscript𝑑4¯𝑥superscript𝑢4𝜂𝛿𝑋¯𝑥superscript𝑢1𝛿𝑌¯𝑥superscript𝑢1superscript𝑢2subscript𝜂𝜇𝜈subscript𝑌𝑐superscript𝑢1subscript𝜂𝜃subscript𝜂𝑖\displaystyle=\int d^{4}\underline{x}u^{-4}\sqrt{\eta}\mathcal{L}\left(\delta X% (\underline{x}u^{-1}),\delta Y(\underline{x}u^{-1}),u^{-2}\eta_{\mu\nu},Y_{c},% u^{-1}\partial_{\eta}\theta(\eta_{i})\right)= ∫ italic_d start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT under¯ start_ARG italic_x end_ARG italic_u start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT square-root start_ARG italic_η end_ARG caligraphic_L ( italic_δ italic_X ( under¯ start_ARG italic_x end_ARG italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) , italic_δ italic_Y ( under¯ start_ARG italic_x end_ARG italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) , italic_u start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) (212)

Scaling variables, we find

S2[δXu1,δYu1,ημνu2,Ycu1,ηθ0]subscript𝑆2𝛿𝑋superscript𝑢1𝛿𝑌superscript𝑢1subscript𝜂𝜇𝜈superscript𝑢2subscript𝑌𝑐superscript𝑢1subscript𝜂subscript𝜃0\displaystyle S_{2}[\delta Xu^{-1},\delta Yu^{-1},\eta_{\mu\nu}u^{2},Y_{c}u^{-% 1},\partial_{\eta}\theta_{0}]italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_δ italic_X italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , italic_δ italic_Y italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] =d4xη(u1δX(xu1),u1δY(xu1),ημν,Ycu1,ηθ0u1).absentsuperscript𝑑4𝑥𝜂superscript𝑢1𝛿𝑋𝑥superscript𝑢1superscript𝑢1𝛿𝑌𝑥superscript𝑢1subscript𝜂𝜇𝜈subscript𝑌𝑐superscript𝑢1subscript𝜂subscript𝜃0superscript𝑢1\displaystyle=\int d^{4}x\sqrt{\eta}\mathcal{L}(u^{-1}\delta X(xu^{-1}),u^{-1}% \delta Y(xu^{-1}),\eta_{\mu\nu},Y_{c}u^{-1},\partial_{\eta}\theta_{0}u^{-1}).= ∫ italic_d start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_x square-root start_ARG italic_η end_ARG caligraphic_L ( italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_δ italic_X ( italic_x italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) , italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_δ italic_Y ( italic_x italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) . (213)

Because of Eq. (209), this is equivalent to

S2[δXu1,δYu1,ημνu2,Ycu1,ηθ0]=S2[δX,δY,ημν,Yc,ηθ0]subscript𝑆2𝛿𝑋superscript𝑢1𝛿𝑌superscript𝑢1subscript𝜂𝜇𝜈superscript𝑢2subscript𝑌𝑐superscript𝑢1subscript𝜂subscript𝜃0subscript𝑆2𝛿𝑋𝛿𝑌subscript𝜂𝜇𝜈subscript𝑌𝑐subscript𝜂subscript𝜃0S_{2}[\delta Xu^{-1},\delta Yu^{-1},\eta_{\mu\nu}u^{2},Y_{c}u^{-1},\partial_{% \eta}\theta_{0}]=S_{2}[\delta X,\delta Y,\eta_{\mu\nu},Y_{c},\partial_{\eta}% \theta_{0}]italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_δ italic_X italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , italic_δ italic_Y italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] = italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_δ italic_X , italic_δ italic_Y , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] (214)

and thus

S2[δX,δY,ημν,uYc,uηθ0]subscript𝑆2𝛿𝑋𝛿𝑌subscript𝜂𝜇𝜈𝑢subscript𝑌𝑐𝑢subscript𝜂subscript𝜃0\displaystyle S_{2}[\delta X,\delta Y,\eta_{\mu\nu},uY_{c},u\partial_{\eta}% \theta_{0}]italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_δ italic_X , italic_δ italic_Y , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_u italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , italic_u ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] =d4xη(u1δX(xu1),u1δY(xu1),ημν,Yc,ηθ0)absentsuperscript𝑑4𝑥𝜂superscript𝑢1𝛿𝑋𝑥superscript𝑢1superscript𝑢1𝛿𝑌𝑥superscript𝑢1subscript𝜂𝜇𝜈subscript𝑌𝑐subscript𝜂subscript𝜃0\displaystyle=\int d^{4}x\sqrt{\eta}\mathcal{L}(u^{-1}\delta X(xu^{-1}),u^{-1}% \delta Y(xu^{-1}),\eta_{\mu\nu},Y_{c},\partial_{\eta}\theta_{0})= ∫ italic_d start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_x square-root start_ARG italic_η end_ARG caligraphic_L ( italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_δ italic_X ( italic_x italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) , italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_δ italic_Y ( italic_x italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) (215)
=S2[u1δX(xu1),u1δY(xu1),ημν,Yc,ηθ0]absentsubscript𝑆2superscript𝑢1𝛿𝑋𝑥superscript𝑢1superscript𝑢1𝛿𝑌𝑥superscript𝑢1subscript𝜂𝜇𝜈subscript𝑌𝑐subscript𝜂subscript𝜃0\displaystyle=S_{2}[u^{-1}\delta X(xu^{-1}),u^{-1}\delta Y(xu^{-1}),\eta_{\mu% \nu},Y_{c},\partial_{\eta}\theta_{0}]= italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_δ italic_X ( italic_x italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) , italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_δ italic_Y ( italic_x italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] (216)

Let’s see the implication of this on the Feynman correlator which will be equivalent to the in-in equal time correlator that we seek at free field level:

δX(η,x)δX(η,y)g,Yc,ηθ0=DδXDδYeiS2[δX,δY,g,Yc,ηθ0]δX(η,x)δX(η,y)DδXDδYeiS2[δX,δY,g,Yc,ηθ0]subscriptdelimited-⟨⟩𝛿𝑋𝜂𝑥𝛿𝑋𝜂𝑦𝑔subscript𝑌𝑐subscript𝜂subscript𝜃0𝐷𝛿𝑋𝐷𝛿𝑌superscript𝑒𝑖subscript𝑆2𝛿𝑋𝛿𝑌𝑔subscript𝑌𝑐subscript𝜂subscript𝜃0𝛿𝑋𝜂𝑥𝛿𝑋𝜂𝑦𝐷𝛿𝑋𝐷𝛿𝑌superscript𝑒𝑖subscript𝑆2𝛿𝑋𝛿𝑌𝑔subscript𝑌𝑐subscript𝜂subscript𝜃0\left\langle\delta X(\eta,\vec{x})\delta X(\eta,\vec{y})\right\rangle_{g,Y_{c}% ,\partial_{\eta}\theta_{0}}=\frac{\int D\delta XD\delta Ye^{iS_{2}[\delta X,% \delta Y,g,Y_{c},\partial_{\eta}\theta_{0}]}\delta X(\eta,\vec{x})\delta X(% \eta,\vec{y})}{\int D\delta XD\delta Ye^{iS_{2}[\delta X,\delta Y,g,Y_{c},% \partial_{\eta}\theta_{0}]}}⟨ italic_δ italic_X ( italic_η , over→ start_ARG italic_x end_ARG ) italic_δ italic_X ( italic_η , over→ start_ARG italic_y end_ARG ) ⟩ start_POSTSUBSCRIPT italic_g , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = divide start_ARG ∫ italic_D italic_δ italic_X italic_D italic_δ italic_Y italic_e start_POSTSUPERSCRIPT italic_i italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_δ italic_X , italic_δ italic_Y , italic_g , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] end_POSTSUPERSCRIPT italic_δ italic_X ( italic_η , over→ start_ARG italic_x end_ARG ) italic_δ italic_X ( italic_η , over→ start_ARG italic_y end_ARG ) end_ARG start_ARG ∫ italic_D italic_δ italic_X italic_D italic_δ italic_Y italic_e start_POSTSUPERSCRIPT italic_i italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_δ italic_X , italic_δ italic_Y , italic_g , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] end_POSTSUPERSCRIPT end_ARG (217)

Change variables

DδXDδY=D[u1δX~(zu1)]D[u1δY~(zu1)]𝐷𝛿𝑋𝐷𝛿𝑌𝐷delimited-[]superscript𝑢1𝛿~𝑋𝑧superscript𝑢1𝐷delimited-[]superscript𝑢1𝛿~𝑌𝑧superscript𝑢1\int D\delta XD\delta Y=\int D\left[u^{-1}\delta\tilde{X}(zu^{-1})\right]D% \left[u^{-1}\delta\tilde{Y}(zu^{-1})\right]∫ italic_D italic_δ italic_X italic_D italic_δ italic_Y = ∫ italic_D [ italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_δ over~ start_ARG italic_X end_ARG ( italic_z italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) ] italic_D [ italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_δ over~ start_ARG italic_Y end_ARG ( italic_z italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) ] (218)

to conclude

δX(η,x)δX(η,y)ημν,Yc,ηθ0subscriptdelimited-⟨⟩𝛿𝑋𝜂𝑥𝛿𝑋𝜂𝑦subscript𝜂𝜇𝜈subscript𝑌𝑐subscript𝜂subscript𝜃0\displaystyle\left\langle\delta X(\eta,\vec{x})\delta X(\eta,\vec{y})\right% \rangle_{\eta_{\mu\nu},Y_{c},\partial_{\eta}\theta_{0}}⟨ italic_δ italic_X ( italic_η , over→ start_ARG italic_x end_ARG ) italic_δ italic_X ( italic_η , over→ start_ARG italic_y end_ARG ) ⟩ start_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT =DδXDδYeiS2[δX,δY,ημν,uYc,uηθ0]u2δX(ηu1,xu1)δX(ηu1,yu1)DδXDδYeiS2[δX,δY,ημν,uYc,uηθ0]absent𝐷𝛿𝑋𝐷𝛿𝑌superscript𝑒𝑖subscript𝑆2𝛿𝑋𝛿𝑌subscript𝜂𝜇𝜈𝑢subscript𝑌𝑐𝑢subscript𝜂subscript𝜃0superscript𝑢2𝛿𝑋𝜂superscript𝑢1𝑥superscript𝑢1𝛿𝑋𝜂superscript𝑢1𝑦superscript𝑢1𝐷𝛿𝑋𝐷𝛿𝑌superscript𝑒𝑖subscript𝑆2𝛿𝑋𝛿𝑌subscript𝜂𝜇𝜈𝑢subscript𝑌𝑐𝑢subscript𝜂subscript𝜃0\displaystyle=\frac{\int D\delta XD\delta Ye^{iS_{2}[\delta X,\delta Y,\eta_{% \mu\nu},uY_{c},u\partial_{\eta}\theta_{0}]}u^{-2}\delta X(\eta u^{-1},\vec{x}u% ^{-1})\delta X(\eta u^{-1},\vec{y}u^{-1})}{\int D\delta XD\delta Ye^{iS_{2}[% \delta X,\delta Y,\eta_{\mu\nu},uY_{c},u\partial_{\eta}\theta_{0}]}}= divide start_ARG ∫ italic_D italic_δ italic_X italic_D italic_δ italic_Y italic_e start_POSTSUPERSCRIPT italic_i italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_δ italic_X , italic_δ italic_Y , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_u italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , italic_u ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] end_POSTSUPERSCRIPT italic_u start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_δ italic_X ( italic_η italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , over→ start_ARG italic_x end_ARG italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) italic_δ italic_X ( italic_η italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , over→ start_ARG italic_y end_ARG italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) end_ARG start_ARG ∫ italic_D italic_δ italic_X italic_D italic_δ italic_Y italic_e start_POSTSUPERSCRIPT italic_i italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_δ italic_X , italic_δ italic_Y , italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_u italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , italic_u ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] end_POSTSUPERSCRIPT end_ARG (219)

or more explicitly

δX(η,x)δX(η,y)ημν,Yc,ηθ0=u2δX(ηu1,xu1)δX(ηu1,yu1)ημν,uYc,uηθ0.subscriptdelimited-⟨⟩𝛿𝑋𝜂𝑥𝛿𝑋𝜂𝑦subscript𝜂𝜇𝜈subscript𝑌𝑐subscript𝜂subscript𝜃0superscript𝑢2subscriptdelimited-⟨⟩𝛿𝑋𝜂superscript𝑢1𝑥superscript𝑢1𝛿𝑋𝜂superscript𝑢1𝑦superscript𝑢1subscript𝜂𝜇𝜈𝑢subscript𝑌𝑐𝑢subscript𝜂subscript𝜃0\left\langle\delta X(\eta,\vec{x})\delta X(\eta,\vec{y})\right\rangle_{\eta_{% \mu\nu},Y_{c},\partial_{\eta}\theta_{0}}=u^{-2}\left\langle\delta X(\eta u^{-1% },\vec{x}u^{-1})\delta X(\eta u^{-1},\vec{y}u^{-1})\right\rangle_{\eta_{\mu\nu% },uY_{c},u\partial_{\eta}\theta_{0}}.⟨ italic_δ italic_X ( italic_η , over→ start_ARG italic_x end_ARG ) italic_δ italic_X ( italic_η , over→ start_ARG italic_y end_ARG ) ⟩ start_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_u start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ⟨ italic_δ italic_X ( italic_η italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , over→ start_ARG italic_x end_ARG italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) italic_δ italic_X ( italic_η italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , over→ start_ARG italic_y end_ARG italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) ⟩ start_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_u italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , italic_u ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT . (220)

To derive the differential equation governing the correlator by assuming SO(3)𝑆𝑂3SO(3)italic_S italic_O ( 3 ) and spatial translation invariance, start by writing

δX(η,x)δX(η,y)ημν,Yc,ηθ0=f(η,|xy|,Yc,ηθ0)subscriptdelimited-⟨⟩𝛿𝑋𝜂𝑥𝛿𝑋𝜂𝑦subscript𝜂𝜇𝜈subscript𝑌𝑐subscript𝜂subscript𝜃0𝑓𝜂𝑥𝑦subscript𝑌𝑐subscript𝜂subscript𝜃0\left\langle\delta X(\eta,\vec{x})\delta X(\eta,\vec{y})\right\rangle_{\eta_{% \mu\nu},Y_{c},\partial_{\eta}\theta_{0}}=f(\eta,\left|\vec{x}-\vec{y}\right|,Y% _{c},\partial_{\eta}\theta_{0})⟨ italic_δ italic_X ( italic_η , over→ start_ARG italic_x end_ARG ) italic_δ italic_X ( italic_η , over→ start_ARG italic_y end_ARG ) ⟩ start_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_f ( italic_η , | over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) (221)

where f(η,w,s,P)𝑓𝜂𝑤𝑠𝑃f(\eta,w,s,P)italic_f ( italic_η , italic_w , italic_s , italic_P ) is a function of variables {η,w,s,P}𝜂𝑤𝑠𝑃\{\eta,w,s,P\}{ italic_η , italic_w , italic_s , italic_P }. This and Eq. (220) says

u2f(ηu1,u1|z|,uYc,uηθ0)=f(η,|xy|,Yc,ηθ0)superscript𝑢2𝑓𝜂superscript𝑢1superscript𝑢1𝑧𝑢subscript𝑌𝑐𝑢subscript𝜂subscript𝜃0𝑓𝜂𝑥𝑦subscript𝑌𝑐subscript𝜂subscript𝜃0u^{-2}f(\eta u^{-1},u^{-1}\left|\vec{z}\right|,uY_{c},u\partial_{\eta}\theta_{% 0})=f(\eta,\left|\vec{x}-\vec{y}\right|,Y_{c},\partial_{\eta}\theta_{0})italic_u start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_f ( italic_η italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , italic_u start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT | over→ start_ARG italic_z end_ARG | , italic_u italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , italic_u ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_f ( italic_η , | over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) (222)

Taking a derivative with respect to u𝑢uitalic_u and setting u=1𝑢1u=1italic_u = 1, we find

2f(η,z,Yc,ηθ0)ηηf(η,z,Yc,ηθ0)|w1=ηzzf(η,z,Yc,ηθ0)2𝑓𝜂𝑧subscript𝑌𝑐subscript𝜂subscript𝜃0evaluated-at𝜂subscript𝜂𝑓𝜂𝑧subscript𝑌𝑐subscript𝜂subscript𝜃0subscript𝑤1𝜂𝑧𝑧𝑓𝜂𝑧subscript𝑌𝑐subscript𝜂subscript𝜃0\displaystyle-2f(\eta,z,Y_{c},\partial_{\eta}\theta_{0})-\eta\partial_{\eta}f(% \eta,z,Y_{c},\partial_{\eta}\theta_{0})|_{w_{1}=\eta}-z\frac{\partial}{% \partial z}f(\eta,z,Y_{c},\partial_{\eta}\theta_{0})- 2 italic_f ( italic_η , italic_z , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_η ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_f ( italic_η , italic_z , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_η end_POSTSUBSCRIPT - italic_z divide start_ARG ∂ end_ARG start_ARG ∂ italic_z end_ARG italic_f ( italic_η , italic_z , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT )
+YcYcf(η,z,Yc,ηθ0)+ηθ0(ηθ0)f(η,z,Yc,ηθ0)subscript𝑌𝑐subscriptsubscript𝑌𝑐𝑓𝜂𝑧subscript𝑌𝑐subscript𝜂subscript𝜃0subscript𝜂subscript𝜃0subscriptsubscript𝜂subscript𝜃0𝑓𝜂𝑧subscript𝑌𝑐subscript𝜂subscript𝜃0\displaystyle+Y_{c}\partial_{Y_{c}}f(\eta,z,Y_{c},\partial_{\eta}\theta_{0})+% \partial_{\eta}\theta_{0}\partial_{\left(\partial_{\eta}\theta_{0}\right)}f(% \eta,z,Y_{c},\partial_{\eta}\theta_{0})+ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_f ( italic_η , italic_z , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) + ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_POSTSUBSCRIPT italic_f ( italic_η , italic_z , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) =0absent0\displaystyle=0= 0 (223)

governing the correlator. A general solution to this equation is

f(η,z,Yc,ηθ0)=exp(Cf(lnzη,ln[(η)Yc],ln[(ηθ0(ηi))(η)]))η2𝑓𝜂𝑧subscript𝑌𝑐subscript𝜂subscript𝜃0subscript𝐶𝑓𝑧𝜂𝜂subscript𝑌𝑐subscript𝜂subscript𝜃0subscript𝜂𝑖𝜂superscript𝜂2f(\eta,z,Y_{c},\partial_{\eta}\theta_{0})=\frac{\exp\left(C_{f}\left(\ln\frac{% z}{-\eta},\ln\left[\left(-\eta\right)Y_{c}\right],\ln\left[\left(\partial_{% \eta}\theta_{0}(\eta_{i})\right)\left(-\eta\right)\right]\right)\right)}{\eta^% {2}}italic_f ( italic_η , italic_z , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = divide start_ARG roman_exp ( italic_C start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( roman_ln divide start_ARG italic_z end_ARG start_ARG - italic_η end_ARG , roman_ln [ ( - italic_η ) italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ] , roman_ln [ ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ( - italic_η ) ] ) ) end_ARG start_ARG italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG (224)

where Cf(w1,w2)subscript𝐶𝑓subscript𝑤1subscript𝑤2C_{f}(w_{1},w_{2})italic_C start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) is a general function of two variables. Now, S2subscript𝑆2S_{2}italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT time translation invariance impliesf𝑓fitalic_f being time-translation-invariant. This results in the differential equation

2+i=13wiCf(w1,w2,w3)=02superscriptsubscript𝑖13subscriptsubscript𝑤𝑖subscript𝐶𝑓subscript𝑤1subscript𝑤2subscript𝑤30-2+\sum_{i=1}^{3}\partial_{w_{i}}C_{f}(w_{1},w_{2},w_{3})=0- 2 + ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = 0 (225)

whose general solution is

Cf(w1,w2,w3)=2w1+Bf(w1+w2,w1+w3)subscript𝐶𝑓subscript𝑤1subscript𝑤2subscript𝑤32subscript𝑤1subscript𝐵𝑓subscript𝑤1subscript𝑤2subscript𝑤1subscript𝑤3C_{f}(w_{1},w_{2},w_{3})=-2w_{1}+B_{f}(w_{1}+w_{2},w_{1}+w_{3})italic_C start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) = - 2 italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_B start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_w start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_w start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) (226)

giving

f(η,z,Yc,ηθ0)𝑓𝜂𝑧subscript𝑌𝑐subscript𝜂subscript𝜃0\displaystyle f(\eta,z,Y_{c},\partial_{\eta}\theta_{0})italic_f ( italic_η , italic_z , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) =exp(Bf(ln[zYc],ln[zηθ0(ηi)])z2.\displaystyle=\frac{\exp\left(B_{f}(\ln\left[zY_{c}\right],\ln\left[z\partial_% {\eta}\theta_{0}(\eta_{i})\right]\right)}{z^{2}}.= divide start_ARG roman_exp ( italic_B start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( roman_ln [ italic_z italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ] , roman_ln [ italic_z ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ] ) end_ARG start_ARG italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (227)

Furthermore, we know for circular orbits

Ycλ1/2=η00(ηθ0)subscript𝑌𝑐superscript𝜆12superscript𝜂00subscript𝜂subscript𝜃0Y_{c}\lambda^{1/2}=\sqrt{-\eta^{00}}\left(\partial_{\eta}\theta_{0}\right)italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_λ start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT = square-root start_ARG - italic_η start_POSTSUPERSCRIPT 00 end_POSTSUPERSCRIPT end_ARG ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) (228)

and thus combine Ycsubscript𝑌𝑐Y_{c}italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT and ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT dependence to conclude

δX(η,x)δX(η,y)ημν,Yc,ηθ0=EfX(ln[|xy|(ηθ0(ηi))])|xy|2subscriptdelimited-⟨⟩𝛿𝑋𝜂𝑥𝛿𝑋𝜂𝑦subscript𝜂𝜇𝜈subscript𝑌𝑐subscript𝜂subscript𝜃0superscriptsubscript𝐸𝑓𝑋𝑥𝑦subscript𝜂subscript𝜃0subscript𝜂𝑖superscript𝑥𝑦2\left\langle\delta X(\eta,\vec{x})\delta X(\eta,\vec{y})\right\rangle_{\eta_{% \mu\nu},Y_{c},\partial_{\eta}\theta_{0}}=\frac{E_{f}^{X}\left(\ln\left[\left|% \vec{x}-\vec{y}\right|\left(\partial_{\eta}\theta_{0}(\eta_{i})\right)\right]% \right)}{\left|\vec{x}-\vec{y}\right|^{2}}⟨ italic_δ italic_X ( italic_η , over→ start_ARG italic_x end_ARG ) italic_δ italic_X ( italic_η , over→ start_ARG italic_y end_ARG ) ⟩ start_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = divide start_ARG italic_E start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_X end_POSTSUPERSCRIPT ( roman_ln [ | over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ] ) end_ARG start_ARG | over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG (229)
δY(η,x)δY(η,y)ημν,Yc,ηθ0=EfY(ln[|xy|(ηθ0(ηi))])|xy|2subscriptdelimited-⟨⟩𝛿𝑌𝜂𝑥𝛿𝑌𝜂𝑦subscript𝜂𝜇𝜈subscript𝑌𝑐subscript𝜂subscript𝜃0superscriptsubscript𝐸𝑓𝑌𝑥𝑦subscript𝜂subscript𝜃0subscript𝜂𝑖superscript𝑥𝑦2\left\langle\delta Y(\eta,\vec{x})\delta Y(\eta,\vec{y})\right\rangle_{\eta_{% \mu\nu},Y_{c},\partial_{\eta}\theta_{0}}=\frac{E_{f}^{Y}\left(\ln\left[\left|% \vec{x}-\vec{y}\right|\left(\partial_{\eta}\theta_{0}(\eta_{i})\right)\right]% \right)}{\left|\vec{x}-\vec{y}\right|^{2}}⟨ italic_δ italic_Y ( italic_η , over→ start_ARG italic_x end_ARG ) italic_δ italic_Y ( italic_η , over→ start_ARG italic_y end_ARG ) ⟩ start_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_μ italic_ν end_POSTSUBSCRIPT , italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = divide start_ARG italic_E start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Y end_POSTSUPERSCRIPT ( roman_ln [ | over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ] ) end_ARG start_ARG | over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG (230)

which are manifestly time-independent but contain arbitrary |xy|𝑥𝑦|\vec{x}-\vec{y}|| over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | dependences unlike in the case of massless scalar fields in Minkowski space.

Next, note the U(1)𝑈1U(1)italic_U ( 1 ) induced shift symmetry δXδX+C𝛿𝑋𝛿𝑋𝐶\delta X\rightarrow\delta X+Citalic_δ italic_X → italic_δ italic_X + italic_C has an associated current

jμ=ημν{νδX+2δYνθ0}.superscript𝑗𝜇superscript𝜂𝜇𝜈subscript𝜈𝛿𝑋2𝛿𝑌subscript𝜈subscript𝜃0j^{\mu}=\eta^{\mu\nu}\left\{\partial_{\nu}\delta X+2\delta Y\partial_{\nu}% \theta_{0}\right\}.italic_j start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT = italic_η start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT { ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_δ italic_X + 2 italic_δ italic_Y ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT } . (231)

whose conservation is

02δX20δY0θ0+i2δX=0superscriptsubscript02𝛿𝑋2subscript0𝛿𝑌subscript0subscript𝜃0superscriptsubscript𝑖2𝛿𝑋0-\partial_{0}^{2}\delta X-2\partial_{0}\delta Y\partial_{0}\theta_{0}+\partial% _{i}^{2}\delta X=0- ∂ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_X - 2 ∂ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_δ italic_Y ∂ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_X = 0 (232)

which is notably linear. In normal mode-Fourier space, Eq. (232) is

ω2δXω,k+2iωδYω,k0θ0k2δXω,k=0.superscript𝜔2𝛿subscript𝑋𝜔𝑘2𝑖𝜔𝛿subscript𝑌𝜔𝑘subscript0subscript𝜃0superscript𝑘2𝛿subscript𝑋𝜔𝑘0\omega^{2}\delta X_{\omega,k}+2i\omega\delta Y_{\omega,k}\partial_{0}\theta_{0% }-k^{2}\delta X_{\omega,k}=0.italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_X start_POSTSUBSCRIPT italic_ω , italic_k end_POSTSUBSCRIPT + 2 italic_i italic_ω italic_δ italic_Y start_POSTSUBSCRIPT italic_ω , italic_k end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_X start_POSTSUBSCRIPT italic_ω , italic_k end_POSTSUBSCRIPT = 0 . (233)

In the large k𝑘kitalic_k limit, we have the usual Goldstone condition ω2=k2superscript𝜔2superscript𝑘2\omega^{2}=k^{2}italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT for any nonvanishing δXω,k𝛿subscript𝑋𝜔𝑘\delta X_{\omega,k}italic_δ italic_X start_POSTSUBSCRIPT italic_ω , italic_k end_POSTSUBSCRIPT. The fact that the two modes have ω=±k𝜔plus-or-minus𝑘\omega=\pm kitalic_ω = ± italic_k dispersion possibilities can be viewed as a consequence of approximately in tact CPT symmetry in that limit. For small k𝑘kitalic_k, there is at least one massless mode that is independent of δXω,k𝛿subscript𝑋𝜔𝑘\delta X_{\omega,k}italic_δ italic_X start_POSTSUBSCRIPT italic_ω , italic_k end_POSTSUBSCRIPT and δYω,k𝛿subscript𝑌𝜔𝑘\delta Y_{\omega,k}italic_δ italic_Y start_POSTSUBSCRIPT italic_ω , italic_k end_POSTSUBSCRIPT as long as ωδXω,k𝜔𝛿subscript𝑋𝜔𝑘\omega\delta X_{\omega,k}italic_ω italic_δ italic_X start_POSTSUBSCRIPT italic_ω , italic_k end_POSTSUBSCRIPT and δYω,k𝛿subscript𝑌𝜔𝑘\delta Y_{\omega,k}italic_δ italic_Y start_POSTSUBSCRIPT italic_ω , italic_k end_POSTSUBSCRIPT do not diverge. Let’s label that massless mode frequency as ω0subscript𝜔0\omega_{0}italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Indeed, because of the ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT dependent mixing in Eq. (208), both δXω0,0𝛿subscript𝑋subscript𝜔00\delta X_{\omega_{0},0}italic_δ italic_X start_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , 0 end_POSTSUBSCRIPT and limk0δYω0,k/ω0subscript𝑘0𝛿subscript𝑌subscript𝜔0𝑘subscript𝜔0\lim_{k\rightarrow 0}\delta Y_{\omega_{0},k}/\omega_{0}roman_lim start_POSTSUBSCRIPT italic_k → 0 end_POSTSUBSCRIPT italic_δ italic_Y start_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_k end_POSTSUBSCRIPT / italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT do not vanish.

