General Relativity and Quantum Cosmology
[Submitted on 3 Mar 2024]
Title:Time delay interferometry with minimal null frequencies
View PDF HTML (experimental)Abstract:Time delay interferometry (TDI) is a key technique employed in gravitational wave (GW) space missions to mitigate laser frequency noise by combining multiple laser links and establishing an equivalent equal arm interferometry. The null frequencies will be introduced in noise spectra and GW response when the periodical signal/noise is canceled in synthesized laser links. These frequencies are characteristic frequencies (CFs) of a TDI which related to its geometry of combination. In this work, we propose a second-generation TDI configuration referred to as hybrid Relay, whose CFs are only one-quarter that of the fiducial second-generation Michelson observables. We examine the performance of novel TDI configuration in laser noise cancellation and clock noise suppression and justify its essential capabilities. To assess its robustness for signal extraction, we simulate data containing GW signals from massive black hole binaries and perform parameter inferences with comparisons against the fiducial Michelson TDI configuration. The results demonstrate that the newly proposed TDI solution could be more robust than Michelson in fulfilling data analysis.
Current browse context:
gr-qc
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.