Suppression without Thawing:
Constraining Structure Formation and Dark Energy with Galaxy Clustering

Shi-Fan Chen sfschen@ias.edu School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA    Mikhail M. Ivanov ivanov99@mit.edu Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA    Oliver H. E. Philcox ohep2@cantab.ac.uk Simons Society of Fellows, Simons Foundation, New York, NY 10010, USA Center for Theoretical Physics, Columbia University, New York, NY 10027, USA    Lukas Wenzl ljw232@cornell.edu Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA
Abstract

We present a new perturbative full-shape analysis of BOSS galaxy clustering data, including the full combination of the galaxy power spectrum and bispectrum multipoles, baryon acoustic oscillations, and cross-correlations with the gravitational lensing of cosmic microwave background measured from Planck. Assuming the ΛΛ\Lambdaroman_ΛCDM model, we constrain the matter density fraction Ωm=0.3154±0.0089subscriptΩ𝑚plus-or-minus0.31540.0089\Omega_{m}=0.3154\pm 0.0089roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = 0.3154 ± 0.0089, the Hubble constant H0=68.34±0.77kms1Mpc1subscript𝐻0plus-or-minus68.340.77kmsuperscripts1superscriptMpc1H_{0}=68.34\pm 0.77\,\mathrm{km}\,\mathrm{s}^{-1}\mathrm{Mpc}^{-1}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = 68.34 ± 0.77 roman_km roman_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT roman_Mpc start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, and the mass fluctuation amplitude σ8=0.686±0.027subscript𝜎8plus-or-minus0.6860.027\sigma_{8}=0.686\pm 0.027italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.686 ± 0.027 (equivalent to S8=0.704±0.031subscript𝑆8plus-or-minus0.7040.031S_{8}=0.704\pm 0.031italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.704 ± 0.031). Cosmic structure at low redshifts appears suppressed with respect to the Planck ΛΛ\Lambdaroman_ΛCDM concordance model at 4.5σ4.5𝜎4.5\sigma4.5 italic_σ. We explore whether this tension can be explained by the recent DESI preference for dynamical dark energy (DDE): the BOSS data combine with DESI BAO and PantheonPlus supernovae competitively compared to the CMB, yielding no preference for DDE, but the same 10%similar-toabsentpercent10\sim 10\%∼ 10 % suppression of structure, with dark energy being consistent with a cosmological constant at 68% CL. Our results suggest that either the data contains residual systematics, or more model-building efforts may be required to restore cosmological concordance.

preprint: MIT-CTP/5731

Introduction. — Observational and theoretical efforts over the last three decades have led to the establishment of the standard model of cosmology: ΛΛ\Lambdaroman_ΛCDM. This model can successfully fit a wide range of cosmological data, in particular the various correlators of cosmological fluctuations traced by the cosmic microwave background (CMB) anisotropies and large-scale structure of the Universe (e.g., Aghanim et al., 2020; Alam et al., 2021).

Despite its phenomenological successes, the ΛΛ\Lambdaroman_ΛCDM model suffers from significant theoretical questions. Many of its core ingredients, such as cosmic inflation, dark matter, and dark energy are, at best, highly exotic. The latter is particularly puzzling from the theoretical viewpoint. The simplest explanation for dark energy is the famous cosmological constant, which gives rise to the naturalness paradox that shatters the fundamental pillars of physics: symmetry-based selection rules and dimensional analysis Weinberg (1989); Burgess (2015). Whilst anthropic Weinberg (1987) and landscape Polchinski (2006) explanations are possible, the cosmological constant problem still poses a formidable conceptual challenge in fundamental physics. This challenge is particularly relevant given the possible (2.5σgreater-than-or-equivalent-toabsent2.5𝜎\gtrsim 2.5\sigma≳ 2.5 italic_σ) evidence for dynamical dark energy (DDE, also known as w0wasubscript𝑤0subscript𝑤𝑎w_{0}w_{a}italic_w start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPTCDM) recently reported by the Dark Energy Survey Instrument (DESI) collaboration DESI Collaboration et al. (2024a, b); Adame et al. (2024).

In addition to DDE, the data contain other anomalies whose presence could signal the breakdown of cosmological concordance. The most prominent is the Hubble tension, i.e. the apparent disagreement between the direct and indirect measurements of the Hubble constant H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, a proxy for the age of the Universe Riess et al. (2022). Another important anomaly is the disagreement of the direct and indirect probes of the growth of structure encoded by the mass fluctuation amplitude σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, or the related structure growth parameters S8(Ωm/0.3)1/2σ8subscript𝑆8superscriptsubscriptΩ𝑚0.312subscript𝜎8S_{8}\equiv(\Omega_{m}/0.3)^{1/2}\sigma_{8}italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT ≡ ( roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT / 0.3 ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and fσ8𝑓subscript𝜎8f\sigma_{8}italic_f italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT (where f𝑓fitalic_f is the redshift-dependent logarithmic growth factor) Di Valentino et al. (2021); Nguyen et al. (2023). This discrepancy is observed in multiple independent low-redshift datasets Abdalla et al. (2022) (a selection of which are shown in Fig. 1): cluster counts (e.g., Ade et al., 2016; Bolliet et al., 2020), weak lensing measurements (e.g., Asgari et al., 2021; Abbott et al., 2022), CMB lensing cross-correlations (e.g., Marques et al., 2024; White et al., 2022), and galaxy clustering in redshift space (e.g., Nguyen et al., 2023; Ivanov et al., 2023; Philcox and Ivanov, 2022; Chen et al., 2022a, b; Ivanov, 2021), though there exist some outliers (Beutler et al., 2017; Horowitz and Seljak, 2017; Kobayashi et al., 2022; Dalal et al., 2023; Miyatake et al., 2023; Yu et al., 2023; D’Amico et al., 2024; Farren et al., 2024; Shaikh et al., 2024). In general relativity the expansion history and growth of structure are intricately related through the equations of motion, and the accumulation of cosmological tensions raise a natural question: do they all point to a particular new physics model in a correlated fashion? This Letter addresses this question focusing on the case of DDE and the σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT tension.