According to Eq. (208), we see that the Lagrangian has a mode contribution

2δYημνμδXνθ012(δY)2ημν(μθ0νθ0)(3λ2Yc2)(δY)22𝛿𝑌superscript𝜂𝜇𝜈subscript𝜇𝛿𝑋subscript𝜈subscript𝜃012superscript𝛿𝑌2superscript𝜂𝜇𝜈subscript𝜇subscript𝜃0subscript𝜈subscript𝜃03𝜆2superscriptsubscript𝑌𝑐2superscript𝛿𝑌2\displaystyle-2\delta Y\eta^{\mu\nu}\partial_{\mu}\delta X\partial_{\nu}\theta% _{0}-\frac{1}{2}\left(\delta Y\right)^{2}\eta^{\mu\nu}\left(\partial_{\mu}% \theta_{0}\partial_{\nu}\theta_{0}\right)-\left(\frac{3\lambda}{2}Y_{c}^{2}% \right)\left(\delta Y\right)^{2}- 2 italic_δ italic_Y italic_η start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_δ italic_X ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_δ italic_Y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η start_POSTSUPERSCRIPT italic_μ italic_ν end_POSTSUPERSCRIPT ( ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_ν end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - ( divide start_ARG 3 italic_λ end_ARG start_ARG 2 end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( italic_δ italic_Y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (234)
(δXω0,kδYω0,k)(0iω0,kiω0,k2(ηθ0(ηi))2)(δXω0,kδYω0,k)similar-toabsent𝛿superscriptsubscript𝑋subscript𝜔0𝑘𝛿superscriptsubscript𝑌subscript𝜔0𝑘0𝑖subscript𝜔0𝑘𝑖subscript𝜔0𝑘2superscriptsubscript𝜂subscript𝜃0subscript𝜂𝑖2𝛿subscript𝑋subscript𝜔0𝑘𝛿subscript𝑌subscript𝜔0𝑘\displaystyle\sim\left(\begin{array}[]{cc}\delta X_{\omega_{0},k}^{*}&\delta Y% _{\omega_{0},k}^{*}\end{array}\right)\left(\begin{array}[]{cc}0&-i\omega_{0,k}% \\ i\omega_{0,k}&-2\left(\partial_{\eta}\theta_{0}(\eta_{i})\right)^{2}\end{array% }\right)\left(\begin{array}[]{c}\delta X_{\omega_{0},k}\\ \delta Y_{\omega_{0},k}\end{array}\right)∼ ( start_ARRAY start_ROW start_CELL italic_δ italic_X start_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_CELL start_CELL italic_δ italic_Y start_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL - italic_i italic_ω start_POSTSUBSCRIPT 0 , italic_k end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_i italic_ω start_POSTSUBSCRIPT 0 , italic_k end_POSTSUBSCRIPT end_CELL start_CELL - 2 ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) ( start_ARRAY start_ROW start_CELL italic_δ italic_X start_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_k end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_δ italic_Y start_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_k end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) (240)

which in the ηθ0(ηi)/ω0,ksubscript𝜂subscript𝜃0subscript𝜂𝑖subscript𝜔0𝑘\partial_{\eta}\theta_{0}(\eta_{i})/\omega_{0,k}\rightarrow\infty∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) / italic_ω start_POSTSUBSCRIPT 0 , italic_k end_POSTSUBSCRIPT → ∞ limit has δX𝛿𝑋\delta Xitalic_δ italic_X decoupling from δY𝛿𝑌\delta Yitalic_δ italic_Y and (ηθ0(ηi))|xy|subscript𝜂subscript𝜃0subscript𝜂𝑖𝑥𝑦\left(\partial_{\eta}\theta_{0}(\eta_{i})\right)\left|\vec{x}-\vec{y}\right|\rightarrow\infty( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) | over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | → ∞ not changing the approximate correlation function for δXδXdelimited-⟨⟩𝛿𝑋𝛿𝑋\left\langle\delta X\delta X\right\rangle⟨ italic_δ italic_X italic_δ italic_X ⟩. In that approximation, the factor EfX(ln[|xy|(ηθ0(ηi))])superscriptsubscript𝐸𝑓𝑋𝑥𝑦subscript𝜂subscript𝜃0subscript𝜂𝑖E_{f}^{X}\left(\ln\left[\left|\vec{x}-\vec{y}\right|\left(\partial_{\eta}% \theta_{0}(\eta_{i})\right)\right]\right)italic_E start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_X end_POSTSUPERSCRIPT ( roman_ln [ | over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ] ) in Eq. (229) has an expansion for large |xy|𝑥𝑦|\vec{x}-\vec{y}|| over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | as

EfX(ln[|xy|(ηθ0(ηi))])=c1+WX(1|xy|(ηθ0(ηi)))superscriptsubscript𝐸𝑓𝑋𝑥𝑦subscript𝜂subscript𝜃0subscript𝜂𝑖subscript𝑐1subscript𝑊𝑋1𝑥𝑦subscript𝜂subscript𝜃0subscript𝜂𝑖E_{f}^{X}\left(\ln\left[\left|\vec{x}-\vec{y}\right|\left(\partial_{\eta}% \theta_{0}(\eta_{i})\right)\right]\right)=c_{1}+W_{X}\left(\frac{1}{\left|\vec% {x}-\vec{y}\right|\left(\partial_{\eta}\theta_{0}(\eta_{i})\right)}\right)italic_E start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_X end_POSTSUPERSCRIPT ( roman_ln [ | over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ] ) = italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_W start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( divide start_ARG 1 end_ARG start_ARG | over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) end_ARG ) (241)

where c1subscript𝑐1c_{1}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is independent of |xy|𝑥𝑦|\vec{x}-\vec{y}|| over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | and WX(w)subscript𝑊𝑋𝑤W_{X}(w)italic_W start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_w ) is a function where WX(0)=0subscript𝑊𝑋00W_{X}(0)=0italic_W start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( 0 ) = 0. This and Eq. (229) implies the correlator in Fourier space behaving as k2superscript𝑘2k^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT corresponding to a spectral index of nI=3subscript𝑛𝐼3n_{I}=3italic_n start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT = 3 matching Eq. (28). Hence, unlike the ordinary massless Minkowski field, one has to use U(1)𝑈1U(1)italic_U ( 1 ) Goldstone dynamical information contained in Eq. (240) to fix the |xy|2superscript𝑥𝑦2|\vec{x}-\vec{y}|^{-2}| over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT scaling for the δXδXdelimited-⟨⟩𝛿𝑋𝛿𝑋\left\langle\delta X\delta X\right\rangle⟨ italic_δ italic_X italic_δ italic_X ⟩ correlator.

With this same ηθ0(ηi)/ω0,ksubscript𝜂subscript𝜃0subscript𝜂𝑖subscript𝜔0𝑘\partial_{\eta}\theta_{0}(\eta_{i})/\omega_{0,k}\rightarrow\infty∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) / italic_ω start_POSTSUBSCRIPT 0 , italic_k end_POSTSUBSCRIPT → ∞ approximation, we see from Eq. (240) that a decoupled δY𝛿𝑌\delta Yitalic_δ italic_Y becomes infinitely heavy as (ηθ0(ηi))subscript𝜂subscript𝜃0subscript𝜂𝑖\left(\partial_{\eta}\theta_{0}(\eta_{i})\right)\rightarrow\infty( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) → ∞. Since this means that δY(η,x)δY(η,y)delimited-⟨⟩𝛿𝑌𝜂𝑥𝛿𝑌𝜂𝑦\left\langle\delta Y(\eta,\vec{x})\delta Y(\eta,\vec{y})\right\rangle⟨ italic_δ italic_Y ( italic_η , over→ start_ARG italic_x end_ARG ) italic_δ italic_Y ( italic_η , over→ start_ARG italic_y end_ARG ) ⟩ should vanish with the same limit, we expect

EfY(ln[|xy|(ηθ0(ηi))])1|xy|(ηθ0(ηi))+O(1|xy|2(ηθ0(ηi))2)proportional-tosuperscriptsubscript𝐸𝑓𝑌𝑥𝑦subscript𝜂subscript𝜃0subscript𝜂𝑖1𝑥𝑦subscript𝜂subscript𝜃0subscript𝜂𝑖𝑂1superscript𝑥𝑦2superscriptsubscript𝜂subscript𝜃0subscript𝜂𝑖2E_{f}^{Y}\left(\ln\left[\left|\vec{x}-\vec{y}\right|\left(\partial_{\eta}% \theta_{0}(\eta_{i})\right)\right]\right)\propto\frac{1}{\left|\vec{x}-\vec{y}% \right|\left(\partial_{\eta}\theta_{0}(\eta_{i})\right)}+O\left(\frac{1}{\left% |\vec{x}-\vec{y}\right|^{2}\left(\partial_{\eta}\theta_{0}(\eta_{i})\right)^{2% }}\right)italic_E start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Y end_POSTSUPERSCRIPT ( roman_ln [ | over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ] ) ∝ divide start_ARG 1 end_ARG start_ARG | over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) end_ARG + italic_O ( divide start_ARG 1 end_ARG start_ARG | over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) (242)

if the expansion is analytic in inverse powers of |xy|(ηθ0(ηi))𝑥𝑦subscript𝜂subscript𝜃0subscript𝜂𝑖\left|\vec{x}-\vec{y}\right|\left(\partial_{\eta}\theta_{0}(\eta_{i})\right)| over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG | ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ). Explicit computations justify the analyticity.

Now, the sound speed of δX𝛿𝑋\delta Xitalic_δ italic_X cannot quite be read off from this expression since X=Yc(θ(ηi)+ηηθ(ηi))+δX𝑋subscript𝑌𝑐𝜃subscript𝜂𝑖𝜂subscript𝜂𝜃subscript𝜂𝑖𝛿𝑋X=Y_{c}(\theta(\eta_{i})+\eta\partial_{\eta}\theta(\eta_{i}))+\delta Xitalic_X = italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( italic_θ ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) + italic_η ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) + italic_δ italic_X generates a mixing between δY𝛿𝑌\delta Yitalic_δ italic_Y and ηδXsubscript𝜂𝛿𝑋\partial_{\eta}\delta X∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_X. This mixing generated change in the sound speed, which is the most theoretically interesting aspect of the system studied in this paper, and other aspects of this system are addressed in the main body of the text when we quantize the theory.

Appendix B WKB approximation for oscillating potentials

In this section, we explain Eq. (261) which is a generalization of the WKB ansatz applicable for dispersion relationships with a fast time-oscillation component.

Consider the following differential equation

η2y+m2(η)y=0.superscriptsubscript𝜂2𝑦superscript𝑚2𝜂𝑦0\partial_{\eta}^{2}y+m^{2}(\eta)y=0.∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y + italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) italic_y = 0 . (243)

The WKB method allows us to approximate the solution to the above differential equation as

y(η)±c±m(η)exp(±iη𝑑ηm(η))𝑦𝜂subscriptplus-or-minussubscript𝑐plus-or-minus𝑚𝜂plus-or-minus𝑖superscript𝜂differential-d𝜂𝑚𝜂y(\eta)\approx\sum_{\pm}\frac{c_{\pm}}{\sqrt{m(\eta)}}\exp\left(\pm i\int^{% \eta}d\eta m(\eta)\right)italic_y ( italic_η ) ≈ ∑ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT divide start_ARG italic_c start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG italic_m ( italic_η ) end_ARG end_ARG roman_exp ( ± italic_i ∫ start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT italic_d italic_η italic_m ( italic_η ) ) (244)

given

ηm(η)m2(η)much-less-thansubscript𝜂𝑚𝜂superscript𝑚2𝜂\partial_{\eta}m(\eta)\ll m^{2}\left(\eta\right)∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_m ( italic_η ) ≪ italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) (245)

and hence the mass-squared function must be slowly varying.

Let us now consider the situation where the mass-squared term is

m2(η)=K2+Acos(fη)superscript𝑚2𝜂superscript𝐾2𝐴𝑓𝜂m^{2}(\eta)=K^{2}+A\cos\left(f\eta\right)italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) = italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_A roman_cos ( italic_f italic_η ) (246)

where K,A𝐾𝐴K,Aitalic_K , italic_A are constants and we are interested in cases with K2<Asuperscript𝐾2𝐴K^{2}<Aitalic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT < italic_A and f1much-greater-than𝑓1f\gg 1italic_f ≫ 1 such that the mass-squared function is characterized by high frequency large amplitude oscillations. It is easy to note that the WKB approximation as given above is inappropriate and diverges at the zeros of m2superscript𝑚2m^{2}italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Although one may use matching solutions at the zero crossings, such an approach is unwieldy for a fast oscillating potential and doesn’t capture the long-time characteristic behavior of the system.

Another well-known approach begins with noting that Eq. (243) with the mass-squared function given in Eq. (246) satisfies the Mathieu differential equation

x2y+(a2qcos(2x))y=0superscriptsubscript𝑥2𝑦𝑎2𝑞2𝑥𝑦0\partial_{x}^{2}y+\left(a-2q\cos\left(2x\right)\right)y=0∂ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y + ( italic_a - 2 italic_q roman_cos ( 2 italic_x ) ) italic_y = 0 (247)

where

2x2𝑥\displaystyle 2x2 italic_x =fηabsent𝑓𝜂\displaystyle=f\eta= italic_f italic_η (248)
q𝑞\displaystyle qitalic_q =A/2f2/4absent𝐴2superscript𝑓24\displaystyle=\frac{-A/2}{f^{2}/4}= divide start_ARG - italic_A / 2 end_ARG start_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 4 end_ARG (249)
a𝑎\displaystyle aitalic_a =K2f2/4absentsuperscript𝐾2superscript𝑓24\displaystyle=\frac{K^{2}}{f^{2}/4}= divide start_ARG italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / 4 end_ARG (250)

with the generalized solution

y=±c±Me±(r,q,x)𝑦subscriptplus-or-minussubscript𝑐plus-or-minussuperscriptMeplus-or-minusrqxy=\sum_{\pm}c_{\pm}{\rm Me^{\pm}\left(r,q,x\right)}italic_y = ∑ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT roman_Me start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( roman_r , roman_q , roman_x ) (251)
Me±=ce(r,q,x)±ise(r,q,x)superscriptMeplus-or-minusplus-or-minusce𝑟𝑞𝑥𝑖se𝑟𝑞𝑥{\rm Me^{\pm}=}{\rm ce}\left(r,q,x\right)\pm i\,{\rm se}\left(r,q,x\right)roman_Me start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT = roman_ce ( italic_r , italic_q , italic_x ) ± italic_i roman_se ( italic_r , italic_q , italic_x ) (252)

for ce𝑐𝑒ceitalic_c italic_e, se𝑠𝑒seitalic_s italic_e as the generalized angular Mathieu functions. In the limiting case |q|1much-less-than𝑞1|q|\ll 1| italic_q | ≪ 1, the Mathieu function has the following series expansion in powers of q𝑞qitalic_q

Me±(r,q,x)exp(±irx)+q4(exp(±i(r2)x)r1+exp(±i(r+2)x)r+1)+O(q2)for r1superscriptMeplus-or-minusrqxplus-or-minus𝑖𝑟𝑥𝑞4plus-or-minus𝑖𝑟2𝑥𝑟1plus-or-minus𝑖𝑟2𝑥𝑟1𝑂superscript𝑞2for r1{\rm Me^{\pm}\left(r,q,x\right)}\approx\exp\left(\pm irx\right)+\frac{q}{4}% \left(\frac{\exp\left(\pm i\left(r-2\right)x\right)}{r-1}+\frac{\exp\left(\pm i% \left(r+2\right)x\right)}{r+1}\right)+O(q^{2})\quad\mbox{for $r\neq 1$}roman_Me start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( roman_r , roman_q , roman_x ) ≈ roman_exp ( ± italic_i italic_r italic_x ) + divide start_ARG italic_q end_ARG start_ARG 4 end_ARG ( divide start_ARG roman_exp ( ± italic_i ( italic_r - 2 ) italic_x ) end_ARG start_ARG italic_r - 1 end_ARG + divide start_ARG roman_exp ( ± italic_i ( italic_r + 2 ) italic_x ) end_ARG start_ARG italic_r + 1 end_ARG ) + italic_O ( italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) for italic_r ≠ 1 (253)

where

ra+12(1a)q2.𝑟𝑎121𝑎superscript𝑞2r\approx\sqrt{a+\frac{1}{2\left(1-a\right)}q^{2}}.italic_r ≈ square-root start_ARG italic_a + divide start_ARG 1 end_ARG start_ARG 2 ( 1 - italic_a ) end_ARG italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (254)

Using this, we can identify

rxηK2+A22(f24K2)𝑟𝑥𝜂superscript𝐾2superscript𝐴22superscript𝑓24superscript𝐾2rx\approx\eta\sqrt{K^{2}+\frac{A^{2}}{2\left(f^{2}-4K^{2}\right)}}italic_r italic_x ≈ italic_η square-root start_ARG italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG italic_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 ( italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 4 italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG end_ARG (255)

in the limit

2Af21, and Af<K,formulae-sequencemuch-less-than2𝐴superscript𝑓21 and 𝐴𝑓𝐾\frac{2A}{f^{2}}\ll 1,\mbox{ and }\frac{A}{f}<K\,,divide start_ARG 2 italic_A end_ARG start_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ≪ 1 , and divide start_ARG italic_A end_ARG start_ARG italic_f end_ARG < italic_K , (256)

and the exact Mathieu solution given in Eq. (251) can be approximated up to first order in q𝑞qitalic_q as

y±c±(exp(±iKη)+A2f2(exp(±i(Kf)η)2Kf1+exp(±i(K+f)η)2Kf+1)).𝑦subscriptplus-or-minussubscript𝑐plus-or-minusplus-or-minus𝑖𝐾𝜂𝐴2superscript𝑓2plus-or-minus𝑖𝐾𝑓𝜂2𝐾𝑓1plus-or-minus𝑖𝐾𝑓𝜂2𝐾𝑓1y\approx\sum_{\pm}c_{\pm}\left(\exp\left(\pm iK\eta\right)+\frac{A}{2f^{2}}% \left(\frac{\exp\left(\pm i\left(K-f\right)\eta\right)}{\frac{2K}{f}-1}+\frac{% \exp\left(\pm i\left(K+f\right)\eta\right)}{\frac{2K}{f}+1}\right)\right).italic_y ≈ ∑ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT ( roman_exp ( ± italic_i italic_K italic_η ) + divide start_ARG italic_A end_ARG start_ARG 2 italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG roman_exp ( ± italic_i ( italic_K - italic_f ) italic_η ) end_ARG start_ARG divide start_ARG 2 italic_K end_ARG start_ARG italic_f end_ARG - 1 end_ARG + divide start_ARG roman_exp ( ± italic_i ( italic_K + italic_f ) italic_η ) end_ARG start_ARG divide start_ARG 2 italic_K end_ARG start_ARG italic_f end_ARG + 1 end_ARG ) ) . (257)

Hence, in the limit 2A/f21much-less-than2𝐴superscript𝑓212A/f^{2}\ll 12 italic_A / italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≪ 1, we observe that the solution to the oscillatory mass-squared function in Eq. (246) is a superposition of states with the dominant state having a frequency Ksimilar-toabsent𝐾\sim K∼ italic_K. Therefore, up to an accuracy of rasubscript𝑟𝑎r_{a}italic_r start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT, the WKB approximate solution to the differential Eq. (243) can be given as

yWKB±c±Kexp(±iη𝑑ηK)+O(ra)subscript𝑦WKBsubscriptplus-or-minussubscript𝑐plus-or-minus𝐾plus-or-minus𝑖superscript𝜂differential-d𝜂𝐾𝑂subscript𝑟𝑎y_{{\rm WKB}}\approx\sum_{\pm}\frac{c_{\pm}}{\sqrt{K}}\exp\left(\pm i\int^{% \eta}d\eta K\right)+O(r_{a})italic_y start_POSTSUBSCRIPT roman_WKB end_POSTSUBSCRIPT ≈ ∑ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT divide start_ARG italic_c start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG italic_K end_ARG end_ARG roman_exp ( ± italic_i ∫ start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT italic_d italic_η italic_K ) + italic_O ( italic_r start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ) (258)

where

raA2f2×max(12Kf1,12Kf+1).subscript𝑟𝑎𝐴2superscript𝑓212𝐾𝑓112𝐾𝑓1r_{a}\approx\frac{A}{2f^{2}}\times\max\left(\frac{1}{\frac{2K}{f}-1},\frac{1}{% \frac{2K}{f}+1}\right).italic_r start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≈ divide start_ARG italic_A end_ARG start_ARG 2 italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG × roman_max ( divide start_ARG 1 end_ARG start_ARG divide start_ARG 2 italic_K end_ARG start_ARG italic_f end_ARG - 1 end_ARG , divide start_ARG 1 end_ARG start_ARG divide start_ARG 2 italic_K end_ARG start_ARG italic_f end_ARG + 1 end_ARG ) . (259)

Note that as long as ra1much-less-thansubscript𝑟𝑎1r_{a}\ll 1italic_r start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ≪ 1, the dominant frequency of the WKB approximation is given by the slow-varying mass parameter such that the WKB method no longer suffers from any oscillatory divergences. The above results motivate us to draw following important conclusions.

Given a differential equation of the form

η2y+(K2(η)+A(η)cos(fη))y=0superscriptsubscript𝜂2𝑦superscript𝐾2𝜂𝐴𝜂𝑓𝜂𝑦0\partial_{\eta}^{2}y+\left(K^{2}(\eta)+A(\eta)\cos\left(f\eta\right)\right)y=0∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y + ( italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) + italic_A ( italic_η ) roman_cos ( italic_f italic_η ) ) italic_y = 0 (260)

where K(η)𝐾𝜂K(\eta)italic_K ( italic_η ) and A(η)𝐴𝜂A(\eta)italic_A ( italic_η ) are slow-varying non-oscillatory functions, the solution to the above differential equation can be approximate through the following WKB ansatz

yWKB±c±K(η)exp(±iη𝑑ηK(η))+O(A(η)2f2×max[12K(η)f1,12K(η)f+1])subscript𝑦WKBsubscriptplus-or-minussubscript𝑐plus-or-minus𝐾𝜂plus-or-minus𝑖superscript𝜂differential-d𝜂𝐾𝜂𝑂𝐴𝜂2superscript𝑓212𝐾𝜂𝑓112𝐾𝜂𝑓1y_{{\rm WKB}}\approx\sum_{\pm}\frac{c_{\pm}}{\sqrt{K(\eta)}}\exp\left(\pm i% \int^{\eta}d\eta K(\eta)\right)+O\left(\frac{A(\eta)}{2f^{2}}\times\max\left[% \frac{1}{\frac{2K(\eta)}{f}-1},\frac{1}{\frac{2K(\eta)}{f}+1}\right]\right)italic_y start_POSTSUBSCRIPT roman_WKB end_POSTSUBSCRIPT ≈ ∑ start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT divide start_ARG italic_c start_POSTSUBSCRIPT ± end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG italic_K ( italic_η ) end_ARG end_ARG roman_exp ( ± italic_i ∫ start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT italic_d italic_η italic_K ( italic_η ) ) + italic_O ( divide start_ARG italic_A ( italic_η ) end_ARG start_ARG 2 italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG × roman_max [ divide start_ARG 1 end_ARG start_ARG divide start_ARG 2 italic_K ( italic_η ) end_ARG start_ARG italic_f end_ARG - 1 end_ARG , divide start_ARG 1 end_ARG start_ARG divide start_ARG 2 italic_K ( italic_η ) end_ARG start_ARG italic_f end_ARG + 1 end_ARG ] ) (261)

if

2A(η)/f21, and A(η)/f<Kformulae-sequencemuch-less-than2𝐴𝜂superscript𝑓21 and 𝐴𝜂𝑓𝐾2A(\eta)/f^{2}\ll 1,\mbox{ and }A(\eta)/f<K2 italic_A ( italic_η ) / italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≪ 1 , and italic_A ( italic_η ) / italic_f < italic_K (262)

where

ηK(η)K2(η).much-less-thansubscript𝜂𝐾𝜂superscript𝐾2𝜂\partial_{\eta}K(\eta)\ll K^{2}(\eta).∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_K ( italic_η ) ≪ italic_K start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) . (263)

For fKmuch-greater-than𝑓𝐾f\gg Kitalic_f ≫ italic_K, then the solution exhibits a large hierarchy in states such that the system can be described as a superposition of IR and UV states

yyIR+yUV𝑦subscript𝑦IRsubscript𝑦UVy\approx y_{{\rm IR}}+y_{{\rm UV}}italic_y ≈ italic_y start_POSTSUBSCRIPT roman_IR end_POSTSUBSCRIPT + italic_y start_POSTSUBSCRIPT roman_UV end_POSTSUBSCRIPT (264)

with the corresponding frequencies as

freqIRsubscriptfreqIR\displaystyle{\rm freq}_{{\rm IR}}roman_freq start_POSTSUBSCRIPT roman_IR end_POSTSUBSCRIPT Kabsent𝐾\displaystyle\approx K≈ italic_K (265)
freqUVsubscriptfreqUV\displaystyle{\rm freq}_{{\rm UV}}roman_freq start_POSTSUBSCRIPT roman_UV end_POSTSUBSCRIPT fabsent𝑓\displaystyle\approx f≈ italic_f (266)

and the amplitudes

|yUVyIR|ηA(η)2f21.subscriptsubscript𝑦UVsubscript𝑦IR𝜂𝐴𝜂2superscript𝑓2much-less-than1\left|\frac{y_{{\rm UV}}}{y_{{\rm IR}}}\right|_{\eta}\approx\frac{A(\eta)}{2f^% {2}}\ll 1.| divide start_ARG italic_y start_POSTSUBSCRIPT roman_UV end_POSTSUBSCRIPT end_ARG start_ARG italic_y start_POSTSUBSCRIPT roman_IR end_POSTSUBSCRIPT end_ARG | start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ≈ divide start_ARG italic_A ( italic_η ) end_ARG start_ARG 2 italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ≪ 1 . (267)

Appendix C Late time behavior and M𝑀Mitalic_M cutoff

In this Appendix we discuss the asymptotic (late-time) behavior of the background radial field as it settles to its stable vacuum and explore the associated mass parameter M𝑀Mitalic_M-dependence. We will see that as the radial field settles to its vacuum, the system can be characterized as an oscillator with various damping. The damping characteristic is determined by M/Mc𝑀subscript𝑀𝑐M/M_{c}italic_M / italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT where the critical value Mcsubscript𝑀𝑐M_{c}italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT is what we construct below

To study the late-time behavior of the radial field as it settles to fPQ,subscript𝑓PQf_{{\rm PQ}},italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT ,we consider displacements of the radial field around fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPTparameterized as

Γ0(η)=fPQ(1+r(η))subscriptΓ0𝜂subscript𝑓PQ1𝑟𝜂\Gamma_{0}(\eta)=f_{{\rm PQ}}\left(1+r(\eta)\right)roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) = italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT ( 1 + italic_r ( italic_η ) ) (268)

and substitute into the EoM for the radial field Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT given in Eq. (65) to obtain an EoM for the function r(η)𝑟𝜂r(\eta)italic_r ( italic_η ):

η2r+2ηaaηr+2M2a2(1+(1+r)212M2a6(L/fPQ2(1+r)2)2)(1+r)=0.superscriptsubscript𝜂2𝑟2subscript𝜂𝑎𝑎subscript𝜂𝑟2superscript𝑀2superscript𝑎21superscript1𝑟212superscript𝑀2superscript𝑎6superscript𝐿superscriptsubscript𝑓PQ2superscript1𝑟221𝑟0\partial_{\eta}^{2}r+2\frac{\partial_{\eta}a}{a}\partial_{\eta}r+2M^{2}a^{2}% \left(-1+\left(1+r\right)^{2}-\frac{1}{2M^{2}a^{6}}\left(\frac{L/f_{{\rm PQ}}^% {2}}{\left(1+r\right)^{2}}\right)^{2}\right)\left(1+r\right)=0.∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r + 2 divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_r + 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( - 1 + ( 1 + italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG italic_L / italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 + italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( 1 + italic_r ) = 0 . (269)

In the limit where Γ0fPQsubscriptΓ0subscript𝑓PQ\Gamma_{0}\rightarrow f_{{\rm PQ}}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT → italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT, the angular velocity term can be neglected since it decays as La2𝐿superscript𝑎2La^{-2}italic_L italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT and so we reduce the above expression to

η2r+2ηaaηr+2M2a2(1+(1+r)2)(1+r)0.superscriptsubscript𝜂2𝑟2subscript𝜂𝑎𝑎subscript𝜂𝑟2superscript𝑀2superscript𝑎21superscript1𝑟21𝑟0\partial_{\eta}^{2}r+2\frac{\partial_{\eta}a}{a}\partial_{\eta}r+2M^{2}a^{2}% \left(-1+\left(1+r\right)^{2}\right)\left(1+r\right)\approx 0.∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r + 2 divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_r + 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( - 1 + ( 1 + italic_r ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( 1 + italic_r ) ≈ 0 . (270)

For small displacements r1much-less-than𝑟1r\ll 1italic_r ≪ 1,

η2r+2ηaaηr+4M2a2r0.superscriptsubscript𝜂2𝑟2subscript𝜂𝑎𝑎subscript𝜂𝑟4superscript𝑀2superscript𝑎2𝑟0\partial_{\eta}^{2}r+2\frac{\partial_{\eta}a}{a}\partial_{\eta}r+4M^{2}a^{2}r% \approx 0.∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r + 2 divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_r + 4 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r ≈ 0 . (271)

The above differential equation has the solution

limΓ0fPQr(η)c1η32(1(M/H)1(M/H)2169)+c2η32(1+(M/H)1(M/H)2169)subscriptsubscriptΓ0subscript𝑓PQ𝑟𝜂subscript𝑐1superscript𝜂321𝑀𝐻1superscript𝑀𝐻2169subscript𝑐2superscript𝜂321𝑀𝐻1superscript𝑀𝐻2169\lim_{\Gamma_{0}\rightarrow f_{{\rm PQ}}}r(\eta)\approx c_{1}\eta^{\frac{3}{2}% \left(1-\left(M/H\right)\sqrt{\frac{1}{\left(M/H\right)^{2}}-\frac{16}{9}}% \right)}+c_{2}\eta^{\frac{3}{2}\left(1+\left(M/H\right)\sqrt{\frac{1}{\left(M/% H\right)^{2}}-\frac{16}{9}}\right)}roman_lim start_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT → italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_r ( italic_η ) ≈ italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_η start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG ( 1 - ( italic_M / italic_H ) square-root start_ARG divide start_ARG 1 end_ARG start_ARG ( italic_M / italic_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG 16 end_ARG start_ARG 9 end_ARG end_ARG ) end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_η start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG ( 1 + ( italic_M / italic_H ) square-root start_ARG divide start_ARG 1 end_ARG start_ARG ( italic_M / italic_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG 16 end_ARG start_ARG 9 end_ARG end_ARG ) end_POSTSUPERSCRIPT (272)

From the above asymptotic solution, we infer that

Mc=subscript𝑀𝑐absent\displaystyle M_{c}=italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = 34H34𝐻\displaystyle\frac{3}{4}Hdivide start_ARG 3 end_ARG start_ARG 4 end_ARG italic_H (273)

is a critical value that characterizes the damped oscillations of the radial field around the vacuum. For M>Mc𝑀subscript𝑀𝑐M>M_{c}italic_M > italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, the argument of the exponential in Eq. (272) obtains an imaginary part and the radial field Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT behaves as an underdamped oscillator. For values of MMcmuch-less-than𝑀subscript𝑀𝑐M\ll M_{c}italic_M ≪ italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, the radial field is overdamped and settles to the vacuum as

r(η)c1η34(MMc)2.𝑟𝜂subscript𝑐1superscript𝜂34superscript𝑀subscript𝑀𝑐2r(\eta)\rightarrow c_{1}\eta^{\frac{3}{4}\left(\frac{M}{M_{c}}\right)^{2}}.italic_r ( italic_η ) → italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_η start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 4 end_ARG ( divide start_ARG italic_M end_ARG start_ARG italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT . (274)

In the underdamped case which occurs when M>Mc𝑀subscript𝑀𝑐M>M_{c}italic_M > italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, the radial field oscillates around the minimum at fPQsubscript𝑓PQf_{{\rm PQ}}italic_f start_POSTSUBSCRIPT roman_PQ end_POSTSUBSCRIPT until the oscillations decay away. These oscillations are characterized by the expression:

r(η)𝑟𝜂\displaystyle r(\eta)italic_r ( italic_η ) η32(c1ηiν+c2η+iν)absentsuperscript𝜂32subscript𝑐1superscript𝜂𝑖𝜈subscript𝑐2superscript𝜂𝑖𝜈\displaystyle\approx\eta^{\frac{3}{2}}\left(c_{1}\eta^{-i\nu}+c_{2}\eta^{+i\nu% }\right)≈ italic_η start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_η start_POSTSUPERSCRIPT - italic_i italic_ν end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_η start_POSTSUPERSCRIPT + italic_i italic_ν end_POSTSUPERSCRIPT ) (275)
η32(c1cos(νln|η|)+c2sin(νln|η|))absentsuperscript𝜂32subscript𝑐1𝜈𝜂subscript𝑐2𝜈𝜂\displaystyle\approx\eta^{\frac{3}{2}}\left(c_{1}\cos\left(\nu\ln|\eta|\right)% +c_{2}\sin\left(\nu\ln|\eta|\right)\right)≈ italic_η start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT ( italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_cos ( italic_ν roman_ln | italic_η | ) + italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_sin ( italic_ν roman_ln | italic_η | ) ) (276)

where

ν=3/2McM2Mc2𝜈32subscript𝑀𝑐superscript𝑀2superscriptsubscript𝑀𝑐2\nu=\frac{3/2}{M_{c}}\sqrt{M^{2}-M_{c}^{2}}italic_ν = divide start_ARG 3 / 2 end_ARG start_ARG italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_ARG square-root start_ARG italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_M start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG (277)

is real.