Refer to caption
Figure 1: Left: A comparison on various S8subscript𝑆8S_{8}italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT results available in the literature (Chen et al., 2022; Farren et al., 2024; Abbott et al., 2022; Busch et al., 2022; Madhavacheril et al., 2024; Tristram et al., 2024), with our measurement (bottom) including galaxy two- and three-point information (G2superscript𝐺2G^{2}italic_G start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and G3superscript𝐺3G^{3}italic_G start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT), cross-correlation with lensing (Gκ𝐺𝜅G\kappaitalic_G italic_κ), and BAO. Right: Dependence of our results on analysis choices including choice of galaxy split, dataset, and maximum cross-correlation scale.

We present an independent reanalysis of the galaxy clustering data from the Baryon acoustic Oscillation Spectroscopic Survey (BOSS) in combination with Planck CMB lensing, in an attempt to link the possible σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT tension found in these data with the hints of DDE reported by DESI. Using methodologies developed in previous works (Philcox and Ivanov, 2022; Ivanov et al., 2023, 2020a, 2020b, 2022a; Philcox et al., 2020), we measure the BOSS three-dimensional redshift-space power spectrum and bispectrum multipoles, and post-reconstructed BAO data. We also include the angular cross correlation between the BOSS galaxies and Planck CMB lensing following Wenzl et al. (2024a) (see also Pullen et al. (2016); Singh et al. (2017); Doux et al. (2018); Singh et al. (2019); Darwish et al. (2021); Chen et al. (2022); Wenzl et al. (2024a, b)). For the first time, we consistently analyze all of these observables within the effective field theory (EFT)-based full-shape (FS) framework Ivanov et al. (2020a); D’Amico et al. (2020); Chen et al. (2022b). Our first important result is that, when combined with a BBN prior on the baryon density, this dataset yields a measurement of matter clustering amplitude σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT discrepant with the Planck concordance value at the 4.5σ4.5𝜎4.5\sigma4.5 italic_σ level (cf. Fig. 1). This represents the strongest evidence for the σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT tension from the BOSS dataset to date.

In the second part of this Letter, we study whether the σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT tension can be explained by the DDE model suggested by the combination DESI+++Supernovae (SNe) and CMB. Specifically, we analyze a combination of the BOSS data described above (both FS and BAO), including the galaxy-CMB lensing correlations, the DESI BAO data at redshift z>0.8𝑧0.8z>0.8italic_z > 0.8, and PantheonPlus SNe data assuming the DDE model. We find that DDE does not restore concordance between galaxy clustering data and the primary CMB. The optimal values of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT in our DDE analysis is still in a 4.5σ4.5𝜎4.5\sigma4.5 italic_σ tension with Planck, though the H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is consistent with Planck, but not with the value implied by the Cepheid-calibrated distance ladder Riess et al. (2022) (though in better agreement with (Freedman and Madore, 2022)). In addition, our dataset constrains DDE competitively compared to DESI BAO but does not display any evidence for DDE. The combination of the above results suggests that internal tensions between the datasets seem to pull cosmological parameters in directions uncorrelated with each other; this could motivate more efforts from the model building perspective, as well as searches for systematic effects in the full combination of the large-scale structure data.

Data. — Our primary dataset is the clustering of galaxies from the twelfth data release of the BOSS survey Reid et al. (2016); Dawson et al. (2013). These galaxies are observed in both the northern (NGC) and southern (SGC) galactic caps and are composed of the LOWZ and CMASS samples, each of which are restricted to the redshift ranges 0.15<z<0.430.15𝑧0.430.15<z<0.430.15 < italic_z < 0.43 and 0.43<z<0.700.43𝑧0.700.43<z<0.700.43 < italic_z < 0.70 in order to avoid overlap.111Unlike our previous works (e.g., Philcox and Ivanov, 2022), we split the sample by their physical type rather than imposing a redshift-cut (e.g., Beutler et al., 2017). Combining both galactic caps, the LOWZ and CMASS catalogs cover 8,57985798,5798 , 579 and 9,49394939,4939 , 493 deg2 with 361,762361762361,762361 , 762 and 777,202777202777,202777 , 202 galaxies, respectively. The complete DR12 catalogs also contain galaxies in two chunks LOWZE2 and LOWZE3 selected using different criteria than the main LOWZ sample. These are often combined with the main samples in order to maximize the survey volume, but, since the different selections imply different galaxy properties, we will instead omit them in this work (this choice was made also in pre-DR16 BOSS analyses (e.g., Gil-Marín et al., 2016), leading to a smaller area in the LOWZ sample compared to CMASS).

To characterize the clustering of the above galaxy samples, we utilize the power spectrum and bispectrum statistics, measured using the window-free estimators derived in (Philcox, 2021a, b; Ivanov et al., 2023) (now implemented in the PolyBin3D code (Philcox and Flöss, 2024)). We include the standard systematic and FKP weights constructed by BOSS Reid et al. (2016), which imply that the power spectrum probes clustering at an effective redshift zeff=𝑑Vzn¯2(z)/𝑑Vn¯2(z)subscript𝑧effdifferential-d𝑉𝑧superscript¯𝑛2𝑧differential-d𝑉superscript¯𝑛2𝑧z_{\rm eff}=\int dV\,z\bar{n}^{2}(z)/\int dV\bar{n}^{2}(z)italic_z start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = ∫ italic_d italic_V italic_z over¯ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z ) / ∫ italic_d italic_V over¯ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z ), equal to 0.3160.3160.3160.316 (0.5550.5550.5550.555) for the LOWZ (CMASS) sample, where n¯¯𝑛\bar{n}over¯ start_ARG italic_n end_ARG is the weighted galaxy number density. The same weights applied to the bispectrum would result in a different effective redshift (instead weighted by n¯3superscript¯𝑛3\bar{n}^{3}over¯ start_ARG italic_n end_ARG start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT); to ameliorate this, we an additional redshift weight wB(z)n¯(z)1/3subscript𝑤𝐵𝑧¯𝑛superscript𝑧13w_{B}(z)\equiv\bar{n}(z)^{-1/3}italic_w start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ( italic_z ) ≡ over¯ start_ARG italic_n end_ARG ( italic_z ) start_POSTSUPERSCRIPT - 1 / 3 end_POSTSUPERSCRIPT when computing the bispectrum. We additionally include the real-space power spectrum proxy Q0subscript𝑄0Q_{0}italic_Q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (equal to the power spectrum perpendicular to the line of sight) is estimated from the redshift space multipoles Ivanov et al. (2022a).

In addition to the power spectrum and bispectrum, we also include post-reconstruction BAO measurements from the BOSS galaxies. Since this signal does not depend strongly on galaxy properties, we will use measurements of the BAO scale from the combined BOSS sample covering the full survey area and redshift range, including the LOWZE2 and LOWZE3 samples omitted in the above full-shape analysis (specifically, those from (Philcox et al., 2020)). This combined sample is split into non-overlapping redshift bins 0.2<z<0.50.2𝑧0.50.2<z<0.50.2 < italic_z < 0.5 (z1) and 0.5<z<0.750.5𝑧0.750.5<z<0.750.5 < italic_z < 0.75 (z3) chunks following Alam et al. (2017); Beutler et al. (2017) with effective redshifts of zeff=0.38subscript𝑧eff0.38z_{\rm eff}=0.38italic_z start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT = 0.38 and 0.590.590.590.59, respectively. We compute the total covariance of the above measurements using measurements from the 2048 public MultiDark Patchy mocks Kitaura et al. (2016); Rodríguez-Torres et al. (2016).

Refer to caption
Figure 2: Constraints on cosmological parameters from our baseline dataset (BOSS two- and three-point galaxy clustering correlations, cross correlations of galaxies and CMB lensing and BAO; BOSS G2G3Gκsuperscript𝐺2superscript𝐺3𝐺𝜅G^{2}G^{3}G\kappaitalic_G start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_G start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_G italic_κ+BAO) on the standard ΛΛ\Lambdaroman_ΛCDM model (red), as well as those on the dynamical dark energy (DDE) model from the baseline data in addition to DESI BAO (at z>0.8𝑧0.8z>0.8italic_z > 0.8) and PantheonPlus supernovae (blue). Dashed lines mark the ΛΛ\Lambdaroman_ΛCDM values of the dark energy equation of state parameters w0subscript𝑤0w_{0}italic_w start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and wasubscript𝑤𝑎w_{a}italic_w start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT, corresponding to the cosmological constant.

In order to measure the lensing cross correlation with galaxies we use publicly-available CMB lensing maps reconstructed from Planck data. Specifically, we use the PR4 map introduced in Carron et al. (2022), which uses the updated NPIPE pipeline and slightly more data than previous releases, leading to a 20%percent2020\%20 % improvement in signal-to-noise compared to PR3. We compute the cross-correlations of the lensing convergence κ𝜅\kappaitalic_κ with the LOWZ and CMASS galaxies using the NaMaster algorithm Alonso et al. (2019) adopting the same numerical choices (including filters and apodization) as described in Wenzl et al. (2024a)—to which we direct the interested reader for further details including extensive systemaics tests—except that we split the cross correlations according to galactic cap. In particular we use NaMaster to compute the bandpower window MLsubscript𝑀𝐿M_{L\ell}italic_M start_POSTSUBSCRIPT italic_L roman_ℓ end_POSTSUBSCRIPT relating the observed bandpowers in bin L𝐿Litalic_L to the unbinned theory C^L=MLCsubscript^𝐶𝐿subscript𝑀𝐿subscript𝐶\hat{C}_{L}=M_{L\ell}C_{\ell}over^ start_ARG italic_C end_ARG start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = italic_M start_POSTSUBSCRIPT italic_L roman_ℓ end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT, as well as an analytic (Gaussian) covariance matrix using the theory predictions for the measured Csubscript𝐶C_{\ell}italic_C start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT’s. We treat this covariance independently from that derived from the three-dimensional clustering of galaxies since the mode overlap is negligible Taylor and Markovič (2022). Similarly to the bispectrum, we re-weight the galaxies when computing the cross correlation Cκgsubscriptsuperscript𝐶𝜅𝑔C^{\kappa g}_{\ell}italic_C start_POSTSUPERSCRIPT italic_κ italic_g end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT by the ratio of the galaxy and CMB lensing kernels in order to homogenize the effective redshifts probed with the galaxy power spectrum Chen et al. (2022).