Appendix D Details of quantization

Here we present the details of the quantization of the radial-axion system in the presence of large phase angular momentum background classical solution. The nontriviality will be coming from the nonvanishing of the cross-commutator [ηδX,ηY]ηθ0proportional-tosubscript𝜂𝛿𝑋subscript𝜂𝑌subscript𝜂subscript𝜃0[\partial_{\eta}\delta X,\partial_{\eta}Y]\propto\partial_{\eta}\theta_{0}[ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_X , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_Y ] ∝ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT even though [δX,δY]=0𝛿𝑋𝛿𝑌0[\delta X,\delta Y]=0[ italic_δ italic_X , italic_δ italic_Y ] = 0. This quantization is what allows us to compute the sound speed and the vacuum structure rigorously.

In terms of the linear order field fluctuations δϕn=(δΓ,δχ)𝛿superscriptitalic-ϕ𝑛𝛿Γ𝛿𝜒\delta\phi^{n}=\left(\delta\Gamma,\delta\chi\right)italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = ( italic_δ roman_Γ , italic_δ italic_χ ) where δχ=Γ0δθ𝛿𝜒subscriptΓ0𝛿𝜃\delta\chi=\Gamma_{0}\delta\thetaitalic_δ italic_χ = roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_δ italic_θ, we derive the EoM from the action in Eq. (11) using the Euler-Lagrange equation

μ2(μϕn)=2ϕnsubscript𝜇subscript2subscript𝜇superscriptitalic-ϕ𝑛subscript2superscriptitalic-ϕ𝑛\partial_{\mu}\frac{\partial\mathcal{L}_{2}}{\partial\left(\partial_{\mu}\phi^% {n}\right)}=\frac{\partial\mathcal{L}_{2}}{\partial\phi^{n}}∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT divide start_ARG ∂ caligraphic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG ∂ ( ∂ start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) end_ARG = divide start_ARG ∂ caligraphic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_ϕ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG (278)

where 2subscript2\mathcal{L}_{2}caligraphic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is the component of the Lagrangian which is quadratic order in linear perturbations. The EoM for δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ and δχ𝛿𝜒\delta\chiitalic_δ italic_χ are obtained from the above expression as

η2δΓa2i2δΓ+2ηaaηδΓ2ηθ0ηδχ+(2M2a2+3λΓ02a2(ηθ0)2)δΓ+2ηθ0ηΓ0Γ0δχ=0,superscriptsubscript𝜂2𝛿Γsuperscript𝑎2superscriptsubscript𝑖2𝛿Γ2subscript𝜂𝑎𝑎subscript𝜂𝛿Γ2subscript𝜂subscript𝜃0subscript𝜂𝛿𝜒2superscript𝑀2superscript𝑎23𝜆superscriptsubscriptΓ02superscript𝑎2superscriptsubscript𝜂subscript𝜃02𝛿Γ2subscript𝜂subscript𝜃0subscript𝜂subscriptΓ0subscriptΓ0𝛿𝜒0\partial_{\eta}^{2}\delta\Gamma-a^{-2}\partial_{i}^{2}\delta\Gamma+2\frac{% \partial_{\eta}a}{a}\partial_{\eta}\delta\Gamma-2\partial_{\eta}\theta_{0}% \partial_{\eta}\delta\chi+\left(-2M^{2}a^{2}+3\lambda\Gamma_{0}^{2}a^{2}-\left% (\partial_{\eta}\theta_{0}\right)^{2}\right)\delta\Gamma+2\partial_{\eta}% \theta_{0}\frac{\partial_{\eta}\Gamma_{0}}{\Gamma_{0}}\delta\chi=0,∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ roman_Γ - italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ roman_Γ + 2 divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ roman_Γ - 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_χ + ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_δ roman_Γ + 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG italic_δ italic_χ = 0 , (279)
η2δχa2i2δχ+2ηaaηδχ+2ηθ0ηδΓ+(2M2a2+λΓ02a2(ηθ0)2)δχ2ηθ0ηΓ0Γ0δΓ=0.superscriptsubscript𝜂2𝛿𝜒superscript𝑎2superscriptsubscript𝑖2𝛿𝜒2subscript𝜂𝑎𝑎subscript𝜂𝛿𝜒2subscript𝜂subscript𝜃0subscript𝜂𝛿Γ2superscript𝑀2superscript𝑎2𝜆superscriptsubscriptΓ02superscript𝑎2superscriptsubscript𝜂subscript𝜃02𝛿𝜒2subscript𝜂subscript𝜃0subscript𝜂subscriptΓ0subscriptΓ0𝛿Γ0\partial_{\eta}^{2}\delta\chi-a^{-2}\partial_{i}^{2}\delta\chi+2\frac{\partial% _{\eta}a}{a}\partial_{\eta}\delta\chi+2\partial_{\eta}\theta_{0}\partial_{\eta% }\delta\Gamma+\left(-2M^{2}a^{2}+\lambda\Gamma_{0}^{2}a^{2}-\left(\partial_{% \eta}\theta_{0}\right)^{2}\right)\delta\chi-2\partial_{\eta}\theta_{0}\frac{% \partial_{\eta}\Gamma_{0}}{\Gamma_{0}}\delta\Gamma=0.∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_χ - italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_χ + 2 divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_χ + 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ roman_Γ + ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_δ italic_χ - 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG italic_δ roman_Γ = 0 . (280)

Eqs. (279) and (280) form a system of coupled ODEs and can be expressed compactly as

η2δϕni2δϕn+2ηaaηδϕn+κnmηϕm+(2)nmδϕmsuperscriptsubscript𝜂2𝛿superscriptitalic-ϕ𝑛superscriptsubscript𝑖2𝛿superscriptitalic-ϕ𝑛2subscript𝜂𝑎𝑎subscript𝜂𝛿superscriptitalic-ϕ𝑛superscript𝜅𝑛𝑚subscript𝜂superscriptitalic-ϕ𝑚superscriptsuperscript2𝑛𝑚𝛿superscriptitalic-ϕ𝑚\displaystyle\partial_{\eta}^{2}\delta\phi^{n}-\partial_{i}^{2}\delta\phi^{n}+% 2\frac{\partial_{\eta}a}{a}\partial_{\eta}\delta\phi^{n}+\kappa^{nm}\partial_{% \eta}\phi^{m}+\left(\mathcal{M}^{2}\right)^{nm}\delta\phi^{m}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT - ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT + 2 divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT + italic_κ start_POSTSUPERSCRIPT italic_n italic_m end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_ϕ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT + ( caligraphic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_n italic_m end_POSTSUPERSCRIPT italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT =0absent0\displaystyle=0= 0 (281)

where

κnm=(02ηθ02ηθ00),superscript𝜅𝑛𝑚02subscript𝜂subscript𝜃02subscript𝜂subscript𝜃00\kappa^{nm}=\left(\begin{array}[]{cc}0&-2\partial_{\eta}\theta_{0}\\ 2\partial_{\eta}\theta_{0}&0\end{array}\right),italic_κ start_POSTSUPERSCRIPT italic_n italic_m end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL - 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) , (282)

and

(2)nm=(a2(2M2+3λΓ02)(ηθ0)22ηθ0ηΓ0Γ02ηθ0ηΓ0Γ0a2(2M2+λΓ02)(ηθ0)2).superscriptsuperscript2𝑛𝑚superscript𝑎22superscript𝑀23𝜆superscriptsubscriptΓ02superscriptsubscript𝜂subscript𝜃022subscript𝜂subscript𝜃0subscript𝜂subscriptΓ0subscriptΓ02subscript𝜂subscript𝜃0subscript𝜂subscriptΓ0subscriptΓ0superscript𝑎22superscript𝑀2𝜆superscriptsubscriptΓ02superscriptsubscript𝜂subscript𝜃02\left(\mathcal{M}^{2}\right)^{nm}=\left(\begin{array}[]{cc}a^{2}\left(-2M^{2}+% 3\lambda\Gamma_{0}^{2}\right)-\left(\partial_{\eta}\theta_{0}\right)^{2}&2% \partial_{\eta}\theta_{0}\frac{\partial_{\eta}\Gamma_{0}}{\Gamma_{0}}\\ -2\partial_{\eta}\theta_{0}\frac{\partial_{\eta}\Gamma_{0}}{\Gamma_{0}}&a^{2}% \left(-2M^{2}+\lambda\Gamma_{0}^{2}\right)-\left(\partial_{\eta}\theta_{0}% \right)^{2}\end{array}\right).( caligraphic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_n italic_m end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG end_CELL end_ROW start_ROW start_CELL - 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG end_CELL start_CELL italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) . (283)

Note that the linear perturbations δϕn𝛿superscriptitalic-ϕ𝑛\delta\phi^{n}italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT are kinetically coupled through the coefficient ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. We will refer to all scenarios where ηθ0H2much-greater-thansubscript𝜂subscript𝜃0superscript𝐻2\partial_{\eta}\theta_{0}\gg H^{2}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≫ italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT as strongly coupled. By defining new field variables δψ=aδϕn=(aδΓ,aδχ)(δY,δX)𝛿𝜓𝑎𝛿superscriptitalic-ϕ𝑛𝑎𝛿Γ𝑎𝛿𝜒𝛿𝑌𝛿𝑋\delta\psi=a\delta\phi^{n}=\left(a\delta\Gamma,a\delta\chi\right)\equiv\left(% \delta Y,\delta X\right)italic_δ italic_ψ = italic_a italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = ( italic_a italic_δ roman_Γ , italic_a italic_δ italic_χ ) ≡ ( italic_δ italic_Y , italic_δ italic_X ), we can rewrite the above system of equations as

η2δψni2δψn+κnmηψm+(2)nmδψmsuperscriptsubscript𝜂2𝛿superscript𝜓𝑛superscriptsubscript𝑖2𝛿superscript𝜓𝑛superscript𝜅𝑛𝑚subscript𝜂superscript𝜓𝑚superscriptsuperscript2𝑛𝑚𝛿superscript𝜓𝑚\displaystyle\partial_{\eta}^{2}\delta\psi^{n}-\partial_{i}^{2}\delta\psi^{n}+% \kappa^{nm}\partial_{\eta}\psi^{m}+\left(\mathcal{M}^{2}\right)^{nm}\delta\psi% ^{m}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT - ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT + italic_κ start_POSTSUPERSCRIPT italic_n italic_m end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_ψ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT + ( caligraphic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_n italic_m end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT =0absent0\displaystyle=0= 0 (284)

where we modify (2)nmsuperscriptsuperscript2𝑛𝑚\left(\mathcal{M}^{2}\right)^{nm}( caligraphic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_n italic_m end_POSTSUPERSCRIPT as

(2)nmsuperscriptsuperscript2𝑛𝑚\displaystyle\left(\mathcal{M}^{2}\right)^{nm}( caligraphic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_n italic_m end_POSTSUPERSCRIPT =(2M2a2+3λY02(ηθ0)2η2aa2ηθ0(ηY0Y0)2ηθ0(ηY0Y0)2M2a2+λY02(ηθ0)2η2aa)absent2superscript𝑀2superscript𝑎23𝜆superscriptsubscript𝑌02superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝜂2𝑎𝑎2subscript𝜂subscript𝜃0subscript𝜂subscript𝑌0subscript𝑌02subscript𝜂subscript𝜃0subscript𝜂subscript𝑌0subscript𝑌02superscript𝑀2superscript𝑎2𝜆superscriptsubscript𝑌02superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝜂2𝑎𝑎\displaystyle=\left(\begin{array}[]{cc}-2M^{2}a^{2}+3\lambda Y_{0}^{2}-\left(% \partial_{\eta}\theta_{0}\right)^{2}-\frac{\partial_{\eta}^{2}a}{a}&2\partial_% {\eta}\theta_{0}\left(\frac{\partial_{\eta}Y_{0}}{Y_{0}}\right)\\ -2\partial_{\eta}\theta_{0}\left(\frac{\partial_{\eta}Y_{0}}{Y_{0}}\right)&-2M% ^{2}a^{2}+\lambda Y_{0}^{2}-\left(\partial_{\eta}\theta_{0}\right)^{2}-\frac{% \partial_{\eta}^{2}a}{a}\end{array}\right)= ( start_ARRAY start_ROW start_CELL - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG end_CELL start_CELL 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) end_CELL end_ROW start_ROW start_CELL - 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) end_CELL start_CELL - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG end_CELL end_ROW end_ARRAY ) (287)

and Y0=aΓ0subscript𝑌0𝑎subscriptΓ0Y_{0}=a\Gamma_{0}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_a roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.

We will quantize this system of coupled fields δψn(δY,δX)n𝛿superscript𝜓𝑛superscript𝛿𝑌𝛿𝑋𝑛\delta\psi^{n}\equiv\left(\delta Y,\delta X\right)^{n}italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ≡ ( italic_δ italic_Y , italic_δ italic_X ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT using the commutator relations defined in Eq. (35). From the Lagrangian, we find the canonical momenta as

π1=2(ηδY)=0δY=ηδY,superscript𝜋1subscript2subscript𝜂𝛿𝑌superscript0𝛿𝑌subscript𝜂𝛿𝑌\pi^{1}=\frac{\partial\mathcal{L}_{2}}{\partial\left(\partial_{\eta}\delta Y% \right)}=-\partial^{0}\delta Y=\partial_{\eta}\delta Y,italic_π start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = divide start_ARG ∂ caligraphic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG ∂ ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_Y ) end_ARG = - ∂ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT italic_δ italic_Y = ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_Y , (288)

and

π2superscript𝜋2\displaystyle\pi^{2}italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT =2(ηδX)=ηδX+2δYηθ0.absentsubscript2subscript𝜂𝛿𝑋subscript𝜂𝛿𝑋2𝛿𝑌subscript𝜂subscript𝜃0\displaystyle=\frac{\partial\mathcal{L}_{2}}{\partial\left(\partial_{\eta}% \delta X\right)}=\partial_{\eta}\delta X+2\delta Y\partial_{\eta}\theta_{0}.= divide start_ARG ∂ caligraphic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG ∂ ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_X ) end_ARG = ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_X + 2 italic_δ italic_Y ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT . (289)

Hence, we arrive at the following commutator expressions for the fields δψn𝛿superscript𝜓𝑛\delta\psi^{n}italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and their time-derivatives ηδψnsubscript𝜂𝛿superscript𝜓𝑛\partial_{\eta}\delta\psi^{n}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT:

[δψn,δψm]𝛿superscript𝜓𝑛𝛿superscript𝜓𝑚\displaystyle\left[\delta\psi^{n},\delta\psi^{m}\right][ italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , italic_δ italic_ψ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ] =0,absent0\displaystyle=0,= 0 ,
[δψn,ηδψm]𝛿superscript𝜓𝑛subscript𝜂𝛿superscript𝜓𝑚\displaystyle\left[\delta\psi^{n},\partial_{\eta}\delta\psi^{m}\right][ italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ] =iδnmδ(3)(xy)absent𝑖superscript𝛿𝑛𝑚superscript𝛿3𝑥𝑦\displaystyle=i\delta^{nm}\delta^{(3)}\left(\vec{x}-\vec{y}\right)= italic_i italic_δ start_POSTSUPERSCRIPT italic_n italic_m end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG )
[ηδψn,ηδψm]subscript𝜂𝛿superscript𝜓𝑛subscript𝜂𝛿superscript𝜓𝑚\displaystyle\left[\partial_{\eta}\delta\psi^{n},\partial_{\eta}\delta\psi^{m}\right][ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ] =iδ(3)(xy)[02ηθ02ηθ00]absent𝑖superscript𝛿3𝑥𝑦delimited-[]02subscript𝜂subscript𝜃02subscript𝜂subscript𝜃00\displaystyle=i\delta^{(3)}\left(\vec{x}-\vec{y}\right)\left[\begin{array}[]{% cc}0&2\partial_{\eta}\theta_{0}\\ -2\partial_{\eta}\theta_{0}&0\end{array}\right]= italic_i italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_x end_ARG - over→ start_ARG italic_y end_ARG ) [ start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL - 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ] (292)

which is remarkable since [δX,δY]=0𝛿𝑋𝛿𝑌0[\delta X,\delta Y]=0[ italic_δ italic_X , italic_δ italic_Y ] = 0 while [ηδX,ηδY]0subscript𝜂𝛿𝑋subscript𝜂𝛿𝑌0[\partial_{\eta}\delta X,\partial_{\eta}\delta Y]\neq 0[ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_X , ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_Y ] ≠ 0. As expected in the decoupling limit when ηθ00subscript𝜂subscript𝜃00\partial_{\eta}\theta_{0}\rightarrow 0∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT → 0, the kinetic cross commutators vanish.

Next we write the most general solution for δψn𝛿superscript𝜓𝑛\delta\psi^{n}italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT in terms of time-independent non-Hermitian ladder operators aknrsuperscriptsubscript𝑎𝑘𝑛𝑟a_{k}^{nr}italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT and mode function hknrsuperscriptsubscript𝑘𝑛𝑟h_{k}^{nr}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT as

δψn(η,x)=d3k(2π)3/2δψn(η,k)eikx=rd3k(2π)3/2(akrhknr(η)+akrhknr(η))eikx𝛿superscript𝜓𝑛𝜂𝑥superscript𝑑3𝑘superscript2𝜋32𝛿superscript𝜓𝑛𝜂𝑘superscript𝑒𝑖𝑘𝑥subscript𝑟superscript𝑑3𝑘superscript2𝜋32superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑘𝑛𝑟𝜂superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑘𝑛𝑟𝜂superscript𝑒𝑖𝑘𝑥\delta\psi^{n}\left(\eta,\vec{x}\right)=\int\frac{d^{3}k}{(2\pi)^{3/2}}\delta% \psi^{n}(\eta,\vec{k})e^{i\vec{k}\cdot\vec{x}}=\sum_{r}\int\frac{d^{3}k}{(2\pi% )^{3/2}}\left(a_{\vec{k}}^{r}h_{k}^{nr}(\eta)+a_{-\vec{k}}^{r\dagger}h_{k}^{nr% *}(\eta)\right)e^{i\vec{k}\cdot\vec{x}}italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_η , over→ start_ARG italic_x end_ARG ) = ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_η , over→ start_ARG italic_k end_ARG ) italic_e start_POSTSUPERSCRIPT italic_i over→ start_ARG italic_k end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT = ∑ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ( italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT ( italic_η ) + italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r † end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r ∗ end_POSTSUPERSCRIPT ( italic_η ) ) italic_e start_POSTSUPERSCRIPT italic_i over→ start_ARG italic_k end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT (293)

where n𝑛nitalic_n is the flavor index and r𝑟ritalic_r counts the number of distinct frequency solutions. The time-derivative of the field is

ηδψn=rd3k(2π)3/2(akrηhknr(η)+akrηhknr(η))eikx.subscript𝜂𝛿superscript𝜓𝑛subscript𝑟superscript𝑑3𝑘superscript2𝜋32superscriptsubscript𝑎𝑘𝑟subscript𝜂superscriptsubscript𝑘𝑛𝑟𝜂superscriptsubscript𝑎𝑘𝑟subscript𝜂superscriptsubscript𝑘𝑛𝑟𝜂superscript𝑒𝑖𝑘𝑥\partial_{\eta}\delta\psi^{n}=\sum_{r}\int\frac{d^{3}k}{(2\pi)^{3/2}}\left(a_{% \vec{k}}^{r}\partial_{\eta}h_{k}^{nr}(\eta)+a_{-\vec{k}}^{r\dagger}\partial_{% \eta}h_{k}^{nr*}(\eta)\right)e^{i\vec{k}\cdot\vec{x}}.∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = ∑ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ( italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT ( italic_η ) + italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r † end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r ∗ end_POSTSUPERSCRIPT ( italic_η ) ) italic_e start_POSTSUPERSCRIPT italic_i over→ start_ARG italic_k end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT . (294)

The ladder operators akrsuperscriptsubscript𝑎𝑘𝑟a_{\vec{k}}^{r}italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT satisfy relation

[akr,aps]=Frsδ(3)(kp)superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑎𝑝𝑠superscript𝐹𝑟𝑠superscript𝛿3𝑘𝑝[a_{\vec{k}}^{r},a_{\vec{p}}^{s\dagger}]=F^{rs}\delta^{(3)}(\vec{k}-\vec{p})[ italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s † end_POSTSUPERSCRIPT ] = italic_F start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_k end_ARG - over→ start_ARG italic_p end_ARG ) (295)

where the coefficients Frssuperscript𝐹𝑟𝑠F^{rs}italic_F start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT must be determined by solving for mode function hknrsuperscriptsubscript𝑘𝑛𝑟h_{k}^{nr}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT and using canonical commutator relation given in Eq. (292). Substituting our general solution from Eq. (293) into Eq. (284) we obtain

[δnjη2+κnjη+(𝒲2)nj]hkjm(η)delimited-[]superscript𝛿𝑛𝑗superscriptsubscript𝜂2superscript𝜅𝑛𝑗subscript𝜂superscriptsuperscript𝒲2𝑛𝑗superscriptsubscript𝑘𝑗𝑚𝜂\displaystyle\left[\delta^{nj}\partial_{\eta}^{2}+\kappa^{nj}\partial_{\eta}+% \left(\mathcal{W}^{2}\right)^{nj}\right]h_{k}^{jm}(\eta)[ italic_δ start_POSTSUPERSCRIPT italic_n italic_j end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_κ start_POSTSUPERSCRIPT italic_n italic_j end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT + ( caligraphic_W start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_n italic_j end_POSTSUPERSCRIPT ] italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_j italic_m end_POSTSUPERSCRIPT ( italic_η ) =0absent0\displaystyle=0= 0 (296)

where

κnj=(02ηθ02ηθ00)superscript𝜅𝑛𝑗02subscript𝜂subscript𝜃02subscript𝜂subscript𝜃00\kappa^{nj}=\left(\begin{array}[]{cc}0&-2\partial_{\eta}\theta_{0}\\ 2\partial_{\eta}\theta_{0}&0\end{array}\right)italic_κ start_POSTSUPERSCRIPT italic_n italic_j end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL - 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ) (297)
(𝒲2)njsuperscriptsuperscript𝒲2𝑛𝑗\displaystyle\left(\mathcal{W}^{2}\right)^{nj}( caligraphic_W start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_n italic_j end_POSTSUPERSCRIPT =(k2+(2M2a2+3λY02)(ηθ0)2η2aa2ηθ0(ηY0Y0)2ηθ0(ηY0Y0)k2+(2M2a2+λY02)(ηθ0)2η2aa).absentsuperscript𝑘22superscript𝑀2superscript𝑎23𝜆superscriptsubscript𝑌02superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝜂2𝑎𝑎2subscript𝜂subscript𝜃0subscript𝜂subscript𝑌0subscript𝑌02subscript𝜂subscript𝜃0subscript𝜂subscript𝑌0subscript𝑌0superscript𝑘22superscript𝑀2superscript𝑎2𝜆superscriptsubscript𝑌02superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝜂2𝑎𝑎\displaystyle=\left(\begin{array}[]{cc}k^{2}+\left(-2M^{2}a^{2}+3\lambda Y_{0}% ^{2}\right)-\left(\partial_{\eta}\theta_{0}\right)^{2}-\frac{\partial_{\eta}^{% 2}a}{a}&2\partial_{\eta}\theta_{0}\left(\frac{\partial_{\eta}Y_{0}}{Y_{0}}% \right)\\ -2\partial_{\eta}\theta_{0}\left(\frac{\partial_{\eta}Y_{0}}{Y_{0}}\right)&k^{% 2}+\left(-2M^{2}a^{2}+\lambda Y_{0}^{2}\right)-\left(\partial_{\eta}\theta_{0}% \right)^{2}-\frac{\partial_{\eta}^{2}a}{a}\end{array}\right).= ( start_ARRAY start_ROW start_CELL italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG end_CELL start_CELL 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) end_CELL end_ROW start_ROW start_CELL - 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) end_CELL start_CELL italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG end_CELL end_ROW end_ARRAY ) . (300)

D.1 Normal modes

We will now solve the system of equations given in Eq. (296) during the conformal regime. Hence, we propose the following ansatz

(hk1r(η)hk2r(η))superscriptsubscript𝑘1𝑟𝜂superscriptsubscript𝑘2𝑟𝜂\displaystyle\left(\begin{array}[]{c}h_{k}^{1r}(\eta)\\ h_{k}^{2r}(\eta)\end{array}\right)( start_ARRAY start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_r end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_r end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW end_ARRAY ) =jcjδjr(Aj1Aj2)eiωjηabsentsubscript𝑗subscript𝑐𝑗superscriptsubscript𝛿𝑗𝑟superscriptsubscript𝐴𝑗1superscriptsubscript𝐴𝑗2superscript𝑒𝑖subscript𝜔𝑗𝜂\displaystyle=\sum_{j}c_{j}\delta_{j}^{r}\left(\begin{array}[]{c}A_{j}^{1}\\ A_{j}^{2}\end{array}\right)e^{-i\omega_{j}\eta}= ∑ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( start_ARRAY start_ROW start_CELL italic_A start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_A start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT (305)

for time-independent mode vectors (Aj1,Aj2)superscriptsubscript𝐴𝑗1superscriptsubscript𝐴𝑗2\left(A_{j}^{1},A_{j}^{2}\right)( italic_A start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , italic_A start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ). Substituting this ansatz into Eq. (296) we obtain

r[δnjη2+κnjη+(𝒲2)nj](Ar1Ar2)eiωrηsubscript𝑟delimited-[]superscript𝛿𝑛𝑗superscriptsubscript𝜂2superscript𝜅𝑛𝑗subscript𝜂superscriptsuperscript𝒲2𝑛𝑗superscriptsubscript𝐴𝑟1superscriptsubscript𝐴𝑟2superscript𝑒𝑖subscript𝜔𝑟𝜂\displaystyle\sum_{r}\left[\delta^{nj}\partial_{\eta}^{2}+\kappa^{nj}\partial_% {\eta}+\left(\mathcal{W}^{2}\right)^{nj}\right]\left(\begin{array}[]{c}A_{r}^{% 1}\\ A_{r}^{2}\end{array}\right)e^{-i\omega_{r}\eta}∑ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT [ italic_δ start_POSTSUPERSCRIPT italic_n italic_j end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_κ start_POSTSUPERSCRIPT italic_n italic_j end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT + ( caligraphic_W start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_n italic_j end_POSTSUPERSCRIPT ] ( start_ARRAY start_ROW start_CELL italic_A start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_A start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT =0,absent0\displaystyle=0,= 0 , (308)

which is rewritten as

(b+2λY022LY02(iωr+ηY0Y0)2LY02(iωrηY0Y0)b)(Ar1Ar2)=0𝑏2𝜆superscriptsubscript𝑌022𝐿superscriptsubscript𝑌02𝑖subscript𝜔𝑟subscript𝜂subscript𝑌0subscript𝑌02𝐿superscriptsubscript𝑌02𝑖subscript𝜔𝑟subscript𝜂subscript𝑌0subscript𝑌0𝑏superscriptsubscript𝐴𝑟1superscriptsubscript𝐴𝑟20\left(\begin{array}[]{cc}b+2\lambda Y_{0}^{2}&\frac{2L}{Y_{0}^{2}}\left(i% \omega_{r}+\frac{\partial_{\eta}Y_{0}}{Y_{0}}\right)\\ \frac{2L}{Y_{0}^{2}}\left(-i\omega_{r}-\frac{\partial_{\eta}Y_{0}}{Y_{0}}% \right)&b\end{array}\right)\left(\begin{array}[]{c}A_{r}^{1}\\ A_{r}^{2}\end{array}\right)=0( start_ARRAY start_ROW start_CELL italic_b + 2 italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL divide start_ARG 2 italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_i italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) end_CELL end_ROW start_ROW start_CELL divide start_ARG 2 italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( - italic_i italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) end_CELL start_CELL italic_b end_CELL end_ROW end_ARRAY ) ( start_ARRAY start_ROW start_CELL italic_A start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_A start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) = 0 (309)

where we have replaced ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT with the conserved angular momentum L𝐿Litalic_L from Eq. (12) and b=ωr2+k2+(2M2a2+λY02)(LY02)2η2aa𝑏superscriptsubscript𝜔𝑟2superscript𝑘22superscript𝑀2superscript𝑎2𝜆superscriptsubscript𝑌02superscript𝐿superscriptsubscript𝑌022superscriptsubscript𝜂2𝑎𝑎b=-\omega_{r}^{2}+k^{2}+\left(-2M^{2}a^{2}+\lambda Y_{0}^{2}\right)-\left(% \frac{L}{Y_{0}^{2}}\right)^{2}-\frac{\partial_{\eta}^{2}a}{a}italic_b = - italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) - ( divide start_ARG italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a end_ARG start_ARG italic_a end_ARG.