Finally, in addition to BOSS-volume data, we will supplement our analysis with constraints on cosmological expansion at lower and higher redshfts obtained from Supernovae Type Ia (SNIa) and external BAO data. For the former we adopt the PantheonPlus dataset Scolnic et al. (2022); Riess et al. (2022) (which constrains the redshift-dependence of luminosity distances) and BAO likelihoods for the 6-degree Field Galaxy Redshift Survey (6dFGS) Beutler et al. (2011) and the Main Galaxy Sample (MGS) in SDSS DR7 Ross et al. (2015), as implemented in MontePython Audren et al. (2013); Brinckmann and Lesgourgues (2019). For the latter, we use all galaxy BAO measurements from DESI with z>0.8𝑧0.8z>0.8italic_z > 0.8 DESI Collaboration et al. (2024a) as well as the DESI Lyα𝛼\alphaitalic_α measurement DESI Collaboration et al. (2024b). We also adopt the BBN baryon density constraint from the primordial deuterium abundance Ωbh2=0.02268±0.00038subscriptΩ𝑏superscript2plus-or-minus0.022680.00038\Omega_{b}h^{2}=0.02268\pm 0.00038roman_Ω start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT italic_h start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0.02268 ± 0.00038 Cooke et al. (2018); Ivanov et al. (2020a), and fix222Alternatively, one can free nssubscript𝑛𝑠n_{s}italic_n start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT in the fit or use the Harrison-Zeldovich theoretical value ns=1subscript𝑛𝑠1n_{s}=1italic_n start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 1. These choices have a marginal impact on our results. the spectral tilt to the Planck best-fit value ns=0.9649subscript𝑛𝑠0.9649n_{s}=0.9649italic_n start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 0.9649.

Theoretical model. — We begin with a short overview of the theory model used for galaxy clustering. At the background level, we adopt either a baseline ΛΛ\Lambdaroman_ΛCDM model, or the popular dynamical dark energy (DDE) extension, which is parametrized according to the equation of state w(a)=w0+wa(1a)𝑤𝑎subscript𝑤0subscript𝑤𝑎1𝑎w(a)=w_{0}+w_{a}(1-a)italic_w ( italic_a ) = italic_w start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_w start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( 1 - italic_a ) Fang et al. (2008). We compute predictions for the redshift-space power spectrum and bispectrum, as well as the real-space matter-galaxy cross power spectrum, using the effective field theory of large scale structure (EFT) Baumann et al. (2012); Carrasco et al. (2012); Ivanov (2023) as implemented in the CLASS-PT code Chudaykin et al. (2020) in a modification to the public likelihoods.333https://github.com/oliverphilcox/full_shape_likelihoods Our modeling follows the the conventions of Chudaykin et al. (2020, 2021a); Philcox and Ivanov (2022), to which we refer the reader for further details. Briefly, the galaxy power spectrum is computed to one-loop in perturbation theory while the bispectra are computed using the same bias parameters up to quadratic order. The lensing cross correlation probes the real-space cross power spectrum of galaxies with matter Pmgsubscript𝑃𝑚𝑔P_{mg}italic_P start_POSTSUBSCRIPT italic_m italic_g end_POSTSUBSCRIPT perpendicular to the line of sight; we evaluate Pmgsubscript𝑃𝑚𝑔P_{mg}italic_P start_POSTSUBSCRIPT italic_m italic_g end_POSTSUBSCRIPT to one-loop order including an additional counterterm for the matter field. In all cases the effects of long-wavelength displacements on the BAO wiggles in the linear power spectrum are resummed following Blas et al. (2016a, b); Vlah et al. (2016); Ivanov and Sibiryakov (2018); Chen et al. (2024) (see also Senatore and Zaldarriaga (2015); Baldauf et al. (2015)).

To make contact with observations, we rescale the wavenumbers in the redshift-space power spectrum and bispectrum to correct for the mismatch of the true cosmology and the fiducial cosmology (with Ωm=0.31subscriptΩ𝑚0.31\Omega_{m}=0.31roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = 0.31) used to convert the angles and redshifts in the galaxy catalogs to rectilinear coordinates. Following this conversion, the power spectrum and bispectrum are then converted into the measured multipoles by integrating over the requisite angles Scoccimarro (2015); Scoccimarro et al. (1999) and combined into the measured k𝑘kitalic_k-bins, including weights to correct for discreteness effects as described in Ivanov et al. (2023). No such conversions are needed for the angular power spectrum multipoles which are given in the Limber approximation by Limber (1953); LoVerde and Afshordi (2008)

Cκg=dχχ2(Wκ(χ)Wg(χ)Pmg(k=+12χ,z(χ))\displaystyle C^{\kappa g}_{\ell}=\int\frac{d\chi}{\chi^{2}}\Big{(}W^{\kappa}(% \chi)W^{g}(\chi)\ P_{mg}\big{(}k=\frac{\ell+\frac{1}{2}}{\chi},z(\chi)\big{)}italic_C start_POSTSUPERSCRIPT italic_κ italic_g end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT = ∫ divide start_ARG italic_d italic_χ end_ARG start_ARG italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_W start_POSTSUPERSCRIPT italic_κ end_POSTSUPERSCRIPT ( italic_χ ) italic_W start_POSTSUPERSCRIPT italic_g end_POSTSUPERSCRIPT ( italic_χ ) italic_P start_POSTSUBSCRIPT italic_m italic_g end_POSTSUBSCRIPT ( italic_k = divide start_ARG roman_ℓ + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_ARG start_ARG italic_χ end_ARG , italic_z ( italic_χ ) )
+Wκ(χ)Wμ(χ)(2α1)Pmm(k=+12χ,z(χ))),\displaystyle+W^{\kappa}(\chi)W^{\mu}(\chi)(2\alpha-1)P_{mm}\big{(}k=\frac{% \ell+\frac{1}{2}}{\chi},z(\chi)\big{)}\Big{)},+ italic_W start_POSTSUPERSCRIPT italic_κ end_POSTSUPERSCRIPT ( italic_χ ) italic_W start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ( italic_χ ) ( 2 italic_α - 1 ) italic_P start_POSTSUBSCRIPT italic_m italic_m end_POSTSUBSCRIPT ( italic_k = divide start_ARG roman_ℓ + divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_ARG start_ARG italic_χ end_ARG , italic_z ( italic_χ ) ) ) ,