Since we solve Eq. (296) at an early time ηisubscript𝜂𝑖\eta_{i}\rightarrow-\inftyitalic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT → - ∞ and in the conformal limit Y0Yc=(L2/λ)1/6subscript𝑌0subscript𝑌𝑐superscriptsuperscript𝐿2𝜆16Y_{0}\approx Y_{c}=\left(L^{2}/\lambda\right)^{1/6}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≈ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT = ( italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_λ ) start_POSTSUPERSCRIPT 1 / 6 end_POSTSUPERSCRIPT and ηθ0=L/Y02subscript𝜂subscript𝜃0𝐿superscriptsubscript𝑌02\partial_{\eta}\theta_{0}=L/Y_{0}^{2}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_L / italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, we can neglect any small amplitude oscillations of the background radial field. In the conformal limit λY02M2a2H2a2η2a/amuch-greater-than𝜆superscriptsubscript𝑌02superscript𝑀2superscript𝑎2similar-tosuperscript𝐻2superscript𝑎2similar-tosuperscriptsubscript𝜂2𝑎𝑎\lambda Y_{0}^{2}\gg M^{2}a^{2}\sim H^{2}a^{2}\sim\partial_{\eta}^{2}a/aitalic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≫ italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∼ italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∼ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a / italic_a, and hence we arrive at the reduced expression for Eq. (309) given as

(ωr2+k2+2λYc2i2LYc2ωri2LYc2ωrωr2+k2)(Ar1Ar2)=0.superscriptsubscript𝜔𝑟2superscript𝑘22𝜆superscriptsubscript𝑌𝑐2𝑖2𝐿superscriptsubscript𝑌𝑐2subscript𝜔𝑟𝑖2𝐿superscriptsubscript𝑌𝑐2subscript𝜔𝑟superscriptsubscript𝜔𝑟2superscript𝑘2superscriptsubscript𝐴𝑟1superscriptsubscript𝐴𝑟20\left(\begin{array}[]{cc}-\omega_{r}^{2}+k^{2}+2\lambda Y_{c}^{2}&i\frac{2L}{Y% _{c}^{2}}\omega_{r}\\ -i\frac{2L}{Y_{c}^{2}}\omega_{r}&-\omega_{r}^{2}+k^{2}\end{array}\right)\left(% \begin{array}[]{c}A_{r}^{1}\\ A_{r}^{2}\end{array}\right)=0.( start_ARRAY start_ROW start_CELL - italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL italic_i divide start_ARG 2 italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL - italic_i divide start_ARG 2 italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_CELL start_CELL - italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) ( start_ARRAY start_ROW start_CELL italic_A start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_A start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) = 0 . (310)

We note that in the conformal limit, our system is defined by time-independent coefficients. The distinct “real” frequency solutions obtained by solving171717Obtained by equating the determinant of the coefficient matrix in Eq. (310) to zero and solving for ω𝜔\omegaitalic_ω Eq. (310) are

ωr={ω,ω+,ω+,ω++}subscript𝜔𝑟subscript𝜔absentsubscript𝜔absentsubscript𝜔absentsubscript𝜔absent\omega_{r}=\{\omega_{--},\omega_{+-},\omega_{-+},\omega_{++}\}italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT = { italic_ω start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT , italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT , italic_ω start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT , italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT } (311)

where

ωs1s2s1k2+3λYc2+s2Ycλ(4k2+9λYc2),subscript𝜔subscript𝑠1subscript𝑠2subscript𝑠1superscript𝑘23𝜆superscriptsubscript𝑌𝑐2subscript𝑠2subscript𝑌𝑐𝜆4superscript𝑘29𝜆superscriptsubscript𝑌𝑐2\omega_{s_{1}s_{2}}\equiv s_{1}\sqrt{k^{2}+3\lambda Y_{c}^{2}+s_{2}Y_{c}\sqrt{% \lambda\left(4k^{2}+9\lambda Y_{c}^{2}\right)}},italic_ω start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≡ italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT square-root start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT square-root start_ARG italic_λ ( 4 italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 9 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG end_ARG , (312)

and s1,2[+,]subscript𝑠12s_{1,2}\in[+,-]italic_s start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT ∈ [ + , - ]. In the IR limit

1k2λYc2,much-less-than1superscript𝑘2much-less-than𝜆superscriptsubscript𝑌𝑐21\ll k^{2}\ll\lambda Y_{c}^{2},1 ≪ italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≪ italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , (313)

the two distinct frequency squared

ω±2k23+O(k4λYc2),superscriptsubscript𝜔plus-or-minusabsent2superscript𝑘23𝑂superscript𝑘4𝜆superscriptsubscript𝑌𝑐2\omega_{\pm-}^{2}\approx\frac{k^{2}}{3}+O\left(\frac{k^{4}}{\lambda Y_{c}^{2}}% \right),italic_ω start_POSTSUBSCRIPT ± - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≈ divide start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 3 end_ARG + italic_O ( divide start_ARG italic_k start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) , (314)

and

ω±+26λYc2+5k23+O(k4λYc2)superscriptsubscript𝜔plus-or-minusabsent26𝜆superscriptsubscript𝑌𝑐25superscript𝑘23𝑂superscript𝑘4𝜆superscriptsubscript𝑌𝑐2\omega_{\pm+}^{2}\approx 6\lambda Y_{c}^{2}+\frac{5k^{2}}{3}+O\left(\frac{k^{4% }}{\lambda Y_{c}^{2}}\right)italic_ω start_POSTSUBSCRIPT ± + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≈ 6 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 5 italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 3 end_ARG + italic_O ( divide start_ARG italic_k start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) (315)

correspond to low and high frequency solutions and are separated by the large O(λYc2/k2)𝑂𝜆superscriptsubscript𝑌𝑐2superscript𝑘2O\left(\lambda Y_{c}^{2}/k^{2}\right)italic_O ( italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) hierarchy. In the UV limit,

limkλYc2ω±±2k2subscriptmuch-greater-than𝑘𝜆superscriptsubscript𝑌𝑐2superscriptsubscript𝜔plus-or-minusabsentplus-or-minus2superscript𝑘2\lim_{k\gg\lambda Y_{c}^{2}}\omega_{\pm\pm}^{2}\rightarrow k^{2}roman_lim start_POSTSUBSCRIPT italic_k ≫ italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT ± ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (316)

and the two frequency solutions become degenerate.

We write the full mode function hnrsuperscript𝑛𝑟h^{nr}italic_h start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT as

(hk1r(η)hk2r(η))superscriptsubscript𝑘1𝑟𝜂superscriptsubscript𝑘2𝑟𝜂\displaystyle\left(\begin{array}[]{c}h_{k}^{1r}(\eta)\\ h_{k}^{2r}(\eta)\end{array}\right)( start_ARRAY start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_r end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_r end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW end_ARRAY ) =c++δ++r(A++1A++2)eiω++η+c+δ+r(A+1A+2)eiω+ηabsentsubscript𝑐absentsuperscriptsubscript𝛿absent𝑟superscriptsubscript𝐴absent1superscriptsubscript𝐴absent2superscript𝑒𝑖subscript𝜔absent𝜂subscript𝑐absentsuperscriptsubscript𝛿absent𝑟superscriptsubscript𝐴absent1superscriptsubscript𝐴absent2superscript𝑒𝑖subscript𝜔absent𝜂\displaystyle=c_{++}\delta_{++}^{r}\left(\begin{array}[]{c}A_{++}^{1}\\ A_{++}^{2}\end{array}\right)e^{-i\omega_{++}\eta}+\;c_{+-}\delta_{+-}^{r}\left% (\begin{array}[]{c}A_{+-}^{1}\\ A_{+-}^{2}\end{array}\right)e^{-i\omega_{+-}\eta}= italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( start_ARRAY start_ROW start_CELL italic_A start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_A start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( start_ARRAY start_ROW start_CELL italic_A start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_A start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT (323)
+c+δ+r(A+1A+2)eiω+η+cδr(A1A2)eiωηsubscript𝑐absentsuperscriptsubscript𝛿absent𝑟superscriptsubscript𝐴absent1superscriptsubscript𝐴absent2superscript𝑒𝑖subscript𝜔absent𝜂subscript𝑐absentsuperscriptsubscript𝛿absent𝑟superscriptsubscript𝐴absent1superscriptsubscript𝐴absent2superscript𝑒𝑖subscript𝜔absent𝜂\displaystyle+c_{-+}\delta_{-+}^{r}\left(\begin{array}[]{c}A_{-+}^{1}\\ A_{-+}^{2}\end{array}\right)e^{-i\omega_{-+}\eta}+\;c_{--}\delta_{--}^{r}\left% (\begin{array}[]{c}A_{--}^{1}\\ A_{--}^{2}\end{array}\right)e^{-i\omega_{--}\eta}+ italic_c start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( start_ARRAY start_ROW start_CELL italic_A start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_A start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( start_ARRAY start_ROW start_CELL italic_A start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_A start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT (328)

where r[++,+,+,]r\in\left[++,+-,-+,--\right]italic_r ∈ [ + + , + - , - + , - - ] counts distinct frequencies given by Eq. (312). The normal vectors corresponding to each frequency are given by the ratios

A++2A++1superscriptsubscript𝐴absent2superscriptsubscript𝐴absent1\displaystyle\frac{A_{++}^{2}}{A_{++}^{1}}divide start_ARG italic_A start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_A start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG =A+2A+1=i(2(LYc2)ω++12(ω++2ω+2)+(λYc2)+2(LYc2)2),absentsuperscriptsubscript𝐴absent2superscriptsubscript𝐴absent1𝑖2𝐿superscriptsubscript𝑌𝑐2subscript𝜔absent12superscriptsubscript𝜔absent2superscriptsubscript𝜔absent2𝜆superscriptsubscript𝑌𝑐22superscript𝐿superscriptsubscript𝑌𝑐22\displaystyle=-\frac{A_{-+}^{2}}{A_{-+}^{1}}=i\left(\frac{-2\left(\frac{L}{Y_{% c}^{2}}\right)\omega_{++}}{\frac{1}{2}\left(\omega_{++}^{2}-\omega_{+-}^{2}% \right)+\left(\lambda Y_{c}^{2}\right)+2\left(\frac{L}{Y_{c}^{2}}\right)^{2}}% \right),= - divide start_ARG italic_A start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_A start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG = italic_i ( divide start_ARG - 2 ( divide start_ARG italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT end_ARG start_ARG divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + ( italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) + 2 ( divide start_ARG italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) , (329)
A+2A+1superscriptsubscript𝐴absent2superscriptsubscript𝐴absent1\displaystyle\frac{A_{+-}^{2}}{A_{+-}^{1}}divide start_ARG italic_A start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_A start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG =A2A1=i(2(LYc2)ω+12(ω++2ω+2)(λYc2)2(LYc2)2),absentsuperscriptsubscript𝐴absent2superscriptsubscript𝐴absent1𝑖2𝐿superscriptsubscript𝑌𝑐2subscript𝜔absent12superscriptsubscript𝜔absent2superscriptsubscript𝜔absent2𝜆superscriptsubscript𝑌𝑐22superscript𝐿superscriptsubscript𝑌𝑐22\displaystyle=-\frac{A_{--}^{2}}{A_{--}^{1}}=i\left(\frac{2\left(\frac{L}{Y_{c% }^{2}}\right)\omega_{+-}}{\frac{1}{2}\left(\omega_{++}^{2}-\omega_{+-}^{2}% \right)-\left(\lambda Y_{c}^{2}\right)-2\left(\frac{L}{Y_{c}^{2}}\right)^{2}}% \right),= - divide start_ARG italic_A start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_A start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG = italic_i ( divide start_ARG 2 ( divide start_ARG italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT end_ARG start_ARG divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) - ( italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) - 2 ( divide start_ARG italic_L end_ARG start_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) , (330)

which are purely “imaginary”. Hence, we can rewrite the solution for the mode function as

(hk1r(η)hk2r(η))superscriptsubscript𝑘1𝑟𝜂superscriptsubscript𝑘2𝑟𝜂\displaystyle\left(\begin{array}[]{c}h_{k}^{1r}(\eta)\\ h_{k}^{2r}(\eta)\end{array}\right)( start_ARRAY start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_r end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_r end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW end_ARRAY ) =c++δ++r(1A++2A++1)eiω++η+c+δ+r(1A+2A+1)eiω+η+absentsubscript𝑐absentsuperscriptsubscript𝛿absent𝑟1superscriptsubscript𝐴absent2superscriptsubscript𝐴absent1superscript𝑒𝑖subscript𝜔absent𝜂limit-fromsubscript𝑐absentsuperscriptsubscript𝛿absent𝑟1superscriptsubscript𝐴absent2superscriptsubscript𝐴absent1superscript𝑒𝑖subscript𝜔absent𝜂\displaystyle=c_{++}\delta_{++}^{r}\left(\begin{array}[]{c}1\\ \frac{A_{++}^{2}}{A_{++}^{1}}\end{array}\right)e^{-i\omega_{++}\eta}+\;c_{+-}% \delta_{+-}^{r}\left(\begin{array}[]{c}1\\ \frac{A_{+-}^{2}}{A_{+-}^{1}}\end{array}\right)e^{-i\omega_{+-}\eta}+= italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( start_ARRAY start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_A start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_A start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG end_CELL end_ROW end_ARRAY ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( start_ARRAY start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_A start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_A start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG end_CELL end_ROW end_ARRAY ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + (337)
+c+δ+r(1A++2A++1)eiω++η+cδr(1A+2A+1)eiω+ηsubscript𝑐absentsuperscriptsubscript𝛿absent𝑟superscript1superscriptsubscript𝐴absent2superscriptsubscript𝐴absent1superscript𝑒𝑖subscript𝜔absent𝜂subscript𝑐absentsuperscriptsubscript𝛿absent𝑟superscript1superscriptsubscript𝐴absent2superscriptsubscript𝐴absent1superscript𝑒𝑖subscript𝜔absent𝜂\displaystyle+c_{-+}\delta_{-+}^{r}\left(\begin{array}[]{c}1\\ \frac{A_{++}^{2}}{A_{++}^{1}}\end{array}\right)^{*}e^{i\omega_{++}\eta}+\;c_{-% -}\delta_{--}^{r}\left(\begin{array}[]{c}1\\ \frac{A_{+-}^{2}}{A_{+-}^{1}}\end{array}\right)^{*}e^{i\omega_{+-}\eta}+ italic_c start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( start_ARRAY start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_A start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_A start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG end_CELL end_ROW end_ARRAY ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( start_ARRAY start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_A start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_A start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG end_CELL end_ROW end_ARRAY ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT (342)

where the frequencies ω++subscript𝜔absent\omega_{++}italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT are constant, real and positive and the ratios Ar2/Ar1superscriptsubscript𝐴𝑟2superscriptsubscript𝐴𝑟1A_{r}^{2}/A_{r}^{1}italic_A start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_A start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT are purely imaginary. In the decoupling limit where L0𝐿0L\rightarrow 0italic_L → 0 the kinetic terms mixing δΓ𝛿Γ\delta\Gammaitalic_δ roman_Γ and δχ𝛿𝜒\delta\chiitalic_δ italic_χ vanish and the decoupled solution becomes :

limL0(hk1r(η)hk2r(η))subscript𝐿0superscriptsubscript𝑘1𝑟𝜂superscriptsubscript𝑘2𝑟𝜂\displaystyle\lim_{L\rightarrow 0}\left(\begin{array}[]{c}h_{k}^{1r}(\eta)\\ h_{k}^{2r}(\eta)\end{array}\right)roman_lim start_POSTSUBSCRIPT italic_L → 0 end_POSTSUBSCRIPT ( start_ARRAY start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_r end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW start_ROW start_CELL italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_r end_POSTSUPERSCRIPT ( italic_η ) end_CELL end_ROW end_ARRAY ) =c++δ++r(10)eiω++η+c+δ+r(10)eiω+ηabsentsubscript𝑐absentsuperscriptsubscript𝛿absent𝑟10superscript𝑒𝑖subscript𝜔absent𝜂subscript𝑐absentsuperscriptsubscript𝛿absent𝑟10superscript𝑒𝑖subscript𝜔absent𝜂\displaystyle=c_{++}\delta_{++}^{r}\left(\begin{array}[]{c}1\\ 0\end{array}\right)e^{-i\omega_{++}\eta}+c_{-+}\delta_{-+}^{r}\left(\begin{% array}[]{c}1\\ 0\end{array}\right)e^{-i\omega_{-+}\eta}= italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( start_ARRAY start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL end_ROW end_ARRAY ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( start_ARRAY start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL end_ROW end_ARRAY ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT
+c+δ+r(01)eiω+η+cδr(01)eiωη,subscript𝑐absentsuperscriptsubscript𝛿absent𝑟01superscript𝑒𝑖subscript𝜔absent𝜂subscript𝑐absentsuperscriptsubscript𝛿absent𝑟01superscript𝑒𝑖subscript𝜔absent𝜂\displaystyle+c_{+-}\delta_{+-}^{r}\left(\begin{array}[]{c}0\\ 1\end{array}\right)e^{-i\omega_{+-}\eta}+c_{--}\delta_{--}^{r}\left(\begin{% array}[]{c}0\\ 1\end{array}\right)e^{-i\omega_{--}\eta},+ italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( start_ARRAY start_ROW start_CELL 0 end_CELL end_ROW start_ROW start_CELL 1 end_CELL end_ROW end_ARRAY ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT ( start_ARRAY start_ROW start_CELL 0 end_CELL end_ROW start_ROW start_CELL 1 end_CELL end_ROW end_ARRAY ) italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT ,
hk1r(η)superscriptsubscript𝑘1𝑟𝜂\displaystyle h_{k}^{1r}(\eta)italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_r end_POSTSUPERSCRIPT ( italic_η ) =c++δ++reiω++η+c+δ+reiω+η,absentsubscript𝑐absentsuperscriptsubscript𝛿absent𝑟superscript𝑒𝑖subscript𝜔absent𝜂subscript𝑐absentsuperscriptsubscript𝛿absent𝑟superscript𝑒𝑖subscript𝜔absent𝜂\displaystyle=c_{++}\delta_{++}^{r}e^{-i\omega_{++}\eta}+c_{-+}\delta_{-+}^{r}% e^{-i\omega_{-+}\eta},= italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT ,
hk2r(η)superscriptsubscript𝑘2𝑟𝜂\displaystyle h_{k}^{2r}(\eta)italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_r end_POSTSUPERSCRIPT ( italic_η ) =c+δ+reiω+η+cδreiωη.absentsubscript𝑐absentsuperscriptsubscript𝛿absent𝑟superscript𝑒𝑖subscript𝜔absent𝜂subscript𝑐absentsuperscriptsubscript𝛿absent𝑟superscript𝑒𝑖subscript𝜔absent𝜂\displaystyle=c_{+-}\delta_{+-}^{r}e^{-i\omega_{+-}\eta}+c_{--}\delta_{--}^{r}% e^{-i\omega_{--}\eta}.= italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT italic_δ start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT .

where the decoupled “instantaneous” frequencies181818In the decoupled limit, the background solution for the radial field is not conformal due to the quartic potential which will induce large amplitude oscillations. Hence, we cannot assume that Y0constantsubscript𝑌0constantY_{0}\approx{\rm constant}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≈ roman_constant. Therefore, we give instantaneous frequencies. are

limL0ωs1s2s1k2+2λYc2+s2(λYc2)subscript𝐿0subscript𝜔subscript𝑠1subscript𝑠2subscript𝑠1superscript𝑘22𝜆superscriptsubscript𝑌𝑐2subscript𝑠2𝜆superscriptsubscript𝑌𝑐2\lim_{L\rightarrow 0}\omega_{s_{1}s_{2}}\equiv s_{1}\sqrt{k^{2}+2\lambda Y_{c}% ^{2}+s_{2}\left(\lambda Y_{c}^{2}\right)}roman_lim start_POSTSUBSCRIPT italic_L → 0 end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ≡ italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT square-root start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG (343)

for

ω±+subscript𝜔plus-or-minusabsent\displaystyle\omega_{\pm+}italic_ω start_POSTSUBSCRIPT ± + end_POSTSUBSCRIPT =±k2+3λYc2absentplus-or-minussuperscript𝑘23𝜆superscriptsubscript𝑌𝑐2\displaystyle=\pm\sqrt{k^{2}+3\lambda Y_{c}^{2}}= ± square-root start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG (344)
ω±subscript𝜔plus-or-minusabsent\displaystyle\omega_{\pm-}italic_ω start_POSTSUBSCRIPT ± - end_POSTSUBSCRIPT =±k2+λYc2.absentplus-or-minussuperscript𝑘2𝜆superscriptsubscript𝑌𝑐2\displaystyle=\pm\sqrt{k^{2}+\lambda Y_{c}^{2}}.= ± square-root start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG . (345)

Substituting our solution for hknrsuperscriptsubscript𝑘𝑛𝑟h_{k}^{nr}italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT from Eq. (342) into the expression for δψn𝛿superscript𝜓𝑛\delta\psi^{n}italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT we obtain

δψn𝛿superscript𝜓𝑛\displaystyle\delta\psi^{n}italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT =d3peipx(2π)3/2[ap++c++V++neiω++η+ap+c+V+neiω+η\displaystyle=\int\frac{d^{3}pe^{i\vec{p}\cdot\vec{x}}}{(2\pi)^{3/2}}\left[a_{% \vec{p}}^{++}c_{++}V_{++}^{n}e^{-i\omega_{++}\eta}+a_{\vec{p}}^{+-}c_{+-}V_{+-% }^{n}e^{-i\omega_{+-}\eta}\right.= ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_p italic_e start_POSTSUPERSCRIPT italic_i over→ start_ARG italic_p end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG [ italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT
+ap++c++V++neiω++η+ap+c+V+neiω+η]\displaystyle\qquad\qquad\qquad+\left.a_{-\vec{p}}^{++\dagger}c_{++}^{*}V_{++}% ^{n*}e^{i\omega_{++}\eta}+a_{-\vec{p}}^{+-\dagger}c_{+-}^{*}V_{+-}^{n*}e^{i% \omega_{+-}\eta}\right]+ italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + † end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n ∗ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - † end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n ∗ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT ] (346)

where

V++n=(1++),V+n=(1+),V+n=V++=(1++),Vn=V+=(1+)formulae-sequenceformulae-sequencesuperscriptsubscript𝑉absent𝑛1subscriptabsentformulae-sequencesuperscriptsubscript𝑉absent𝑛1subscriptabsentsuperscriptsubscript𝑉absent𝑛superscriptsubscript𝑉absent1subscriptabsentsuperscriptsubscript𝑉absent𝑛superscriptsubscript𝑉absent1subscriptabsentV_{++}^{n}=\left(\begin{array}[]{c}1\\ \mathcal{R}_{++}\end{array}\right),\,\,V_{+-}^{n}=\left(\begin{array}[]{c}1\\ \mathcal{R}_{+-}\end{array}\right),\,\,V_{-+}^{n}=V_{++}^{*}=\left(\begin{% array}[]{c}1\\ -\mathcal{R}_{++}\end{array}\right),\,\,V_{--}^{n}=V_{+-}^{*}=\left(\begin{% array}[]{c}1\\ -\mathcal{R}_{+-}\end{array}\right)italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) , italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) , italic_V start_POSTSUBSCRIPT - + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) , italic_V start_POSTSUBSCRIPT - - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = ( start_ARRAY start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL - caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) (347)

and

++=A++2A++1,+=A+2A+1.formulae-sequencesubscriptabsentsuperscriptsubscript𝐴absent2superscriptsubscript𝐴absent1subscriptabsentsuperscriptsubscript𝐴absent2superscriptsubscript𝐴absent1\mathcal{R}_{++}=\frac{A_{++}^{2}}{A_{++}^{1}},\quad\mathcal{R}_{+-}=\frac{A_{% +-}^{2}}{A_{+-}^{1}}.caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT = divide start_ARG italic_A start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_A start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG , caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT = divide start_ARG italic_A start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_A start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG . (348)

D.2 Ladder algebra

To evaluate the ladder algebra, we first express the ladder operators: ap++superscriptsubscript𝑎𝑝absenta_{\vec{p}}^{++}italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT, ap+superscriptsubscript𝑎𝑝absenta_{\vec{p}}^{+-}italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT and their conjugates in terms of the fields δψn𝛿superscript𝜓𝑛\delta\psi^{n}italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and its conjugate momenta πnsuperscript𝜋𝑛\pi^{n}italic_π start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. To this end, we define

Ln[w,q]=1(2π)3/2𝑑ηeiwηd3xeiqxδψnsuperscript𝐿𝑛𝑤𝑞1superscript2𝜋32differential-d𝜂superscript𝑒𝑖𝑤𝜂superscript𝑑3𝑥superscript𝑒𝑖𝑞𝑥𝛿superscript𝜓𝑛L^{n}[w,\vec{q}]=\frac{1}{(2\pi)^{3/2}}\int d\eta e^{iw\eta}\int d^{3}xe^{-i% \vec{q}\cdot\vec{x}}\delta\psi^{n}italic_L start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT [ italic_w , over→ start_ARG italic_q end_ARG ] = divide start_ARG 1 end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∫ italic_d italic_η italic_e start_POSTSUPERSCRIPT italic_i italic_w italic_η end_POSTSUPERSCRIPT ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x italic_e start_POSTSUPERSCRIPT - italic_i over→ start_ARG italic_q end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT (349)

and

Nn[w,q]1(2π)3/2𝑑ηeiwηd3xeiqxηδψn.superscript𝑁𝑛𝑤𝑞1superscript2𝜋32differential-d𝜂superscript𝑒𝑖𝑤𝜂superscript𝑑3𝑥superscript𝑒𝑖𝑞𝑥subscript𝜂𝛿superscript𝜓𝑛N^{n}[w,\vec{q}]\equiv\frac{1}{(2\pi)^{3/2}}\int d\eta e^{iw\eta}\int d^{3}xe^% {-i\vec{q}\cdot\vec{x}}\partial_{\eta}\delta\psi^{n}.italic_N start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT [ italic_w , over→ start_ARG italic_q end_ARG ] ≡ divide start_ARG 1 end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∫ italic_d italic_η italic_e start_POSTSUPERSCRIPT italic_i italic_w italic_η end_POSTSUPERSCRIPT ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x italic_e start_POSTSUPERSCRIPT - italic_i over→ start_ARG italic_q end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT . (350)

From the above definition and Eq. (346), we conclude that

Jn=dw2πLn[w,q]superscript𝐽𝑛superscriptsubscript𝑑𝑤2𝜋superscript𝐿𝑛𝑤𝑞\displaystyle J^{n}=\int_{-\infty}^{\infty}\frac{dw}{2\pi}L^{n}[w,\vec{q}]italic_J start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_d italic_w end_ARG start_ARG 2 italic_π end_ARG italic_L start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT [ italic_w , over→ start_ARG italic_q end_ARG ] =aq++c++V++n+aq+c+V+n+aq++c++V++n+aq+c+V+n,absentsuperscriptsubscript𝑎𝑞absentsubscript𝑐absentsuperscriptsubscript𝑉absent𝑛superscriptsubscript𝑎𝑞absentsubscript𝑐absentsuperscriptsubscript𝑉absent𝑛superscriptsubscript𝑎𝑞absentsuperscriptsubscript𝑐absentsuperscriptsubscript𝑉absent𝑛superscriptsubscript𝑎𝑞absentsuperscriptsubscript𝑐absentsuperscriptsubscript𝑉absent𝑛\displaystyle=a_{\vec{q}}^{++}c_{++}V_{++}^{n}+a_{\vec{q}}^{+-}c_{+-}V_{+-}^{n% }+a_{-\vec{q}}^{\dagger++}c_{++}^{*}V_{++}^{n*}+a_{-\vec{q}}^{\dagger+-}c_{+-}% ^{*}V_{+-}^{n*},= italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † + + end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n ∗ end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † + - end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n ∗ end_POSTSUPERSCRIPT , (351)
Jn+2=idw2πNn[w,q]superscript𝐽𝑛2𝑖superscriptsubscript𝑑𝑤2𝜋superscript𝑁𝑛𝑤𝑞\displaystyle J^{n+2}=i\int_{-\infty}^{\infty}\frac{dw}{2\pi}N^{n}[w,\vec{q}]italic_J start_POSTSUPERSCRIPT italic_n + 2 end_POSTSUPERSCRIPT = italic_i ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_d italic_w end_ARG start_ARG 2 italic_π end_ARG italic_N start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT [ italic_w , over→ start_ARG italic_q end_ARG ] =aq++ω++c++V++n+aq+ω+c+V+nabsentsuperscriptsubscript𝑎𝑞absentsubscript𝜔absentsubscript𝑐absentsuperscriptsubscript𝑉absent𝑛superscriptsubscript𝑎𝑞absentsubscript𝜔absentsubscript𝑐absentsuperscriptsubscript𝑉absent𝑛\displaystyle=a_{\vec{q}}^{++}\omega_{++}c_{++}V_{++}^{n}+a_{\vec{q}}^{+-}% \omega_{+-}c_{+-}V_{+-}^{n}= italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT
aq++ω++c++V++naq+ω+c+V+n,superscriptsubscript𝑎𝑞absentsubscript𝜔absentsuperscriptsubscript𝑐absentsuperscriptsubscript𝑉absent𝑛superscriptsubscript𝑎𝑞absentsubscript𝜔absentsuperscriptsubscript𝑐absentsuperscriptsubscript𝑉absent𝑛\displaystyle-a_{-\vec{q}}^{\dagger++}\omega_{++}c_{++}^{*}V_{++}^{n*}-a_{-% \vec{q}}^{\dagger+-}\omega_{+-}c_{+-}^{*}V_{+-}^{n*},- italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † + + end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n ∗ end_POSTSUPERSCRIPT - italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † + - end_POSTSUPERSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n ∗ end_POSTSUPERSCRIPT , (352)

where n𝑛nitalic_n is the flavor index of our two-field coupled system and runs from 1111 to 2222. From Eqs. (351) and (352) we setup the following system of equations to solve for the ladder operators

(c++V++1c+V+1c++V++1c+V+1c++V++2c+V+2c++V++2c+V+2ω++c++V++1ω+c+V+1ω++c++V++1ω+c+V+1ω++c++V++2ω+c+V+2ω++c++V++2ω+c+V+2)(aq++aq+aq++aq+)=(J1J2J3J4).subscript𝑐absentsuperscriptsubscript𝑉absent1subscript𝑐absentsuperscriptsubscript𝑉absent1superscriptsubscript𝑐absentsuperscriptsubscript𝑉absent1superscriptsubscript𝑐absentsuperscriptsubscript𝑉absent1subscript𝑐absentsuperscriptsubscript𝑉absent2subscript𝑐absentsuperscriptsubscript𝑉absent2superscriptsubscript𝑐absentsuperscriptsubscript𝑉absent2superscriptsubscript𝑐absentsuperscriptsubscript𝑉absent2subscript𝜔absentsubscript𝑐absentsuperscriptsubscript𝑉absent1subscript𝜔absentsubscript𝑐absentsuperscriptsubscript𝑉absent1subscript𝜔absentsuperscriptsubscript𝑐absentsuperscriptsubscript𝑉absent1subscript𝜔absentsuperscriptsubscript𝑐absentsuperscriptsubscript𝑉absent1subscript𝜔absentsubscript𝑐absentsuperscriptsubscript𝑉absent2subscript𝜔absentsubscript𝑐absentsuperscriptsubscript𝑉absent2subscript𝜔absentsuperscriptsubscript𝑐absentsuperscriptsubscript𝑉absent2subscript𝜔absentsuperscriptsubscript𝑐absentsuperscriptsubscript𝑉absent2superscriptsubscript𝑎𝑞absentsuperscriptsubscript𝑎𝑞absentsuperscriptsubscript𝑎𝑞absentsuperscriptsubscript𝑎𝑞absentsuperscript𝐽1superscript𝐽2superscript𝐽3superscript𝐽4\left(\begin{array}[]{cccc}c_{++}V_{++}^{1}&c_{+-}V_{+-}^{1}&c_{++}^{*}V_{++}^% {1*}&c_{+-}^{*}V_{+-}^{1*}\\ c_{++}V_{++}^{2}&c_{+-}V_{+-}^{2}&c_{++}^{*}V_{++}^{2*}&c_{+-}^{*}V_{+-}^{2*}% \\ \omega_{++}c_{++}V_{++}^{1}&\omega_{+-}c_{+-}V_{+-}^{1}&-\omega_{++}c_{++}^{*}% V_{++}^{1*}&-\omega_{+-}c_{+-}^{*}V_{+-}^{1*}\\ \omega_{++}c_{++}V_{++}^{2}&\omega_{+-}c_{+-}V_{+-}^{2}&-\omega_{++}c_{++}^{*}% V_{++}^{2*}&-\omega_{+-}c_{+-}^{*}V_{+-}^{2*}\end{array}\right)\left(\begin{% array}[]{c}a_{\vec{q}}^{++}\\ a_{\vec{q}}^{+-}\\ a_{-\vec{q}}^{++\dagger}\\ a_{-\vec{q}}^{+-\dagger}\end{array}\right)=\left(\begin{array}[]{c}J^{1}\\ J^{2}\\ J^{3}\\ J^{4}\end{array}\right).( start_ARRAY start_ROW start_CELL italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_CELL start_CELL italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_CELL start_CELL italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 ∗ end_POSTSUPERSCRIPT end_CELL start_CELL italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 ∗ end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 ∗ end_POSTSUPERSCRIPT end_CELL start_CELL italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 ∗ end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_CELL start_CELL italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_CELL start_CELL - italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 ∗ end_POSTSUPERSCRIPT end_CELL start_CELL - italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 ∗ end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL - italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 ∗ end_POSTSUPERSCRIPT end_CELL start_CELL - italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 ∗ end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) ( start_ARRAY start_ROW start_CELL italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + † end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - † end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) = ( start_ARRAY start_ROW start_CELL italic_J start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_J start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_J start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ) . (353)