where χ𝜒\chiitalic_χ is comoving distance and the CMB lensing and galaxy density kernels are given by

Wκ(χ)=32H02Ωm(1+z)χ(χχ)χ,Wg(χ)=dNdχ.formulae-sequencesuperscript𝑊𝜅𝜒32superscriptsubscript𝐻02subscriptΩ𝑚1𝑧𝜒subscript𝜒𝜒subscript𝜒superscript𝑊𝑔𝜒𝑑𝑁𝑑𝜒W^{\kappa}(\chi)=\frac{3}{2}H_{0}^{2}\Omega_{m}(1+z)\frac{\chi(\chi_{\ast}-% \chi)}{\chi_{\ast}},\ W^{g}(\chi)=\frac{dN}{d\chi}.italic_W start_POSTSUPERSCRIPT italic_κ end_POSTSUPERSCRIPT ( italic_χ ) = divide start_ARG 3 end_ARG start_ARG 2 end_ARG italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ( 1 + italic_z ) divide start_ARG italic_χ ( italic_χ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT - italic_χ ) end_ARG start_ARG italic_χ start_POSTSUBSCRIPT ∗ end_POSTSUBSCRIPT end_ARG , italic_W start_POSTSUPERSCRIPT italic_g end_POSTSUPERSCRIPT ( italic_χ ) = divide start_ARG italic_d italic_N end_ARG start_ARG italic_d italic_χ end_ARG .

We evaluate Pmgsubscript𝑃𝑚𝑔P_{mg}italic_P start_POSTSUBSCRIPT italic_m italic_g end_POSTSUBSCRIPT at the effective redshift rather than parameterizing its redshift evolution since the galaxy redshift distribution is very narrow. Furthermore, Wμsuperscript𝑊𝜇W^{\mu}italic_W start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT is the galaxy lensing kernel and α𝛼\alphaitalic_α is the magnification bias—the latter contribution was studied extensively in Wenzl et al. (2024c) and we use the values of α𝛼\alphaitalic_α measured for LOWZ and CMASS therein. Unlike the κg𝜅𝑔\kappa-gitalic_κ - italic_g term, the magnification bias contribution probes the matter power spectrum to non-linear scales, though its support at the smallest scale is curtailed since Wκ,μsuperscript𝑊𝜅𝜇W^{\kappa,\mu}italic_W start_POSTSUPERSCRIPT italic_κ , italic_μ end_POSTSUPERSCRIPT fall to zero at short distances. As this term gives only a small contribution, but one dependent on non-perturbative physics, we model it via the one-loop Pmmsubscript𝑃𝑚𝑚P_{mm}italic_P start_POSTSUBSCRIPT italic_m italic_m end_POSTSUBSCRIPT EFT prediction supplemented with a phenomenological “resummed” version of the counterterm whose parameters were fitted from HMcode Mead et al. (2015). We stress that the choice of non-linear corrections for the magnification bias has a negligible impact on final results.

Our baseline analysis of BOSS (which we dub G2G3Gκsuperscript𝐺2superscript𝐺3𝐺𝜅G^{2}G^{3}G\kappaitalic_G start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_G start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT italic_G italic_κ+BAO) uses redshift-space scale cuts kmaxP=0.2hMpc1superscriptsubscript𝑘maxsubscript𝑃0.2superscriptMpc1k_{\rm max}^{P_{\ell}}=0.2\,h{\text{Mpc}}^{-1}italic_k start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = 0.2 italic_h Mpc start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT and kmaxB=0.08hMpc1superscriptsubscript𝑘maxsubscript𝐵0.08superscriptMpc1k_{\rm max}^{B_{\ell}}=0.08\,h{\text{Mpc}}^{-1}italic_k start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_B start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = 0.08 italic_h Mpc start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, and real-space scale cuts for Q0subscript𝑄0Q_{0}italic_Q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and Pmgsubscript𝑃𝑚𝑔P_{mg}italic_P start_POSTSUBSCRIPT italic_m italic_g end_POSTSUBSCRIPT at kmaxreal=0.4hMpc1superscriptsubscript𝑘maxreal0.4superscriptMpc1k_{\rm max}^{\rm real}=0.4\,h{\text{Mpc}}^{-1}italic_k start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_real end_POSTSUPERSCRIPT = 0.4 italic_h Mpc start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT (corresponding to angular cuts maxLOWZ,CMASS=400,600superscriptsubscriptmaxLOWZCMASS400600\ell_{\rm max}^{\texttt{LOWZ},\texttt{CMASS}}=400,600roman_ℓ start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT start_POSTSUPERSCRIPT LOWZ , CMASS end_POSTSUPERSCRIPT = 400 , 600) validated in Ivanov et al. (2020a); Nishimichi et al. (2020); Chudaykin et al. (2021a); Schmittfull et al. (2021); Ivanov et al. (2022b, a); Philcox and Ivanov (2022); Chen et al. (2022); Ivanov et al. (2023); Krause et al. (2024).

Parametrization and priors. — In this Letter, we follow the EFT parametrization in Ivanov et al. (2020a); Philcox and Ivanov (2022); Ivanov et al. (2023); Krause et al. (2024). Briefly, galaxy clustering is described by one linear, two quadratic, and one cubic bias parameters, along with three counterterms and three stochastic terms up to k2superscript𝑘2k^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT in scale dependence. In addition to these contributions we include a next-order finger-of-god (FoG Jackson (1972)) term k4μ4Plinsuperscript𝑘4superscript𝜇4subscript𝑃link^{4}\mu^{4}P_{\rm lin}italic_k start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT roman_lin end_POSTSUBSCRIPT to account for the effect leading to larger dynamical non-linearities than other effects Chudaykin et al. (2020). The tree-level bispectrum is described by these bias parameters up to quadratic order and two additional stochastic terms associated with the non-Gaussianity and density-dependence of short modes and, like the power spectrum, a phenomenological FoG term. The real-space clustering of matter requires an additional real space counterterm Pmgc.t.=2b1c0k2Plin(k)superscriptsubscript𝑃𝑚𝑔formulae-sequencect2subscript𝑏1subscript𝑐0superscript𝑘2subscript𝑃lin𝑘P_{mg}^{\rm c.t.}=2b_{1}c_{0}k^{2}P_{\rm lin}(k)italic_P start_POSTSUBSCRIPT italic_m italic_g end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_c . roman_t . end_POSTSUPERSCRIPT = 2 italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT roman_lin end_POSTSUBSCRIPT ( italic_k ), for which we use the Gaussian prior 𝒩(0,102)𝒩0superscript102\mathcal{N}(0,10^{2})caligraphic_N ( 0 , 10 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) in units [h1Mpc]2superscriptdelimited-[]superscript1Mpc2[h^{-1}{\text{Mpc}}]^{2}[ italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT Mpc ] start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, resulting in 14 free parameters per sample.444Part of this counterterm also enters the galaxy power spectrum, but the counterterm combinations that appear in P0,2,4subscript𝑃024P_{0,2,4}italic_P start_POSTSUBSCRIPT 0 , 2 , 4 end_POSTSUBSCRIPT are linearly independent from that of Pgmsubscript𝑃𝑔𝑚P_{gm}italic_P start_POSTSUBSCRIPT italic_g italic_m end_POSTSUBSCRIPT, leading to four parameters for four independent spectra.

Results. — We start by analyzing the BOSS FS and BAO data within the baseline ΛΛ\Lambdaroman_ΛCDM model. Our results are displayed in Fig. 2 and Tab. 1. We find that the optimal values of cosmological parameters are consistent with the Planck baseline CMB values Aghanim et al. (2020), except for σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, which shows a 4.5σ4.5𝜎4.5\sigma4.5 italic_σ disagreement. The tension with the ACT CMB lensing results Madhavacheril et al. (2024) has a similar strength: 4.3σ𝜎\sigmaitalic_σ. For the S8subscript𝑆8S_{8}italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT parameter, the discrepancy is somewhat weaker, 3.8σ3.8𝜎3.8\sigma3.8 italic_σ, though our results appear in agreement with weak lensing measurements by DES Abbott et al. (2022), KiDS Asgari et al. (2021), and HSC Dalal et al. (2023); Miyatake et al. (2023), see Fig. 1.

Parameter ΛΛ\Lambdaroman_ΛCDM DDE
ΩmsubscriptΩ𝑚\Omega_{m}roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT 0.3155(0.3103)0.0090+0.00870.3155superscriptsubscript0.31030.00900.00870.3155~{}(0.3103)_{-0.0090}^{+0.0087}0.3155 ( 0.3103 ) start_POSTSUBSCRIPT - 0.0090 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.0087 end_POSTSUPERSCRIPT 0.3223(0.3232)0.0081+0.00790.3223superscriptsubscript0.32320.00810.00790.3223~{}(0.3232)_{-0.0081}^{+0.0079}0.3223 ( 0.3232 ) start_POSTSUBSCRIPT - 0.0081 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.0079 end_POSTSUPERSCRIPT
H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT 68.54(68.54)0.81+0.7768.54superscriptsubscript68.540.810.7768.54~{}(68.54)_{-0.81}^{+0.77}68.54 ( 68.54 ) start_POSTSUBSCRIPT - 0.81 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.77 end_POSTSUPERSCRIPT 68.19(67.47)0.89+0.8968.19subscriptsuperscript67.470.890.8968.19~{}(67.47)^{+0.89}_{-0.89}68.19 ( 67.47 ) start_POSTSUPERSCRIPT + 0.89 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.89 end_POSTSUBSCRIPT
σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT 0.687(0.704)0.028+0.0260.687superscriptsubscript0.7040.0280.0260.687~{}(0.704)_{-0.028}^{+0.026}0.687 ( 0.704 ) start_POSTSUBSCRIPT - 0.028 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.026 end_POSTSUPERSCRIPT 0.686(0.691)0.028+0.0260.686superscriptsubscript0.6910.0280.0260.686~{}(0.691)_{-0.028}^{+0.026}0.686 ( 0.691 ) start_POSTSUBSCRIPT - 0.028 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.026 end_POSTSUPERSCRIPT
S8subscript𝑆8S_{8}italic_S start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT 0.704(0.716)0.031+0.0310.704subscriptsuperscript0.7160.0310.0310.704~{}(0.716)^{+0.031}_{-0.031}0.704 ( 0.716 ) start_POSTSUPERSCRIPT + 0.031 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.031 end_POSTSUBSCRIPT 0.711(0.717)0.029+0.0290.711subscriptsuperscript0.7170.0290.0290.711~{}(0.717)^{+0.029}_{-0.029}0.711 ( 0.717 ) start_POSTSUPERSCRIPT + 0.029 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.029 end_POSTSUBSCRIPT
w0subscript𝑤0w_{0}italic_w start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT 11-1- 1 0.907(0.971)0.073+0.0720.907superscriptsubscript0.9710.0730.072-0.907~{}(-0.971)_{-0.073}^{+0.072}- 0.907 ( - 0.971 ) start_POSTSUBSCRIPT - 0.073 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.072 end_POSTSUPERSCRIPT
wasubscript𝑤𝑎w_{a}italic_w start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT 00 0.49(0.05)0.34+0.420.49subscriptsuperscript0.050.420.34-0.49~{}(-0.05)^{+0.42}_{-0.34}- 0.49 ( - 0.05 ) start_POSTSUPERSCRIPT + 0.42 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.34 end_POSTSUBSCRIPT
Table 1: Cosmological parameters and their 68% confidence limits (with best-fit values shown in parentheses), from the full BOSS dataset under the ΛΛ\Lambdaroman_ΛCDM model (left) and from BOSS+DESI+SNe under the DDE model (right).