Solving the above equation yields

aq++superscriptsubscript𝑎𝑞absent\displaystyle a_{\vec{q}}^{++}italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT =+ω+J12c++(++ω+++ω+)+ω+J22c++(++ω++ω++)absentsubscriptabsentsubscript𝜔absentsuperscript𝐽12subscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscript𝜔absentsuperscript𝐽22subscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absent\displaystyle=-\frac{\mathcal{R}_{+-}\omega_{+-}J^{1}}{2c_{++}\left(\mathcal{R% }_{++}\omega_{++}-\mathcal{R}_{+-}\omega_{+-}\right)}+\frac{\omega_{+-}J^{2}}{% 2c_{++}\left(\mathcal{R}_{++}\omega_{+-}-\mathcal{R}_{+-}\omega_{++}\right)}= - divide start_ARG caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_J start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG + divide start_ARG italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) end_ARG
+J42c++(++ω+++ω+)+J32c++(++ω++ω++)superscript𝐽42subscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsuperscript𝐽32subscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absent\displaystyle+\frac{J^{4}}{2c_{++}\left(\mathcal{R}_{++}\omega_{++}-\mathcal{R% }_{+-}\omega_{+-}\right)}-\frac{\mathcal{R}_{+-}J^{3}}{2c_{++}\left(\mathcal{R% }_{++}\omega_{+-}-\mathcal{R}_{+-}\omega_{++}\right)}+ divide start_ARG italic_J start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG - divide start_ARG caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_J start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) end_ARG
aq++superscriptsubscript𝑎𝑞absent\displaystyle a_{-\vec{q}}^{++\dagger}italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + † end_POSTSUPERSCRIPT =+ω+J12c++(++ω+++ω+)++J32c++(++ω++ω++)absentsubscriptabsentsubscript𝜔absentsuperscript𝐽12superscriptsubscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsuperscript𝐽32superscriptsubscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absent\displaystyle=-\frac{\mathcal{R}_{+-}\omega_{+-}J^{1}}{2c_{++}^{*}\left(% \mathcal{R}_{++}\omega_{++}-\mathcal{R}_{+-}\omega_{+-}\right)}+\frac{\mathcal% {R}_{+-}J^{3}}{2c_{++}^{*}\left(\mathcal{R}_{++}\omega_{+-}-\mathcal{R}_{+-}% \omega_{++}\right)}= - divide start_ARG caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_J start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG + divide start_ARG caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_J start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) end_ARG
+J42c++(++ω+++ω+)ω+J22c++(++ω++ω++)superscript𝐽42superscriptsubscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscript𝜔absentsuperscript𝐽22superscriptsubscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absent\displaystyle+\frac{J^{4}}{2c_{++}^{*}\left(\mathcal{R}_{++}\omega_{++}-% \mathcal{R}_{+-}\omega_{+-}\right)}-\frac{\omega_{+-}J^{2}}{2c_{++}^{*}\left(% \mathcal{R}_{++}\omega_{+-}-\mathcal{R}_{+-}\omega_{++}\right)}+ divide start_ARG italic_J start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG - divide start_ARG italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) end_ARG
aq+superscriptsubscript𝑎𝑞absent\displaystyle a_{\vec{q}}^{+-}italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT =+ω+J12c+(+ω+++ω++)+++ω+J22+c+(+ω++++ω+)absentsubscriptabsentsubscript𝜔absentsuperscript𝐽12subscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsuperscript𝐽22subscriptabsentsubscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absent\displaystyle=-\frac{\mathcal{R}_{+-}\omega_{+-}J^{1}}{2c_{+-}\left(\mathcal{R% }_{+-}\omega_{+-}-\mathcal{R}_{++}\omega_{++}\right)}+\frac{\mathcal{R}_{++}% \omega_{+-}J^{2}}{2\mathcal{R}_{+-}c_{+-}\left(\mathcal{R}_{+-}\omega_{++}-% \mathcal{R}_{++}\omega_{+-}\right)}= - divide start_ARG caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_J start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) end_ARG + divide start_ARG caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG
+J42c+(+ω+++ω++)++J32c+(+ω++++ω+)+J22+c++J12c+superscript𝐽42subscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsuperscript𝐽32subscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsuperscript𝐽22subscriptabsentsubscript𝑐absentsuperscript𝐽12subscript𝑐absent\displaystyle+\frac{J^{4}}{2c_{+-}\left(\mathcal{R}_{+-}\omega_{+-}-\mathcal{R% }_{++}\omega_{++}\right)}-\frac{\mathcal{R}_{++}J^{3}}{2c_{+-}\left(\mathcal{R% }_{+-}\omega_{++}-\mathcal{R}_{++}\omega_{+-}\right)}+\frac{J^{2}}{2\mathcal{R% }_{+-}c_{+-}}+\frac{J^{1}}{2c_{+-}}+ divide start_ARG italic_J start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) end_ARG - divide start_ARG caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_J start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG + divide start_ARG italic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT end_ARG + divide start_ARG italic_J start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT end_ARG
aq+superscriptsubscript𝑎𝑞absent\displaystyle a_{-\vec{q}}^{+-\dagger}italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - † end_POSTSUPERSCRIPT =+ω+J12c+(+ω+++ω++)+++J32c+(+ω++++ω+)absentsubscriptabsentsubscript𝜔absentsuperscript𝐽12superscriptsubscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsuperscript𝐽32superscriptsubscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absent\displaystyle=-\frac{\mathcal{R}_{+-}\omega_{+-}J^{1}}{2c_{+-}^{*}\left(% \mathcal{R}_{+-}\omega_{+-}-\mathcal{R}_{++}\omega_{++}\right)}+\frac{\mathcal% {R}_{++}J^{3}}{2c_{+-}^{*}\left(\mathcal{R}_{+-}\omega_{++}-\mathcal{R}_{++}% \omega_{+-}\right)}= - divide start_ARG caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_J start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) end_ARG + divide start_ARG caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_J start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG
+J42c+(+ω+++ω++)++ω+J22+c+(+ω++++ω+)J22+c++J12c+superscript𝐽42superscriptsubscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsuperscript𝐽22subscriptabsentsuperscriptsubscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsuperscript𝐽22subscriptabsentsuperscriptsubscript𝑐absentsuperscript𝐽12superscriptsubscript𝑐absent\displaystyle+\frac{J^{4}}{2c_{+-}^{*}\left(\mathcal{R}_{+-}\omega_{+-}-% \mathcal{R}_{++}\omega_{++}\right)}-\frac{\mathcal{R}_{++}\omega_{+-}J^{2}}{2% \mathcal{R}_{+-}c_{+-}^{*}\left(\mathcal{R}_{+-}\omega_{++}-\mathcal{R}_{++}% \omega_{+-}\right)}-\frac{J^{2}}{2\mathcal{R}_{+-}c_{+-}^{*}}+\frac{J^{1}}{2c_% {+-}^{*}}+ divide start_ARG italic_J start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) end_ARG - divide start_ARG caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG - divide start_ARG italic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_ARG + divide start_ARG italic_J start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_ARG (354)

where we use Eq. (347) to set

V++1=V+1=1and, V++2=++,V+2=+.formulae-sequencesuperscriptsubscript𝑉absent1superscriptsubscript𝑉absent11formulae-sequenceand, superscriptsubscript𝑉absent2subscriptabsentsuperscriptsubscript𝑉absent2subscriptabsentV_{++}^{1}=V_{+-}^{1}=1\quad\mbox{and,$\quad$}V_{++}^{2}=\mathcal{R}_{++},% \quad V_{+-}^{2}=\mathcal{R}_{+-}.italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = 1 and, italic_V start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT , italic_V start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT . (355)

We can summarize these results as

aprsuperscriptsubscript𝑎𝑝𝑟\displaystyle a_{\vec{p}}^{r}italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT =n=14UnrJn,absentsuperscriptsubscript𝑛14superscriptsubscript𝑈𝑛𝑟superscript𝐽𝑛\displaystyle=\sum_{n=1}^{4}U_{n}^{r}J^{n},= ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_U start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , (356)
aprsuperscriptsubscript𝑎𝑝𝑟\displaystyle a_{-\vec{p}}^{r\dagger}italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r † end_POSTSUPERSCRIPT =n=14WnrJn,absentsuperscriptsubscript𝑛14superscriptsubscript𝑊𝑛𝑟superscript𝐽𝑛\displaystyle=\sum_{n=1}^{4}W_{n}^{r}J^{n},= ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_W start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , (357)

where r=(++,+)r=(++,+-)italic_r = ( + + , + - ). The Jnsuperscript𝐽𝑛J^{n}italic_J start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and Jn+2superscript𝐽𝑛2J^{n+2}italic_J start_POSTSUPERSCRIPT italic_n + 2 end_POSTSUPERSCRIPT operators appearing on the RHS of Eq. (353) can be evaluated as

Jnsuperscript𝐽𝑛\displaystyle J^{n}italic_J start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT dw2π{Ln[w,q]}absentsuperscriptsubscript𝑑𝑤2𝜋superscript𝐿𝑛𝑤𝑞\displaystyle\equiv\int_{-\infty}^{\infty}\frac{dw}{2\pi}\left\{L^{n}[w,\vec{q% }]\right\}≡ ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_d italic_w end_ARG start_ARG 2 italic_π end_ARG { italic_L start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT [ italic_w , over→ start_ARG italic_q end_ARG ] } (358)
=dw2π{1(2π)3/2𝑑ηeiwηd3xeiqxδψn}absentsuperscriptsubscript𝑑𝑤2𝜋1superscript2𝜋32differential-d𝜂superscript𝑒𝑖𝑤𝜂superscript𝑑3𝑥superscript𝑒𝑖𝑞𝑥𝛿superscript𝜓𝑛\displaystyle=\int_{-\infty}^{\infty}\frac{dw}{2\pi}\left\{\frac{1}{(2\pi)^{3/% 2}}\int d\eta e^{iw\eta}\int d^{3}xe^{-i\vec{q}\cdot\vec{x}}\delta\psi^{n}\right\}= ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_d italic_w end_ARG start_ARG 2 italic_π end_ARG { divide start_ARG 1 end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∫ italic_d italic_η italic_e start_POSTSUPERSCRIPT italic_i italic_w italic_η end_POSTSUPERSCRIPT ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x italic_e start_POSTSUPERSCRIPT - italic_i over→ start_ARG italic_q end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT } (359)
=1(2π)3/2d3xeiqxδψn(0,x)absent1superscript2𝜋32superscript𝑑3𝑥superscript𝑒𝑖𝑞𝑥𝛿superscript𝜓𝑛0𝑥\displaystyle=\frac{1}{(2\pi)^{3/2}}\int d^{3}xe^{-i\vec{q}\cdot\vec{x}}\delta% \psi^{n}(0,\vec{x})= divide start_ARG 1 end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x italic_e start_POSTSUPERSCRIPT - italic_i over→ start_ARG italic_q end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( 0 , over→ start_ARG italic_x end_ARG ) (360)

and,

Jn+2superscript𝐽𝑛2\displaystyle J^{n+2}italic_J start_POSTSUPERSCRIPT italic_n + 2 end_POSTSUPERSCRIPT idw2π{Nn[w,q]}absent𝑖superscriptsubscript𝑑𝑤2𝜋superscript𝑁𝑛𝑤𝑞\displaystyle\equiv i\int_{-\infty}^{\infty}\frac{dw}{2\pi}\left\{N^{n}[w,\vec% {q}]\right\}≡ italic_i ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_d italic_w end_ARG start_ARG 2 italic_π end_ARG { italic_N start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT [ italic_w , over→ start_ARG italic_q end_ARG ] } (361)
=idw2π{1(2π)3/2𝑑ηeiwηd3xeiqxηδψn}absent𝑖superscriptsubscript𝑑𝑤2𝜋1superscript2𝜋32differential-d𝜂superscript𝑒𝑖𝑤𝜂superscript𝑑3𝑥superscript𝑒𝑖𝑞𝑥subscript𝜂𝛿superscript𝜓𝑛\displaystyle=i\int_{-\infty}^{\infty}\frac{dw}{2\pi}\left\{\frac{1}{(2\pi)^{3% /2}}\int d\eta e^{iw\eta}\int d^{3}xe^{-i\vec{q}\cdot\vec{x}}\partial_{\eta}% \delta\psi^{n}\right\}= italic_i ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_d italic_w end_ARG start_ARG 2 italic_π end_ARG { divide start_ARG 1 end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∫ italic_d italic_η italic_e start_POSTSUPERSCRIPT italic_i italic_w italic_η end_POSTSUPERSCRIPT ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x italic_e start_POSTSUPERSCRIPT - italic_i over→ start_ARG italic_q end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT } (362)
=i1(2π)3/2d3xeiqxηδψn(0,x)absent𝑖1superscript2𝜋32superscript𝑑3𝑥superscript𝑒𝑖𝑞𝑥subscript𝜂𝛿superscript𝜓𝑛0𝑥\displaystyle=i\frac{1}{(2\pi)^{3/2}}\int d^{3}xe^{-i\vec{q}\cdot\vec{x}}% \partial_{\eta}\delta\psi^{n}(0,\vec{x})= italic_i divide start_ARG 1 end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x italic_e start_POSTSUPERSCRIPT - italic_i over→ start_ARG italic_q end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( 0 , over→ start_ARG italic_x end_ARG ) (363)

where we used dw2π𝑑ηeiwηf(η)=𝑑ηf(η)dw2πeiwη=𝑑ηf(η)δ(η)=f(0)superscriptsubscript𝑑𝑤2𝜋differential-d𝜂superscript𝑒𝑖𝑤𝜂𝑓𝜂differential-d𝜂𝑓𝜂superscriptsubscript𝑑𝑤2𝜋superscript𝑒𝑖𝑤𝜂differential-d𝜂𝑓𝜂𝛿𝜂𝑓0\int_{-\infty}^{\infty}\frac{dw}{2\pi}\int d\eta e^{iw\eta}f(\eta)=\int d\eta f% (\eta)\int_{-\infty}^{\infty}\frac{dw}{2\pi}e^{iw\eta}=\int d\eta f(\eta)% \delta(\eta)=f(0)∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_d italic_w end_ARG start_ARG 2 italic_π end_ARG ∫ italic_d italic_η italic_e start_POSTSUPERSCRIPT italic_i italic_w italic_η end_POSTSUPERSCRIPT italic_f ( italic_η ) = ∫ italic_d italic_η italic_f ( italic_η ) ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_d italic_w end_ARG start_ARG 2 italic_π end_ARG italic_e start_POSTSUPERSCRIPT italic_i italic_w italic_η end_POSTSUPERSCRIPT = ∫ italic_d italic_η italic_f ( italic_η ) italic_δ ( italic_η ) = italic_f ( 0 ). It follows then that the commutators of Jnsuperscript𝐽𝑛J^{n}italic_J start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and Jn+2superscript𝐽𝑛2J^{n+2}italic_J start_POSTSUPERSCRIPT italic_n + 2 end_POSTSUPERSCRIPT operators can be obtained from the commutator relations in Eq. (292). Hence,

[J1,J2]superscript𝐽1superscript𝐽2\displaystyle\left[J^{1},J^{2}\right][ italic_J start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , italic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] =0absent0\displaystyle=0= 0
[J1,J3]superscript𝐽1superscript𝐽3\displaystyle\left[J^{1},J^{3}\right][ italic_J start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , italic_J start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ] =δ(3)(q+q)absentsuperscript𝛿3𝑞superscript𝑞\displaystyle=-\delta^{(3)}\left(\vec{q}+\vec{q}^{\prime}\right)= - italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_q end_ARG + over→ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT )
[J1,J4]superscript𝐽1superscript𝐽4\displaystyle\left[J^{1},J^{4}\right][ italic_J start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , italic_J start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ] =0.absent0\displaystyle=0.= 0 . (364)
[J2,J3]superscript𝐽2superscript𝐽3\displaystyle\left[J^{2},J^{3}\right][ italic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_J start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ] =0.absent0\displaystyle=0.= 0 .
[J2,J4]superscript𝐽2superscript𝐽4\displaystyle\left[J^{2},J^{4}\right][ italic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_J start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ] =δ(3)(q+q)absentsuperscript𝛿3𝑞superscript𝑞\displaystyle=-\delta^{(3)}\left(\vec{q}+\vec{q}^{\prime}\right)= - italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_q end_ARG + over→ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT )
[J3,J4]superscript𝐽3superscript𝐽4\displaystyle\left[J^{3},J^{4}\right][ italic_J start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , italic_J start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ] =i2ηθ0δ(3)(q+q)absent𝑖2subscript𝜂subscript𝜃0superscript𝛿3𝑞superscript𝑞\displaystyle=-i2\partial_{\eta}\theta_{0}\delta^{(3)}\left(\vec{q}+\vec{q}^{% \prime}\right)= - italic_i 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_q end_ARG + over→ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT )

D.3 Ladder commutators

Using the solution for the ladder operators ap++,ap+superscriptsubscript𝑎𝑝absentsuperscriptsubscript𝑎𝑝absenta_{\vec{p}}^{++},a_{\vec{p}}^{+-}italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT and their conjugates as given in Eq. (354), and the commutator algebra of J𝐽Jitalic_J operators given in Eq. (364), we can evaluate the ladder commutators. There are 6 unique combinations of the commutators for +±plus-or-minus+\pm+ ± frequencies that we present below. We work out the first commutator in detail and leave the remaining for the readers as an exercise:

[aq++,aq++]superscriptsubscript𝑎𝑞absentsuperscriptsubscript𝑎superscript𝑞absent\displaystyle\left[a_{\vec{q}}^{++},a_{-\vec{q}^{\prime}}^{++\dagger}\right][ italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + † end_POSTSUPERSCRIPT ] =[U1++J1,W2++J2+W3++J3+W4++J4]+[U2++J2,W1++J1+W3++J3+W4++J4]absentsuperscriptsubscript𝑈1absentsuperscript𝐽1superscriptsubscript𝑊2absentsuperscript𝐽2superscriptsubscript𝑊3absentsuperscript𝐽3superscriptsubscript𝑊4absentsuperscript𝐽4superscriptsubscript𝑈2absentsuperscript𝐽2superscriptsubscript𝑊1absentsuperscript𝐽1superscriptsubscript𝑊3absentsuperscript𝐽3superscriptsubscript𝑊4absentsuperscript𝐽4\displaystyle=\left[U_{1}^{++}J^{1},W_{2}^{++}J^{2}+W_{3}^{++}J^{3}+W_{4}^{++}% J^{4}\right]+\left[U_{2}^{++}J^{2},W_{1}^{++}J^{1}+W_{3}^{++}J^{3}+W_{4}^{++}J% ^{4}\right]= [ italic_U start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT , italic_W start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_W start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_W start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ] + [ italic_U start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_W start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT + italic_W start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT + italic_W start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ]
+[U3++J3,W1++J1+W2++J2+W4++J4]+[U4++J4,W1++J1+W2++J2+W3++J3]superscriptsubscript𝑈3absentsuperscript𝐽3superscriptsubscript𝑊1absentsuperscript𝐽1superscriptsubscript𝑊2absentsuperscript𝐽2superscriptsubscript𝑊4absentsuperscript𝐽4superscriptsubscript𝑈4absentsuperscript𝐽4superscriptsubscript𝑊1absentsuperscript𝐽1superscriptsubscript𝑊2absentsuperscript𝐽2superscriptsubscript𝑊3absentsuperscript𝐽3\displaystyle+\left[U_{3}^{++}J^{3},W_{1}^{++}J^{1}+W_{2}^{++}J^{2}+W_{4}^{++}% J^{4}\right]+\left[U_{4}^{++}J^{4},W_{1}^{++}J^{1}+W_{2}^{++}J^{2}+W_{3}^{++}J% ^{3}\right]+ [ italic_U start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , italic_W start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT + italic_W start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_W start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ] + [ italic_U start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT , italic_W start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT + italic_W start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_W start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_J start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ]
=(U1++W3++U3++W1++)(1)absentsuperscriptsubscript𝑈1absentsuperscriptsubscript𝑊3absentsuperscriptsubscript𝑈3absentsuperscriptsubscript𝑊1absent1\displaystyle=\left(U_{1}^{++}W_{3}^{++}-U_{3}^{++}W_{1}^{++}\right)\left(-1\right)= ( italic_U start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_W start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT - italic_U start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_W start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT ) ( - 1 )
+(U2++W4++U4++W2++)(1)+(U3++W4++U4++W3++)(i2ηθ0)superscriptsubscript𝑈2absentsuperscriptsubscript𝑊4absentsuperscriptsubscript𝑈4absentsuperscriptsubscript𝑊2absent1superscriptsubscript𝑈3absentsuperscriptsubscript𝑊4absentsuperscriptsubscript𝑈4absentsuperscriptsubscript𝑊3absent𝑖2subscript𝜂subscript𝜃0\displaystyle+\left(U_{2}^{++}W_{4}^{++}-U_{4}^{++}W_{2}^{++}\right)\left(-1% \right)+\left(U_{3}^{++}W_{4}^{++}-U_{4}^{++}W_{3}^{++}\right)\left(-i2% \partial_{\eta}\theta_{0}\right)+ ( italic_U start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_W start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT - italic_U start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_W start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT ) ( - 1 ) + ( italic_U start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_W start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT - italic_U start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_W start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT ) ( - italic_i 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT )
=((+)21)ω++2iηθ0+2c++c++(+ω+++ω++)(+ω++++ω+)δ(3)(q+q).absentsuperscriptsubscriptabsent21subscript𝜔absent2𝑖subscript𝜂subscript𝜃0subscriptabsent2subscript𝑐absentsuperscriptsubscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsuperscript𝛿3𝑞superscript𝑞\displaystyle=\frac{\left(\left(\mathcal{R}_{+-}\right)^{2}-1\right)\omega_{+-% }+2i\partial_{\eta}\theta_{0}\mathcal{R}_{+-}}{2c_{++}c_{++}^{*}\left(\mathcal% {R}_{+-}\omega_{+-}-\mathcal{R}_{++}\omega_{++}\right)\left(\mathcal{R}_{+-}% \omega_{++}-\mathcal{R}_{++}\omega_{+-}\right)}\delta^{(3)}\left(\vec{q}+\vec{% q}^{\prime}\right).= divide start_ARG ( ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 1 ) italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT + 2 italic_i ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_q end_ARG + over→ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) . (365)
[aq+,aq+]superscriptsubscript𝑎𝑞absentsuperscriptsubscript𝑎superscript𝑞absent\displaystyle\left[a_{\vec{q}}^{+-},a_{-\vec{q}^{\prime}}^{+-\dagger}\right][ italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - † end_POSTSUPERSCRIPT ] =((++)21)ω+++2iηθ0++2c+c+(+ω+++ω++)(+ω++++ω+)δ(3)(q+q)absentsuperscriptsubscriptabsent21subscript𝜔absent2𝑖subscript𝜂subscript𝜃0subscriptabsent2subscript𝑐absentsuperscriptsubscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsuperscript𝛿3𝑞superscript𝑞\displaystyle=\frac{\left(\left(\mathcal{R}_{++}\right)^{2}-1\right)\omega_{++% }+2i\partial_{\eta}\theta_{0}\mathcal{R}_{++}}{2c_{+-}c_{+-}^{*}\left(\mathcal% {R}_{+-}\omega_{+-}-\mathcal{R}_{++}\omega_{++}\right)\left(\mathcal{R}_{+-}% \omega_{++}-\mathcal{R}_{++}\omega_{+-}\right)}\delta^{(3)}\left(\vec{q}+\vec{% q}^{\prime}\right)= divide start_ARG ( ( caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 1 ) italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT + 2 italic_i ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT end_ARG start_ARG 2 italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_q end_ARG + over→ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT )
[aq++,aq+]superscriptsubscript𝑎𝑞absentsuperscriptsubscript𝑎superscript𝑞absent\displaystyle\left[a_{\vec{q}}^{++},a_{\vec{q}^{\prime}}^{+-}\right][ italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT ] =δ(3)(q+q)(++++1)ω+(++++1)ω+++2iηθ0(+++)4c+c++(+ω+++ω++)(+ω++++ω+)absentsuperscript𝛿3𝑞superscript𝑞subscriptabsentsubscriptabsent1subscript𝜔absentsubscriptabsentsubscriptabsent1subscript𝜔absent2𝑖subscript𝜂subscript𝜃0subscriptabsentsubscriptabsent4subscript𝑐absentsubscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absent\displaystyle=\delta^{(3)}\left(\vec{q}+\vec{q}^{\prime}\right)\frac{\left(% \mathcal{R}_{++}\mathcal{R}_{+-}+1\right)\omega_{+-}-\left(\mathcal{R}_{++}% \mathcal{R}_{+-}+1\right)\omega_{++}+2i\partial_{\eta}\theta_{0}\left(\mathcal% {R}_{++}-\mathcal{R}_{+-}\right)}{4c_{+-}c_{++}\left(\mathcal{R}_{+-}\omega_{+% -}-\mathcal{R}_{++}\omega_{++}\right)\left(\mathcal{R}_{+-}\omega_{++}-% \mathcal{R}_{++}\omega_{+-}\right)}= italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_q end_ARG + over→ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) divide start_ARG ( caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT + 1 ) italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - ( caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT + 1 ) italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT + 2 italic_i ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG start_ARG 4 italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG
=0absent0\displaystyle=0= 0
[aq1++,aq2++]superscriptsubscript𝑎𝑞limit-from1superscriptsubscript𝑎𝑞limit-from2absent\displaystyle\left[a_{\vec{q}}^{1++},a_{-\vec{q}}^{2++\dagger}\right][ italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 + + end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 + + † end_POSTSUPERSCRIPT ] =δ(3)(q+q)(1+++)ω++(1+++)ω++2iηθ0(++++)4c++c+(+ω+++ω++)(+ω++++ω+)absentsuperscript𝛿3𝑞superscript𝑞1subscriptabsentsubscriptabsentsubscript𝜔absent1subscriptabsentsubscriptabsentsubscript𝜔absent2𝑖subscript𝜂subscript𝜃0subscriptabsentsubscriptabsent4subscript𝑐absentsuperscriptsubscript𝑐absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absent\displaystyle=\delta^{(3)}\left(\vec{q}+\vec{q}^{\prime}\right)\frac{\left(1-% \mathcal{R}_{++}\mathcal{R}_{+-}\right)\omega_{+-}+\left(1-\mathcal{R}_{++}% \mathcal{R}_{+-}\right)\omega_{++}-2i\partial_{\eta}\theta_{0}\left(\mathcal{R% }_{++}+\mathcal{R}_{+-}\right)}{4c_{++}c_{+-}^{*}\left(\mathcal{R}_{+-}\omega_% {+-}-\mathcal{R}_{++}\omega_{++}\right)\left(\mathcal{R}_{+-}\omega_{++}-% \mathcal{R}_{++}\omega_{+-}\right)}= italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_q end_ARG + over→ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) divide start_ARG ( 1 - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT + ( 1 - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - 2 italic_i ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT + caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG start_ARG 4 italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG
=0absent0\displaystyle=0= 0
[aq+,aq++]superscriptsubscript𝑎𝑞absentsuperscriptsubscript𝑎superscript𝑞absent\displaystyle\left[a_{\vec{q}}^{+-},a_{-\vec{q}^{\prime}}^{++\dagger}\right][ italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + † end_POSTSUPERSCRIPT ] =0absent0\displaystyle=0= 0
[aq++,aq+]superscriptsubscript𝑎𝑞absentsuperscriptsubscript𝑎superscript𝑞absent\displaystyle\left[a_{-\vec{q}}^{++\dagger},a_{-\vec{q}^{\prime}}^{+-\dagger}\right][ italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + † end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - † end_POSTSUPERSCRIPT ] =0.absent0\displaystyle=0\;.= 0 .

Hence for the operator set defined as

uqn=(aq++,aq++,aq+,aq+)nsuperscriptsubscript𝑢𝑞𝑛superscriptsuperscriptsubscript𝑎𝑞absentsuperscriptsubscript𝑎𝑞absentsuperscriptsubscript𝑎𝑞absentsuperscriptsubscript𝑎𝑞absent𝑛u_{\vec{q}}^{n}=\left(a_{\vec{q}}^{++},a_{-\vec{q}}^{++\dagger},a_{\vec{q}}^{+% -},a_{-\vec{q}}^{+-\dagger}\right)^{n}italic_u start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = ( italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + † end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - † end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT (366)

the commutators are

[uqn,uqm]=[0100100000010010]nmδ(3)(q+q)superscriptsubscript𝑢𝑞𝑛superscriptsubscript𝑢superscript𝑞𝑚superscriptdelimited-[]0100100000010010𝑛𝑚superscript𝛿3𝑞superscript𝑞\left[u_{\vec{q}}^{n},u_{\vec{q}^{\prime}}^{m}\right]=\left[\begin{array}[]{% cccc}0&1&0&0\\ -1&0&0&0\\ 0&0&0&1\\ 0&0&-1&0\end{array}\right]^{nm}\delta^{(3)}\left(\vec{q}+\vec{q}^{\prime}\right)[ italic_u start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , italic_u start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ] = [ start_ARRAY start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL - 1 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW end_ARRAY ] start_POSTSUPERSCRIPT italic_n italic_m end_POSTSUPERSCRIPT italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_q end_ARG + over→ start_ARG italic_q end_ARG start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) (367)

where we set the coefficients c+±subscript𝑐absentplus-or-minusc_{+\pm}italic_c start_POSTSUBSCRIPT + ± end_POSTSUBSCRIPT through the expressions

c++c++subscript𝑐absentsuperscriptsubscript𝑐absent\displaystyle c_{++}c_{++}^{*}italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT =(1(+)2)ω+2iηθ0+2(+ω+++ω++)(+ω++++ω+),absent1superscriptsubscriptabsent2subscript𝜔absent2𝑖subscript𝜂subscript𝜃0subscriptabsent2subscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absent\displaystyle=-\frac{\left(1-\left(\mathcal{R}_{+-}\right)^{2}\right)\omega_{+% -}-2i\partial_{\eta}\theta_{0}\mathcal{R}_{+-}}{2\left(\mathcal{R}_{+-}\omega_% {+-}-\mathcal{R}_{++}\omega_{++}\right)\left(\mathcal{R}_{+-}\omega_{++}-% \mathcal{R}_{++}\omega_{+-}\right)},= - divide start_ARG ( 1 - ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - 2 italic_i ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT end_ARG start_ARG 2 ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG , (368)
c+c+subscript𝑐absentsuperscriptsubscript𝑐absent\displaystyle c_{+-}c_{+-}^{*}italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT =(1(++)2)ω++2iηθ0++2(+ω+++ω++)(+ω++++ω+).absent1superscriptsubscriptabsent2subscript𝜔absent2𝑖subscript𝜂subscript𝜃0subscriptabsent2subscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absentsubscriptabsentsubscript𝜔absent\displaystyle=-\frac{\left(1-\left(\mathcal{R}_{++}\right)^{2}\right)\omega_{+% +}-2i\partial_{\eta}\theta_{0}\mathcal{R}_{++}}{2\left(\mathcal{R}_{+-}\omega_% {+-}-\mathcal{R}_{++}\omega_{++}\right)\left(\mathcal{R}_{+-}\omega_{++}-% \mathcal{R}_{++}\omega_{+-}\right)}.= - divide start_ARG ( 1 - ( caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - 2 italic_i ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT end_ARG start_ARG 2 ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ) ( caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT - caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ) end_ARG . (369)

Clearly, the ladder operators associated with distinct frequencies commute with each other. Hence, we can define a common vacuum state |0ket0\left|0\right\rangle| 0 ⟩ which is annihilated simultaneously by both aq++superscriptsubscript𝑎𝑞absenta_{\vec{q}}^{++}italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT and aq+superscriptsubscript𝑎𝑞absenta_{\vec{q}}^{+-}italic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT for all q𝑞\vec{q}over→ start_ARG italic_q end_ARG:

aq++|0superscriptsubscript𝑎𝑞absentket0\displaystyle a_{\vec{q}}^{++}\left|0\right\rangleitalic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT | 0 ⟩ =0,absent0\displaystyle=0,= 0 , (370)
aq+|0superscriptsubscript𝑎𝑞absentket0\displaystyle a_{\vec{q}}^{+-}\left|0\right\rangleitalic_a start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT | 0 ⟩ =0.absent0\displaystyle=0.= 0 . (371)

Note that the normal mode vectors V+±nsuperscriptsubscript𝑉absentplus-or-minus𝑛V_{+\pm}^{n}italic_V start_POSTSUBSCRIPT + ± end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT associated with the corresponding ladder operators a+±superscript𝑎absentplus-or-minusa^{+\pm}italic_a start_POSTSUPERSCRIPT + ± end_POSTSUPERSCRIPT are not orthogonal.

D.4 Hamiltonian

We conclude our discussion on the quantization of the coupled system by evaluating its Hamiltonian. We show that in the conformal limit, the normal mode solution given in Eq. (342) diagonalizes the Hamiltonian such that the vacuum state |0ket0\left|0\right\rangle| 0 ⟩ is the state of minimum energy.

Hence, let us consider the Hamiltonian density defined through the expression

2=nπnηψn2subscript2subscript𝑛superscript𝜋𝑛subscript𝜂superscript𝜓𝑛subscript2\mathcal{H}_{2}=\sum_{n}\pi^{n}\partial_{\eta}\psi^{n}-\mathcal{L}_{2}caligraphic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_π start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT - caligraphic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT (372)

and the Hamiltonian given by

H(η)=d3x(η,x).𝐻𝜂superscript𝑑3𝑥𝜂𝑥H(\eta)=\int d^{3}x\mathcal{H}(\eta,\vec{x}).italic_H ( italic_η ) = ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x caligraphic_H ( italic_η , over→ start_ARG italic_x end_ARG ) . (373)

In the time-independent conformal regime when Y0=Ycsubscript𝑌0subscript𝑌𝑐Y_{0}=Y_{c}italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT and ηθ0subscript𝜂subscript𝜃0\partial_{\eta}\theta_{0}∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT are constants, the Hamiltonian simplifies to

\displaystyle\mathcal{H}caligraphic_H =12(ηδY)2+12(ηδX)2+12(iδΓ)2+12(iδχ)2absent12superscriptsubscript𝜂𝛿𝑌212superscriptsubscript𝜂𝛿𝑋212superscriptsubscript𝑖𝛿Γ212superscriptsubscript𝑖𝛿𝜒2\displaystyle=\frac{1}{2}\left(\partial_{\eta}\delta Y\right)^{2}+\frac{1}{2}% \left(\partial_{\eta}\delta X\right)^{2}+\frac{1}{2}\left(\partial_{i}\delta% \Gamma\right)^{2}+\frac{1}{2}\left(\partial_{i}\delta\chi\right)^{2}= divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_Y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_X ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_δ roman_Γ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_δ italic_χ ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
12(δY)2(ηθ0)2+(3λ2Yc2)(δY)2.12superscript𝛿𝑌2superscriptsubscript𝜂subscript𝜃023𝜆2superscriptsubscript𝑌𝑐2superscript𝛿𝑌2\displaystyle-\frac{1}{2}\left(\delta Y\right)^{2}\left(\partial_{\eta}\theta_% {0}\right)^{2}+\left(\frac{3\lambda}{2}Y_{c}^{2}\right)\left(\delta Y\right)^{% 2}.- divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_δ italic_Y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( divide start_ARG 3 italic_λ end_ARG start_ARG 2 end_ARG italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) ( italic_δ italic_Y ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . (374)

We introduce Fourier notation

δψkn(η)𝛿superscriptsubscript𝜓𝑘𝑛𝜂\displaystyle\delta\psi_{\vec{k}}^{n}(\eta)italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_η ) d3xeikxδψn(η,x),absentsuperscript𝑑3𝑥superscript𝑒𝑖𝑘𝑥𝛿superscript𝜓𝑛𝜂𝑥\displaystyle\equiv\int d^{3}xe^{-i\vec{k}\cdot\vec{x}}\delta\psi^{n}(\eta,% \vec{x}),≡ ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x italic_e start_POSTSUPERSCRIPT - italic_i over→ start_ARG italic_k end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_η , over→ start_ARG italic_x end_ARG ) , (375)
δψn(η,x)𝛿superscript𝜓𝑛𝜂𝑥\displaystyle\delta\psi^{n}(\eta,\vec{x})italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_η , over→ start_ARG italic_x end_ARG ) d3k(2π)3eikxδψkn(η),absentsuperscript𝑑3𝑘superscript2𝜋3superscript𝑒𝑖𝑘𝑥𝛿superscriptsubscript𝜓𝑘𝑛𝜂\displaystyle\equiv\int\frac{d^{3}k}{\left(2\pi\right)^{3}}e^{i\vec{k}\cdot% \vec{x}}\delta\psi_{\vec{k}}^{n}(\eta),≡ ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_e start_POSTSUPERSCRIPT italic_i over→ start_ARG italic_k end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_η ) , (376)
ηδψn(η,x)subscript𝜂𝛿superscript𝜓𝑛𝜂𝑥\displaystyle\partial_{\eta}\delta\psi^{n}(\eta,\vec{x})∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_η , over→ start_ARG italic_x end_ARG ) d3k(2π)3eikxηδψn(η),absentsuperscript𝑑3𝑘superscript2𝜋3superscript𝑒𝑖𝑘𝑥subscript𝜂𝛿superscript𝜓𝑛𝜂\displaystyle\equiv\int\frac{d^{3}k}{\left(2\pi\right)^{3}}e^{i\vec{k}\cdot% \vec{x}}\partial_{\eta}\delta\psi^{n}(\eta),≡ ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_e start_POSTSUPERSCRIPT italic_i over→ start_ARG italic_k end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_η ) , (377)
iψn(η,x)subscript𝑖superscript𝜓𝑛𝜂𝑥\displaystyle\partial_{i}\psi^{n}(\eta,\vec{x})∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_η , over→ start_ARG italic_x end_ARG ) d3k(2π)3ikeikxδψkn(η).absentsuperscript𝑑3𝑘superscript2𝜋3𝑖𝑘superscript𝑒𝑖𝑘𝑥𝛿superscriptsubscript𝜓𝑘𝑛𝜂\displaystyle\equiv\int\frac{d^{3}k}{\left(2\pi\right)^{3}}i\vec{k}e^{i\vec{k}% \cdot\vec{x}}\delta\psi_{\vec{k}}^{n}(\eta).≡ ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_i over→ start_ARG italic_k end_ARG italic_e start_POSTSUPERSCRIPT italic_i over→ start_ARG italic_k end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_η ) . (378)

Taking the Fourier transform of the fields we write the Hamiltonian as

H𝐻\displaystyle Hitalic_H =d3xabsentsuperscript𝑑3𝑥\displaystyle=\int d^{3}x\mathcal{H}= ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x caligraphic_H
=d3xd3k(2π)3eikxd3q(2π)3eiqx(Amnηδψknηδψqm(kq)Bmnδψknδψqm+Cmnδψknδψqm)absentsuperscript𝑑3𝑥superscript𝑑3𝑘superscript2𝜋3superscript𝑒𝑖𝑘𝑥superscript𝑑3𝑞superscript2𝜋3superscript𝑒𝑖𝑞𝑥superscript𝐴𝑚𝑛subscript𝜂𝛿superscriptsubscript𝜓𝑘𝑛subscript𝜂𝛿superscriptsubscript𝜓𝑞𝑚𝑘𝑞superscript𝐵𝑚𝑛𝛿superscriptsubscript𝜓𝑘𝑛𝛿superscriptsubscript𝜓𝑞𝑚superscript𝐶𝑚𝑛𝛿superscriptsubscript𝜓𝑘𝑛𝛿superscriptsubscript𝜓𝑞𝑚\displaystyle=\int d^{3}x\int\frac{d^{3}k}{\left(2\pi\right)^{3}}e^{i\vec{k}% \cdot\vec{x}}\int\frac{d^{3}q}{\left(2\pi\right)^{3}}e^{i\vec{q}\cdot\vec{x}}% \left(A^{mn}\partial_{\eta}\delta\psi_{\vec{k}}^{n}\partial_{\eta}\delta\psi_{% \vec{q}}^{m}-\left(\vec{k}\cdot\vec{q}\right)B^{mn}\delta\psi_{\vec{k}}^{n}% \delta\psi_{\vec{q}}^{m}+C^{mn}\delta\psi_{\vec{k}}^{n}\delta\psi_{\vec{q}}^{m% }\right)= ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_e start_POSTSUPERSCRIPT italic_i over→ start_ARG italic_k end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_q end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_e start_POSTSUPERSCRIPT italic_i over→ start_ARG italic_q end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT ( italic_A start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT - ( over→ start_ARG italic_k end_ARG ⋅ over→ start_ARG italic_q end_ARG ) italic_B start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT )
=d3k(2π)3d3q(2π)3d3xei(k+q)x(Amnηδψknηδψqm(kq)Bmnδψknδψqm+Cmnδψknδψqm)absentsuperscript𝑑3𝑘superscript2𝜋3superscript𝑑3𝑞superscript2𝜋3superscript𝑑3𝑥superscript𝑒𝑖𝑘𝑞𝑥superscript𝐴𝑚𝑛subscript𝜂𝛿superscriptsubscript𝜓𝑘𝑛subscript𝜂𝛿superscriptsubscript𝜓𝑞𝑚𝑘𝑞superscript𝐵𝑚𝑛𝛿superscriptsubscript𝜓𝑘𝑛𝛿superscriptsubscript𝜓𝑞𝑚superscript𝐶𝑚𝑛𝛿superscriptsubscript𝜓𝑘𝑛𝛿superscriptsubscript𝜓𝑞𝑚\displaystyle=\int\frac{d^{3}k}{\left(2\pi\right)^{3}}\int\frac{d^{3}q}{\left(% 2\pi\right)^{3}}\int d^{3}xe^{i\left(\vec{k}+\vec{q}\right)\cdot\vec{x}}\left(% A^{mn}\partial_{\eta}\delta\psi_{\vec{k}}^{n}\partial_{\eta}\delta\psi_{\vec{q% }}^{m}-\left(\vec{k}\cdot\vec{q}\right)B^{mn}\delta\psi_{\vec{k}}^{n}\delta% \psi_{\vec{q}}^{m}+C^{mn}\delta\psi_{\vec{k}}^{n}\delta\psi_{\vec{q}}^{m}\right)= ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_q end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ∫ italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_x italic_e start_POSTSUPERSCRIPT italic_i ( over→ start_ARG italic_k end_ARG + over→ start_ARG italic_q end_ARG ) ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT ( italic_A start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT - ( over→ start_ARG italic_k end_ARG ⋅ over→ start_ARG italic_q end_ARG ) italic_B start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT + italic_C start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_q end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT )
=d3k(2π)3(Amnηδψknηδψkm+Bmnδψknδψkm)absentsuperscript𝑑3𝑘superscript2𝜋3superscript𝐴𝑚𝑛subscript𝜂𝛿superscriptsubscript𝜓𝑘𝑛subscript𝜂𝛿superscriptsubscript𝜓𝑘𝑚superscript𝐵𝑚𝑛𝛿superscriptsubscript𝜓𝑘𝑛𝛿superscriptsubscript𝜓𝑘𝑚\displaystyle=\int\frac{d^{3}k}{\left(2\pi\right)^{3}}\left(A^{mn}\partial_{% \eta}\delta\psi_{\vec{k}}^{n}\partial_{\eta}\delta\psi_{-\vec{k}}^{m}+B^{mn}% \delta\psi_{\vec{k}}^{n}\delta\psi_{-\vec{k}}^{m}\right)= ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ( italic_A start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT + italic_B start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT )

where

Amnsuperscript𝐴𝑚𝑛\displaystyle A^{mn}italic_A start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT =12[1001],absent12delimited-[]1001\displaystyle=\frac{1}{2}\left[\begin{array}[]{cc}1&0\\ 0&1\end{array}\right],= divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ start_ARRAY start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ] , (381)
Bmnsuperscript𝐵𝑚𝑛\displaystyle B^{mn}italic_B start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT =12[(k2+3λYc2(ηθ0)2)00k2].absent12delimited-[]superscript𝑘23𝜆superscriptsubscript𝑌𝑐2superscriptsubscript𝜂subscript𝜃0200superscript𝑘2\displaystyle=\frac{1}{2}\left[\begin{array}[]{cc}\left(k^{2}+3\lambda Y_{c}^{% 2}-\left(\partial_{\eta}\theta_{0}\right)^{2}\right)&0\\ 0&k^{2}\end{array}\right].= divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ start_ARRAY start_ROW start_CELL ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY ] . (384)

Hence, in the conformal limit the Hamiltonian is diagonal in terms of the fields and its time-derivatives.

Using our general solution for the fields

δψn=d3k(2π)3/2r(akrhknr(η)+akrhknr)eikx𝛿superscript𝜓𝑛superscript𝑑3𝑘superscript2𝜋32subscript𝑟superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑘𝑛𝑟𝜂superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑘𝑛𝑟superscript𝑒𝑖𝑘𝑥\delta\psi^{n}=\int\frac{d^{3}k}{(2\pi)^{3/2}}\sum_{r}\left(a_{\vec{k}}^{r}h_{% k}^{nr}(\eta)+a_{-\vec{k}}^{r\dagger}h_{k}^{nr*}\right)e^{i\vec{k}\cdot\vec{x}}italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∑ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT ( italic_η ) + italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r † end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r ∗ end_POSTSUPERSCRIPT ) italic_e start_POSTSUPERSCRIPT italic_i over→ start_ARG italic_k end_ARG ⋅ over→ start_ARG italic_x end_ARG end_POSTSUPERSCRIPT (385)

it is possible to write

(Amnηδψknηδψkm+Bmnδψknδψkm)=r,s[T1rsakraks+T2rsakraks+T3rsakraks+T4rsakraks]superscript𝐴𝑚𝑛subscript𝜂𝛿superscriptsubscript𝜓𝑘𝑛subscript𝜂𝛿superscriptsubscript𝜓𝑘𝑚superscript𝐵𝑚𝑛𝛿superscriptsubscript𝜓𝑘𝑛𝛿superscriptsubscript𝜓𝑘𝑚subscript𝑟𝑠delimited-[]superscriptsubscript𝑇1𝑟𝑠superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑎𝑘𝑠superscriptsubscript𝑇2𝑟𝑠superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑎𝑘𝑠superscriptsubscript𝑇3𝑟𝑠superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑎𝑘𝑠superscriptsubscript𝑇4𝑟𝑠superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑎𝑘𝑠\left(A^{mn}\partial_{\eta}\delta\psi_{\vec{k}}^{n}\partial_{\eta}\delta\psi_{% -\vec{k}}^{m}+B^{mn}\delta\psi_{\vec{k}}^{n}\delta\psi_{-\vec{k}}^{m}\right)=% \sum_{r,s}\left[T_{1}^{rs}a_{\vec{k}}^{r}a_{-\vec{k}}^{s}+T_{2}^{rs}a_{-\vec{k% }}^{r\dagger}a_{-\vec{k}}^{s}+T_{3}^{rs}a_{\vec{k}}^{r}a_{\vec{k}}^{s\dagger}+% T_{4}^{rs}a_{-\vec{k}}^{r\dagger}a_{\vec{k}}^{s\dagger}\right]( italic_A start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT + italic_B start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ) = ∑ start_POSTSUBSCRIPT italic_r , italic_s end_POSTSUBSCRIPT [ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT + italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r † end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT + italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s † end_POSTSUPERSCRIPT + italic_T start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r † end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s † end_POSTSUPERSCRIPT ] (386)

where the indices r,s(++,+)r,s\in\left(++,+-\right)italic_r , italic_s ∈ ( + + , + - ). Below we evaluate T1rssuperscriptsubscript𝑇1𝑟𝑠T_{1}^{rs}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT:

T1rssuperscriptsubscript𝑇1𝑟𝑠\displaystyle T_{1}^{rs}italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT =Amn(ηhknr)(ηhkms)+a2Bmnhknrhkmsabsentsuperscript𝐴𝑚𝑛subscript𝜂superscriptsubscript𝑘𝑛𝑟subscript𝜂superscriptsubscript𝑘𝑚𝑠superscript𝑎2superscript𝐵𝑚𝑛superscriptsubscript𝑘𝑛𝑟superscriptsubscript𝑘𝑚𝑠\displaystyle=A^{mn}\left(\partial_{\eta}h_{k}^{nr}\right)\left(\partial_{\eta% }h_{-k}^{ms}\right)+a^{-2}B^{mn}h_{k}^{nr}h_{-k}^{ms}= italic_A start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT ) ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT - italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m italic_s end_POSTSUPERSCRIPT ) + italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_B start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT - italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m italic_s end_POSTSUPERSCRIPT
=12ηhk1rηhk1s+12(k2+3λY02(ηθ0)2)hk1rhk1s+12ηhk2rηhk2s+12(k2)hk2rhk2s.absent12subscript𝜂superscriptsubscript𝑘1𝑟subscript𝜂superscriptsubscript𝑘1𝑠12superscript𝑘23𝜆superscriptsubscript𝑌02superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝑘1𝑟superscriptsubscript𝑘1𝑠12subscript𝜂superscriptsubscript𝑘2𝑟subscript𝜂superscriptsubscript𝑘2𝑠12superscript𝑘2superscriptsubscript𝑘2𝑟superscriptsubscript𝑘2𝑠\displaystyle=\frac{1}{2}\partial_{\eta}h_{k}^{1r}\partial_{\eta}h_{-k}^{1s}+% \frac{1}{2}\left(k^{2}+3\lambda Y_{0}^{2}-\left(\partial_{\eta}\theta_{0}% \right)^{2}\right)h_{k}^{1r}h_{-k}^{1s}+\frac{1}{2}\partial_{\eta}h_{k}^{2r}% \partial_{\eta}h_{-k}^{2s}+\frac{1}{2}\left(k^{2}\right)h_{k}^{2r}h_{-k}^{2s}.= divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_r end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT - italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_s end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_r end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT - italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_s end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_r end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT - italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_s end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_r end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT - italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_s end_POSTSUPERSCRIPT . (387)

Using the mode solution

hknr=crVrneiωrηηhknr=iωrcrVrneiωrη,formulae-sequencesuperscriptsubscript𝑘𝑛𝑟subscript𝑐𝑟superscriptsubscript𝑉𝑟𝑛superscript𝑒𝑖subscript𝜔𝑟𝜂subscript𝜂superscriptsubscript𝑘𝑛𝑟𝑖subscript𝜔𝑟subscript𝑐𝑟superscriptsubscript𝑉𝑟𝑛superscript𝑒𝑖subscript𝜔𝑟𝜂h_{k}^{nr}=c_{r}V_{r}^{n}e^{-i\omega_{r}\eta}\qquad\partial_{\eta}h_{k}^{nr}=-% i\omega_{r}c_{r}V_{r}^{n}e^{-i\omega_{r}\eta},italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT = italic_c start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r end_POSTSUPERSCRIPT = - italic_i italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_η end_POSTSUPERSCRIPT , (388)

it follows that

T1rsei(ωr+ωs)ηcrcssuperscriptsubscript𝑇1𝑟𝑠superscript𝑒𝑖subscript𝜔𝑟subscript𝜔𝑠𝜂subscript𝑐𝑟subscript𝑐𝑠\displaystyle\frac{T_{1}^{rs}}{e^{-i\left(\omega_{r}+\omega_{s}\right)\eta}c_{% r}c_{s}}divide start_ARG italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT end_ARG start_ARG italic_e start_POSTSUPERSCRIPT - italic_i ( italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) italic_η end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG =[ωrωs+k2+3λY02(ηθ0)2]Vr1Vs1+[ωrωs+k2]Vr2Vs2absentdelimited-[]subscript𝜔𝑟subscript𝜔𝑠superscript𝑘23𝜆superscriptsubscript𝑌02superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝑉𝑟1superscriptsubscript𝑉𝑠1delimited-[]subscript𝜔𝑟subscript𝜔𝑠superscript𝑘2superscriptsubscript𝑉𝑟2superscriptsubscript𝑉𝑠2\displaystyle=\left[-\omega_{r}\omega_{s}+k^{2}+3\lambda Y_{0}^{2}-\left(% \partial_{\eta}\theta_{0}\right)^{2}\right]V_{r}^{1}V_{s}^{1}+\left[-\omega_{r% }\omega_{s}+k^{2}\right]V_{r}^{2}V_{s}^{2}= [ - italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT + [ - italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
=(ωrωs)(ωrVr1Vs1ωsVr2Vs2i2ηθ0Vs1Vr2).absentsubscript𝜔𝑟subscript𝜔𝑠subscript𝜔𝑟superscriptsubscript𝑉𝑟1superscriptsubscript𝑉𝑠1subscript𝜔𝑠superscriptsubscript𝑉𝑟2superscriptsubscript𝑉𝑠2𝑖2subscript𝜂subscript𝜃0superscriptsubscript𝑉𝑠1superscriptsubscript𝑉𝑟2\displaystyle=\left(\omega_{r}-\omega_{s}\right)\left(\omega_{r}V_{r}^{1}V_{s}% ^{1}-\omega_{s}V_{r}^{2}V_{s}^{2}-i2\partial_{\eta}\theta_{0}V_{s}^{1}V_{r}^{2% }\right).= ( italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) ( italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT - italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_i 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) .

In the above equation, the expression in the second bracket goes to when rs𝑟𝑠r\neq sitalic_r ≠ italic_s. Hence, we conclude that T1rs=0superscriptsubscript𝑇1𝑟𝑠0T_{1}^{rs}=0italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT = 0 for all combinations of r,s𝑟𝑠r,sitalic_r , italic_s. Similar calculations show that T4rs=0superscriptsubscript𝑇4𝑟𝑠0T_{4}^{rs}=0italic_T start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT = 0.

Next, we evaluate T2rssuperscriptsubscript𝑇2𝑟𝑠T_{2}^{rs}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT:

T2rssuperscriptsubscript𝑇2𝑟𝑠\displaystyle T_{2}^{rs}italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT =Amn(ηhknr)(ηhkms)+Bmnhknrhkmsabsentsuperscript𝐴𝑚𝑛subscript𝜂superscriptsubscript𝑘𝑛𝑟subscript𝜂superscriptsubscript𝑘𝑚𝑠superscript𝐵𝑚𝑛superscriptsubscript𝑘𝑛𝑟superscriptsubscript𝑘𝑚𝑠\displaystyle=A^{mn}\left(\partial_{\eta}h_{k}^{nr*}\right)\left(\partial_{% \eta}h_{k}^{ms}\right)+B^{mn}h_{k}^{nr*}h_{k}^{ms}= italic_A start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r ∗ end_POSTSUPERSCRIPT ) ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m italic_s end_POSTSUPERSCRIPT ) + italic_B start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n italic_r ∗ end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m italic_s end_POSTSUPERSCRIPT
=12[ηhk1rηhk1s+(k2+3λYc2(ηθ0)2)hk1rhk1s]absent12delimited-[]subscript𝜂superscriptsubscript𝑘1𝑟subscript𝜂superscriptsubscript𝑘1𝑠superscript𝑘23𝜆superscriptsubscript𝑌𝑐2superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝑘1𝑟superscriptsubscript𝑘1𝑠\displaystyle=\frac{1}{2}\left[\partial_{\eta}h_{k}^{1r*}\partial_{\eta}h_{k}^% {1s}+\left(k^{2}+3\lambda Y_{c}^{2}-\left(\partial_{\eta}\theta_{0}\right)^{2}% \right)h_{k}^{1r*}h_{k}^{1s}\right]= divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_r ∗ end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_s end_POSTSUPERSCRIPT + ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_r ∗ end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 italic_s end_POSTSUPERSCRIPT ]
+12[ηhk2rηhk2s+(k2)hk2rhk2s]12delimited-[]subscript𝜂superscriptsubscript𝑘2𝑟subscript𝜂superscriptsubscript𝑘2𝑠superscript𝑘2superscriptsubscript𝑘2𝑟superscriptsubscript𝑘2𝑠\displaystyle+\frac{1}{2}\left[\partial_{\eta}h_{k}^{2r*}\partial_{\eta}h_{k}^% {2s}+\left(k^{2}\right)h_{k}^{2r*}h_{k}^{2s}\right]+ divide start_ARG 1 end_ARG start_ARG 2 end_ARG [ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_r ∗ end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_s end_POSTSUPERSCRIPT + ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_r ∗ end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 italic_s end_POSTSUPERSCRIPT ]
T2rsei(ωrωs)ηcrcssuperscriptsubscript𝑇2𝑟𝑠superscript𝑒𝑖subscript𝜔𝑟subscript𝜔𝑠𝜂superscriptsubscript𝑐𝑟subscript𝑐𝑠\displaystyle\frac{T_{2}^{rs}}{e^{i\left(\omega_{r}-\omega_{s}\right)\eta}c_{r% }^{*}c_{s}}divide start_ARG italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT end_ARG start_ARG italic_e start_POSTSUPERSCRIPT italic_i ( italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) italic_η end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG =[ωrωs+k2+3λYc2(ηθ0)2]Vr1Vs1+[ωrωs+k2]Vr2Vs2absentdelimited-[]subscript𝜔𝑟subscript𝜔𝑠superscript𝑘23𝜆superscriptsubscript𝑌𝑐2superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝑉𝑟1superscriptsubscript𝑉𝑠1delimited-[]subscript𝜔𝑟subscript𝜔𝑠superscript𝑘2superscriptsubscript𝑉𝑟2superscriptsubscript𝑉𝑠2\displaystyle=\left[\omega_{r}\omega_{s}+k^{2}+3\lambda Y_{c}^{2}-\left(% \partial_{\eta}\theta_{0}\right)^{2}\right]V_{r}^{1*}V_{s}^{1}+\left[\omega_{r% }\omega_{s}+k^{2}\right]V_{r}^{2*}V_{s}^{2}= [ italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT + [ italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
=(ωr+ωs)(ωrVr1Vs1+ωsVr2Vs2+i2ηθ0Vs1Vr2)absentsubscript𝜔𝑟subscript𝜔𝑠subscript𝜔𝑟superscriptsubscript𝑉𝑟1superscriptsubscript𝑉𝑠1subscript𝜔𝑠superscriptsubscript𝑉𝑟2superscriptsubscript𝑉𝑠2𝑖2subscript𝜂subscript𝜃0superscriptsubscript𝑉𝑠1superscriptsubscript𝑉𝑟2\displaystyle=\left(\omega_{r}+\omega_{s}\right)\left(\omega_{r}V_{r}^{1}V_{s}% ^{1}+\omega_{s}V_{r}^{2*}V_{s}^{2}+i2\partial_{\eta}\theta_{0}V_{s}^{1}V_{r}^{% 2*}\right)= ( italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) ( italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT + italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_i 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 ∗ end_POSTSUPERSCRIPT )

which is non zero only when r=s𝑟𝑠r=sitalic_r = italic_s. Similarly

T3rsei(ωrωs)ηcrcssuperscriptsubscript𝑇3𝑟𝑠superscript𝑒𝑖subscript𝜔𝑟subscript𝜔𝑠𝜂subscript𝑐𝑟superscriptsubscript𝑐𝑠\displaystyle\frac{T_{3}^{rs}}{e^{-i\left(\omega_{r}-\omega_{s}\right)\eta}c_{% r}c_{s}^{*}}divide start_ARG italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT end_ARG start_ARG italic_e start_POSTSUPERSCRIPT - italic_i ( italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) italic_η end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT end_ARG =[ωrωs+k2+3λYc2(ηθ0)2]Vr1Vs1+[ωrωs+k2]Vr2Vs2absentdelimited-[]subscript𝜔𝑟subscript𝜔𝑠superscript𝑘23𝜆superscriptsubscript𝑌𝑐2superscriptsubscript𝜂subscript𝜃02superscriptsubscript𝑉𝑟1superscriptsubscript𝑉𝑠1delimited-[]subscript𝜔𝑟subscript𝜔𝑠superscript𝑘2superscriptsubscript𝑉𝑟2superscriptsubscript𝑉𝑠2\displaystyle=\left[\omega_{r}\omega_{s}+k^{2}+3\lambda Y_{c}^{2}-\left(% \partial_{\eta}\theta_{0}\right)^{2}\right]V_{r}^{1}V_{s}^{1*}+\left[\omega_{r% }\omega_{s}+k^{2}\right]V_{r}^{2}V_{s}^{2*}= [ italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 3 italic_λ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 ∗ end_POSTSUPERSCRIPT + [ italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 ∗ end_POSTSUPERSCRIPT
=(ωr+ωs)(ωrVr1Vs1+ωsVr2Vs2i2ηθ0Vs1Vr2)absentsubscript𝜔𝑟subscript𝜔𝑠subscript𝜔𝑟superscriptsubscript𝑉𝑟1superscriptsubscript𝑉𝑠1subscript𝜔𝑠superscriptsubscript𝑉𝑟2superscriptsubscript𝑉𝑠2𝑖2subscript𝜂subscript𝜃0superscriptsubscript𝑉𝑠1superscriptsubscript𝑉𝑟2\displaystyle=\left(\omega_{r}+\omega_{s}\right)\left(\omega_{r}V_{r}^{1}V_{s}% ^{1*}+\omega_{s}V_{r}^{2}V_{s}^{2*}-i2\partial_{\eta}\theta_{0}V_{s}^{1*}V_{r}% ^{2}\right)= ( italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) ( italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 ∗ end_POSTSUPERSCRIPT + italic_ω start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 ∗ end_POSTSUPERSCRIPT - italic_i 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_V start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 ∗ end_POSTSUPERSCRIPT italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )

vanishes when rs𝑟𝑠r\neq sitalic_r ≠ italic_s. Hence we find that for the amplitudes Vrn(k,ηi)superscriptsubscript𝑉𝑟𝑛𝑘subscript𝜂𝑖V_{r}^{n}(k,\eta_{i})italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_k , italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ), the coefficients T1,4rssuperscriptsubscript𝑇14𝑟𝑠T_{1,4}^{rs}italic_T start_POSTSUBSCRIPT 1 , 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT vanish for all combinations of r,s𝑟𝑠r,sitalic_r , italic_s. Meanwhile, we find that T2,3rssuperscriptsubscript𝑇23𝑟𝑠T_{2,3}^{rs}italic_T start_POSTSUBSCRIPT 2 , 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT are non-zero only when r=s𝑟𝑠r=sitalic_r = italic_s. Thus, the normal frequency solutions corresponding to ω++subscript𝜔absent\omega_{++}italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT and ω+subscript𝜔absent\omega_{+-}italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT diagonalize our Hamiltonian, which we write as

H𝐻\displaystyle Hitalic_H =d3k(2π)3(Amnηδψknηδψkm+Bmnδψknδψkm)absentsuperscript𝑑3𝑘superscript2𝜋3superscript𝐴𝑚𝑛subscript𝜂𝛿superscriptsubscript𝜓𝑘𝑛subscript𝜂𝛿superscriptsubscript𝜓𝑘𝑚superscript𝐵𝑚𝑛𝛿superscriptsubscript𝜓𝑘𝑛𝛿superscriptsubscript𝜓𝑘𝑚\displaystyle=\int\frac{d^{3}k}{\left(2\pi\right)^{3}}\left(A^{mn}\partial_{% \eta}\delta\psi_{\vec{k}}^{n}\partial_{\eta}\delta\psi_{-\vec{k}}^{m}+B^{mn}% \delta\psi_{\vec{k}}^{n}\delta\psi_{-\vec{k}}^{m}\right)= ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ( italic_A start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT + italic_B start_POSTSUPERSCRIPT italic_m italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT )
=r=++,+d3k(2π)3[T2rsakrakr+T3rsakrakr]absentsubscript𝑟absentabsentsuperscript𝑑3𝑘superscript2𝜋3delimited-[]superscriptsubscript𝑇2𝑟𝑠superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑇3𝑟𝑠superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑎𝑘𝑟\displaystyle=\sum_{r=++,+-}\int\frac{d^{3}k}{\left(2\pi\right)^{3}}\left[T_{2% }^{rs}a_{-\vec{k}}^{r\dagger}a_{-\vec{k}}^{r}+T_{3}^{rs}a_{\vec{k}}^{r}a_{\vec% {k}}^{r\dagger}\right]= ∑ start_POSTSUBSCRIPT italic_r = + + , + - end_POSTSUBSCRIPT ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG [ italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r † end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT + italic_T start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r italic_s end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r † end_POSTSUPERSCRIPT ]
=r=++,+d3k(2π)3crcrωr(ωr(1rr)i2ηθ0r)(2akrakr+[akr,akr]).absentsubscript𝑟absentabsentsuperscript𝑑3𝑘superscript2𝜋3superscriptsubscript𝑐𝑟subscript𝑐𝑟subscript𝜔𝑟subscript𝜔𝑟1subscript𝑟subscript𝑟𝑖2subscript𝜂subscript𝜃0subscript𝑟2superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑎𝑘𝑟\displaystyle=\sum_{r=++,+-}\int\frac{d^{3}k}{\left(2\pi\right)^{3}}c_{r}^{*}c% _{r}\omega_{r}\left(\omega_{r}\left(1-\mathcal{R}_{r}\mathcal{R}_{r}\right)-i2% \partial_{\eta}\theta_{0}\mathcal{R}_{r}\right)\left(2a_{-\vec{k}}^{r\dagger}a% _{\vec{k}}^{r}+\left[a_{\vec{k}}^{r},a_{-\vec{k}}^{r\dagger}\right]\right).= ∑ start_POSTSUBSCRIPT italic_r = + + , + - end_POSTSUBSCRIPT ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_c start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( 1 - caligraphic_R start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ) - italic_i 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ) ( 2 italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r † end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT + [ italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r † end_POSTSUPERSCRIPT ] ) .