Notably, the tension remains for different subsets of the underlying data (see Fig. 1). Our tests include: (a) adopting a more conservative choice of max=350subscriptmax350\ell_{\rm max}=350roman_ℓ start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT = 350 for the lensing data (which yields σ8=0.6980.03+0.03subscript𝜎8superscriptsubscript0.6980.030.03\sigma_{8}=0.698_{-0.03}^{+0.03}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.698 start_POSTSUBSCRIPT - 0.03 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.03 end_POSTSUPERSCRIPT); (b) fitting only the galaxy power spectrum multipoles using the Lagrangian EFT with the velocileptors code555https://github.com/sfschen/velocileptors/ Chen et al. (2020, 2021, 2022b); Maus et al. (2024a) (σ8=0.7310.048+0.048subscript𝜎8subscriptsuperscript0.7310.0480.048\sigma_{8}=0.731^{+0.048}_{-0.048}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.731 start_POSTSUPERSCRIPT + 0.048 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.048 end_POSTSUBSCRIPT); (c) fitting only the multipoles plus CMB-lensing cross correlation (σ8=0.7080.037+0.037subscript𝜎8subscriptsuperscript0.7080.0370.037\sigma_{8}=0.708^{+0.037}_{-0.037}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.708 start_POSTSUPERSCRIPT + 0.037 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 0.037 end_POSTSUBSCRIPT) as in ref. Chen et al. (2022a)666https://github.com/sfschen/BOSSxPlanck; (d) removing the galaxy-CMB lensing cross correlation (σ8=0.7090.033+0.031subscript𝜎8superscriptsubscript0.7090.0330.031\sigma_{8}=0.709_{-0.033}^{+0.031}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.709 start_POSTSUBSCRIPT - 0.033 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.031 end_POSTSUPERSCRIPT); (e) analyzing the z1/z3 split of the BOSS data including LOWZE2/LOWZE3 samples omitted in our main FS analysis (σ8=0.7220.03+0.03subscript𝜎8superscriptsubscript0.7220.030.03\sigma_{8}=0.722_{-0.03}^{+0.03}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.722 start_POSTSUBSCRIPT - 0.03 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.03 end_POSTSUPERSCRIPT). We find consistent results in all cases (Fig. 1).

Another important observation is that the preference for low σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT is not a prior effect (see e.g. Ivanov et al. (2020a); Chudaykin et al. (2021b); Philcox and Ivanov (2022) for related studies), as previous studies have shown that the preference for a low σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT value in the BOSS data is present at the level of the raw χ2superscript𝜒2\chi^{2}italic_χ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT statistic Chen et al. (2022b); Philcox and Ivanov (2022). The tension also remains when more informative reasonably narrow priors are applied. It will be interesting to see if informative simulation-based priors Ivanov et al. (2024a) can sharpen our constraints further.

Secondly, we analyze the full combination of BOSS clustering, DESI BAO, and SNe data assuming the DDE model. Our results are shown in Fig. 2 and Tab. 1. The inferred H0subscript𝐻0H_{0}italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT value is consistent with previous CMB and LSS measurements based on the ΛΛ\Lambdaroman_ΛCDM model, confirming the standard lore that DDE cannot resolve the Hubble tension (Di Valentino et al., 2021). Turning to the σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT tension, we find nearly identical constraints in the DDE model as in ΛΛ\Lambdaroman_ΛCDM, implying that DDE cannot resolve the σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT discrepancy in the BOSS galaxy clustering data. Finally, we observe that the w0wasubscript𝑤0subscript𝑤𝑎w_{0}-w_{a}italic_w start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - italic_w start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT posterior is consistent with the ΛΛ\Lambdaroman_ΛCDM values (1,0)10(-1,0)( - 1 , 0 ) within 68% CL.