Using the expression derived for the coefficients c+±subscript𝑐absentplus-or-minusc_{+\pm}italic_c start_POSTSUBSCRIPT + ± end_POSTSUBSCRIPT from Eq. (368) we find that

crcr(ωr(1rr)i2ηθ0r)=12,superscriptsubscript𝑐𝑟subscript𝑐𝑟subscript𝜔𝑟1subscript𝑟subscript𝑟𝑖2subscript𝜂subscript𝜃0subscript𝑟12c_{r}^{*}c_{r}\left(\omega_{r}\left(1-\mathcal{R}_{r}\mathcal{R}_{r}\right)-i2% \partial_{\eta}\theta_{0}\mathcal{R}_{r}\right)=\frac{1}{2},italic_c start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( 1 - caligraphic_R start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ) - italic_i 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG , (389)

which allows us to write the final form of the Hamiltonian as

limηηiHsubscript𝜂subscript𝜂𝑖𝐻\displaystyle\lim_{\eta\rightarrow\eta_{i}}Hroman_lim start_POSTSUBSCRIPT italic_η → italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_H =r=++,+d3k(2π)3ωr2(2akrakr+[akr,akr])absentsubscript𝑟absentabsentsuperscript𝑑3𝑘superscript2𝜋3subscript𝜔𝑟22superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑎𝑘𝑟\displaystyle=\sum_{r=++,+-}\int\frac{d^{3}k}{\left(2\pi\right)^{3}}\frac{% \omega_{r}}{2}\left(2a_{-\vec{k}}^{r\dagger}a_{\vec{k}}^{r}+\left[a_{\vec{k}}^% {r},a_{-\vec{k}}^{r\dagger}\right]\right)= ∑ start_POSTSUBSCRIPT italic_r = + + , + - end_POSTSUBSCRIPT ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG divide start_ARG italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG ( 2 italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r † end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT + [ italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r † end_POSTSUPERSCRIPT ] )
=r=++,+d3k(2π)3ωr(akrakr+12δ(3)(0)).absentsubscript𝑟absentabsentsuperscript𝑑3𝑘superscript2𝜋3subscript𝜔𝑟superscriptsubscript𝑎𝑘𝑟superscriptsubscript𝑎𝑘𝑟12superscript𝛿30\displaystyle=\sum_{r=++,+-}\int\frac{d^{3}k}{\left(2\pi\right)^{3}}\omega_{r}% \left(a_{-\vec{k}}^{r\dagger}a_{\vec{k}}^{r}+\frac{1}{2}\delta^{(3)}(0)\right).= ∑ start_POSTSUBSCRIPT italic_r = + + , + - end_POSTSUBSCRIPT ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r † end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT + divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( 0 ) ) .

The vacuum state |0ket0\left|0\right\rangle| 0 ⟩ when applied to the above Hamiltonian results in the lowest energy state with ground state energy E0=12(ω+++ω+)subscript𝐸012Planck-constant-over-2-pisubscript𝜔absentsubscript𝜔absentE_{0}=\frac{1}{2}\hbar\left(\omega_{++}+\omega_{+-}\right)italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_ℏ ( italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT + italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ). Also, we see that the one particle state |r=akr|0ket𝑟superscriptsubscript𝑎𝑘𝑟ket0\left|r\right\rangle=a_{\vec{k}}^{r\dagger}\left|0\right\rangle| italic_r ⟩ = italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r † end_POSTSUPERSCRIPT | 0 ⟩ is an eigenstate of the Hamiltonian with the energy eigenvalue E0+ωrsubscript𝐸0Planck-constant-over-2-pisubscript𝜔𝑟E_{0}+\hbar\omega_{r}italic_E start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + roman_ℏ italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT. We note that any other choice for the mode amplitudes Vrn(k,ηi)superscriptsubscript𝑉𝑟𝑛𝑘subscript𝜂𝑖V_{r}^{n}(k,\eta_{i})italic_V start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( italic_k , italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) other than that given in Eqs. (329) and (330) will lead to a higher energy for the vacuum state |0ket0\left|0\right\rangle| 0 ⟩ and as such it would not be the correct ground state of our theory.

Appendix E Correlation function

Through the quantization presented in Appendix D, we showed that our coupled system of mode functions hk(η)subscript𝑘𝜂h_{k}(\eta)italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_η ) has two sets of normal frequencies ω++subscript𝜔absent\omega_{++}italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT and ω+subscript𝜔absent\omega_{+-}italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT with which they can be excited. Each frequency ωr(k)subscript𝜔𝑟𝑘\omega_{r}(k)italic_ω start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_k ) corresponds to an independent quantum oscillator solution. In this Appendix we will evaluate the non-zero variance of these zero-point quantum fluctuations. Hence we consider the following expression for the two-correlation ξnm=δψn(0,η)δψm(0,η)subscript𝜉𝑛𝑚delimited-⟨⟩𝛿superscript𝜓𝑛0𝜂𝛿superscript𝜓𝑚0𝜂\xi_{nm}=\left\langle\delta\psi^{n}\left(0,\eta\right)\delta\psi^{m}\left(0,% \eta\right)\right\rangleitalic_ξ start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT = ⟨ italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( 0 , italic_η ) italic_δ italic_ψ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( 0 , italic_η ) ⟩ and evaluate it as

ξnmsubscript𝜉𝑛𝑚\displaystyle\xi_{nm}italic_ξ start_POSTSUBSCRIPT italic_n italic_m end_POSTSUBSCRIPT =0|δψn(0,η)δψm(0,η)|0absentquantum-operator-product0𝛿superscript𝜓𝑛0𝜂𝛿superscript𝜓𝑚0𝜂0\displaystyle=\left\langle 0\left|\delta\psi^{n}\left(0,\eta\right)\delta\psi^% {m}\left(0,\eta\right)\right|0\right\rangle= ⟨ 0 | italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( 0 , italic_η ) italic_δ italic_ψ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( 0 , italic_η ) | 0 ⟩
=d3k(2π)3/2d3p(2π)3/20|(ak++hkn+++ak+hkn++h.c.)\displaystyle=\int\frac{d^{3}k}{(2\pi)^{3/2}}\int\frac{d^{3}p}{(2\pi)^{3/2}}% \left\langle 0\left|\left(a_{\vec{k}}^{++}h_{k}^{n++}+a_{\vec{k}}^{+-}h_{k}^{n% +-}+h.c.\right)\right.\right.= ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_p end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ⟨ 0 | ( italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + + end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + - end_POSTSUPERSCRIPT + italic_h . italic_c . )
×(ap++hpm+++ap+hpm++h.c.)|0\displaystyle\times\left.\left.\left(a_{\vec{p}}^{++}h_{p}^{m++}+a_{\vec{p}}^{% +-}h_{p}^{m+-}+h.c.\right)\right|0\right\rangle× ( italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + + end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + - end_POSTSUPERSCRIPT + italic_h . italic_c . ) | 0 ⟩
=d3k(2π)3/2d3p(2π)3/20|ak++ap++hkn++hpm+++ak+ap+hkn+hpm+|0absentsuperscript𝑑3𝑘superscript2𝜋32superscript𝑑3𝑝superscript2𝜋32quantum-operator-product0superscriptsubscript𝑎𝑘absentsuperscriptsubscript𝑎𝑝absentsuperscriptsubscript𝑘limit-from𝑛superscriptsubscript𝑝limit-from𝑚absentsuperscriptsubscript𝑎𝑘absentsuperscriptsubscript𝑎𝑝absentsuperscriptsubscript𝑘limit-from𝑛superscriptsubscript𝑝limit-from𝑚absent0\displaystyle=\int\frac{d^{3}k}{(2\pi)^{3/2}}\int\frac{d^{3}p}{(2\pi)^{3/2}}% \left\langle 0\left|a_{\vec{k}}^{++}a_{-\vec{p}}^{++\dagger}h_{k}^{n++}h_{p}^{% m++*}+a_{\vec{k}}^{+-}a_{\vec{-p}}^{+-\dagger}h_{k}^{n+-}h_{p}^{m+-*}\right|0\right\rangle= ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_p end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ⟨ 0 | italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + † end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + + end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + + ∗ end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT over→ start_ARG - italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - † end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + - end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + - ∗ end_POSTSUPERSCRIPT | 0 ⟩
=d3k(2π)3/2d3p(2π)3/2hkn++hpm++0|[ak++,ap++]|0+hkn+hpm+0|[ak+,ap+]|0absentsuperscript𝑑3𝑘superscript2𝜋32superscript𝑑3𝑝superscript2𝜋32superscriptsubscript𝑘limit-from𝑛superscriptsubscript𝑝limit-from𝑚absentquantum-operator-product0superscriptsubscript𝑎𝑘absentsuperscriptsubscript𝑎𝑝absent0superscriptsubscript𝑘limit-from𝑛superscriptsubscript𝑝limit-from𝑚absentquantum-operator-product0superscriptsubscript𝑎𝑘absentsuperscriptsubscript𝑎𝑝absent0\displaystyle=\int\frac{d^{3}k}{(2\pi)^{3/2}}\int\frac{d^{3}p}{(2\pi)^{3/2}}h_% {k}^{n++}h_{p}^{m++*}\left\langle 0\left|\left[a_{\vec{k}}^{++},a_{-\vec{p}}^{% ++\dagger}\right]\right|0\right\rangle+h_{k}^{n+-}h_{p}^{m+-*}\left\langle 0% \left|\left[a_{\vec{k}}^{+-},a_{\vec{-p}}^{+-\dagger}\right]\right|0\right\rangle= ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_p end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + + end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + + ∗ end_POSTSUPERSCRIPT ⟨ 0 | [ italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + † end_POSTSUPERSCRIPT ] | 0 ⟩ + italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + - end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + - ∗ end_POSTSUPERSCRIPT ⟨ 0 | [ italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT over→ start_ARG - italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - † end_POSTSUPERSCRIPT ] | 0 ⟩
=d3k(2π)3/2d3p(2π)3/2(hkn++hpm+++hkn+hpm+)δ(3)(kp)absentsuperscript𝑑3𝑘superscript2𝜋32superscript𝑑3𝑝superscript2𝜋32superscriptsubscript𝑘limit-from𝑛superscriptsubscript𝑝limit-from𝑚absentsuperscriptsubscript𝑘limit-from𝑛superscriptsubscript𝑝limit-from𝑚absentsuperscript𝛿3𝑘𝑝\displaystyle=\int\frac{d^{3}k}{(2\pi)^{3/2}}\int\frac{d^{3}p}{(2\pi)^{3/2}}% \left(h_{k}^{n++}h_{p}^{m++*}+h_{k}^{n+-}h_{p}^{m+-*}\right)\delta^{(3)}(\vec{% k}-\vec{p})= ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_p end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ( italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + + end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + + ∗ end_POSTSUPERSCRIPT + italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + - end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + - ∗ end_POSTSUPERSCRIPT ) italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_k end_ARG - over→ start_ARG italic_p end_ARG )
=dlnkk32π2(hkn++(η)hkm++(η)+hkn+(η)hkm+(η))absent𝑑𝑘superscript𝑘32superscript𝜋2superscriptsubscript𝑘limit-from𝑛𝜂superscriptsubscript𝑘limit-from𝑚absent𝜂superscriptsubscript𝑘limit-from𝑛𝜂superscriptsubscript𝑘limit-from𝑚absent𝜂\displaystyle=\int d\ln k\frac{k^{3}}{2\pi^{2}}\left(h_{k}^{n++}(\eta)h_{k}^{m% ++*}(\eta)+h_{k}^{n+-}(\eta)h_{k}^{m+-*}(\eta)\right)= ∫ italic_d roman_ln italic_k divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + + end_POSTSUPERSCRIPT ( italic_η ) italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + + ∗ end_POSTSUPERSCRIPT ( italic_η ) + italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + - end_POSTSUPERSCRIPT ( italic_η ) italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + - ∗ end_POSTSUPERSCRIPT ( italic_η ) )
=dlnkΔδψnδψm2(k,η)absent𝑑𝑘superscriptsubscriptΔ𝛿superscript𝜓𝑛𝛿superscript𝜓𝑚2𝑘𝜂\displaystyle=\int d\ln k\Delta_{\delta\psi^{n}\delta\psi^{m}}^{2}(k,\eta)= ∫ italic_d roman_ln italic_k roman_Δ start_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_η )

where we define

Δδψnδψm2(k,η)=k32π2(hkn++(η)hkm++(η)+hkn+(η)hkm+(η))superscriptsubscriptΔ𝛿superscript𝜓𝑛𝛿superscript𝜓𝑚2𝑘𝜂superscript𝑘32superscript𝜋2superscriptsubscript𝑘limit-from𝑛𝜂superscriptsubscript𝑘limit-from𝑚absent𝜂superscriptsubscript𝑘limit-from𝑛𝜂superscriptsubscript𝑘limit-from𝑚absent𝜂\Delta_{\delta\psi^{n}\delta\psi^{m}}^{2}(k,\eta)=\frac{k^{3}}{2\pi^{2}}\left(% h_{k}^{n++}(\eta)h_{k}^{m++*}(\eta)+h_{k}^{n+-}(\eta)h_{k}^{m+-*}(\eta)\right)roman_Δ start_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_η ) = divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + + end_POSTSUPERSCRIPT ( italic_η ) italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + + ∗ end_POSTSUPERSCRIPT ( italic_η ) + italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + - end_POSTSUPERSCRIPT ( italic_η ) italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + - ∗ end_POSTSUPERSCRIPT ( italic_η ) ) (390)

such that

Δδϕnδϕm2(k,η)=1a2(η)k32π2(hkn++(η)hkm++(η)+hkn+(η)hkm+(η)).superscriptsubscriptΔ𝛿superscriptitalic-ϕ𝑛𝛿superscriptitalic-ϕ𝑚2𝑘𝜂1superscript𝑎2𝜂superscript𝑘32superscript𝜋2superscriptsubscript𝑘limit-from𝑛𝜂superscriptsubscript𝑘limit-from𝑚absent𝜂superscriptsubscript𝑘limit-from𝑛𝜂superscriptsubscript𝑘limit-from𝑚absent𝜂\Delta_{\delta\phi^{n}\delta\phi^{m}}^{2}(k,\eta)=\frac{1}{a^{2}(\eta)}\frac{k% ^{3}}{2\pi^{2}}\left(h_{k}^{n++}(\eta)h_{k}^{m++*}(\eta)+h_{k}^{n+-}(\eta)h_{k% }^{m+-*}(\eta)\right).roman_Δ start_POSTSUBSCRIPT italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_δ italic_ϕ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_η ) = divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + + end_POSTSUPERSCRIPT ( italic_η ) italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + + ∗ end_POSTSUPERSCRIPT ( italic_η ) + italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + - end_POSTSUPERSCRIPT ( italic_η ) italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + - ∗ end_POSTSUPERSCRIPT ( italic_η ) ) . (391)

During conformal regime η<ηtr𝜂subscript𝜂tr\eta<\eta_{{\rm tr}}italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT, the power spectra of the individual fields are given as

ΔδΓδΓ2(η<ηtr)superscriptsubscriptΔ𝛿Γ𝛿Γ2𝜂subscript𝜂tr\displaystyle\Delta_{\delta\Gamma\delta\Gamma}^{2}(\eta<\eta_{{\rm tr}})roman_Δ start_POSTSUBSCRIPT italic_δ roman_Γ italic_δ roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) =1a2(η)k32π2(|hk1++(η)|2+|hk1+(η)|2)absent1superscript𝑎2𝜂superscript𝑘32superscript𝜋2superscriptsuperscriptsubscript𝑘limit-from1𝜂2superscriptsuperscriptsubscript𝑘limit-from1𝜂2\displaystyle=\frac{1}{a^{2}(\eta)}\frac{k^{3}}{2\pi^{2}}\left(\left|h_{k}^{1+% +}(\eta)\right|^{2}+\left|h_{k}^{1+-}(\eta)\right|^{2}\right)= divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( | italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 + + end_POSTSUPERSCRIPT ( italic_η ) | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 + - end_POSTSUPERSCRIPT ( italic_η ) | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) (392)
=1a2(η)k32π2(|c++|2+|c+|2)absent1superscript𝑎2𝜂superscript𝑘32superscript𝜋2superscriptsubscript𝑐absent2superscriptsubscript𝑐absent2\displaystyle=\frac{1}{a^{2}(\eta)}\frac{k^{3}}{2\pi^{2}}\left(\left|c_{++}% \right|^{2}+\left|c_{+-}\right|^{2}\right)= divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( | italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) (393)
limkηθ0ΔδΓδΓ2(η<ηtr)subscriptmuch-less-than𝑘subscript𝜂subscript𝜃0superscriptsubscriptΔ𝛿Γ𝛿Γ2𝜂subscript𝜂tr\displaystyle\lim_{k\ll\partial_{\eta}\theta_{0}}\Delta_{\delta\Gamma\delta% \Gamma}^{2}(\eta<\eta_{{\rm tr}})roman_lim start_POSTSUBSCRIPT italic_k ≪ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_Δ start_POSTSUBSCRIPT italic_δ roman_Γ italic_δ roman_Γ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) 1a2(η)k22π2(k/ηθ031/223/2)absent1superscript𝑎2𝜂superscript𝑘22superscript𝜋2𝑘subscript𝜂subscript𝜃0superscript312superscript232\displaystyle\approx\frac{1}{a^{2}(\eta)}\frac{k^{2}}{2\pi^{2}}\left(\frac{k/% \partial_{\eta}\theta_{0}}{3^{1/2}2^{3/2}}\right)≈ divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG italic_k / ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG 3 start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT 2 start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ) (394)

and

Δδχδχ2(η<ηtr)superscriptsubscriptΔ𝛿𝜒𝛿𝜒2𝜂subscript𝜂tr\displaystyle\Delta_{\delta\chi\delta\chi}^{2}(\eta<\eta_{{\rm tr}})roman_Δ start_POSTSUBSCRIPT italic_δ italic_χ italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) =1a2(η)k32π2(|hk2++(η)|2+|hk2+(η)|2)absent1superscript𝑎2𝜂superscript𝑘32superscript𝜋2superscriptsuperscriptsubscript𝑘limit-from2𝜂2superscriptsuperscriptsubscript𝑘limit-from2𝜂2\displaystyle=\frac{1}{a^{2}(\eta)}\frac{k^{3}}{2\pi^{2}}\left(\left|h_{k}^{2+% +}(\eta)\right|^{2}+\left|h_{k}^{2+-}(\eta)\right|^{2}\right)= divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( | italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 + + end_POSTSUPERSCRIPT ( italic_η ) | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 + - end_POSTSUPERSCRIPT ( italic_η ) | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) (395)
=1a2(η)k32π2(|c++++(η)|2+|c++(η)|2)absent1superscript𝑎2𝜂superscript𝑘32superscript𝜋2superscriptsubscript𝑐absentsubscriptabsent𝜂2superscriptsubscript𝑐absentsubscriptabsent𝜂2\displaystyle=\frac{1}{a^{2}(\eta)}\frac{k^{3}}{2\pi^{2}}\left(\left|c_{++}% \mathcal{R}_{++}\left(\eta\right)\right|^{2}+\left|c_{+-}\mathcal{R}_{+-}\left% (\eta\right)\right|^{2}\right)= divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( | italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT ( italic_η ) | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + | italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ( italic_η ) | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) (396)
limkηθ0Δδχδχ2(η<ηtr)subscriptmuch-less-than𝑘subscript𝜂subscript𝜃0superscriptsubscriptΔ𝛿𝜒𝛿𝜒2𝜂subscript𝜂tr\displaystyle\lim_{k\ll\partial_{\eta}\theta_{0}}\Delta_{\delta\chi\delta\chi}% ^{2}(\eta<\eta_{{\rm tr}})roman_lim start_POSTSUBSCRIPT italic_k ≪ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT roman_Δ start_POSTSUBSCRIPT italic_δ italic_χ italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) 1a2(η)k22π2(131/22).absent1superscript𝑎2𝜂superscript𝑘22superscript𝜋21superscript3122\displaystyle\approx\frac{1}{a^{2}(\eta)}\frac{k^{2}}{2\pi^{2}}\left(\frac{1}{% 3^{1/2}2}\right).≈ divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( divide start_ARG 1 end_ARG start_ARG 3 start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT 2 end_ARG ) . (397)

Similarly one can show that the dimensionless cross-correlation (covariance) vanishes,

ΔδΓδχ2(η<ηtr)superscriptsubscriptΔ𝛿Γ𝛿𝜒2𝜂subscript𝜂tr\displaystyle\Delta_{\delta\Gamma\delta\chi}^{2}(\eta<\eta_{{\rm tr}})roman_Δ start_POSTSUBSCRIPT italic_δ roman_Γ italic_δ italic_χ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT ) =1a2(η)k32π2(|c++|2++(η)+|c+|2+(η))absent1superscript𝑎2𝜂superscript𝑘32superscript𝜋2superscriptsubscript𝑐absent2superscriptsubscriptabsent𝜂superscriptsubscript𝑐absent2superscriptsubscriptabsent𝜂\displaystyle=\frac{1}{a^{2}(\eta)}\frac{k^{3}}{2\pi^{2}}\left(\left|c_{++}% \right|^{2}\mathcal{R}_{++}^{*}\left(\eta\right)+\left|c_{+-}\right|^{2}% \mathcal{R}_{+-}^{*}\left(\eta\right)\right)= divide start_ARG 1 end_ARG start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η ) end_ARG divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( | italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_η ) + | italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_η ) )
=0.absent0\displaystyle=0.= 0 . (398)

The correlation between the time-derivatives of the fields Ξ=ηδψn(0,η)ηδψm(0,η)Ξdelimited-⟨⟩subscript𝜂𝛿superscript𝜓𝑛0𝜂subscript𝜂𝛿superscript𝜓𝑚0𝜂\Xi=\left\langle\partial_{\eta}\delta\psi^{n}\left(0,\eta\right)\partial_{\eta% }\delta\psi^{m}\left(0,\eta\right)\right\rangleroman_Ξ = ⟨ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( 0 , italic_η ) ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( 0 , italic_η ) ⟩ can be derived as

ΞΞ\displaystyle\Xiroman_Ξ =0|ηδψn(0,η)ηδψm(0,η)|0absentquantum-operator-product0subscript𝜂𝛿superscript𝜓𝑛0𝜂subscript𝜂𝛿superscript𝜓𝑚0𝜂0\displaystyle=\left\langle 0\left|\partial_{\eta}\delta\psi^{n}\left(0,\eta% \right)\partial_{\eta}\delta\psi^{m}\left(0,\eta\right)\right|0\right\rangle= ⟨ 0 | ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( 0 , italic_η ) ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_ψ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ( 0 , italic_η ) | 0 ⟩
=d3k(2π)3/2d3p(2π)3/20|η(ak++hkn+++ak+hkn++h.c.)\displaystyle=\int\frac{d^{3}k}{(2\pi)^{3/2}}\int\frac{d^{3}p}{(2\pi)^{3/2}}% \left\langle 0\left|\partial_{\eta}\left(a_{\vec{k}}^{++}h_{k}^{n++}+a_{\vec{k% }}^{+-}h_{k}^{n+-}+h.c.\right)\right.\right.= ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_p end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ⟨ 0 | ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + + end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + - end_POSTSUPERSCRIPT + italic_h . italic_c . )
×η(ap++hpm+++ap+hpm++h.c.)|0\displaystyle\times\left.\left.\partial_{\eta}\left(a_{\vec{p}}^{++}h_{p}^{m++% }+a_{\vec{p}}^{+-}h_{p}^{m+-}+h.c.\right)\right|0\right\rangle× ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + + end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + - end_POSTSUPERSCRIPT + italic_h . italic_c . ) | 0 ⟩
=d3k(2π)3/2d3p(2π)3/20|ak++ap++ηhkn++ηhpm+++ak+ap+ηhkn+ηhpm+|0absentsuperscript𝑑3𝑘superscript2𝜋32superscript𝑑3𝑝superscript2𝜋32quantum-operator-product0superscriptsubscript𝑎𝑘absentsuperscriptsubscript𝑎𝑝absentsubscript𝜂superscriptsubscript𝑘limit-from𝑛subscript𝜂superscriptsubscript𝑝limit-from𝑚absentsuperscriptsubscript𝑎𝑘absentsuperscriptsubscript𝑎𝑝absentsubscript𝜂superscriptsubscript𝑘limit-from𝑛subscript𝜂superscriptsubscript𝑝limit-from𝑚absent0\displaystyle=\int\frac{d^{3}k}{(2\pi)^{3/2}}\int\frac{d^{3}p}{(2\pi)^{3/2}}% \left\langle 0\left|a_{\vec{k}}^{++}a_{-\vec{p}}^{++\dagger}\partial_{\eta}h_{% k}^{n++}\partial_{\eta}h_{p}^{m++*}+a_{\vec{k}}^{+-}a_{\vec{-p}}^{+-\dagger}% \partial_{\eta}h_{k}^{n+-}\partial_{\eta}h_{p}^{m+-*}\right|0\right\rangle= ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_p end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ⟨ 0 | italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + † end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + + end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + + ∗ end_POSTSUPERSCRIPT + italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT over→ start_ARG - italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - † end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + - end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + - ∗ end_POSTSUPERSCRIPT | 0 ⟩
=d3k(2π)3/2d3p(2π)3/2ηhkn++ηhpm++0|[ak++,ap++]|0+ηhkn+ηhpm+0|[ak+,ap+]|0absentsuperscript𝑑3𝑘superscript2𝜋32superscript𝑑3𝑝superscript2𝜋32subscript𝜂superscriptsubscript𝑘limit-from𝑛subscript𝜂superscriptsubscript𝑝limit-from𝑚absentquantum-operator-product0superscriptsubscript𝑎𝑘absentsuperscriptsubscript𝑎𝑝absent0subscript𝜂superscriptsubscript𝑘limit-from𝑛subscript𝜂superscriptsubscript𝑝limit-from𝑚absentquantum-operator-product0superscriptsubscript𝑎𝑘absentsuperscriptsubscript𝑎𝑝absent0\displaystyle=\int\frac{d^{3}k}{(2\pi)^{3/2}}\int\frac{d^{3}p}{(2\pi)^{3/2}}% \partial_{\eta}h_{k}^{n++}\partial_{\eta}h_{p}^{m++*}\left\langle 0\left|\left% [a_{\vec{k}}^{++},a_{-\vec{p}}^{++\dagger}\right]\right|0\right\rangle+% \partial_{\eta}h_{k}^{n+-}\partial_{\eta}h_{p}^{m+-*}\left\langle 0\left|\left% [a_{\vec{k}}^{+-},a_{\vec{-p}}^{+-\dagger}\right]\right|0\right\rangle= ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_p end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + + end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + + ∗ end_POSTSUPERSCRIPT ⟨ 0 | [ italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT - over→ start_ARG italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + + † end_POSTSUPERSCRIPT ] | 0 ⟩ + ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + - end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + - ∗ end_POSTSUPERSCRIPT ⟨ 0 | [ italic_a start_POSTSUBSCRIPT over→ start_ARG italic_k end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - end_POSTSUPERSCRIPT , italic_a start_POSTSUBSCRIPT over→ start_ARG - italic_p end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + - † end_POSTSUPERSCRIPT ] | 0 ⟩
=d3k(2π)3/2d3p(2π)3/2(ηhkn++ηhpm+++ηhkn+ηhpm+)δ(3)(kp)absentsuperscript𝑑3𝑘superscript2𝜋32superscript𝑑3𝑝superscript2𝜋32subscript𝜂superscriptsubscript𝑘limit-from𝑛subscript𝜂superscriptsubscript𝑝limit-from𝑚absentsubscript𝜂superscriptsubscript𝑘limit-from𝑛subscript𝜂superscriptsubscript𝑝limit-from𝑚absentsuperscript𝛿3𝑘𝑝\displaystyle=\int\frac{d^{3}k}{(2\pi)^{3/2}}\int\frac{d^{3}p}{(2\pi)^{3/2}}% \left(\partial_{\eta}h_{k}^{n++}\partial_{\eta}h_{p}^{m++*}+\partial_{\eta}h_{% k}^{n+-}\partial_{\eta}h_{p}^{m+-*}\right)\delta^{(3)}(\vec{k}-\vec{p})= ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_k end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ∫ divide start_ARG italic_d start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_p end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + + end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + + ∗ end_POSTSUPERSCRIPT + ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + - end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + - ∗ end_POSTSUPERSCRIPT ) italic_δ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT ( over→ start_ARG italic_k end_ARG - over→ start_ARG italic_p end_ARG )
=dlnkk32π2(ηhkn++(η)ηhkm++(η)+ηhkn+(η)ηhkm+(η)).absent𝑑𝑘superscript𝑘32superscript𝜋2subscript𝜂superscriptsubscript𝑘limit-from𝑛𝜂subscript𝜂superscriptsubscript𝑘limit-from𝑚absent𝜂subscript𝜂superscriptsubscript𝑘limit-from𝑛𝜂subscript𝜂superscriptsubscript𝑘limit-from𝑚absent𝜂\displaystyle=\int d\ln k\frac{k^{3}}{2\pi^{2}}\left(\partial_{\eta}h_{k}^{n++% }(\eta)\partial_{\eta}h_{k}^{m++*}(\eta)+\partial_{\eta}h_{k}^{n+-}(\eta)% \partial_{\eta}h_{k}^{m+-*}(\eta)\right).= ∫ italic_d roman_ln italic_k divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + + end_POSTSUPERSCRIPT ( italic_η ) ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + + ∗ end_POSTSUPERSCRIPT ( italic_η ) + ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n + - end_POSTSUPERSCRIPT ( italic_η ) ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m + - ∗ end_POSTSUPERSCRIPT ( italic_η ) ) .

Using the above expression we find the cross-correlation

ηδY(0,η)ηδX(0,η)η<ηtrsubscriptdelimited-⟨⟩subscript𝜂𝛿𝑌0𝜂subscript𝜂𝛿𝑋0𝜂𝜂subscript𝜂tr\displaystyle\left\langle\partial_{\eta}\delta Y\left(0,\eta\right)\partial_{% \eta}\delta X\left(0,\eta\right)\right\rangle_{\eta<\eta_{{\rm tr}}}⟨ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_Y ( 0 , italic_η ) ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_X ( 0 , italic_η ) ⟩ start_POSTSUBSCRIPT italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT end_POSTSUBSCRIPT =dlnkk32π2(ω++2|c++|2+++ω+2|c+|2+)absent𝑑𝑘superscript𝑘32superscript𝜋2superscriptsubscript𝜔absent2superscriptsubscript𝑐absent2superscriptsubscriptabsentsuperscriptsubscript𝜔absent2superscriptsubscript𝑐absent2superscriptsubscriptabsent\displaystyle=\int d\ln k\frac{k^{3}}{2\pi^{2}}\left(\omega_{++}^{2}\left|c_{+% +}\right|^{2}\mathcal{R}_{++}^{*}+\omega_{+-}^{2}\left|c_{+-}\right|^{2}% \mathcal{R}_{+-}^{*}\right)= ∫ italic_d roman_ln italic_k divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_ω start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | italic_c start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT caligraphic_R start_POSTSUBSCRIPT + + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT + italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT caligraphic_R start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) (399)
=dlnkk32π2(iηθ0).absent𝑑𝑘superscript𝑘32superscript𝜋2𝑖subscript𝜂subscript𝜃0\displaystyle=\int d\ln k\frac{k^{3}}{2\pi^{2}}\left(i\partial_{\eta}\theta_{0% }\right).= ∫ italic_d roman_ln italic_k divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_i ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) . (400)

As expected, the two point correlation of the field velocities is a non-vanishing observable at early-time. Likewise,

limkηθ0ηδY(0,η)ηδY(0,η)η<ηtrsubscriptmuch-less-than𝑘subscript𝜂subscript𝜃0subscriptdelimited-⟨⟩subscript𝜂𝛿𝑌0𝜂subscript𝜂𝛿𝑌0𝜂𝜂subscript𝜂tr\displaystyle\lim_{k\ll\partial_{\eta}\theta_{0}}\left\langle\partial_{\eta}% \delta Y\left(0,\eta\right)\partial_{\eta}\delta Y\left(0,\eta\right)\right% \rangle_{\eta<\eta_{{\rm tr}}}roman_lim start_POSTSUBSCRIPT italic_k ≪ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟨ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_Y ( 0 , italic_η ) ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_Y ( 0 , italic_η ) ⟩ start_POSTSUBSCRIPT italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT end_POSTSUBSCRIPT dlnk32(k32π2ηθ0),absent𝑑𝑘32superscript𝑘32superscript𝜋2subscript𝜂subscript𝜃0\displaystyle\approx\int d\ln k\sqrt{\frac{3}{2}}\left(\frac{k^{3}}{2\pi^{2}}% \partial_{\eta}\theta_{0}\right),≈ ∫ italic_d roman_ln italic_k square-root start_ARG divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_ARG ( divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , (401)
limkηθ0ηδX(0,η)ηδX(0,η)η<ηtrsubscriptmuch-less-than𝑘subscript𝜂subscript𝜃0subscriptdelimited-⟨⟩subscript𝜂𝛿𝑋0𝜂subscript𝜂𝛿𝑋0𝜂𝜂subscript𝜂tr\displaystyle\lim_{k\ll\partial_{\eta}\theta_{0}}\left\langle\partial_{\eta}% \delta X\left(0,\eta\right)\partial_{\eta}\delta X\left(0,\eta\right)\right% \rangle_{\eta<\eta_{{\rm tr}}}roman_lim start_POSTSUBSCRIPT italic_k ≪ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟨ ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_X ( 0 , italic_η ) ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_X ( 0 , italic_η ) ⟩ start_POSTSUBSCRIPT italic_η < italic_η start_POSTSUBSCRIPT roman_tr end_POSTSUBSCRIPT end_POSTSUBSCRIPT dlnk23(k32π2ηθ0).absent𝑑𝑘23superscript𝑘32superscript𝜋2subscript𝜂subscript𝜃0\displaystyle\approx\int d\ln k\sqrt{\frac{2}{3}}\left(\frac{k^{3}}{2\pi^{2}}% \partial_{\eta}\theta_{0}\right).≈ ∫ italic_d roman_ln italic_k square-root start_ARG divide start_ARG 2 end_ARG start_ARG 3 end_ARG end_ARG ( divide start_ARG italic_k start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 2 italic_π start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) . (402)

Appendix F Relationship between radial and angular modes

Suppose we parameterize a U(1)𝑈1U(1)italic_U ( 1 ) sigma model with the symmetry ΦeiαΦΦsuperscript𝑒𝑖𝛼Φ\Phi\rightarrow e^{i\alpha}\Phiroman_Φ → italic_e start_POSTSUPERSCRIPT italic_i italic_α end_POSTSUPERSCRIPT roman_Φ as

Φ=12(Γ0+δΓ)ei(θ0+δχΓ0).Φ12subscriptΓ0𝛿Γsuperscript𝑒𝑖subscript𝜃0𝛿𝜒subscriptΓ0\Phi=\frac{1}{\sqrt{2}}(\Gamma_{0}+\delta\Gamma)e^{i\left(\theta_{0}+\frac{% \delta\chi}{\Gamma_{0}}\right)}.roman_Φ = divide start_ARG 1 end_ARG start_ARG square-root start_ARG 2 end_ARG end_ARG ( roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_δ roman_Γ ) italic_e start_POSTSUPERSCRIPT italic_i ( italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + divide start_ARG italic_δ italic_χ end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) end_POSTSUPERSCRIPT . (403)

There is a shift symmetry

δχδχ+αΓ0𝛿𝜒𝛿𝜒𝛼subscriptΓ0\delta\chi\rightarrow\delta\chi+\alpha\Gamma_{0}italic_δ italic_χ → italic_δ italic_χ + italic_α roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (404)

where α𝛼\alphaitalic_α is a constant. If δχ𝛿𝜒\delta\chiitalic_δ italic_χ obeys a linear equation of motion

𝒪δχ=β𝒪𝛿𝜒𝛽\mathcal{O}\delta\chi=\betacaligraphic_O italic_δ italic_χ = italic_β (405)

where 𝒪𝒪\mathcal{O}caligraphic_O and β𝛽\betaitalic_β are independent of δχ𝛿𝜒\delta\chiitalic_δ italic_χ but can depend on Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, then Eq. (404) implies

𝒪δχ+α𝒪Γ0=β.𝒪𝛿𝜒𝛼𝒪subscriptΓ0𝛽\mathcal{O}\delta\chi+\alpha\mathcal{O}\Gamma_{0}=\beta.caligraphic_O italic_δ italic_χ + italic_α caligraphic_O roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_β . (406)

Using Eq. (405), we conclude

𝒪Γ0=0𝒪subscriptΓ00\mathcal{O}\Gamma_{0}=0caligraphic_O roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 (407)

which can be a nonlinear equation.

This means that if β𝛽\betaitalic_β is negligible, then δχ𝛿𝜒\delta\chiitalic_δ italic_χ and Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT obey the same equation. In our model, the equation of motion for δχ𝛿𝜒\delta\chiitalic_δ italic_χ (see Eq. (279)) makes

𝒪=η2a2i2+2ηaaη+(2M2a2+λΓ02a2(ηθ0)2)𝒪superscriptsubscript𝜂2superscript𝑎2superscriptsubscript𝑖22subscript𝜂𝑎𝑎subscript𝜂2superscript𝑀2superscript𝑎2𝜆superscriptsubscriptΓ02superscript𝑎2superscriptsubscript𝜂subscript𝜃02\mathcal{O}=\partial_{\eta}^{2}-a^{-2}\partial_{i}^{2}+2\frac{\partial_{\eta}a% }{a}\partial_{\eta}+\left(-2M^{2}a^{2}+\lambda\Gamma_{0}^{2}a^{2}-\left(% \partial_{\eta}\theta_{0}\right)^{2}\right)caligraphic_O = ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT + ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) (408)

in Eq. (407) which upon expansion gives

η2Γ0+2ηaaηΓ0+(2M2a2+λΓ02a2(ηθ0)2)Γ0=0superscriptsubscript𝜂2subscriptΓ02subscript𝜂𝑎𝑎subscript𝜂subscriptΓ02superscript𝑀2superscript𝑎2𝜆superscriptsubscriptΓ02superscript𝑎2superscriptsubscript𝜂subscript𝜃02subscriptΓ00\partial_{\eta}^{2}\Gamma_{0}+2\frac{\partial_{\eta}a}{a}\partial_{\eta}\Gamma% _{0}+\left(-2M^{2}a^{2}+\lambda\Gamma_{0}^{2}a^{2}-\left(\partial_{\eta}\theta% _{0}\right)^{2}\right)\Gamma_{0}=0∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + 2 divide start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_a end_ARG start_ARG italic_a end_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + ( - 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_λ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 0 (409)

matching Eq. (93). The β𝛽\betaitalic_β in this system is

β=2ηθ0Γ0ηδΓΓ0.𝛽2subscript𝜂subscript𝜃0subscriptΓ0subscript𝜂𝛿ΓsubscriptΓ0\beta=-2\partial_{\eta}\theta_{0}\Gamma_{0}\partial_{\eta}\frac{\delta\Gamma}{% \Gamma_{0}}.italic_β = - 2 ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT divide start_ARG italic_δ roman_Γ end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG . (410)

Because of the mismatch of β𝛽\betaitalic_β between Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and δχ𝛿𝜒\delta\chiitalic_δ italic_χ, we cannot conclude that δχ/Γ0𝛿𝜒subscriptΓ0\delta\chi/\Gamma_{0}italic_δ italic_χ / roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is constant from this argument alone.

We will now show that the conservation equation from U(1)𝑈1U(1)italic_U ( 1 ) symmetry together with a mild assumption about the lack of resonance allows one to conclude that δχ(η)/Γ0(η)𝛿𝜒𝜂subscriptΓ0𝜂\delta\chi(\eta)/\Gamma_{0}(\eta)italic_δ italic_χ ( italic_η ) / roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) is approximately frozen during and after the transition. Start with the linear perturbation equation for the the U(1)𝑈1U(1)italic_U ( 1 ) current conservation

ηδq+|k|2(aΓ0)δχQ(0)=0subscript𝜂𝛿𝑞superscript𝑘2𝑎subscriptΓ0𝛿𝜒superscript𝑄00\partial_{\eta}\delta q+\frac{\left|\vec{k}\right|^{2}\left(a\Gamma_{0}\right)% \delta\chi}{Q^{(0)}}=0∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_δ italic_q + divide start_ARG | over→ start_ARG italic_k end_ARG | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_a roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) italic_δ italic_χ end_ARG start_ARG italic_Q start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT end_ARG = 0 (411)

where we have defined

δq1(0θ0)1aη(δχaΓ0)+2δΓaΓ0𝛿𝑞1subscript0subscript𝜃01𝑎𝜂𝛿𝜒𝑎subscriptΓ02𝛿Γ𝑎subscriptΓ0\delta q\equiv\frac{1}{\left(\partial_{0}\theta_{0}\right)}\frac{1}{a}\frac{% \partial}{\partial\eta}\left(\frac{\delta\chi}{a\Gamma_{0}}\right)+2\frac{% \delta\Gamma}{a\Gamma_{0}}italic_δ italic_q ≡ divide start_ARG 1 end_ARG start_ARG ( ∂ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_ARG divide start_ARG 1 end_ARG start_ARG italic_a end_ARG divide start_ARG ∂ end_ARG start_ARG ∂ italic_η end_ARG ( divide start_ARG italic_δ italic_χ end_ARG start_ARG italic_a roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) + 2 divide start_ARG italic_δ roman_Γ end_ARG start_ARG italic_a roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG (412)

and gone to Fourier space. Let ηisubscript𝜂𝑖\eta_{i}italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT be the first time in the time-independent conformal era when the k2superscript𝑘2k^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT term can be neglected in Eq. (411). We can conclude that δq𝛿𝑞\delta qitalic_δ italic_q which is set during the time-independent conformal era to be

δq𝛿𝑞\displaystyle\delta qitalic_δ italic_q 3c+a(ηi)Γ0(ηi)3δΓ(ηi,k)a(ηi)Γ0(ηi)absent3subscript𝑐absent𝑎subscript𝜂𝑖subscriptΓ0subscript𝜂𝑖3𝛿Γsubscript𝜂𝑖𝑘𝑎subscript𝜂𝑖subscriptΓ0subscript𝜂𝑖\displaystyle\approx\frac{3c_{+-}}{a(\eta_{i})\Gamma_{0}(\eta_{i})}\approx% \frac{3\delta\Gamma(\eta_{i},\vec{k})}{a(\eta_{i})\Gamma_{0}(\eta_{i})}≈ divide start_ARG 3 italic_c start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG ≈ divide start_ARG 3 italic_δ roman_Γ ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , over→ start_ARG italic_k end_ARG ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) end_ARG (413)

is conserved while our quantity of interest δχ/Γ0𝛿𝜒subscriptΓ0\delta\chi/\Gamma_{0}italic_δ italic_χ / roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is related to this constant through

η(δχaΓ0)+2δΓaΓ0a(0θ0)=δqa(0θ0)𝜂𝛿𝜒𝑎subscriptΓ02𝛿Γ𝑎subscriptΓ0𝑎subscript0subscript𝜃0𝛿𝑞𝑎subscript0subscript𝜃0\frac{\partial}{\partial\eta}\left(\frac{\delta\chi}{a\Gamma_{0}}\right)+2% \frac{\delta\Gamma}{a\Gamma_{0}}a\left(\partial_{0}\theta_{0}\right)=\delta qa% \left(\partial_{0}\theta_{0}\right)divide start_ARG ∂ end_ARG start_ARG ∂ italic_η end_ARG ( divide start_ARG italic_δ italic_χ end_ARG start_ARG italic_a roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) + 2 divide start_ARG italic_δ roman_Γ end_ARG start_ARG italic_a roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG italic_a ( ∂ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_δ italic_q italic_a ( ∂ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) (414)

coming from Eq. (412). Integrating, we find

δχ(ηf)a(ηf)Γ0(ηf)δχ(ηtr)a(ηi)Γ0(ηtr)𝛿𝜒subscript𝜂𝑓𝑎subscript𝜂𝑓subscriptΓ0subscript𝜂𝑓𝛿𝜒subscript𝜂𝑡𝑟𝑎subscript𝜂𝑖subscriptΓ0subscript𝜂𝑡𝑟\displaystyle\frac{\delta\chi(\eta_{f})}{a(\eta_{f})\Gamma_{0}(\eta_{f})}-% \frac{\delta\chi(\eta_{tr})}{a(\eta_{i})\Gamma_{0}(\eta_{tr})}divide start_ARG italic_δ italic_χ ( italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) end_ARG - divide start_ARG italic_δ italic_χ ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG =ηf𝑑η{δqηθ0(η)2δΓ(η,k)Γ0(η)1a(η)ηθ0}absentsuperscriptsubscript𝜂𝑓differential-dsuperscript𝜂𝛿𝑞subscriptsuperscript𝜂subscript𝜃0superscript𝜂2𝛿Γsuperscript𝜂𝑘subscriptΓ0superscript𝜂1𝑎superscript𝜂subscriptsuperscript𝜂subscript𝜃0\displaystyle=\int^{\eta_{f}}d\eta^{\prime}\left\{\delta q\partial_{\eta^{% \prime}}\theta_{0}(\eta^{\prime})-2\frac{\delta\Gamma(\eta^{\prime},\vec{k})}{% \Gamma_{0}(\eta^{\prime})}\frac{1}{a(\eta^{\prime})}\partial_{\eta^{\prime}}% \theta_{0}\right\}= ∫ start_POSTSUPERSCRIPT italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT { italic_δ italic_q ∂ start_POSTSUBSCRIPT italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - 2 divide start_ARG italic_δ roman_Γ ( italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , over→ start_ARG italic_k end_ARG ) end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG divide start_ARG 1 end_ARG start_ARG italic_a ( italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG ∂ start_POSTSUBSCRIPT italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT } (415)
ηtrηf𝑑η{3δΓ(ηtr,k)a(ηtr)Γ0(ηtr)ηθ0(η)2δΓ(η,k)Γ0(η)1a(η)ηθ0}absentsuperscriptsubscriptsubscript𝜂𝑡𝑟subscript𝜂𝑓differential-dsuperscript𝜂3𝛿Γsubscript𝜂𝑡𝑟𝑘𝑎subscript𝜂𝑡𝑟subscriptΓ0subscript𝜂𝑡𝑟subscriptsuperscript𝜂subscript𝜃0superscript𝜂2𝛿Γsuperscript𝜂𝑘subscriptΓ0superscript𝜂1𝑎superscript𝜂subscriptsuperscript𝜂subscript𝜃0\displaystyle\approx\int_{\eta_{tr}}^{\eta_{f}}d\eta^{\prime}\left\{\frac{3% \delta\Gamma(\eta_{tr},\vec{k})}{a(\eta_{tr})\Gamma_{0}(\eta_{tr})}\partial_{% \eta^{\prime}}\theta_{0}(\eta^{\prime})-2\frac{\delta\Gamma(\eta^{\prime},\vec% {k})}{\Gamma_{0}(\eta^{\prime})}\frac{1}{a(\eta^{\prime})}\partial_{\eta^{% \prime}}\theta_{0}\right\}≈ ∫ start_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT { divide start_ARG 3 italic_δ roman_Γ ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT , over→ start_ARG italic_k end_ARG ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG ∂ start_POSTSUBSCRIPT italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) - 2 divide start_ARG italic_δ roman_Γ ( italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , over→ start_ARG italic_k end_ARG ) end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG divide start_ARG 1 end_ARG start_ARG italic_a ( italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) end_ARG ∂ start_POSTSUBSCRIPT italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT } (416)

where ηtrsubscript𝜂𝑡𝑟\eta_{tr}italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT is the time at which Γ0(η)a(η)subscriptΓ0𝜂𝑎𝜂\Gamma_{0}(\eta)a(\eta)roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) italic_a ( italic_η ) starts to change in time (i.e. deviate from the conformal behavior). Because the lighter energy mode |ω+ketsubscript𝜔absent|\omega_{+-}\rangle| italic_ω start_POSTSUBSCRIPT + - end_POSTSUBSCRIPT ⟩ becomes purely the δχ𝛿𝜒\delta\chiitalic_δ italic_χ after the Γ0subscriptΓ0\Gamma_{0}roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT settles to the minimum of the potential, we know δΓ(η,k)0𝛿Γsuperscript𝜂𝑘0\delta\Gamma(\eta^{\prime},\vec{k})\rightarrow 0italic_δ roman_Γ ( italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , over→ start_ARG italic_k end_ARG ) → 0 asymptotically. Hence, for t>ttrsuperscript𝑡subscript𝑡𝑡𝑟t^{\prime}>t_{tr}italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT > italic_t start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT we shall assume

δΓ(η,k)δΓ(ηtr,k).less-than-or-similar-to𝛿Γsuperscript𝜂𝑘𝛿Γsubscript𝜂𝑡𝑟𝑘\delta\Gamma(\eta^{\prime},\vec{k})\lesssim\delta\Gamma(\eta_{tr},\vec{k}).italic_δ roman_Γ ( italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , over→ start_ARG italic_k end_ARG ) ≲ italic_δ roman_Γ ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT , over→ start_ARG italic_k end_ARG ) . (417)

Additionally we consider a smooth non-resonant adiabatic transition of the background radial field such that

Γ0(η)a(η)Γ0(ηtr)a(ηtr)greater-than-or-equivalent-tosubscriptΓ0superscript𝜂𝑎superscript𝜂subscriptΓ0subscript𝜂𝑡𝑟𝑎subscript𝜂𝑡𝑟\Gamma_{0}(\eta^{\prime})a(\eta^{\prime})\gtrsim\Gamma_{0}(\eta_{tr})a(\eta_{% tr})roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) italic_a ( italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ≳ roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) italic_a ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) (418)

because the equation of motion near the transition time can be solved to obtain

Y0(η)Yc(1+(2M2/H2+2)f2η2(2M2/H2+2)f2ηi2cos(f(ηηi)))subscript𝑌0𝜂subscript𝑌𝑐12superscript𝑀2superscript𝐻22superscript𝑓2superscript𝜂22superscript𝑀2superscript𝐻22superscript𝑓2superscriptsubscript𝜂𝑖2𝑓𝜂subscript𝜂𝑖Y_{0}(\eta)\approx Y_{c}\left(1+\frac{\left(2M^{2}/H^{2}+2\right)}{f^{2}\eta^{% 2}}-\frac{\left(2M^{2}/H^{2}+2\right)}{f^{2}\eta_{i}^{2}}\cos\left(f\left(\eta% -\eta_{i}\right)\right)\right)italic_Y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η ) ≈ italic_Y start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT ( 1 + divide start_ARG ( 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 ) end_ARG start_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG ( 2 italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 ) end_ARG start_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_cos ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ) (419)

which shows that the coefficient of cos(f(ηηi))𝑓𝜂subscript𝜂𝑖\cos(f(\eta-\eta_{i}))roman_cos ( italic_f ( italic_η - italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) is suppressed. Hence, compared to the first term, the second term in the integral falls off rapidly for t>ttr𝑡subscript𝑡𝑡𝑟t>t_{tr}italic_t > italic_t start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT. Thus, we simplify the integral as

δχ(ηf)a(ηf)Γ0(ηf)δχ(ηtr)a(ηi)Γ0(ηtr)𝛿𝜒subscript𝜂𝑓𝑎subscript𝜂𝑓subscriptΓ0subscript𝜂𝑓𝛿𝜒subscript𝜂𝑡𝑟𝑎subscript𝜂𝑖subscriptΓ0subscript𝜂𝑡𝑟\displaystyle\frac{\delta\chi(\eta_{f})}{a(\eta_{f})\Gamma_{0}(\eta_{f})}-% \frac{\delta\chi(\eta_{tr})}{a(\eta_{i})\Gamma_{0}(\eta_{tr})}divide start_ARG italic_δ italic_χ ( italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) end_ARG - divide start_ARG italic_δ italic_χ ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG |3δΓ(ηtr,k)a(ηtr)Γ0(ηtr)|ηtrηf𝑑ηηθ0(η).less-than-or-similar-toabsent3𝛿Γsubscript𝜂𝑡𝑟𝑘𝑎subscript𝜂𝑡𝑟subscriptΓ0subscript𝜂𝑡𝑟superscriptsubscriptsubscript𝜂𝑡𝑟subscript𝜂𝑓differential-dsuperscript𝜂subscriptsuperscript𝜂subscript𝜃0superscript𝜂\displaystyle\lesssim\left|\frac{3\delta\Gamma(\eta_{tr},\vec{k})}{a(\eta_{tr}% )\Gamma_{0}(\eta_{tr})}\right|\int_{\eta_{tr}}^{\eta_{f}}d\eta^{\prime}% \partial_{\eta^{\prime}}\theta_{0}(\eta^{\prime}).≲ | divide start_ARG 3 italic_δ roman_Γ ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT , over→ start_ARG italic_k end_ARG ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG | ∫ start_POSTSUBSCRIPT italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_d italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∂ start_POSTSUBSCRIPT italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) . (420)

Using the conservation equation, this becomes

δχ(ηf)a(ηf)Γ0(ηf)δχ(ηtr)a(ηi)Γ0(ηtr)𝛿𝜒subscript𝜂𝑓𝑎subscript𝜂𝑓subscriptΓ0subscript𝜂𝑓𝛿𝜒subscript𝜂𝑡𝑟𝑎subscript𝜂𝑖subscriptΓ0subscript𝜂𝑡𝑟\displaystyle\frac{\delta\chi(\eta_{f})}{a(\eta_{f})\Gamma_{0}(\eta_{f})}-% \frac{\delta\chi(\eta_{tr})}{a(\eta_{i})\Gamma_{0}(\eta_{tr})}divide start_ARG italic_δ italic_χ ( italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) end_ARG - divide start_ARG italic_δ italic_χ ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG |3δΓ(ηtr,k)a(ηtr)Γ0(ηtr)|Q(0)H2Γ02(ηtr)(ηtr3)less-than-or-similar-toabsent3𝛿Γsubscript𝜂𝑡𝑟𝑘𝑎subscript𝜂𝑡𝑟subscriptΓ0subscript𝜂𝑡𝑟superscript𝑄0superscript𝐻2superscriptsubscriptΓ02subscript𝜂𝑡𝑟superscriptsubscript𝜂𝑡𝑟3\displaystyle\lesssim\left|\frac{3\delta\Gamma(\eta_{tr},\vec{k})}{a(\eta_{tr}% )\Gamma_{0}(\eta_{tr})}\right|\frac{Q^{(0)}H^{2}}{\Gamma_{0}^{2}(\eta_{tr})}% \left(-\eta_{tr}^{3}\right)≲ | divide start_ARG 3 italic_δ roman_Γ ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT , over→ start_ARG italic_k end_ARG ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG | divide start_ARG italic_Q start_POSTSUPERSCRIPT ( 0 ) end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG ( - italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) (421)

where we used Eq. (418). Since we can solve during the time-independent conformal era

|δΓ(ηtr,k)a(ηtr)Γ0(ηtr)|(kηθ0(ηtr))|δχ(ηtr,k)a(ηtr)Γ0(ηtr)|𝛿Γsubscript𝜂𝑡𝑟𝑘𝑎subscript𝜂𝑡𝑟subscriptΓ0subscript𝜂𝑡𝑟𝑘subscript𝜂subscript𝜃0subscript𝜂𝑡𝑟𝛿𝜒subscript𝜂𝑡𝑟𝑘𝑎subscript𝜂𝑡𝑟subscriptΓ0subscript𝜂𝑡𝑟\left|\frac{\delta\Gamma(\eta_{tr},\vec{k})}{a(\eta_{tr})\Gamma_{0}(\eta_{tr})% }\right|\approx\left(\frac{k}{\partial_{\eta}\theta_{0}(\eta_{tr})}\right)% \left|\frac{\delta\chi(\eta_{tr},\vec{k})}{a(\eta_{tr})\Gamma_{0}(\eta_{tr})}\right|| divide start_ARG italic_δ roman_Γ ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT , over→ start_ARG italic_k end_ARG ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG | ≈ ( divide start_ARG italic_k end_ARG start_ARG ∂ start_POSTSUBSCRIPT italic_η end_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG ) | divide start_ARG italic_δ italic_χ ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT , over→ start_ARG italic_k end_ARG ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG | (422)

we obtain the relation

δχ(ηf)a(ηf)Γ0(ηf)δχ(ηtr)a(ηtr)Γ0(ηtr)𝛿𝜒subscript𝜂𝑓𝑎subscript𝜂𝑓subscriptΓ0subscript𝜂𝑓𝛿𝜒subscript𝜂𝑡𝑟𝑎subscript𝜂𝑡𝑟subscriptΓ0subscript𝜂𝑡𝑟\displaystyle\frac{\delta\chi(\eta_{f})}{a(\eta_{f})\Gamma_{0}(\eta_{f})}-% \frac{\delta\chi(\eta_{tr})}{a(\eta_{tr})\Gamma_{0}(\eta_{tr})}divide start_ARG italic_δ italic_χ ( italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) end_ARG - divide start_ARG italic_δ italic_χ ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG |δχ(ηtr,k)a(ηtr)Γ0(ηtr)|(katrH).less-than-or-similar-toabsent𝛿𝜒subscript𝜂𝑡𝑟𝑘𝑎subscript𝜂𝑡𝑟subscriptΓ0subscript𝜂𝑡𝑟𝑘subscript𝑎𝑡𝑟𝐻\displaystyle\lesssim\left|\frac{\delta\chi(\eta_{tr},\vec{k})}{a(\eta_{tr})% \Gamma_{0}(\eta_{tr})}\right|\left(\frac{k}{a_{tr}H}\right).≲ | divide start_ARG italic_δ italic_χ ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT , over→ start_ARG italic_k end_ARG ) end_ARG start_ARG italic_a ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) roman_Γ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_η start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT ) end_ARG | ( divide start_ARG italic_k end_ARG start_ARG italic_a start_POSTSUBSCRIPT italic_t italic_r end_POSTSUBSCRIPT italic_H end_ARG ) . (423)

This indicates that in the long wavelength limit, the isocurvature perturbation is conserved for modes outside of the horizon at the transition time even in the presence of a large rotating background.

References