Notably, the FS data provides an independent channel to extract ωmsubscript𝜔𝑚\omega_{m}italic_ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT (and ΩmsubscriptΩ𝑚\Omega_{m}roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT), relevant for the DDE constraints Ivanov et al. (2020a); Chudaykin et al. (2021b). Our analysis suggests that the inclusion of this information leads to a non-detection of DDE, compared to the weak preference found in Appendix A of (Adame et al., 2024), which used only the BAO data from BOSS/eBOSS. The BOSS FS data delivers constraints on the matter density whose precision rivals that of the Planck CMB, which when combined with DESI and PantheonPlus, cf. Adame et al. (2024), i.e. BOSS FS can competitively replace the CMB in breaking degeneracies inherent in BAO data. This remains true if we vary the spectral tilt nssubscript𝑛𝑠n_{s}italic_n start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT in the fit; as such, our results do not require any input from the CMB.777In this case, we find σ8=0.655(0.683)0.034+0.031subscript𝜎80.655superscriptsubscript0.6830.0340.031\sigma_{8}=0.655~{}(0.683)_{-0.034}^{+0.031}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT = 0.655 ( 0.683 ) start_POSTSUBSCRIPT - 0.034 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.031 end_POSTSUPERSCRIPT, w0=0.887(0.875)0.08+0.075subscript𝑤00.887superscriptsubscript0.8750.080.075w_{0}=-0.887~{}(-0.875)_{-0.08}^{+0.075}italic_w start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = - 0.887 ( - 0.875 ) start_POSTSUBSCRIPT - 0.08 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.075 end_POSTSUPERSCRIPT, wa=0.80(0.65)0.42+0.52subscript𝑤𝑎0.80superscriptsubscript0.650.420.52w_{a}=-0.80~{}(-0.65)_{-0.42}^{+0.52}italic_w start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = - 0.80 ( - 0.65 ) start_POSTSUBSCRIPT - 0.42 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + 0.52 end_POSTSUPERSCRIPT.

Conclusions. — In this Letter, we have presented a novel analysis of public galaxy clustering and CMB lensing data from Planck and BOSS, representing the most complete combination of galaxy correlators yet performed. Our results suggest a value of the mass fluctuation amplitude in tension with the best-fit ΛΛ\Lambdaroman_ΛCDM value predicted by Planck CMB anisotropies, which cannot be accounted for by dynamical dark energy (DDE); furthermore, the combination of BOSS with BAO data from DESI and expansion data from supernovae does not yield any evidence for DDE. Our results have several important implications.

From the phenomenological perspective, it would be interesting to build a model that can resolve this σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT tension. There exist many proposals that can readily produce some suppression on small scales, such as massive neutrinos Lesgourgues and Pastor (2006); Ivanov et al. (2020b), ultralight axions Laguë et al. (2022); Rogers et al. (2023), light but massive relics Xu et al. (2022), baryon-dark matter scattering He et al. (2023), dark sector interactions Rubira et al. (2023); Nunes et al. (2022); Joseph et al. (2023), and beyond; however, it is unclear whether these can account for the part of the suppression in BOSS that is present on large scales k0.1hMpc1less-than-or-similar-to𝑘0.1superscriptMpc1k\lesssim 0.1\,h{\text{Mpc}}^{-1}italic_k ≲ 0.1 italic_h Mpc start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT Chen et al. (2022b); Philcox and Ivanov (2022). In addition, such a model should keep cosmic structure at z1greater-than-or-equivalent-to𝑧1z\gtrsim 1italic_z ≳ 1 unsuppressed, as suggested by eBOSS quasar Neveux et al. (2020); Chudaykin and Ivanov (2023) and Lyman-α𝛼\alphaitalic_α data Chabanier et al. (2019); Ivanov et al. (2024b).

The σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT tension is generated by data that effectively measure the cross-correlation between the galaxy field and a probe of matter, through either CMB lensing or redshift-space distortions (which probe the velocity field): σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT is extracted from the ratio between the relevant cross- (i.e. the quadrupole and Pgmsubscript𝑃𝑔𝑚P_{gm}italic_P start_POSTSUBSCRIPT italic_g italic_m end_POSTSUBSCRIPT) and auto- galaxy power spectrum (i.e. the monopole). An additive foreground, arising for example due to contaminants in the photometric selection of target galaxies, would enhance the auto-spectrum but cancel in both cross-correlations, leading to smaller ratios between them and consequently lower σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT. If such a systematic correction is present, it will affect these two seemingly independent measurements of σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT in a correlated fashion. That said, the addition of the bispectrum, which instead probes structure growth through cancelling quadratic and linear terms in the redshift-space galaxy density, is also found to reduce the measured σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT, though we caution that the impact of foreground systematics on the 3-point function is less well-explored. In any case, we expect the coming generation of galaxy surveys, which feature more robust data and updated treatments of foreground systematics, to shed light on this issue.

Finally, it will be important to understand if the tensions in the expansion history, particularly due to deviations away from a cosmological constant, that appear from different combinations of the LSS data from BOSS and DESI are physical, and if there is a new physics model that can account for them in a consistent manner. Such effects, as well as further examination of the low-σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT discrepancy, will certainly be illuminated with future full-shape analyses of galaxy clustering data from DESI Maus et al. (2024b) and beyond.

Acknowledgements. — We are grateful to Emanuele Castorina, Guido D’Amico, Julien Lesgourgues, John Peacock, Douglas Scott, Martin White, Matias Zaldarriaga, and Pierre Zhang for insightful discussions. SC acknowledges the support of the National Science Foundation at the Institute for Advanced Study. OHEP is a Junior Fellow of the Simons Society of Fellows. We thank the City of Edinburgh for their kaleidoscopic selection of mashed grains.

References